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Abstract

The present work considers the design of control algorithms to coordinate a swarm of identical,
autonomous, cooperating agents that evolve on compact Lie groups. The objective is that the
agents reach a so-called consensus state without using any external reference. In the same line
of thought, a leader-follower approach where ’follower’ agents would track one ’leader’ agent is
excluded, in favor of a fully cooperative strategy. Moreover, the presence of communication links
between agents is explicitly restricted, leading to undirected, directed and/or time-varying com-
munication structures.

Two levels of complexity are considered for the models of the agents. First, they are modeled
as simple integrators on Lie groups. This setting is meaningful in a trajectory-planning context
for swarms of mechanical vehicles, or to solve algorithmic problems involving multiple agent coor-
dination. In a second step, the model of Newtonian mechanics is used for Lie group solids, which
correspond to the abstraction of the Euler laws for the rotation of a rigid body to general Lie
groups. This setting is relevant for the actual control of mechanical vehicles through torques and
forces.

As a common starting point, the consensus problem is formulated in terms of the extrema of
a cost function. This cost function is linked to a specific centroid definition on manifolds, which
is referred to in this work as the induced arithmetic mean, that is easily computable in closed
form and hence may be of independent interest. Using the integrator model, this naturally leads
to efficient gradient algorithms to synchronize (i.e. maximizing the consensus) or balance (i.e.
minimizing the consensus) the agents; the latter however can only implement the corresponding
control laws if the communication graph is fixed and undirected. For directed and/or varying com-
munication graphs, a convenient adaptation of the gradient algorithms is obtained using auxiliary
estimator variables that evolve in an embedding vector space. An extension of these results to
homogeneous manifolds is briefly discussed. For the mechanical model, the coordination objective
is specialized to coordinated motion (i.e. moving such that the relative positions of the agents are
conserved) and synchronization (i.e. having all the agents at the same position on the Lie group).
Control laws are derived using two classical approaches of nonlinear control - tracking and energy
shaping. They are both based on the ideas developed in the first part.

For the sake of easier understanding and given its practical importance as representing orien-
tations of rigid bodies in 3-dimensional space, the group SO(3) (or more generally SO(n)) is used
as a running example throughout this report. Other examples are the circle SO(2) and, for the
extension to homogeneous manifolds, the Grassmann manifolds Grass(p, n).

As this report is written in the middle of research activities, it closes with several future
research directions that can be explored in the continuity of the present work.
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Overview of the contributions

The work presented in this report is part of a larger research project on coordinated motion control
on Lie groups. The present work, as a first step, is restricted to compact Lie groups. The starting
point is a swarm of identical agents, moving autonomously on a compact Lie group G. The indi-
vidual agents can share information along communication links as defined by an interconnection
graph. The task is to design control laws for the agents as a function of the relative positions of
connected agents, such that they move in order to reach a state of coordinated motion. These
control laws may imply no external reference, and the various possibilities that must be consid-
ered for the interconnection graph exclude a leader-follower approach. The strategy behind the
algorithms embeds G in a Euclidean space E . Distances between agents are measured in E in order
to build cost functions for an optimization-based approach. Two types of models of increasing
complexity are considered for the (always fully actuated) agents: simple integrators and controlled
mechanical systems (so-called Lie group solids).

The simple integrator model is used to focus on the issues related to systems that are globally
distributed on a Lie group and to reduced interconnections in this setting. The main contribution
is to define various qualitative situations for the relative positions of the agents on the Lie group
G. In this first part, the degree of freedom concerning possible synchronized motions of the agents
is not considered: the algorithms drive the agents towards a specific configuration where they
remain at rest. The two extreme such configurations are the situation where all the agents are
at the same position (synchronization) and the situation where the agents are spread in some
way on the whole manifold (balancing). Those two problems are formulated as optimizing (i.e.,
maximizing or minimizing) a simple consensus function which depends on the relative states of
all the pairs of agents. Using a similar characterization but with a limited set of agent pairs,
intermediate situations called consensus and anti-consensus are defined. Those are all built on
a specific definition of the mean of positions on a manifold, which may be interesting on its own
account. It is called the induced arithmetic mean in the present paper.

Two types of algorithms are proposed, depending on the goal and the available communication
links. For fixed undirected interconnection graphs, gradient algorithms can be used to lead the
agents to corresponding consensus or anti-consensus states. For time-varying and/or directed
interconnection graphs, the two extreme cases of synchronization and balancing can be reached
thanks to an adaptation of the previous algorithms using auxiliary estimator variables.

