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Abstract

The standard axion-like particle explanation of the observed large-scale coherent
orientations of quasar polarisation vectors is ruled out by the recent measurements of
vanishing of circular polarisation. We introduce a more general wave-packet formalism
and show that, although decoherence effects between waves of different frequencies
can reduce significantly the amount of circular polarisation, the axion-like particle
hypothesis is disfavoured given the bandwidth with which part of the observations
were performed. Finally, we show that a more sophisticated model of extragalactic
fields does not lead to an alignment of polarisations.

1 Axion-like particles in astrophysics

A frequent prediction of extensions of the Standard Model of particle physics is the existence
of stable weakly interacting light (sub-eV) scalar or pseudoscalar particles. The ‘invisible’
axion [1–6] is certainly the best-known candidate, so that any particle of this kind is nowadays
commonly referred to as an axion-like particle (ALP) —even though it might have nothing
to do with the Peccei–Quinn solution to the strong CP problem [7]. Usually, the smallness of
the masses of these particles is related to a very-high-energy scale where there would be new
physics. Among these ALPs, one finds for instance chameleons, coming from f(R) theories,
but also scalar and pseudoscalar particles from Kaluza-Klein theories, super strings, or other
theories beyond the Standard Model, which could be testable predictions; for recent reviews,
see for instance [8, 9] and references therein.

The ALPs can have a coupling to photons, as in the case for the axion [10, 11]. As
the information we get from astrophysics comes mainly from photons from distant sources,
this property makes them an appealing ingredient in many astrophysical models, and their
existence could be probed by astrophysical observations. In fact, several authors have already
reported different phenomena that might find a common explanation if one supposes the
existence of nearly massless axion-like particles (of mass m ≤ 10−10 eV, and of coupling to
photons g ∼ 10−11 GeV−1), e.g. the transparency of the Universe to high-energy photons [12],
the luminosity relations for active galactic nuclei (AGN) at different wavelengths [13], or the
high-energy cosmic rays from blazars [14].

Another interesting observation has to do with the distribution of position angles for
polarisation of visible light coming from quasars1. These angles indicate the direction of

1Hereafter, ‘quasar’ stands for ‘high-luminosity AGN’.
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maximum polarisation for each source with respect to an arbitrary direction, usually the
north equatorial pole. It has been reported that the distribution of these individual preferred
directions in extremely large regions of the sky (∼ Gpc) is not random [15–18]. From the
latest sample available (355 quasars), global statistical tests indicate that the probability
for the observed distribution to be random is between 3 10−5 and 2 10−3, depending on
the test applied [18]. This observation is remarkable as there is a priori no reason why one
should expect such correlations over cosmological distances, larger than the most extended
structures presently known in the Universe.

This analysis also indicates that the effect is not likely to be explained by local causes
(influence of our galaxy, dust, etc.) and suggests that it requires something more exotic.
One might think that it comes from an alignment of quasar axes across the Universe. It
is known [19–22] that, for a given quasar, the direction of preferred polarisation is related
to its morphology, so that a global alignment of the axes of quasars would lead to aligned
polarisations. On the other hand, if one supposes that the objects themselves are aligned,
the effect should be present in radio waves. However, a study [20] based on a sample of 4290
objects (52 of them being part of the sample [18]) has shown that there is no evidence for
alignments in radio waves. It thus seems that this class of explanations is disfavoured.

On the other hand, it has been believed that these data could naturally be explained by
the mixing of light with axion-like particles in background magnetic fields [23–31]: this would
generate an alignment in visible light while leaving the polarisation of radio waves unaffected,
as the mixing depends on energy. In the present paper, we show that this requires a very
specific choice of magnetic fields, and that in general the alignment effect cannot be explained
by the mixing. Furthermore, we shall see that, according to recent data [32], the cause of
this effect cannot be photon-ALP mixing, even for magnetic fields leading to an alignment.

In the next section, we introduce our notations and recall results for the polarisation of
light described by plane waves due to the mixing of axion-like particles with photons. We
then discuss why this cannot explain the data for the circular polarisation of quasars and
present a wave-packet treatment of the mixing in Section 3. Our analysis shows that, despite
promising phenomenological implications, even wave-packets cannot reconcile the axion-like
particle hypothesis with the full quasar sample. Further checks are made in Section 4, where
we use different models for the magnetic field encountered by the incoming photons.

2 Generalities, conventions and plane-wave formalism

The mixing of photons with spin-0 particles φ changes the polarisation of light because,
in a background electromagnetic field, only one specific direction of polarisation feels the
interaction.

For pseudoscalars, the interaction Lagrangian contains a term proportional to φ( ~E · ~B).

In our case, where we deal with external magnetic fields ~Be, this reduces to φ(~Er · ~Be), with
~Er, the electric field of the radiation from which the polarisation is defined. Photons will thus
mix with pseudoscalars through the projection of ~Be on their polarisation vector. Things are
similar for scalars [33], the main difference being that it is then the perpendicular direction

which will mix, as the interaction is then related to φ( ~B2 − ~E2), and the relevant term is

φ( ~Br · ~Be), with ~Br the magnetic field of the radiation, so that ~Er has to be perpendicular to ~Be.
We will now stick to what happens in the pseudoscalar case for the rest of the developments,
bearing in mind that our results would also hold for scalars.
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Strictly speaking, as they propagate, photons will in general have three polarisations
because of the interaction with the electron plasma [34]. However, in our context, the
longitudinal contribution is negligible as the electron density in the intergalactic medium
is tiny. Hence it is sufficient to consider the projection of the magnetic field onto a plane
perpendicular to the direction of propagation, i.e. the transverse part of ~Be, noted ~B. We
define an orthogonal basis made of the direction of propagation of light and of two directions
~e‖ and ~e⊥, parallel and perpendicular to the transverse field. Any light beam going in the z

direction will then be written as ~Er(z, t) = Er‖(z, t)~e‖ + Er⊥(z, t)~e⊥.

We can now express the evolution of an electromagnetic wave in an external magnetic field
~B and obtain the evolution of its Stokes parameters, due to the mixing with pseudoscalars.
Stokes parameters are particularly interesting because they can fully describe the polarisation
of light, and because they are the quantities that observers directly measure, as they can be
built out of intensities. We use the following definitions:






I(z) = 〈I(z, t)〉 = 〈Er‖E∗r‖ + Er⊥E
∗
r⊥
〉

Q(z) = 〈Q(z, t)〉 = 〈Er‖E∗r‖ − Er⊥E
∗
r⊥
〉

U(z) = 〈U(z, t)〉 = 〈Er‖E∗r⊥ + E∗r‖Er⊥〉
V (z) = 〈V(z, t)〉 = 〈i(−Er‖E∗r⊥ + E∗r‖Er⊥)〉.

