Article (Scientific journals)
G-Quadruplex DNA Assemblies: Loop Length, Cation Identity, and Multimer Formation
Smargiasso, Nicolas; Rosu, Frédéric; Hsia, Wei et al.
2008In Journal of the American Chemical Society, 130 (31), p. 10208-10216
Peer Reviewed verified by ORBi
 

Files


Full Text
2008-JACS-130-10208_Nico.pdf
Publisher postprint (1.04 MB)
Request a copy
Full Text Parts
2008 JACS Nico author.pdf
Author postprint (576.71 kB)
Request a copy
Annexes
2008-JACS-130-10208_Nico_SI.pdf
Publisher postprint (638.76 kB)
Supporting information
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
G-quadruplex; mass spectrometry; DNA; structural biology; ion mobility; spectroscopy
Abstract :
[en] G-rich DNA sequences are able to fold into structures called G-quadruplexes. To obtain general trends in the influence of loop length on the structure and stability of G-quadruplex structures, we studied oligodeoxynucleotides with random bases in the loops. Sequences studied are dGGGWiGGGWjGGGWkGGG, with W = thymine or adenine with equal probability, and i, j, and k comprised between 1 and 4. All were studied by circular dichroism, native gel electrophoresis, UV-monitored thermal denaturation, and electrospray mass spectrometry, in the presence of 150 mM potassium, sodium, or ammonium cations. Parallel conformations are favored by sequences with short loops, but we also found that sequences with short loops form very stable multimeric quadruplexes, even at low strand concentration. Mass spectrometry reveals the formation of dimers and trimers. When the loop length increases, preferred quadruplex conformations tend to be more intramolecular and antiparallel. The nature of the cation also has an influence on the adopted structures, with K+ inducing more parallel multimers than NH4+ and Na+. Structural possibilities are discussed for the new quadruplex higher-order assemblies.
Research center :
Giga-Systems Biology and Chemical Biology - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Chemistry
Author, co-author :
Smargiasso, Nicolas ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie physique, spectrométrie de masse
Rosu, Frédéric ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie physique, spectrométrie de masse
Hsia, Wei;  Université de Liège - ULiège > Département de Chimie (sciences) > Chimie physique biologique
Colson, Pierre ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie physique biologique
Baker, Erin Shammel;  University of California, Santa Barbara > Department of Chemistry and Biochemistry
Bowers, Michael T;  University of California, Santa Barbara > Department of Chemistry and Biochemistry
De Pauw, Edwin  ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie physique, spectrométrie de masse
Gabelica, Valérie ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie physique, spectrométrie de masse
Language :
English
Title :
G-Quadruplex DNA Assemblies: Loop Length, Cation Identity, and Multimer Formation
Publication date :
2008
Journal title :
Journal of the American Chemical Society
ISSN :
0002-7863
eISSN :
1520-5126
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Volume :
130
Issue :
31
Pages :
10208-10216
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture [BE]
Available on ORBi :
since 30 July 2008

Statistics


Number of views
303 (22 by ULiège)
Number of downloads
3 (0 by ULiège)

Scopus citations®
 
242
Scopus citations®
without self-citations
218
OpenCitations
 
228

Bibliography


Similar publications



Contact ORBi