These results can be generalized to connected compact homogeneous manifolds. A journal
paper version of this first part of the report can be found in [1].

The second part of the report merges the consensus approach considered in the first part with
the more realistic model of a mechanical system moving on a Lie group. The main contribution here
is the design of algorithms such that the swarm converges towards synchronization of the positions
or to synchronization of the velocities (such that the relative positions remain constant). In both
cases, the control laws explicitly incorporate the possibility to have a (non-trivial) synchronized
motion of the agents. The algorithms are derived using two popular strategies in control of
mechanical systems: (consensus) tracking and energy shaping.

For the consensus tracking approach, the trajectories resulting from the consensus algorithms
as designed in the first part are considered as desired trajectories that each mechanical agent
asymptotically tracks. Though an integrated proof is provided for particular tracking controllers,
any controller developed for tracking (or, with some restrictions, even for stabilization) on Lie
groups can probably be used instead.

For the energy shaping approach, the consensus function defined in the first part is used as an
artificial potential for the mechanical system. This approach is not entirely new, but it seems that
the proper design of dissipation in order to obtain asymptotic stability of the synchronized state,
without using an external reference for the swarm, had not been explicitly solved yet at the time
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of the research presented in this report.
The results in this part could not all be formulated for general connected compact Lie groups:

the last result is specialized to the classical (and probably most useful) Lie group SO(3), for which
the “Lie group solid” becomes the actual 3-dimensional rotating rigid body. A conference paper
version of this second part of the report, specialized to SO(3), can be found in [2].

Though the subjects and approaches in this work are popular in the literature, very few au-
thors to date solved relevant problems on Lie groups. Among the many challenges that Lie groups
raise with respect to vector spaces, the most significant are the non-convexity of the state space
(leading to non-convex problems as soon as the agents are spread over a large portion of the state
space - see the contributions in the first part of this report) and the particular relations between
position, velocity and acceleration (leading among others to drift terms in the mechanical models
- see the contributions in the second part of this report).

The report is organized as follows. The relevance of the present work is briefly discussed in
Section 1, including some considerations about previous work. Section 2 provides the necessary
background and notations for the mathematical formulations and developments in the main part
of the report. Section 3 contains the first part of the main contributions, in which the simple
integrator model is considered in order to define the induced arithmetic mean, consensus and anti-
consensus configurations, and deduce algorithms to drive the swarm of simple integrators towards
these configurations. Section 4, containing the second part of the main contributions, goes one
step further by considering mechanical models and synchronized motions of the swarm. After
summarizing the results and giving some general conclusions, the report ends with a discussion
about future research.
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1 Relevance of coordination on Lie groups

1.1 Applications involving coordination on compact Lie groups

The distributed computation of means/averages/centroids of datasets (in an algorithmic setting)
and the synchronization of a set of agents (in a control setting) - i.e. driving all the agents to a
common position in state space - are ubiquitous tasks in current engineering problems. Likewise,
spreading a set of agents in some optimal way in the available state space - linked to balancing
as defined in the present work - is a classical problem of growing interest. Swarms of autonomous
agents are increasingly considered as an advantageous option to carry out complex tasks which
would be lengthy or infeasible for a single agent.

For instance, many modern space mission concepts involve the use of multiple satellites flying in
formation. Mostly, the objective is to get (virtual) structures in orbit that are substantially larger
than what current launch technologies can directly handle. Potential applications arising in current
studies include resolution enhancement through multiple-spacecraft SAR (the InSAR concept, or
ONERA’s Romulus study), interferometry (ESA’s Darwin project, NASA’s equivalent Terrestrial
Planet Finder project or NASA’s Constellation-X project) or supersized focal length (ESA’s XEUS
project, derived from the Symbol-X concept of CNES), sensitivity increasing through screens on
secondary spacecraft (the American New World Discoverer concept for the JWST) or large-scale
measurements (the ESA-NASA cooperative mission LISA), and autonomous in-orbit assembly
of large real structures (projects are still at a draft level; see [3] and [4] for example). Other
advantages of spacecraft formations are their robustness with respect to single spacecraft failure,
and the reconfigurability of the swarm to fit specific observation requirements.

Similar lists of projects can be made for formations of unmanned aerial vehicles (UAV’s), au-
tonomous underwater vehicles (AUV’s) or terrestrial platoons - in fact any type of general vehicle
formations ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] and
references therein). A central problem in formation control is to ensure proper coordination of
the agents, i.e. to bring them to and keep them in the desired formation. This requires to design
coordination algorithms for mechanical systems, as is done in Section 4. At this point, it must be
emphasized that accurate formation control poses several different problems of which the present
work just considers one part: focusing on convergence from states that can be far away from
the desired equilibrium and inherently including strong robustness considerations, the developed
control laws might most probably be useful for initial deployment of the formation or for recovery
after strong transient perturbations. In general, most theoretical studies are far from final science
operations requirements, where accuracy is a key issue for navigation and control and unmodeled
disturbances or constraints are present. An example of a practical GNC implementation for the
Darwin mission can be found in [28].