(1)

U and Q represent linear polarisation, V the circular one and I the intensity; these quantities
are averaged over time at a given distance z from the source. One often normalises these
parameters by the intensity I to enable comparisons between different sources (e.g., v = V

I
)

and, as U and Q depend on the choice of axes, one also introduces the linear polarisation
degree and the polarisation degree, respectively

plin =

√
Q2 + U2

I
and ptot =

√
Q2 + U2 + V 2

I
. (2)

The parameters (1) have a property of additivity: a radiation described by a set (I, Q, U, V )
can always be decomposed as the sum of two other ones, described by (I1, Q1, U1, V1) and
(I2, Q2, U2, V2), as long as I1 + I2 = I, etc. In particular, a partially polarised beam can be
described by the weighted sum of a fully polarised beam and of an unpolarised one: it is
thus sufficient to discuss these two cases to obtain the most general case.

Formally, one can write a general initially fully polarised light beam of mean frequency
ω and width ∆ω as:

~Er(z, t) = sin(ϕ0)E‖(z, t;ω; ∆ω)~e‖ + cos(ϕ0)E⊥(z, t;ω; ∆ω)~e⊥, (3)

where E‖~e‖ and E⊥~e⊥ are fully linearly polarised beams with polarisations respectively par-

allel and perpendicular to ~B, and with identical intensities. Initially, E‖ and E⊥ (which may
differ by a phase-shift) have the same behaviour and shape, but this will change as they

propagate. The angle ϕ0 gives the initial direction of ~Er. On the other hand, for an initially
unpolarised beam, the Stokes parameters can be thought of as an incoherent average over
ϕ0 of the Stokes parameters of fully polarised beams.

The way the polarisation parameters evolve in a magnetic field ~B can be derived starting
from a suitable Lagrangian density taking into account the interaction. For pseudoscalars,
we use:

L =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 − 1

4
FµνF

µν +
1

4
gφFµνF̃

µν , (4)
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where F̃ µν ≡ 1
2
ǫµνρσFρσ is the dual of the electromagnetic tensor, m is the pseudoscalar mass

and g is the dimension-minus-one coupling constant of the interaction between pseudoscalars
and photons.

At this stage, one can take into account plasma effects with the inclusion of the plasma
frequency ωp [35, 36]:

ωp ≡
√

4παne

me
=

√
ne

10−6cm−3
3.7 10−14eV, (5)

which acts as an effective mass for the propagating electromagnetic field; ne is the electron
number density.

We first consider a constant magnetic field region in order to introduce the consequences
of the mixing on polarisation. We use in this case a typical field strength of 0.3 µG and a
typical coherence scale of 10 Mpc, as in our supercluster [37–41], with an electron density
such that ωp = 3.7 10−14 eV [24,37,40–42]. The equations for the electromagnetic potential
and the pseudoscalar field are then found to be:2

[(
ω2 +

∂2

∂z2

)
−




ωp
2 0 0

0 ωp
2 −gBω

0 −gBω m2




]

A⊥(z)
A‖(z)
φ(z)


 = 0, (6)

for eigenstates of energy ω, in the timelike axial gauge A0 = 0, so that ~E⊥,‖ = iω ~A⊥,‖, and
after a rephasing of φ(z). Note that Faraday rotation is not included in the discussion as its
effect is irrelevant in the range of frequencies we are interested in.

The mass matrix in Eq. (6) is not diagonal, which means that A‖ and φ are not the

eigenmodes of propagation inside ~B. These are found by diagonalisation and correspond to
two new mass eigenvalues, µ+ and µ−, that depend on ω:

µ±
2 =

1

2
(ωp

2 +m2)± rmix, (7)

with

rmix ≡
1

2

√
(2gBω)2 + (m2 − ωp

2)
2
, (8)

and the mixing angle:

θmix =
1

2
atan

(
2gBω

m2 − ωp
2

)
. (9)

For the moment, we always take φ(0) = 0, i.e. we only consider incoming photons. The
evolution of the Stokes parameters of Eq. (1) inside a magnetic field region for a plane-wave

beam ~Er described initially by I0, Q0, U0 and V0 are then3:




I(z) = I0 − 1
2
(I0 +Q0) sin

2 2θmix sin
2
(
1
2
rmix

ω
z
)

Q(z) = I(I0 ←→ Q0)

U(z) = U0

{
(smix)

2 cos
(
(cmix)

2 rmix

ω
z
)
+ (cmix)

2 cos
(
(smix)

2 rmix

ω
z
) }

−V0

{
(smix)

2 sin
(
(cmix)

2 rmix

ω
z
)
− (cmix)

2 sin
(
(smix)

2 rmix

ω
z
) }

sign(θmix)
V (z) = U(U0 → V0, V0 → −U0),

(10)

2This is obtained to lowest order in gB.
3The only simplification we have made to obtain Eq. (10) is to suppose ω2 ≫ µ±

2, which indeed holds in
all the applications we are interested in —as in most astrophysical situations where the mixing takes place
in faint background magnetic fields.
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with cmix ≡ cos(θmix) and smix ≡ sin(θmix). Hence, the evolution of Stokes parameters can
be expressed in such a way that all the effects of the mixing with pseudoscalars in a given
~B depend only on two dimensionless parameters: the mixing angle θmix and the quantity
( rmix

ω
z).

Eq. (10) implies dichroism and birefringence; see, e.g. [26]. Dichroism is the selective
absorption of one direction of polarisation: it modifies the linear polarisation of light. This
effect is seen in the evolution of the Stokes parameter Q(z) which compares the intensity in
the two orthogonal directions. The total intensity I(z) of course follows the same behaviour.
The pair (I, Q) is directly sensitive to the modifications of the amplitude of photons due to
on-shell pseudoscalars.

Birefringence, on the other hand, indicates that linear and circular polarisations convert
into each other. This strong connection between the two is explicit in the evolution of
U(z) and V (z). The pair (U , V ) is directly sensitive to the phase-shift induced by virtual
pseudoscalars: pure U requires a zero phase-shift and pure V requires a π

2
phase-shift between

Er,‖ and Er,⊥.
Note that for an initially unpolarised light beam, while I(z) and Q(z) will evolve due

to pseudoscalar-photon mixing, U(z) and V (z) will remain zero. The reason is clear: for
unpolarised light, the concept of phase-shift does not make sense. Similarly, if a linearly
polarised beam points either exactly in the magnetic field direction or perpendicularly to
it, i.e. Q(0) 6= 0 and U(0) = 0, there cannot be any induced phase-shift and, therefore, no
induced circular polarisation.

2.1 Initially unpolarised light and dichroism

To reproduce coherent alignments of the polarisations of light from quasars, dichroism will be
the main mechanism leading to the generation of a systematic amount of linear polarisation:
as estimated in [32], this has to be at least 0.5% and certainly not more than 2% to explain
data. In order to present only this additional linear polarisation, and avoid the arbitrariness
of the initial one, we first consider unpolarised light beams.4 For a given travelled distance
z, and for a fixed value of ωp, we study the space of parameters that reproduce the observed
linear polarisation. The result is shown in Fig. 1. Note that we do not display pseudoscalar
masses smaller than ωp since the linear polarisation degree is an even function of (m2−ωp

2).
This remains true as long as there is no initial circular polarisation.

