Profil

Mihaylov Boyan

Structures en béton

UEE

See author's contact details
Main Referenced Co-authors
Liu, Jian  (13)
Franssen, Renaud  (12)
Trandafir, Alexandru  (11)
Bentz, Evan (10)
Collins, Michael (10)
Main Referenced Keywords
shear (23); deep beams (21); kinematic model (21); displacement capacity (9); deformation patterns (8);
Main Referenced Unit & Research Centers
IFRES (1)
Main Referenced Disciplines
Civil engineering (87)
Education & instruction (1)

Publications (total 88)

The most downloaded
830 downloads
Mihaylov, B. (2008). Behavior of Deep Reinforced Concrete Beams under Monotonic and Reversed Cyclic Load [Doctoral thesis, UNIPEV - Università degli Studi di Pavia]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/140352 https://hdl.handle.net/2268/140352

The most cited

96 citations (Scopus®)

Mihaylov, B., Bentz, E., & Collins, M. (2013). Two-Parameter Kinematic Theory for Shear Behavior of Deep Beams. ACI Structural Journal, 110 (3), 447-455. https://hdl.handle.net/2268/141470

Trandafir, A., Ernens, G., & Mihaylov, B. (26 July 2023). Crack-Based Evaluation of Internally FRP-Reinforced Concrete Deep Beams without Shear Reinforcement. Journal of Composites for Construction, 27 (5). doi:10.1061/JCCOF2.CCENG-4232
Peer Reviewed verified by ORBi

Trandafir, A., & Mihaylov, B. (2023). Crack-based modeling of FRP-reinforced deep beams without transverse reinforcement. In Building for the Future: Durable, Sustainable, Resilient. Switzerland: Springer Nature.
Peer reviewed

Trandafir, A., Proestos, G. T., & Mihaylov, B. (08 September 2022). Detailed crack-based assessment of a 4-m deep beam test specimen. Structural Concrete, 24 (1), 756 - 770. doi:10.1002/suco.202200149
Peer Reviewed verified by ORBi

Park, J., Trandafir, A., Stathas, N., Strepelias, E., Palios, X., Kwon, O.-S., Mihaylov, B., & Bousias, S. (2022). Hybrid Simulation Testing of Coupling Beams. In Springer Proceedings in Earth and Environmental Sciences (pp. 417–432). Springer Nature. doi:10.1007/978-3-031-15104-0_25
Peer reviewed

Trandafir, A., Proestos, G. T., & Mihaylov, B. (2022). Crack-Based Assessment of a 4-meter Deep Beam Test. In Concrete Innovation for Sustainability. Oslo, Norway: Novus Press.
Peer reviewed

Mihaylov, B. (10 June 2022). Crack-Based Assessment and Strengthening of Concrete Structures [Paper presentation]. The Sixth International Nigel Priestley Seminar, Pavia, Italy.

Rajapakse Mudiyanselage, C. M., Degée, H., & Mihaylov, B. (01 June 2022). Investigation of shear and flexural failures of dapped-end connections with orthogonal reinforcement. Engineering Structures, 260, 114233. doi:10.1016/j.engstruct.2022.114233
Peer Reviewed verified by ORBi

Fathalla, E., Rajapakse, R. M. C. M., & Mihaylov, B. (June 2022). Modeling the shear behavior of deep beams strengthened with FRP sheets. Engineering Structures, 260, 114232. doi:10.1016/j.engstruct.2022.114232
Peer Reviewed verified by ORBi

Mihaylov, B. (27 May 2022). Crack-Based Assessment and Retrofit of Concrete Members based on First Principles [Paper presentation]. Research Seminar at the University of Cambridge (online).