The first part of this work considers coordination algorithms for simple integrators. From
this algorithmic point of view, practical applications involving coordination include distributed
decision making (e.g. [29, 30]), neural and communication networks (e.g. [31, 32]), clustering
and other reduction methods (e.g. [33]), optimal covering or coding (e.g. [34, 35, 36, 37]) and
many other fields where “dynamically computing an average” or “optimally distributing a set of
points” appear as sub-tasks ([38]). In addition, in a modeling framework, the understanding of
synchronization or more generally swarm behavior using simple models has led to many important
studies discovering fundamental properties (e.g. [39, 40, 41]). Moreover, as is done in the present
work, coordination algorithms for simple integrators can be used - more or less directly - at a task
planning level for motion coordination in a swarm of mechanical systems ([13, 18, 16, 19, 42]).

Consensus algorithms are well understood in Euclidean spaces (see e.g. the results in [43, 44,
30, 29]). They are based on the natural definition and distributed computation of the centroid
in such spaces. The literature about formation control of mechanical systems on vector spaces

7



is even wider; a thorough survey would require a longer discussion and the interested reader is
referred to citations in the references of the present paper. However, as evidenced by the above
list, many interesting applications involve manifolds that are not homeomorphic to a Euclidean
space. Even for formations moving in R2 or R3, the orientation of the agents is characterized by
state variables in a non-Euclidean manifold SO(2) ∼= S1 or SO(3). However, much less studies are
devoted to consensus and coordination on non-Euclidean spaces. For example, position control of
spacecraft formations has attracted many studies, while attitude control has been addressed only
in a few papers (see the following review of previous work). Balancing algorithms only make sense
on compact state spaces; though many theoretical results concern convex or star-shaped subspaces
of a Euclidean space (see e.g. [37]), again most interesting applications involve compact manifolds.
The study of global synchronization or balancing in non-Euclidean manifolds is not widely covered
in the literature - except for the circle. The definition and computation of centroids on manifolds
is also scarcely addressed.

Synchronization on non-Euclidean manifolds raises particular questions that must be solved
on the way to particular applications ([45, 46]). The first studies of coordination on manifolds
are concerned with the circle ([13, 14, 15, 47]), a basic interest being among others the study of
oscillator synchronization through the celebrated Kuramoto model ([39, 48]). The next most im-
portant class of examples is probably SO(n), representing the orientations of n-dimensional rigid
bodies ([7, 10, 11, 49, 50, 51]). On the algorithmic side, data fusion also considers SO(n), as well
as the Grassmannian manifolds Grass(p, n) of p-dimensional subspaces in an n-dimensional space.
Optimal packing often considers the sphere and Grass(p, n) as well. For instance, in [36], optimal
placement of N laser beams for cancer treatment and the representation of multi-dimensional
data on a 2-dimensional computer screen by means of projections on N representative planes are
mentioned as practical applications of optimal distribution on Grass(p, n). Clustering algorithms
on Grass(p, n) have also received attention recently [33]. The sphere and Grass(p, n) are not
Lie groups, but belong to a very close family of perfectly symmetric state spaces called homoge-
neous manifolds (the manifolds corresponding to Lie groups are also termed principal homogeneous
manifolds) to which the results of the first part can be more or less readily generalized.

To avoid lengthy reformulations, the present paper makes the choice to work exclusively in
continuous-time. For algorithmic applications, it is perfectly legitimate to argue that a discrete-
time approach would be more appropriate. The adaptation of the present algorithms to discrete-
time is expected to cause no fundamental problems. For the circle, equivalent continuous-time and
discrete-time algorithms are explicitly established and studied in [47]. See also [52] for discrete-
time algorithms on manifolds.