What we learn from Fig. 1 is that as long asm and ωp are of the same order of magnitude,
the mixing effect can in principle be observable and reproduce the observations, even in
faint —but extended— magnetic fields (B = 0.1 µG and g = 10−11 GeV−1 correspond to
gB = 1.95 10−29 eV). The plasma frequency is very small in super-clusters, and even smaller
in cosmic voids, where only upper bounds exist to date in the literature [46–49]. With this
scenario, the observations would then seem to be compatible with the existence of nearly
massless axion-like particles. Note that the mixing depends on m and ωp separately and that
nothing special happens if we take ωp = 0.

For initially unpolarised light, the linear polarisation degree (2) in terms of rmix

ω
z and

4Note that even for partially linearly polarised light, which for quasars is at the 1% level [43–45], the
unpolarised contribution will remain the dominant component.
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B
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9
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)
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5
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3

2

1

0

m2

ωp
2

21.81.61.41.21

Figure 1: Parameters such that the linear polarisation generated through pseudoscalar-
photon mixing in a transverse magnetic field region lies between 0.5 and 2% in the case of
initially unpolarised light of wavelength λ = 500 nm. The magnetic field has been chosen to
be 10 Mpc long; the plasma frequency is kept fixed at 3.7 10−14 eV.

θmix takes the form:

plin(z) =
1
2
sin2 2θmix sin

2[1
2
rmix

ω
z]

1− 1
2
sin2 2θmix sin

2[1
2
rmix

ω
z]
. (11)

We illustrate Eq. (11) in Fig. 2 —strictly speaking θmix ∈ [−π
4
, π
4
] but plin is an even function

of it. Note that the maximum linear polarisation is entirely determined by θmix, while the
details of the oscillatory behaviour with z are independently controlled by rmix. This can
be physically understood as θmix determines how much the particles mix, while rmix has
to do with the difference of mass eigenstates and is thus related to the wavelength of the
oscillation. As long as the Lagrangian (4) makes sense, the oscillatory pattern in rmixz

ω
repeats

itself unchanged to infinity: all the physics can thus be studied in a small interval.
Now, if we are only interested in the parameters able to explain quasar linear polarisation

data, we get Fig. 3. We can also consider the average over a period in z of the additional
polarisation, and impose that it lies between 0.005 and 0.02. This gives an allowed range of
values for θmix, which is:

0.07 ≤ |θmix| ≤ 0.14. (12)

2.2 Initially polarised light and birefringence

For astronomical sources, processes leading to the production of circularly polarised light are
rare. Generally, most quasars only emit partially linearly polarised light; their polarisation
degree is typically around 1% [43–45]. In the following, we suppose that the initial distri-
bution of polarisation angles is random, so that the radiation can be described by random
initial values for q(0) and u(0), with plin(0) =

√
u2(0) + q2(0) = 0.01, and we assume no

initial circular polarisation: v(0) = 0. Note that the observed linear polarisation of the
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Figure 2: Linear polarisation degree (shown in the right-hand box) generated through
pseudoscalar-photon mixing in a transverse magnetic field region in the case of initially
unpolarised light. For convenience, we have introduced ω0 = 2.5 eV (i.e. λ0 =

2π
ω0

= 500 nm)

and z0 = 1.6 1030 eV−1 (≃ 10 Mpc).

θ
m

ix

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

rmix(z/z0)
ω/ω0

(10−28 eV2)

0.50.40.30.20.10

Figure 3: Same as Fig. 2 but such that plin ∈ [0.005, 0.02]. For fixed z = z0 and ω = ω0, this
is equivalent to a reparametrisation of Fig. 1.

quasars in the sample is also of the order of 1%, and is believed to be mainly of intrinsic
origin [15, 16, 18, 45, 50–52].

Now, while the mixing can generate enough linear polarisation to reproduce the effect
via axion-like particles, birefringence is expected to lead to an observable amount of circular
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Figure 4: Circular polarisation v generated through pseudoscalar-photon mixing in a trans-
verse magnetic field region, in the case of initially partially polarised light of wavelength
λ = 500 nm with u(0) = 0.01. The plasma frequency and the size of the magnetic region are
the same as in Fig. 1.

polarisation, see e.g. [11,32,53]. Indeed, as readily seen in Eq. (10), a linearly polarised light
beam (with non-zero u(0)) will develop a circular polarisation as it propagates.5 From a
technical point of view, an initial angle of π

4
with the direction of the external magnetic field

leads to the maximal amount of generated circular polarisation; it corresponds to u(0) =
plin(0).

Moreover, even for light coming from a single quasar, a number of regions with different
uncorrelated magnetic fields will be encountered on the way towards us. It is thus impossible
to avoid u(0) 6= 0 at the beginning of some of these regions.

As we did for linear polarisation in the initially unpolarised case, we now calculate the
circular polarisation v predicted by pseudoscalar-photon mixing when light is described by
plane waves with λ = 500 nm, for an initial linear polarisation of 1%. We show in Fig. 4 the
circular polarisation generated in one magnetic region, for u(0) = plin(0), and in Fig. 5 the
corresponding linear polarisation; as Stokes parameters are additive, any other case can be
obtained from this one. Note that, as long as v(0) = 0, the circular polarisation is an odd
function of (m2 − ωp

2). Fig. 4 indicates that a large region of the parameter space leads to
an observable circular polarisation, i.e. most of the quasars should be circularly polarised,
with a circular polarisation of the order of the observed linear polarisation.

5This is also true for low-mass axion-like particles, even if the induced phase-shift Φ drops quickly as the
mass decreases: in the weak-mixing limit [54],

Φ = θ2mix

[
m2z

2ω
− sin

(
m2z

2ω

)]
. (13)

In this astrophysical context, Φ is not small when the considered magnetic field regions are huge.
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Figure 5: Same as Fig. 4 but for the linear polarisation degree. Note that the right-hand
box gives the base-10 logarithm of the linear polarisation.

3 New data on circular polarisation and decoherence

Recently, the circular polarisation of quasars belonging to the sample [18] has been accurately
measured in visible light. This analysis [32] shows that, except for two specifically highly
polarised blazars, which might be intrinsically circularly polarised, the objects have a circular
polarisation consistent with zero.