Rajapakse Mudiyanselage, C. M., Degée, H., & Mihaylov, B. (2022). A kinematics-based model for complete behaviour of RC dapped‑end connections governed by re‑entrant corner cracks. In Challenges for existing and oncoming structures. Zurich, Switzerland: IABSE.
Peer reviewed

Mihaylov, B., Rajapakse Mudiyanselage, C. M., & Berger, P.-H. (15 May 2022). Effect of steel fibers on the ultimate flexural behavior of dapped-end connections. Engineering Structures, 259, 114147. doi:10.1016/j.engstruct.2022.114147
Peer Reviewed verified by ORBi

Palipana, D., Trandafir, A., Mihaylov, B., & Proestos, G. (01 May 2022). Framework for Quantification of Shear-Transfer Mechanisms from Deep Beam Experiments. ACI Structural Journal, 119 (3). doi:10.14359/51734485
Peer Reviewed verified by ORBi

Mihaylov, B., & Bousias, S. (01 April 2022). Applicability of Strut-and-Tie and Stress Field Models to Seismic Design [Paper presentation]. International Webinar Workshop of fib Working Party WP 2.2.4.

Franssen, R., Guner, S., & Mihaylov, B. (28 March 2022). Numerical Modeling of UHPC Bridge Elements Including Strain-Hardening and -Softening Behaviors [Paper presentation]. American Concrete Institute Spring 2022 Convention.
Editorial reviewed

Trandafir, A., Palipana, D. K., Proestos, G. T., & Mihaylov, B. (2022). Framework for Crack-Based Assessment of Existing Lightly Reinforced Concrete Deep Members. ACI Structural Journal, 119 (1), 255 - 266. doi:10.14359/51733143
Peer Reviewed verified by ORBi

Trandafir, A., & Mihaylov, B. (2022). Kinematics-Based Modelling of Shear Critical Coupling Beams with and without FRP Strengthening. In Proceedings of the Third European Conference on Earthquake Engineering and Seismology – 3ECEES. Bucharest, Romania: CONSPRESS.
Peer reviewed

Lourenço, M. S., Fernández Ruiz, M., Blaauwendraad, J., Bousias, S., Cao Hoang, L., Mata-Falcón, J., Meléndez, C., Mihaylov, B., Pedrosa Ferreira, M., & Viúla Faria, D. (2021). Design and assessment with strut-and-tie models and stress fields: from simple calculations to detailed numerical analysis. Lausanne, Switzerland: International Federation for Structural Concrete (fib).
Peer reviewed

Mihaylov, B. (09 July 2021). Crack-Based Assessment of Dapped-End Connections [Paper presentation]. Research Seminar of fib Working Party WP 2.2.4.

Mihaylov, B., Trandafir, A., Palios, X., Strepelias, E., & Bousias, S. (01 July 2021). Effect of axial restraint and loading history on the behavior of short reinforced concrete coupling beams. ACI Structural Journal, 118 (4), 71-82. doi:10.14359/51732644
Peer Reviewed verified by ORBi

Palipana, D., Trandafir, A., Mihaylov, B., & Proestos, G. (2021). Direct Evaluation of Shear Carrying Mechanisms in Reinforced Concrete Deep Beams. In Concrete Structures: New Trends for Eco-Efficiency and Performance.
Peer reviewed

Trandafir, A., Palipana, D., Proestos, G., & Mihaylov, B. (2021). Direct Crack-Based Assessment Approach for Shear Critical Reinforced Concrete Deep Beams. In Concrete Structures: New Trends for Eco-Efficiency and Performance.
Peer reviewed

Tatar, N., & Mihaylov, B. (2021). Kinematic-Based Modelling of Shear-Dominated Concrete Walls with Rectangular and Barbell Sections. Journal of Earthquake Engineering, doi.org/10.1080/13632469.2019.1577764. doi:10.1080/13632469.2019.1577764
Peer Reviewed verified by ORBi

Rajapakse Mudiyanselage, C. M., Degée, H., & Mihaylov, B. (2021). Assessment of Failure Along Re-Entrant Corner Cracks in Existing RC Dapped-End Connections. Structural Engineering International, 1-11. doi:10.1080/10168664.2021.1878975
Peer reviewed

Proestos, G., Palipana, D., & Mihaylov, B. (2021). Evaluating the Shear Resistance of Deep Beams Loaded or Supported by Wide Elements. Engineering Structures, 226. doi:10.1016/j.engstruct.2020.111368
Peer Reviewed verified by ORBi

Franssen, R., Guner, S., Courard, L., & Mihaylov, B. (2021). Numerical Modelling Approach for UHPFRC Members Including Crack Spacing Formulations. Engineering Structures, 238, 112179. doi:10.1016/j.engstruct.2021.112179
Peer Reviewed verified by ORBi