1.2 Previous work

A favorite application of coordination on compact Lie groups, which also serves as the running
example in the present work, is the group SO(3) characterizing the orientations of rigid bodies in
3-dimensional space. Though the present work takes an inherently geometric viewpoint of SO(3),
it must be stressed that the most popular representation of rigid body orientations, particularly for
applications to satellite control, uses unitary quaternions ([6, 27, 42]). The manifold corresponding
to unitary quaternions is not strictly equivalent to SO(3). For individual satellite control, some
easy tricks allow to tackle this problem. However, it is not clear how these tricks could be adap-
tated to synchronization of autonomous satellites without using an external reference. Therefore,
the quaternion representation of rigid body orientation is ignored in the present work.
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1.2.1 Algorithmic consensus

A first class of previous work in the area of coordination on Lie groups concerns consensus al-
gorithms. In this approach, the agents are modeled as first- or second-order integrators whose
inputs must be designed under imposed communication constraints. The focus lies on the latter
and dynamical issues are ignored and mostly irrelevant because the algorithms operate in a com-
putational or task-planning framework. Most existing consensus results are valid for Euclidean
state spaces ([16, 20, 21, 30, 29, 43, 44, 53, 54]), but recent work also considers non-Euclidean
spaces ([12, 13, 14, 15, 22, 38, 47, 1],...).

Most of the work related to consensus on manifolds has been done on the circle S1. The
most extensive literature on the subject derives from the Kuramoto model (see [48] for a review).
Recently however, synchronization on the circle has been considered from a control perspective,
where the state variables represent the directions of motion of agents in the plane. Most results
concern local convergence properties [16, 43]. An interesting set of globally convergent algorithms
in SE(2) = S1×R2 is presented in [13], but they require all-to-all communication. Some problems
related to global discrete-time synchronization on S1 under different communication constraints
are discussed in [55], where connections of the control problem with various existing models are
made. Stronger results are presented in [47] for global synchronization and balancing on S1 with
varying and directed communication graphs, at the cost of introducing an auxiliary estimator
variable that communicating agents must exchange. Finally, [14] presents results on SE(2) similar
to those of [13] but under relaxed communication assumptions, using among others the estimator
strategy of [47],[38]. In [56], an algorithm similar to the basic algorithm of [13] is proposed for
spheres Sn−1 ∈ Rn of arbitrary dimensions; convergence results however are still limited to the
case of S1.

Synchronization or balancing on a manifoldM is closely related to the definition and compu-
tation of a mean or centroid of points on M. This basic problem has attracted somewhat more
attention, as can be seen from [57, 58, 45] among others.

The key element in the strategy developed in the first part of this work is the embedding ofM
in a Euclidean space E and the consequent easy computation of a centroid in E . This idea is not
entirely new. It is connected to the “projected arithmetic mean” defined in [46] for SO(3), which
similarly uses the metric of the embedding space instead of the inherent Riemannian metric along
the manifold. In fact, this simplification process of computing statistics in a larger and simpler
embedding manifold (usually Euclidean space) and projecting the result back onto the original
manifold, goes back as far as 1972 [59].

A remark about the computation of a “centroid of subspaces” is presented in [60] as a short
example, without much theoretical analysis. In fact, one observes that the algorithms of the present
work, when written on Grass(p, n), are similar and can eventually be viewed as generalizing the
developments in [60] in the framework of consensus and synchronization. More recently, [33]
uses the embedding of Grass(p, n) with the projector representation and the associated centroid
definition, exactly as is done in Section 3.5 below but without going into theoretical details, to
compute the centers of the clusters in a clustering algorithm. The distance measure associated
with this centroid on Grassmann is called the chordal distance in [35]; the latter notion is in fact
introduced in [36] where the projector representation of Grass(p, n) and the associated distance
measure in the embedding Euclidean space are used to derive optimal distributions (“packings”)
of N agents on some specific Grassmann manifolds.

Finally, in general, the optimization-based design of algorithms on manifolds is a topic that
has considerably developed over the last decades (see e.g. [61], [62] and the books [63, 52]).
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1.2.2 Coordination of mechanical systems

A second viewpoint on coordination comes from the field of control of mechanical systems. In this
framework, the non-trivial second-order dynamics on Lie groups are always explicitly incorporated.
The main example used in the present work - rigid body attitudes on SO(3) - is also the most
popular Lie group in the literature about mechanical systems. In a coordination framework, it
has attracted some attention for its application to satellite attitude synchronization.

Algorithms that asymptotically stabilize synchronized satellite attitudes are presented in [6]
and [27]. Interconnections among satellites are limited, and convergence is proven for a behavioral
algorithm combining tracking of a desired attitude, eigenaxis rotations and synchronization of the
swarm. However, these results strongly depend on the tracking of a common external reference:
when the latter is suppressed, the limited basin of attraction from which synchronization is guar-
anteed vanishes to the empty set. The work in [26, 27] similarly depends on an external reference.
In [49] and [42], attitude synchronization is considered with a leader/follower approach. In that
case, the leader spacecraft can be seen as a reference which is tracked by the followers. Control
algorithms are presented that globally stabilize attitude synchronization, but the robustness of
this approach critically depends on the reliability of the leader spacecraft and on the ability of all
the followers to track it.