This is clearly in contradiction with the results presented above for circular polarisation;
we show this in Fig. 6, in terms of

(
rmixz

ω

)
and θmix. One sees that v is of the same order of

magnitude as plin, except in a small region (compare with Fig. 3): rmix(z/z0)
(ω/ω0)

. 0.2 10−28 eV−2,

and |θmix| with values similar to the ones in Eq. (12).
Keeping an additional linear polarisation of the order of 1% while suppressing the circular

one then requires a considerable amount of fine-tuning of the masses, or smaller regions of
magnetic field. The latter seems excluded as the correlations of polarisations over huge
distances require magnetic fields to be coherent in large regions. To illustrate the need for
fine-tuning, we can give a pseudoscalar mass for which enough linear polarisation is created
(the maximum of plin is determined by θmix), and such that circular polarisation is much
smaller than the linear one (by choosing a suitable rmix).

6 First, we write the pseudoscalar
mass as a function of θmix, and of rmix, for a fixed value of ωp:

m =
√

ωp
2 + 2rmix cos (2θmix), if m > ωp; (14)

m =
√
ωp

2 − 2rmix cos (2θmix), if m < ωp. (15)

6We can consider θmix as determined in the unpolarised case: the additional polarisation will indeed not
be very different here, as by requiring no v, we essentially constrain u not to change.
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For z = z0 = 10 Mpc and ω = ω0 = 2.5 eV, u(0) = 1%, and using θmix = 0.1, we then obtain
that the only allowed ALP masses able to reproduce data would be such that:

m

ωp
∈ [0.99, 1.01] . (16)

This is a very fine-tuned situation, especially given that we have allowed v to be as large
as 0.1% in this example.7 Note also that the plasma frequency is expected to vary along
the light trajectory, so that (16) cannot be maintained. These data thus disfavour the ALP
hypothesis in the plane-wave case.

Figure 6: Circular polarisation v generated through pseudoscalar-photon mixing in a trans-
verse magnetic field region in the case of initially partially polarised light with u(0) =
plin(0) = 0.01. The values of ω0 and z0 are the same as the ones introduced in Fig. 2.

3.1 A wave-packet treatment

We now consider the possibility of reducing circular polarisation by considering wave pack-
ets, which automatically include the possibility of decoherence between waves of different
frequencies. As circular polarisation is a matter of phase-shifts, decoherence effects can sig-
nificantly reduce it. There is also a natural observational reason for taking into account this
effect: astronomers perform polarimetric measurements in given ranges of frequencies, with
given filters. In the case at hand, some data were obtained in white light (unfiltered), and
some with the so-called ‘Bessell V-filter’ [55, 56].

From the Lagrangian (4), the system of relevant equations is:
{

(�+ ωp
2)E(z, t)− gB∂2

t φ(z, t) = 0
(�+m2)φ(z, t) + gBE(z, t) = 0,

(17)

where we simplify the notation: from now on, E ≡ E‖. Note that the solution for E⊥ will
simply be that for E‖, with gB set to zero.

7If we require v < 0.01%, the range of allowed values for the mass shrinks to m ∈ [0.998, 1.002]ωp.
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We consider the case in which a wave packet is sent into a region of constant magnetic
field B, starting at z = 0, and use wave packets in ω:

E(z, t) =

∫ ∞

−∞

dω e−iωtẼ(z, ω) and φ(z, t) =

∫ ∞

−∞

dω e−iωtφ̃(z, ω). (18)

Equations (17) have then to be satisfied by the integrands of (18) in each region, with B = 0
if z ≤ 0 (region I), and B 6= 0 if z ≥ 0 (region II); the solutions are given in Appendix A.
For the rest of the discussion, the incident packet in the first region has the initial shape:

Ẽi,I(z = 0, ω) = e−
a2

4
(ω−ω0)2 . (19)

3.1.1 Size of the wave packets

Continuum light coming from quasars, at least in UV and visible wavelengths, is thermally
emitted in the accretion disk. In order to obtain an estimate of the wave-packet size in this
case, we can start with results for black-body radiation: we decompose the accretion disk into
a concentric collection of black bodies of different temperatures at different radii [57,58].8 For
a black-body radiation of Wien wavelength λw, estimates of the longitudinal coherence length
lc have been obtained in interferometry [59]: lc ≃ λw ≃ λ̄, with λ̄, the mean wavelength of
the radiation. The relation we use for the value of a which enter Eq. (19) is then:9

a =
2
√
ln(2)

π
λ̄, (20)

and the initial full-width at half-maximum in position is:

∆z ≃
√

2 ln(2)a, (21)

which is thus of the order of the wavelengths considered.

3.1.2 Stokes parameters and partially-polarised light

As wave packets go through the detector much faster than its time resolution, one has to
integrate the packets over the exposure time ∆t to calculate the Stokes parameters. Let us
now represent by S any of the four Stokes parameters; with the notations of Eq. (1), the
observed quantities are then:

S(z) = 〈S(z, t)〉 ≡ 1

N2

∫ t+∆t

t

dt S(z, t), (22)

where we introduce the normalisation10 constant N = (2π)−3/4
√
a, which cancels in polari-

sation degrees and normalised Stokes parameters. In Fig. 7, we illustrate the packets after a
propagation inside region II in a strong mixing case.11 For photon polarisations parallel to

8Strictly speaking, one would then have to average the results obtained for different black bodies over the
range of frequencies actually observed.

9From [59], this can change slightly, depending on the definition of the full-width-at-half-maximum in
frequencies.

10This value of N corresponds to an initial intensity of 1 eV4.
11We use the Multiple-Precision Floating-point library with correct Rounding [60].
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Figure 7: The shape of the wave packets at time T = 10 Mpc/c for a light beam with
u(0) = 1. The abscissa is δz ≡ z − cT , which is the shift in position with respect to a frame
moving at the speed of light c; i.e. here the origin is at 10 Mpc. Left : we show the total
intensity and the intensities for the polarisations parallel and perpendicular to the magnetic
field, before integration. Right : we show the contributions to the other Stokes parameters.
We used ωp = 3.7 10−14 eV, m = 4 10−14 eV, ω0 = 2.5 eV (i.e. λ0 = 500 nm), a = 1.34 eV−1,
and gB = 3 10−29 eV.

~B we see the effect of interferences within the packet, while there is only a spread for non-
mixing photons. Note that this is for 100% polarised light, so that the obtained U(z) and
V (z) are much bigger than what the same conditions would give for typical quasars light.
Now we need a correct description of what happens to initially unpolarised and partially
linearly polarised light described with wave packets.