Hippola, S., Rajapakse, C., Mihaylov, B., & Wijesundara, K. (2021). A Force-Based Fiber Beam-Column Element to Predict Moment-Axial-Shear Interaction of Reinforced Concrete Frames. Structural Concrete. doi:10.1002/suco.202100262
Peer Reviewed verified by ORBi

Franssen, R., Courard, L., & Mihaylov, B. (2021). Shear Behavior of Reinforced Concrete Walls Retrofitted with UHPFRC Jackets. ACI Structural Journal, 118 (5), 149-160. doi:10.14359/51732825
Peer Reviewed verified by ORBi

Mihaylov, B., Liu, J., & Ozkan, M. (2021). Modeling the Effect of Prestressing on the Ultimate Behavior of Deep-to-Slender Concrete Beams. ACI Structural Journal, 118 (2).
Peer Reviewed verified by ORBi

Mihaylov, B., Liu, J., & Garcia, C. (2020). Modelling the Effect of FRP Sheets on the Complete Behaviour of Shear-Critical Coupling Beams. In Concrete Structures for Resilient Society, Design and Structures.
Peer reviewed

Mihaylov, B., Liu, J., & Ozkan, M. (2020). Kinematics-Based Approach for Shear Strength of Prestressed Concrete Deep Beams. In Concrete Structures for Resilient Society, Design and Structures.
Peer reviewed

Mihaylov, B., & Rajapakse Mudiyanselage, C. M. (2020). A simplified kinematic approach for the shear strength of fibre-reinforced concrete deep beams. Structural Concrete, doi.org/10.1002/suco.201900461. doi:10.1002/suco.201900461
Peer Reviewed verified by ORBi

Franssen, R., Langer, M., Courard, L., & Mihaylov, B. (2020). Analysis of the Behaviour of Bridge Piers Retrofitted with UHPFRC Jackets. In B. Middendorf, E. Fehling, ... A. Wetzel, Proceedings of HiPerMat 2020 5th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials (pp. 49-50).
Peer reviewed

Liu, J., & Mihaylov, B. (2020). Shear Strength of RC Deep Beams with Web Openings based on Two-Parameter Kinematic Theory. Structural Concrete, 21 (1), 1-14. doi:10.1002/suco.201800356
Peer Reviewed verified by ORBi

Mihaylov, B., Liu, J., & Carretero Garcia, C. (01 January 2020). Modeling the Effect of FRP Sheets on the Behavior of Short Coupling Beams Exhibiting Diagonal Tension Failure. Journal of Composites for Construction, 24 (5). doi:10.1061/(ASCE)CC.1943-5614.0001049
Peer Reviewed verified by ORBi

Mihaylov, B. (13 December 2019). Modelling the Nonlinear Shear Behavior of Short FRC Coupling Beams [Paper presentation]. 10th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka.

Mihaylov, B. (13 December 2019). Monitoring, Assessment and Retrofit of Concrete Structures Based on First Principles [Paper presentation]. 10th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka.

Franssen, R., Courard, L., & Mihaylov, B. (2019). Renforcement en cisaillement de piles de pont de type voile avec chemisage en BFUP. In E. Brühwiler, C. Oesterlee, ... D. Redaelli, 3ème Journée d'étude, 24 octobre 2019 BÉTON FIBRÉ ULTRA-PERFORMANT concevoir, dimensionner, construire.
Peer reviewed

Mihaylov, B., Liu, J., Simionopoulos, K., Bentz, E., & Collins, M. (01 July 2019). Effect of Member Size and Tendon Layout on the Shear Behavior of Post-Tensioned Beams. ACI Structural Journal, 116 (4), 265-274. doi:10.14359/51715633
Peer Reviewed verified by ORBi

Liu, J., Guner, S., & Mihaylov, B. (01 July 2019). Mixed-Type Modeling of Structures with Slender and Deep Beam Elements. ACI Structural Journal, 116 (4), 253-264. doi:10.14359/51715632
Peer Reviewed verified by ORBi

Liu, J., & Mihaylov, B. (2019). Modelling the Ultimate Shear Behaviour of Deep Beams with Web Openings. In Concrete – Innovations in Materials, Design and Structures.
Peer reviewed