In these approaches, the use of the convenient but non-unique quaternion representation for
rigid-body orientations can produce unwanted artefacts in the satellites’ motions: sometimes a
satellite that has an attitude very close to the leader moves in the opposite direction to come
back from another side. It seems that quaternions are absolutely reliable as long as relative
orientations are considered individually, but can run into problems when several orientations are
combined without a common external reference. Tracking algorithms working inherently on the
relevant manifold (SO(3) in the present case) are developed in [50].

The authors in [7] consider the attitude synchronization problem on SO(3) without external
references and quaternion artefacts. In fact, their artificial coupling potentials are the same as in
the present work. Using the Method of Controlled Lagrangians, local stability of a synchronized
state is studied and achieved in a specific situation (final synchronized rotation around the short
principal axis, specifically fixed communication interconnections). In addition to being local, this
result is not asymptotic, meaning that the satellites remain close to the equilibrium but do not
converge towards it. In the same line of work ([5, 8, 9, 10, 11, 64]), asymptotic convergence is
achieved by adding an external reference. Thanks to their close link to the present study, these
contributions are discussed in more detail in Section 4.2.

It must be mentioned that powerful theoretical tools have been developed to study highly
symmetric mechanical systems, though their use is avoided in the present work because of their
difficulty of application in practice. The starting point for these developments is a classical tool
which is indeed used in the present work: energy shaping1. Building on these energy methods,
various reduction techniques serve to deal with the symmetries of the systems themselves and
those arising from their interconnection. Relevant tools are the Energy-Momentum ([65]) and
Energy-Casimir ([66]) methods as well as Semidirect Product Reduction [67]. Application of these
concepts to coordination of multiple agents is discussed in [68].

1The Method of Controlled Lagrangians is actually a particular tool for energy shaping.
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2 Theoretical background

The present section briefly reviews two key mathematical tools that are needed to understand the
core of the work. First, the representation of agent interconnections by graphs is clarified. Sec-
ondly, a technical section about Lie groups and homogeneous manifolds provides an introduction
to their basic properties and reviews some identities that are used in the sequel.

2.1 Elements of graph theory

Coordination in a group of agents depends on the available communication links. When considering
limited agent interconnections, it is customary to represent the communication links by means of
a graph. The graph G is composed of N vertices (denoting the N agents) and contains the edge
(j, k) if agent j sends information to agent k (i.e. vertex j is an in-neighbor of vertex k), which is
denoted j Ã k. A positive weight ajk is associated to each edge (j, k) to obtain a weighted graph;
the weight is extended to any pair of vertices by imposing ajk = 0 iff (j, k) does not belong to
the graph edges of G. The full notation for the resulting digraph (directed graph) is G(V,E,A)
where V denotes the set of vertices, E denotes the set of edges and the matrix A, composed of the
elements ajk, is called the adjacency matrix of the graph. In agreement with the representation
of communication links, it is assumed that akk = 0 ∀k.

The out-degree of a vertex k is defined as the quantity d
(o)
k =

∑N
j=1 akj of information that

leaves k towards other agents and the in-degree of k is the quantity d(i)
k =

∑N
j=1 ajk of information

that k receives from other agents. These degrees can be assembled in diagonal matrices D(o)

and D(i). A balanced graph is a graph for which D(o) = D(i). This is satisfied in particular by
undirected graphs, for which A = AT . A graph is called bidirectional if (j, k) ∈ E ⇔ (k, j) ∈ E
(but not necessarily A = AT ).

The Laplacian L of a graph G is defined as L = D−A. Some variations exist on which degree
to use for D in the case of directed graphs; to avoid confusion, one can define the in-Laplacian
L(i) = D(i) − A and the out-Laplacian L(o) = D(o) − A. By construction, L(i) has zero column
sums and L(o) has zero row sums. The spectrum of the Laplacian reflects several interesting
properties of the associated graph, specially in the case of undirected graphs (see for example
[69]). A fundamental property is that the Laplacian of an undirected graph has non-negative
eigenvalues, the zero eigenvalues corresponding exactly to the different connected components of
G.