To treat partially polarised light, one can make use of a useful property of Stokes param-
eters in the case of fully polarised light, defined as in Eq. (3). For fixed external conditions,
calculating Stokes parameters in the ϕ0 =

π
4
case gives us access to the following quantities:

Qpol(z;ϕ0 =
π
4
) = 〈1

2

(
|E⊥|2 − |E‖|2

)
〉 ≡ C1(z),

Ipol(z;ϕ0 =
π
4
) = 〈1

2

(
|E⊥|2 + |E‖|2

)
〉 ≡ C2(z),

Upol(z;ϕ0 =
π
4
) = 〈2 Re{E‖E

∗
⊥}〉 ≡ CU(z),

Vpol(z;ϕ0 =
π
4
) = 〈2 Im{E‖E

∗
⊥}〉 ≡ CV (z),

(23)

which evolve with z due to the mixing with pseudoscalars. One can easily show that the
evolution of the Stokes parameters for any other light beam ~Er, with initial angle ϕ0, in the
same conditions is: 




Ipol(z;ϕ0) = C1(z) cos(2ϕ0) + C2(z)
Qpol(z;ϕ0) = C2(z) cos(2ϕ0) + C1(z)
Upol(z;ϕ0) = CU(z) sin(2ϕ0)
Vpol(z;ϕ0) = CV (z) sin(2ϕ0).

, (24)

i.e. it is sufficient to calculate the coefficients (23).
Now, as we have already discussed, unpolarised light can be thought of as the average

over every possible initial angle ϕ0. Applied to Eq. (24), this averaging gives, for unpolarised
light: Iunpol(z) = C2(z), Qunpol(z) = C1(z) and Uunpol(z) = Vunpol(z) = 0.
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The evolution of any Stokes parameter S for a light beam initially with a partial linear
polarisation, characterised by a given value of plin,0 and a value of ϕ0, then follows:

Spartial(z;ϕ0, plin,0) = plin,0 Spol(z;ϕ0) +
1

2π

∫ 2π

0

(1− plin,0)Spol(z;ϕ) dϕ (25)

this finally leads to a natural generalisation of the fully polarised case:




Ipartial(z;ϕ0, plin,0) = plin,0[C1(z) cos(2ϕ0)] + C2(z)
Qpartial(z;ϕ0, plin,0) = plin,0[C2(z) cos(2ϕ0)] + C1(z)
Upartial(z;ϕ0, plin,0) = plin,0[CU(z) sin(2ϕ0)]
Vpartial(z;ϕ0, plin,0) = plin,0[CV (z) sin(2ϕ0)].

(26)

3.2 Results for white light

We now present the results of the mixing of photons with axion-like particles in a wave-packet
formalism. We shall argue that these packets can be used to describe white light, with no
photometric filter. The photomultipliers used to perform the white-light measurements of
polarisation have a broad spectral response range (from 185 to 930 nm for the ones used
in [61]), which is indeed similar to the width of our wave packets.

Note that current upper limits on the pseudoscalar12 coupling are g = 10−11 GeV−1.
Together with B = 0.3 µG, this means that gB . 6 10−29 eV.

In Fig. 8, we first illustrate the different Stokes parameters at a given distance, for each
initial value of the angle ϕ0. For a given angle, the distance between the origin and each
S(z;ϕ0) curve is the value of this Stokes parameter. Now, for wave packets, we obtain that
the circular polarisation V (z) is strongly reduced with respect to the plane-wave prediction;
notice that U(z) is also affected in the same way, as it is also very sensitive to phase effects.
This can be understood if one goes back to Fig. 7: we see that these two quantities change
sign within the packet itself, due to the extremely frequency-dependent character of the
birefringent effect induced by the pseudoscalars. Also note that, whereas for plane waves the
Stokes parameters obey I2(z) = Q2(z) + U2(z) + V 2(z) for any ϕ0, this is no longer true in
the wave-packet case, even for light initially fully linearly polarised.

For partially-polarised light the expected amount of circular polarisation will of course be
even smaller. This is shown in Figs. 9 and 10, which are the wave-packet results analogous
to those of the plane-wave case (Figs. 4 and 5). We obtain a large suppression of circular
polarisation for most of the parameters. Let us emphasise that this is in the case leading
to the highest amount of v; i.e. u(0) = plin(0) = 0.01. Besides, notice that the maximum
linear polarisation attainable for some of the parameters is smaller than in the plane-wave
case: this is related to the loss of u that happens in this case, as also seen in Fig. 8.

In Fig. 11, we also directly compare the two descriptions for different values of the
coupling; one can see that, for very small gB, the results are similar, and that the suppression
is more efficient at bigger values of gB.

Finally, we have generalised our calculations to the case where the packets are initially
described by the frequency distribution (19), somewhere in the first region, at some z̃ ≪ 0.
The first region can then represent a cosmic void, where ωp can also typically have a smaller
value; this allows the packet to propagate a long time, which makes it spread, before it enters

12Interestingly, for chameleons constraints are even less severe [13].
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Figure 8: Stereographic views of each of the Stokes parameters before (top), and after a
10 Mpc propagation inside a magnetic field with plane waves (bottom left), and with wave
packets (bottom right), for initially 100% linearly polarised light. The distance of the curves
to the origin gives the value of the parameters. To enable direct comparisons, the angular
coordinate in the three figures is the initial angle, ϕ0. The direction of the magnetic field is
the one given by ϕ0 = ±π

2
. This relatively strong mixing case is shown for m = 4.5 10−14 eV,

ωp = 3.7 10−14 eV, gB = 5 10−29 eV, ω0 = 2.5 eV and a = 1.34 eV−1.
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Figure 9: Same (circular polarisation) as Fig. 4 but with light described by wave packets.
We have used ω0 = 2.5 eV and a = 1.34 eV−1.

Figure 10: Same (linear polarisation) as Fig. 5 but with light described by wave packets. We
have used ω0 = 2.5 eV and a = 1.34 eV−1. Note that the right-hand box gives the base-10
logarithm of the linear polarisation.

the second region. We have checked that the results we have presented above hold in this
case as well (even if the first region is taken to be one gigaparsec long). This confirms that
the main mechanism that reduces the circular polarisation is not related to the separation
and the spread of photon packets of different polarisation, but rather because of phase-shifts
within the packets that mix. This can be understood as v(ω) can change sign within the
packet, averaging to zero, while plin(ω) =

√
q2(ω) + u2(ω) cannot, keeping an alignment
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Figure 11: Comparison of results obtained with plane waves and with wave packets, for the
same parameters. This is a cut respectively of Fig. 4 and of Fig. 9, for the pseudoscalar mass
m = 4.5 10−14 eV.

possible.
A simpler approach [62] is to use direct averages of the plane-wave Stokes parameters of

Eq. (10) over frequency, instead of wave packets. This will give the same qualitative results,
as illustrated in Fig. 12, where quantities are plotted against ∆ω, the bandwidth over which
each averaging is performed. For the averages of plane waves, we have used the analytical
formulas (10) averaged over a step profile in ω, centered around ω0 and of width ∆ω. For
the Gaussian wave packets of Eq. (19), on the other hand, we chose ∆ω to represent the
full-width-at-half-maximum in ω of each initial packet (i.e, a = 4

√
ln(2)(∆ω)−1). In either

case, the larger the band of frequencies over which the averaging is done, the smaller the
absolute value of the circular polarisation and its relative importance compared to the linear
polarisation. This holds whatever the details of the averaging. Similar results have also been
obtained in different contexts (chameleons [40], and high-energy gamma sources [63]).