Mihaylov, B., Liu, J., & Tvrznikova, K. (2019). Kinematic-based Approach for Complete Shear Behaviour of Deep FRC Beams. In Concrete – Innovations in Materials, Design and Structures.
Peer reviewed

Mihaylov, B., Liu, J., & Tvrznikova, K. (2019). Two-Parameter Kinematic Approach for complete Shear Behaviour of Deep FRC Beams. Structural Concrete, 1-14. doi:10.1002/suco.201800199
Peer Reviewed verified by ORBi

Mihaylov, B. (22 March 2019). Monitoring, Assessment and Retrofit of Concrete Structures based on First Principles [Paper presentation]. Department of Civil Engineering Research Seminar, Montreal, Canada.

Franssen, R., Courard, L., & Mihaylov, B. (2019). Réhabilitation et Renforcement de Piles de Pont avec du Béton Fibré à Ultra-Haute Performance [Paper presentation]. Ultra High Performance Concrete Bruxelles, Bruxelles, Belgium.

Franssen, R., Guner, S., Courard, L., & Mihaylov, B. (2019). Response simulation of UHPFRC members. In BEtter, Smarter, Stronger Proceedings for the 2018 fib Congerss held in Melbourne.
Peer reviewed

Mihaylov, B. (2019). A Kinematic Approach for the Shear Strength of Short FRC Coupling Beams. Engineering Structures. doi:10.1016/j.engstruct.2018.11.066
Peer Reviewed verified by ORBi

Mihaylov, B., Liu, J., & Lobet, R. (09 December 2018). A Kinematic Approach for the Complete Shear Behavior of Short FRC Coupling Beams. ACI Structural Journal, 328, 8.1-8.20.
Peer Reviewed verified by ORBi

Liu, J., & Mihaylov, B. (01 July 2018). Macroelement for Complete Shear Behaviour of Continuous Deep Girders. ACI Structural Journal, 115 (4), 1089-1100. doi:10.14359/51702047
Peer Reviewed verified by ORBi

Mihaylov, B., & Franssen, R. (2018). Three-parameter kinematic approach for shear behaviour of short coupling beams with conventional reinforcement. fib Bulletin, 85.
Peer reviewed

Gernay, T., Peric, V., Mihaylov, B., Molkens, T., & Franssen, J.-M. (2018). Effect of upgrading concrete strength class on fire performance of reinforced concrete columns. In M. Gillie & Y. Wang, Proceedings of ASFE 2017 Conference (pp. 189-198). London, United Kingdom: Taylor & Francis Group. doi:10.1201/9781315107202-22
Peer reviewed

Franssen, R., Guner, S., Courard, L., & Mihaylov, B. (2018). A study on the numerical modelling of UHPFRC-strengthened members. In M. G. Alexander, H. Beushausen, F. Dehn, ... P. Moyo, International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018). doi:10.1051/matecconf/201819909001
Peer reviewed

Mihaylov, B. (2018). A Shear Strength Model for FRC Coupling Beams. In Better, Smarter, Stronger Proceedings for the 2018 fib Congerss held in Melbourne.
Peer reviewed

Mihaylov, B., & Franssen, R. (2017). Macro-Kinematic Approach for Shear Behaviour of Short Coupling Beams with Conventional Reinforcement. In High Tech Concrete: Where Technology and Engineering Meet - Proceedings of the 2017 fib Symposium. doi:10.1007/978-3-319-59471-2_133
Peer reviewed

Liu, J., & Mihaylov, B. (2017). Towards Mixed-Type Modelling of Structures with Slender and Deep Beam Elements. In High Tech Concrete: Where Technology and Engineering Meet. doi:10.1007/978-3-319-59471-2_144
Peer reviewed

Verpoorten, D., Devyver, J., Duchâteau, D., Mihaylov, B., Agnello, A., Ebrahimbabaie Varnosfaderani, P., Focant, J.-F., Charlier, R., Delfosse, A., Bertrand, F., Megherbi, S., & Detroz, P. (2017). Decoding the disciplines – A pilot study at the University of Liège (Belgium). In R. Andersson, K. Martensson, ... T. Roxa, Proceedings of the 2nd EuroSoTL Conference - Transforming patterns through the scholarship of teaching and learning (pp. 263-267). Lund, Sweden: Lund University Press.
Peer reviewed

Tatar, N., & Mihaylov, B. (12 January 2017). Displacement Capacity of Shear-Dominated Reinforced Concrete Walls [Paper presentation]. 16th. World Conference on Earthquake Engineering, Santiago, Chile.