A digraph G(V,E,A) is strongly connected if there is a directed path from any vertex j to any
vertex l (i.e. a sequence of vertices starting with j and ending with l such that (vk, vk+1) ∈ E for
any two consecutive vertices vk and vk+1); if there is such a path in the associated undirected graph,
derived from the adjacency matrix A+ AT , then G is weakly connected. A connected component
of a disconnect graph G is a subset of nodes such that, together with the edges connecting them
in G, they form a connected graph.

When considering time-varying interconnections, a time-varying graph G(t) is used and all
the previously defined elements simply depend on time. Infinitesimally shortly lasting edges can
be avoided by requiring the graph to be piecewise continuous. Another frequent requirement in
this line of thought is that the elements of A(t) must be bounded and satisfy some threshold
ajk(t) ≥ δ > 0 ∀(j, k) ∈ E(t) and ∀t. A graph G(t) satisfying these assumptions is called a
bounded δ-digraph. The present paper always considers piecewise continuous, bounded δ-digraphs.

In a δ-digraph G(V,E,A), a vertex j is said to be connected to a vertex k 6= j across [t1, t2] if
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there is a path from j to k for the digraph Ḡ(V, Ē, Ā) defined by

ājk =

{ ∫ t2
t1
ajk(t)dt if

∫ t2
t1
ajk(t)dt ≥ δ

0 if
∫ t2

t1
ajk(t)dt < δ

(j, k) ∈ Ē iff ājk 6= 0 .

A δ-digraph G(t) is called uniformly connected if there exist a vertex k and a time horizon T > 0
such that ∀t, k is connected to all other vertices across [t, t+ T ].

2.2 Systems on compact Lie groups and homogeneous manifolds

The present section only briefly reviews some elements related to Lie groups and homogeneous
manifolds, mainly for the purpose of defining the notation used and recalling some key properties
used later in this work. It contains no formal definitions nor proofs, as the reader is expected
to be familiar with the subject. References about Lie groups abound and, if necessary, it should
be possible to review the basics that are required to understand the following report in any of them.

2.2.1 Motion on Lie groups and homogeneous manifolds

Compact Lie groups The present report considers a swarm of N agents that evolve on a
connected compact Lie group G. The position of agent k on G is denoted by yk. The basic
operation on a Lie group G is the group multiplication yk yj . The group also contains a special
identity element e such that e yk = yk e = yk and an inverse element y−1

k for each yk such that
y−1

k yk = yk y
−1
k = e. However, when considering the manifold associated to the Lie group G, it

seems intuitively meaningless to “multiply” (or, thinking as on a vector space, to add) two positions
in physical space; multiplication (or addition) of two positions would only make sense if a fixed
reference (like the identity e) was explicitly present. The present work precisely wants to avoid
the use of any fixed reference. Therefore, group multiplications should not involve actual positions
but only relative positions, i.e. the multiplication yk (y−1

k yj) is admitted but the multiplication
yk yj is not. In some sense, the agents evolve on “a Lie group on which the reference e has been
deleted”2. In practice, the conclusion of this paragraph should simply be that, though Lie groups
usually contain a reference point e and allow multiplication of 2 absolute positions, in the present
work the use of a fixed reference is not admitted and everything is formulated in terms of relative
positions. Mathematically, this may be formalized by requiring that the behavior of the system
remains unchanged if all the agent positions are translated (i.e. multiplied) by the same arbitrary
g ∈ G. Expressions that are invariant with respect to such a translation will be called shape
entities.

Elements of a Lie group are usually represented as invertible matrices. The basic representation
of a Lie group is the adjoint representation. An important property of compact Lie groups is that
their adjoint representation is always unitary, i.e. the matrices yk representing the elements yk

of G are unitary. For the ease of notation, the present report always assumes real matrices;
the formulation for complex Lie groups is straightforwardly obtained by expliciting the real and
imaginary parts of each complex number. The matrices representing positions on G are thus
orthogonal, and as G must be connected, it can be assumed without loss of generality that they
belong to the matrix group SO(n). But one should not be mistaken to simply work on G ∼= SO(n)
- indeed, in general G could be any subgroup of SO(n).

2Formally, this actually means that the agents evolve on the principal homogeneous manifold associated to the
Lie group G. The term “Lie group” has been preferred to “principal homogeneous manifold” in the present report
because Lie groups are much more popular and the only difference, explained in this remark, can easily be taken
into account explicitly.
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The tangent space TGe at the origin (and actually at any point) of a group G is a vector space.
This vector space can be turned into a Lie algebra g by defining a Lie bracket [·, ·] : TGe×TGe →
TGe which must satisfy the following properties.