Therefore, as far as white-light data are concerned, phenomenological implications of
axion-like particles mixing with photons can be reconciled with circular polarisation mea-
surements [28–30].

3.3 Results for Bessell V-filter

Most of the recent circular polarisation data of [32] were taken using a Bessell broadband V
filter [55, 56]. This filter is centered around λ = 547.6 nm and the associated full-width-at-
half-maximum is 113.2 nm. To mimic this cut in frequencies, one can convolute wave-packets
with the spectrum distribution of the filter, or proceed to averages of plane-wave results over
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Figure 12: Comparing averaging methods for wave packets (with a =
4
√

ln(2)

∆ω
) and averages

of plane waves: in both cases, the absolute values of v (left) and of v
plin

(right) are reduced

with increasing ∆ω with respect to the monochromatic case (i.e. ∆ω = 0). Here, we used
gB = 6 10−29 eV, and ∆ω is centered around ω0 = 2.5 eV; the other parameters are the
same as in Fig. 11.

ω using the frequency profile.
We then find that, even though it is a broadband filter, the typical values of the astro-

physical parameters are such that the circular polarisation does not change sufficiently over
this bandwidth to be strongly reduced when averaging over ω. This is illustrated in Fig. 12
for small values of ∆ω (≈ 0.5 eV). The circular polarisation is slightly smaller than in the
monochromatic case, but the effect is certainly not sufficient to reconcile the mechanism with
data. Except for very specific choices of parameters, the axion-like particle parameters able
to create an alignment will also predict a sizeable amount of circular polarisation.

If axions were at work, given the —somehow narrow— bandwidth of the broadband V-
filter, circular polarisation should have been observed, even with a wave-packet description.

4 Different models for the magnetic field

We are going to focus on the regions where these V-filter data have been taken from and
check the sensitivity of this result to changes in the magnetic field morphology. We will
see that the mixing with pseudoscalars in a magnetic field that fluctuates along the light
trajectory cannot even reproduce the alignments of linear polarisation.

4.1 Linear polarisation data towards region A1

In order to detect alignments, we shall first argue that averages in the (q, u) space give the
same information as the more elaborate methods of [18].

Among quasars with circular polarisation measured in the V-filter, 18 are located in the
same direction of the sky, towards what is called region A1 in [15,16,18]. We can present in
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a (q, u) space the linear polarisation of quasars located in this direction13, and see what the
alignment effect looks like in such a plot. As the polarisation angle is related to the Stokes
parameters q and u via the relation:

ϕ =
1

2
atan

(
u

q

)
, (27)

for a fixed value of plin, different values of q and u correspond to different orientations. In
particular, a random distribution of polarisation angles corresponds to an isotropic distribu-
tion in this space. Note also that, as plin =

√
q2 + u2, the distance between the origin and

a given point directly gives the degree of polarisation of the associated light beam.
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q
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Figure 13: Experimental data: objects taken in the A1 direction. Left : linear polarisation for
low-redshift quasars, with 0 ≤ z < 1. Right : same for high-redshift ones, with 1 ≤ z ≤ 2.3.
Some objects with higher polarisation degrees are not shown, but are taken into account for
the mean. In the case of low-redshift quasars, the total number of objects is N = 43, and
for high-redshift ones, it is N = 56.

In Fig. 13, we show data from the latest sample [18], for both low- and high-redshift
quasars.14 As expected, coherent orientations are translated into departures from isotropy
on such a graph. Note that the preferred direction for the asymmetry is not the same for
low and high redshifts, while these objects are along the same line of sight.

To be more quantitative, we can calculate the mean values of q and of u, for low- and high-
redshift data, taking into account the experimental uncertainties15. We determine the mean

13Doing so, we drop the information about the position of each object on the sky.
14Only objects with plin ≥ 0.6% have been considered in this sample, this is why there is a hole in the

center of those figures.
15For this, one takes σq = σu = σp, see Ref. [64]
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values and the errors on the mean for q and u and plot them in Fig. 13; we obtain (−0.0135±
0.0072, 0.0041± 0.0039) for the low-redshift region, and (0.0097± 0.0035,−0.0019± 0.0041)
for the high-redshift one. In the observational paper [18], another analysis was done: they
obtained the preferred angles one finds when considering only the angular information; these
are shown with straight lines.

4.2 Models

The location of region A1 points towards the center of the Virgo supercluster (our local
supercluster, shortened as ‘LSC’). To the best of our knowledge of the Virgo magnetic field
can be described either [38, 41]:

- by a uniform field (used thus far for illustration) with ≈0.2–0.3 µG over ≈5–10 Mpc;

- by a ‘patchy’ field made by several ≈100 kpc cells of randomly oriented magnetic field
of strength ≈2 µG, adding up to the same distance.

Note that a ‘patchy’ picture is also typically what is considered to discuss the propagation
of cosmic rays, and what is obtained from structure formation; see for instance [65, 66] for
results about the LSC.

The LSC magnetic field is essentially the last relevant magnetic field encountered by
extragalactic photons coming towards us.16 For this reason, regardless of its structure, the
axion-like particle explanation of quasar data will be ruled out if the influence of this field
creates too much circular polarisation, as any v created there should have been detected.

4.2.1 Simulations in the uniform field scenario

We know since Section 3.3 that a uniform field can produce coherent orientations of po-
larisation with respect to the magnetic field direction, although the existence of axion-like
particles responsible for an alignment would have also implied that circular polarisation is
produced. As we have discussed, this is excluded by data.

We can check what this alignment looks like in a (q, u) space, if we start from a random
distribution of polarisation.

To mimic a random distribution of initial quasar polarisations, we first generate partially
polarised light beams (plin between 0 and 3%), with random polarisation angles. In Fig. 14,
on the left, we plot this initial distribution of light beams, each random realisation being
displayed using its Stokes parameters q and u. On the right, we show what this distribution
becomes, due to axion-photon mixing inside the 10 Mpc uniform magnetic field. We see
that there is indeed a departure from a random distribution acquired through the mixing,
corresponding to an asymmetry in the q and u space.17 More quantitatively, the means we
obtain for q and u in this example lead to a value of plin = 0.01 after axion-photon mixing,
while they were compatible with zero initially.

16The influence of our galactic magnetic field can be neglected: the field strength decreases exponentially
in the direction transverse to the galactic plane [39], and data have been obtained at high galactic latitudes.

17The fact that the asymmetry appears along one of the axes is only due to our specific choice for the
basis; only plin is a physical quantity.
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Figure 14: 5000 beams are generated. Left : initial distribution. Right : The associated dis-
tribution after effects induced by axion-photon mixing in the uniform case. The parameters
used here are ω0 = 2.25 eV, ωp = 3.7 10−14 eV, m = 4.5 10−14 eV, g = 3.5 10−12 GeV−1,
B = 0.3 µG, and z = 10 Mpc.