Tatar, N., & Mihaylov, B. (2017). Load-Displacement Envelopes of Shear-Dominated Concrete Walls based on a Three-Parameter Kinematic Theory. Journal of Earthquake Engineering.
Peer Reviewed verified by ORBi

Mihaylov, B., & Franssen, R. (2017). Shear-flexure interaction in the critical sections of short coupling beams. Engineering Structures. doi:10.1016/j.engstruct.2017.09.024
Peer Reviewed verified by ORBi

Tatar, N., & Mihaylov, B. (2017). Deformation Patterns and Behavior of Reinforced Concrete Walls with Low Aspect Ratios. In High Tech Concrete: Where Technology and Engineering Meet. doi:10.1007/978-3-319-59471-2_74
Peer reviewed

Mihaylov, B. (2017). Two-Parameter Kinematic Approach for Shear Strength of Deep Concrete Beams with Internal FRP Reinforcement. Journal of Composites for Construction, DOI: 10.1061/(ASCE)CC.1943-5614 .0000747. doi:10.1061/(ASCE)CC.1943-5614.0000747
Peer Reviewed verified by ORBi

Mihaylov, B. (2016). Modelling the ultimate shear behaviour of deep beams with internal FRP reinforcement. In Performance-based approaches for concrete structures, fib Symposium Proceedings, Cape Town 21 to 23 November 2016.
Peer reviewed

Liu, J., & Mihaylov, B. (2016). A MACRO-ELEMENT FOR THE NONLINEAR ANALYSIS OF DEEP BEAMS BASED ON A THREE-PARAMETER KINEMATIC MODEL. In Performance-based approaches for concrete structures.
Peer reviewed

Mihaylov, B., & Franssen, R. (06 September 2016). Three-Parameter Kinematic Approach for Shear Behaviour of Short Coupling Beams with Conventional Reinforcement [Paper presentation]. fib WP 2.2.1 Workshop on Beam Shear, Zurich, Switzerland.

Liu, J., & Mihaylov, B. (2016). A Macro-Element Formulation and Solution Procedure for Shear Analysis of RC Deep Beams. In the 11th fib International PhD Symposium in Civil Engineering.
Peer reviewed

Mihaylov, B. (13 April 2016). MC2010 Shear Provisions and Recent Developments in Shear Research [Paper presentation]. fib Belgian Colloquium.

Mihaylov, B., Hannewald, P., & Beyer, K. (2016). Three-parameter kinematic theory for shear-dominated reinforced concrete walls. Journal of Structural Engineering. doi:10.1061/(ASCE)ST.1943-541X.0001489
Peer reviewed

Liu, J., & Mihaylov, B. (23 January 2016). A comparative study of models for shear strength of reinforced concrete deep beams. Engineering Structures, 112 (April), 81-89. doi:10.1016/j.engstruct.2016.01.012
Peer Reviewed verified by ORBi

Collins, M., Xie, L., Mihaylov, B., & Bentz, E. (2016). Shear Response of Prestressed Thin-Webbed Continuous Girders. ACI Structural Journal. doi:10.14359/51688599
Peer Reviewed verified by ORBi

Mihaylov, B., Hannewald, P., & Beyer, K. (2015). Three-Parameter Kinematic Theory for Shear-Dominated Reinforced Concrete Walls: Implementation. Geneva, Switzerland: Zenodo.

Liu, J., & Mihaylov, B. (2015). A Comparative Study of Models for Shear Strength of Reinforced Concrete Deep Beams. Civil-Comp Proceedings, 16+3. doi:10.4203/ccp.108.10
Peer reviewed

Mihaylov, B. (2015). Predicting the non-linear shear behaviour of deep beams based on a two-parameter kinematic model. In Concrete - Innovation and Design, fib Symposium Proceedings, Copenhagen 18 to 20 May 2015.
Peer reviewed

Mihaylov, B. (06 February 2015). Three-Parameter Kinematic Theory for Shear Strength and Displacement Capacity of Deep Beams [Paper presentation]. Seminar on Design Methods, Graphic Statics, and Parametric Approaches, Louvain-la-Neuve, Belgium.