• Bilinearity: [aξ1 + bξ2, ξ3] = a[ξ1, ξ3] + b[ξ2, ξ3] and [ξ3, aξ1 + bξ2] = a[ξ3, ξ1] + b[ξ3, ξ2] for all
ξ1, ξ2, ξ3 ∈ g and a, b ∈ R.

• Skew-symmetry: [ξ1, ξ2] = −[ξ2, ξ1] for all ξ1, ξ2 ∈ g.

• Jacobi identity: [ξ1, [ξ2, ξ3]] + [ξ2, [ξ3, ξ1]] + [ξ3, [ξ1, ξ2]] = 0 for all ξ1, ξ2, ξ3 ∈ g.

Another important property of the Lie bracket on compact Lie groups is that [ξ, η] is orthogonal
to ξ and η for all ξ, η.

Homogeneous manifolds Formally, a homogeneous manifold M is a manifold with a transi-
tive group action by a Lie group G: it is isomorphic to the quotient manifold G/H, where H is
the isotropy group of any point on M with respect to G. When H 6= {e}, M is not isomorphic
to a group, but it is still “perfectly symmetric”; indeed, intuitively, a homogeneous manifold is
a manifold on which “all points are equivalent”. The most popular example of a homogeneous
manifold is the sphere S2 (or in larger dimensions, the spheres Sn), which corresponds to the
quotient of SO(3) by SO(2). Another useful class of compact connected homogeneous manifolds
are the Grassmann manifolds Grass(p, n) (see example section below).

Moving on a manifold The kinematic motion law for agent k on any manifold M is written
as

ẏk = ζk (1)

where ζk must be an element of the tangent space TMyk
toM at yk. On a Lie group G, (1) can

be rewritten as
ẏk = ykξk (2)

where ξk is an element of the Lie algebra g of G (equivalent to the tangent space at the origin e)
and the multiplication3 by yk translates ξk from the tangent space at e to the tangent space at
yk. In shape entities, this yields

y−1
k ẏk = ξk

where the control input ξk ∈ g is a shape entity. Since yk is represented as a matrix, ξk is a matrix
of the same dimension. It is however common practice to convert ξk into a vector form ξ∨k in
order to simplify notations when working on the vector space corresponding to the Lie algebra g.
When ξk = ξ0 is constant, the motion of agent k can be integrated using the exponential operator
exp : g → G, such that yk(t) = yk(0)exp(tξ0). When yk and ξ0 are represented by matrices,
the exponential operator is equivalent to the matrix exponential. The fact that the matrices
representing elements of G are orthogonal implies that

exp(ξT
0 t) = (exp(ξ0t))T = (exp(ξ0t))−1 = exp(−ξ0t)

which implies that ξT
0 = −ξ0, meaning that in matrix form, the elements of g are all skew-

symmetric. This is consistent with the fact that the tangent space at the identity to the manifold
of orthogonal matrices is the space of skew-symmetric matrices.

A frequently encountered motion is along the gradient of some function f . When computing
gradients along a manifold, the metric with respect to which the gradient is computed must be

3Actually, this involves a slight abuse of notation. Indeed, since ξk is not an element of the group G, group
multiplication of ξk by yk is not defined. To be rigorous, one should speak of an action of the group element yk

on ξk. In practice however, there is no formal difference because matrix multiplication is simply used for the group
multiplication as well as for the action on vectors of the tangent spaces.
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specified. In the present work, using the matrix representations, the manifolds are embedded in a
Euclidean space Rn×n and the gradient is computed as the projection onto TMyk

of the gradient
in Rn×n. For compact Lie groups with the adjoint representation, this is equivalent to the canon-
ical gradient corresponding to the bi-invariant metric.

2.2.2 Dynamics on compact Lie groups

A compact Lie group is fundamentally different from a vector space. Therefore, the motion of
an unforced mechanical system whose generalized position evolves on a compact Lie group is
governed by non-trivial dynamical equations. The best-known example of this kind is probably
the Euler equation for the rotation of a 3-dimensional rigid body, whose generalized position
evolves on SO(3) (see example section below). By analogy, systems whose generalized position
evolves on a compact Lie group G are sometimes called Lie group solids for G. The equivalent
of the second-order Newton equation mak = Fk for Lie group solids consists of two first-order
differential equations. The first one, corresponding to vk = ẋk in Euclidean space, is equation (2).
The second one defines how ξk in (2) evolves as a function of the present state and the generalized
input torque τk. A discussion of its deduction from general principles can be found in Appendix 2
of [70]; the compactness of the Lie groups in the present work significantly simplifies the discussion.