4.2.2 Simulations in the patchy scenario

Pure randomness As already mentioned, making the magnetic field fluctuate in a ‘patchy’
model may suppress v: as we have seen in Section 3, in small enough magnetic field regions,
the induced circular polarisation can be smaller than the linear one. Nevertheless, circular
polarisation is not the main problem in this picture.

Indeed, it is obvious that such a field will not help create an alignment: if the magnetic
field can be thought of as small cells with magnetic field directions distributed in a random
way from cell to cell, this will be the case along the line of sight, but also transversally.
Then, two objects which are angularly separated will pass through two different magnetic
field configurations. There is thus no way to create an alignment, as there is no preferred
direction in this problem that is common to all quasars.

With an underlying uniform field We can go further and use a more refined model,
where there would be at least some correlation between the cells rather than a complete
randomness. To do this, we sum the magnetic fields of the uniform and of the ‘patchy’
models, using results presented in Appendix B. We thus have cell-like magnetic fields on
top of a fainter field, this one being coherent over the LSC scale: this would lead to some
semi-randomness between the cells on the LSC scale, as discussed in [38].

In this case, to keep a final linear polarisation of the order of 1%, we have to consider
either smaller values of the coupling, or bigger values of |(m2 − ωp

2)| than in the uniform
case because the magnetic field is stronger (see Eq. (9)).

For this reason, and because the field strength of the uniform component is ≈ 7 times
smaller than that of the randomly oriented one, it is not surprising that there is no obvious
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Figure 15: Same as Fig. 14 (right) but after axion-photon mixing in the ‘patchy’ case with
an underlying uniform field. The parameters used here are the same as before, except
m = 1.85 10−13 eV. For the uniform magnetic field, we use B = 0.3 µG over 10 Mpc; for the
randomly oriented part of the magnetic field, we use | ~Bc| = 2 µG in a hundred 100 kpc-long
cells.

departure from isotropy due to axion-photon mixing in this case. Indeed, the effect induced
by the uniform component of the magnetic field is then strongly suppressed: therefore, an
alignment cannot be achieved. For the example we present in Fig. 15, we obtain that the
means of q and u are compatible with zero at the 1σ-level, namely hardly any improvement
with respect to the initial distribution, and certainly not enough additional linear polarisation
to be able to explain the data. We checked that if the relative intensities of the random and
background fields are chosen to produce an alignment, then the circular polarisation is again
too high.

If this second possibility turns out to be a satisfactory model of the magnetic field of
the local supercluster, not only would there be some circular polarisation, but axion-like
particles will be unable to create coherent orientations in that field. Note that these results
are general and do not only apply to the LSC magnetic field.18

Finally, we have also checked that our results are stable with respect to fluctuations of
a factor of 2 (up or down) of the parameters, among which the plasma frequency, the cell
sizes, and the magnetic field strength.

18Note also that considering another field should imply that it is coherent over angular distances even
larger than the LSC scale: indeed, it should be located beyond it and still large enough so that light from
angularly distant quasars pass through a field giving the same preferred direction.
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5 Conclusion

In this paper, we have considered photon-pseudoscalar mixing as the source of the observed
alignments. This process has so far been the best hope to explain the observed data. The
typical treatment assumes that the same faint coherent field is traversed by the light beams
from all the quasars. Note that this is problematic, as the data display two alignments:
quasars at redshift z > 1 seem to be aligned in a different direction from closer ones. In
order to obtain such an effect, one needs to assume a slice of coherent fields 1 Gpc large, with
an intensity of the order of 0.1 µG. Although this seems unlikely, one cannot rule out the
explanation on those grounds, as so little is known about magnetic fields at high redshifts.

Recent data have shown that the circular polarisation of these objects is negligible, con-
trarily to the predictions from photon-pseudoscalar mixing. At face value, this kills the
interpretation. However, we showed that it is possible to argue that, for white light, the
average over frequencies suppresses the circular polarisation enough. From the sample of
355 quasars, only 6 circular polarisation measurements were obtained in white light, and 21
using a broadband Bessell V-filter, for which the bandwidth is nevertheless not broad enough
to average the circular polarisation to almost zero.

Keeping the idea of averaging, we extended the model of magnetic field, by assuming a
collection of cells of 100 kpc, with random 2 µG fields averaging to 0.3 µG, and letting most
quantities fluctuate (size of cells, electron density, magnetic field). While these fluctuations
can somewhat reduce the circular polarisation, they also destroy the alignment which was
the first reason to consider photon-pseudoscalar mixing.

Hence it seems that the combination of the alignments and of the absence of circular
polarisation remains at present a puzzle, which cannot be explained by photon-pseudoscalar
mixing. One should note that this conclusion is based on the lack of circular polarisation in 19
objects measured with the V-filter. It is of course possible that magnetic field configurations
are special for these 19 objects, and some more data —or, equivalently, data in an even
smaller bandwidth— may be needed to reach certainty.

As a final note, the data on quasar polarisation show that the polarisations are only
typically a few percent. Photon-pseudoscalar mixing can be much more efficient than this at
producing polarisation. Hence the quasar data can be used to exclude part of the parameter
space of ALPs. This will be the subject of a future paper [67].
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A Pseudoscalar-photon mixing using wave packets

Here, we solve the system of Eq. (17) in the case of the step-like magnetic field presented in
Section 3.1, using the decomposition of Eq. (18). Note that, as in the plane-wave case, we
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rephase φ(z, t) and use the gauge condition A0 = 0, so that Ẽ(z, ω) = iωÃ(z, ω).
The solutions in the first region are:

EI(z, t) =

∫ ∞

−∞

dω e−iωtiω
[
Ãi,I(z = 0, ω)eikEz + Ãr,I(z = 0, ω)e−ikEz

]
(28)

φI(z, t) =

∫ ∞

−∞

dω e−iωt
[
φ̃i,I(z = 0, ω)eikφz + φ̃r,I(z = 0, ω)e−ikφz

]
, (29)

with the dispersion relations kE =
√
ω2 − ωp

2 and kφ =
√
ω2 −m2. Here we have already

used the fact that we will always consider amplitudes centered around ω0, with ω0 ≫ ωp, m,
and decreasing sufficiently quickly with ω for the contributions from ω ≤ ωp, m to be negli-
gible. Similarly, the solutions in the second region read:

EII(z, t) =

∫ ∞

−∞

dω e−iωtiω
[
Ãi,II(z = 0, ω)

(
(cmix)

2eikCz + (smix)
2eikDz

)

+ φ̃i,II(z = 0, ω)
sin(2θmix)

2

(
eikCz − eikDz

)]
, (30)

φII(z, t) =

∫ ∞

−∞

dω e−iωt
[
Ãi,II(z = 0, ω)

sin(2θmix)

2

(
eikCz − eikDz

)

+ φ̃i,II(z = 0, ω)
(
(smix)

2eikCz + (cmix)
2eikDz

)]
, (31)

where kC and kD are respectively k+ =
√

ω2 − µ+
2 and k− =

√
ω2 − µ−

2 when ωp > m, and
the other way around when m > ωp. As we are mostly interested in the small mixing case,
the heaviest eigenmode of propagation is mostly made of the heaviest state among photons
and pseudoscalars, and conversely for the lightest one. If B is set to zero, kC = kE and
kD = kφ.