Mihaylov, B., Hunt, B., Bentz, E., & Collins, M. (January 2015). Three-Parameter Kinematic Theory for Shear Behavior of Continuous Deep Beams. ACI Structural Journal, 112 (1), 47-57. doi:10.14359/51687180
Peer Reviewed verified by ORBi

Mihaylov, B. (January 2015). Five-spring model for complete shear behaviour of deep beams. Structural Concrete, 16 (1), 71-83. doi:10.1002/suco.201400044
Peer Reviewed verified by ORBi

Mihaylov, B., Hannewald, P., & Beyer, K. (2014). Evaluation of the Response of Shear Critical Walls Using a Three-Parameter Kinematic Theory. In The 4th International fib Congress 2014 Mumbai - Proceedings.
Peer reviewed

Mihaylov, B., Bentz, E., & Collins, M. (November 2013). Behavior of Deep Beams with Large Headed Bars. ACI Structural Journal, 110 (6), 1013-1022.
Peer Reviewed verified by ORBi

Mihaylov, B. (2013). Macro-Kinematic Modelling of Continuous Deep Beams. In Actes de la 14e édition des Journées Scientifiques, 22 et 23 août 2013, Université de Sherbrooke, Québec (pp. 68-77).

Mihaylov, B., Hunt, B., Bentz, E., & Collins, M. (2013). Deformations in deep continuous reinforced concrete transfer girders. In Concrete Structures in Urban Areas, CCC 2013, Wroclaw, Poland 4-6 September 2013.
Peer reviewed

Mihaylov, B. (04 February 2013). Deformation Capacity and Resilience of Structures [Paper presentation]. University of Liege Inaugural Lectures.

Mihaylov, B., Bentz, E., & Collins, M. (2013). Two-Parameter Kinematic Theory for Shear Behavior of Deep Beams. ACI Structural Journal, 110 (3), 447-455.
Peer Reviewed verified by ORBi

Mihaylov, B. (14 June 2012). Kinematics-Based Macro Models for Deep Beams [Paper presentation]. School of Architecture, Civil and Environmental Engineering (ENAC) Research Seminar, Lausanne, Switzerland.

Mihaylov, B., Bentz, E., & Collins, M. (19 March 2012). A Two Parameter Kinematic Theory for the Shear Behavior of Deep Beams [Paper presentation]. ACI Spring 2012 Convention, Dallas, Texas, United States.

Mihaylov, B. (28 November 2011). Deformation Capacity and Resilience of Reinforced Concrete Structures [Paper presentation]. Department of Civil and Environmental Engineering Research Seminar, Waterloo, Canada.

Mihaylov, B., Bentz, E., & Collins, M. (2011). A Two Degree of Freedom Kinematic Model for Predicting the Deformations of Deep Beams. In 2nd International Engineering Mechanics and Materials Specialty Conference.
Peer reviewed

Mihaylov, B., Bentz, E., & Collins, M. (November 2010). Behavior of Large Deep Beams Subjected to Monotonic and Reversed Cyclic Shear. ACI Structural Journal, 107 (6), 726-734.
Peer Reviewed verified by ORBi

Mihaylov, B., Bentz, E., & Collins, M. (22 May 2009). Behaviour of Deep Reinforced Concrete Beams under Monotonic and Reversed Cyclic Loading [Paper presentation]. 9th International ROSE School Seminar, Pavia, Italy.

Mihaylov, B. (2008). Behavior of Deep Reinforced Concrete Beams under Monotonic and Reversed Cyclic Load [Doctoral thesis, UNIPEV - Università degli Studi di Pavia]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/140352

Mihaylov, B. (2006). Analysis of Code Procedures for Seismic Assessment of Existing Buildings: Italian Seismic Code, EC8, ATC-40, FEMA356, FEMA440 [Specialised master, UNIPEV - Università degli Studi di Pavia]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/140999

Contact ORBi