The amplitudes Ãi,I(0, ω), Ãr,I(0, ω), φ̃i,I(0, ω), φ̃r,I(0, ω), Ãi,II(0, ω) and φ̃i,II(0, ω) are
determined by initial and boundary conditions. They correspond to incident (i) or reflected
(r) amplitudes that appear as light goes from region I into the potential barrier. To simplify
our discussion, we now work in the case where there is no incident pseudoscalar flux in region
I, namely φi,I(0, ω) = 0.

The continuity requirements on E(z, t) and φ(z, t), and on their first derivatives with

respect to z, at z = 0 then lead to relations where the only free parameter left is Ãi,I(z = 0, ω).
For completeness, they are:

Ãi,II(z = 0, ω) =

2kE

[ kC(smix)
2 + kD(cmix)

2 + kφ

kEkφ + kCkD + kE
(
kC(smix)2 + kD(cmix)2

)
+ kφ

(
kC(cmix)2 + kD(smix)2

)
]
Ãi,I(0, ω)

≡ V Ãi,I(0, ω) (32)

φ̃i,II(z = 0, ω) = φ̃r,I(z = 0, ω) =
[ kE

(
kC − kD

)
sin(2θmix)

kEkφ + kCkD + kE
(
kC(smix)2 + kD(cmix)2

)
+ kφ

(
kC(cmix)2 + kD(smix)2

)
]
Ãi,I(0, ω)

≡ W Ãi,I(0, ω). (33)
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Ãr,I(z = 0, ω) = (V − 1) Ãi,I(0, ω)

(34)

In the case of an incident Gaussian wave packet

Ẽi,I(z = 0, ω) = e−
a2

4
(ω−ω0)2 , (35)

we obtain the following result for EII(z, t) (which is the only amplitude entering the expres-
sions of the Stokes parameters in the second region):

EII(z, t) =

∫ ∞

−∞

dω
[
V − iW

4
exp(−a

2

4
(ω − ω0)2 + i(kCz − ωt+ 2θmix))

+
V + iW

4
exp(−a

2

4
(ω − ω0)2 + i(kCz − ωt− 2θmix))

+
V

2
exp(−a

2

4
(ω − ω0)2 + i(kCz − ωt))

− V − iW

4
exp(−a

2

4
(ω − ω0)2 + i(kDz − ωt+ 2θmix))

− V + iW

4
exp(−a

2

4
(ω − ω0)2 + i(kDz − ωt− 2θmix))

+
V

2
exp(−a

2

4
(ω − ω0)2 + i(kDz − ωt))]; (36)

where V , W , kC , kD and θmix are functions of ω. Note that if gB is set to zero, this reduces
to

EII(z, t; gB = 0) = E⊥(z, t) =

∫ ∞

−∞

dω exp(−a
2

4
(ω − ω0)2 + i(kEz − ωt)). (37)

We finally Taylor expand the coefficients and the arguments of the exponentials around ω0

(up to the second order) to carry out the integrals (36) and (37) analytically to better than
1% for the case at hand (as was checked by estimating the contribution of the next order).

B Mixing in a more general magnetic field

Consider several regions with different magnetic fields, their direction and strength chang-
ing from one region to another. First of all, one can work out axion-photon mixing in a
arbitrarily-oriented transverse magnetic field ~B = B cos δ ~e1 +B sin δ ~e2, where ~e1 and ~e2 are
the basis vectors we will use throughout to keep track of an absolute direction and to define
Stokes parameters.

We approximate (ω2 + ∂z
2) ≃ 2ω (ω + i∂z) in the equations of motion for the fields, as

the masses we use are indeed much smaller than the photon energies entering the problem.
Inside a region, the system of equations reads:

[(
ω + i

∂

∂z

)
−




ωp
2

2ω
0 −gB cos δ

2

0 ωp
2

2ω
−gB sin δ

2
−gB cos δ

2
−gB sin δ

2
m2

2ω




]

A1(z)
A2(z)
φ(z)


 = 0, (38)
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We introduce a1(z), a2(z), and χ(z) such that we remove the eiωz-dependence of the solutions:


A1(z)
A2(z)
φ(z)


 =



a1(z)
a2(z)
χ(z)


 eiωz , (39)

and then rotate by (π
2
− δ) to an appropriate basis ( ~e⊥, ~e‖), such that ~B = (0,B). Solving

the equations in a way similar to the one used in Section 2, and going back to the (~e1, ~e2)
basis, we finally obtain:



a1(z)
a2(z)
χ(z)


 =




K11 K12 K13

K12 K22 K23

K13 K23 K33






a1(0)
a2(0)
χ(0)


 (40)

with





K11 = sin2 δ e−i
ωp

2

2ω
z + cos2 δ

(
(cmix)

2 e−i
µC

2

2ω
z + (smix)

2 e−i
µD

2

2ω
z

)

K22 = cos2 δ e−i
ωp

2

2ω
z + sin2 δ

(
(cmix)

2 e−i
µC

2

2ω
z + (smix)

2 e−i
µD

2

2ω
z

)

K12 = − sin δ cos δ e−i
ωp

2

2ω
z + cos δ sin δ

(
(cmix)

2 e−i
µC

2

2ω
z + (smix)

2 e−i
µD

2

2ω
z

)

K13 = cos δ sin(2θmix)
2

(
e−i

µC
2

2ω
z − e−i

µD
2

2ω
z

)

K23 = sin δ sin(2θmix)
2

(
e−i

µC
2

2ω
z − e−i

µD
2

2ω
z

)

K33 = (smix)
2 e−i

µC
2

2ω
z + (cmix)

2 e−i
µD

2

2ω
z,

(41)

where µC and µD are respectively µ+ and µ− when ωp > m, and the other way around when
m > ωp.

When we consider light traveling through regions of different magnetic fields, we use
this result inside each region, ensuring the continuity of the fields at the boundaries and
neglecting reflected waves, which have an amplitude of order

(
rmix

ω2

)
.

Note that for the ‘patchy’ model, the magnetic field from cell to cell is not only rotated
in the transverse plane, but can undergo the most general tridimensional rotation. As in-
side each region only the total transverse field is relevant, this gives lower transverse field
strengths. When we have allowed an additional underlying field, we have kept it in the ~e2
direction throughout and calculated the angle δ for each region.
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