In order to write the second dynamic equation, one must consider the kinetic energy Tk as-
sociated to the Lie group solid. In general, it is a quadratic form on ξk involving a generalized
moment of inertia J (symmetric positive definite matrix of the quadratic form). Converting the
matrix ξk into a vector form, this can be written as Tk = 1

2 (ξ∨k )TJξ∨k where it becomes clear that
the vector ξ∨k is the generalized angular velocity “in body frame” of the Lie group solid. Then
the generalized angular momentum Mk is defined as M∨

k = Jξ∨k , where again vector forms are
considered. The differential equation corresponding to the generalized Euler equation is

Ṁk = [Mk, ξk] + τk or equivalently Jξ̇∨k = [Jξ∨k , ξ
∨
k ] + τ∨k (3)

where [ · , · ] denotes the Lie bracket of the Lie algebra g (for matrix or vector representations
according to the arguments) and τk is the generalized input torque. Equations (2) and (3) together
represent the mechanical model of a Lie group solid, for which control inputs τk are designed in
Section 4. The vectors M∨

k , ξ
∨
k and τ∨k are all expressed “in body frame”.

One of the most important operators on Lie algebras is the adjoint operator Adg. The adjoint
operator satisfies

• Adg[ξ1, ξ2] = [Adgξ1,Adgξ2] for all g ∈ G and ξ1, ξ2 ∈ g and

• AdgAdhξ1 = Adghξ1 for all g, h ∈ G and ξ1 ∈ g.

The interest in the adjoint operator arises from the fact that it converts elements of the Lie algebra
like ξk or τk that are expressed in one frame into elements that are expressed in another frame. For
example, if ξk expresses the generalized angular velocity of agent k in a frame attached to yk, then
Ady−1

j yk
ξk expresses this same quantity in a frame attached to yj (in the present work, the adjoint

operator is applied to matrix as well as vectorized forms for g with no notational distinction).
This fact should be clearer after considering the example SO(3).

2.2.3 Examples

The Grassmann manifolds The Grassmann manifolds are a special class of compact connected
homogeneous manifolds. Since they are discussed as an important example in Section 3.5, a brief
review of their characteristics is provided.
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On the Grassmann manifold Grass(p, n), each point denotes a p-dimensional subspace of Rn.
The position of agent k on Grass(p, n) is denoted by Yk (p-subspace representation). Following the
analysis carried out in [60], the canonical geometry of Grass(p, n) arises as the quotient manifold of
the non-compact Stiefel manifold ST (p, n) - that is, the set of p-rank n×p matrices - by the general
linear group GLp - that is, the set of full rank p×p matrices. Alternatively, the same metric arises
for Grass(p, n) as the quotient manifold of the compact Stiefel manifold St(p, n) - that is, the set
of matrices composed of p orthonormal n-vectors - by the orthogonal group O(p) - that is, the set
of p×p orthonormal matrices. This expresses the homogeneous manifold structure of Grass(p, n).
As a consequence, Yk may be represented by an arbitrary n×p matrix Yk ∈ St(p, n) that contains
p orthonormal vectors spanning Yk (basis representation). In this representation, several elements
of St(p, n) characterize the same element of Grass(p, n); therefore the term quotient manifold.

Equivalently, a point of Grass(p, n) can be represented as in [71] by one of the projectors Πk

or Π⊥k, which are the orthonormal projectors from Rn onto Yk and onto the space orthogonal to
Yk respectively (projector representation). Explicitly,

Πk = YkY
T
k (4)

Π⊥k = In − YkY
T
k

where In denotes the n × n identity matrix. The bijection that exists between Grass(p, n) and
the orthonormal projectors of rank p is a main advantage of this representation, in contrast to
the non-uniqueness of the representation of the points on Grass(p, n) by elements of ST (p, n) or
St(p, n). The projector representation makes Grass(p, n) an embedded submanifold of the cone
S+

n of n × n symmetric positive semi-definite matrices, while the representations by elements of
ST (p, n) or St(p, n) are not embeddings. The disadvantage of the projectors is that the dimension
of the representation increases from np or np−p(p+1)/2 to n(n+1)/2. One could further reduce
the dimension of the embedding space by simply leaving out one element of the diagonal, because
the trace of Πk is fixed to p; using this fact, it is shown in [36] that Grass(p, n) can actually be
embedded in the sphere of Rn(n+1)/2−1. This embedding is not considered here because it would
just complicate notations without really simplifying the algorithms. The dimension of Grass(p, n)
itself is p(n − p). Since Grass(n − p, n) is isomorphic to Grass(p, n) by identifying orthogonally
complementary subspaces, it is assumed throughout the report that p ≤ n

2 .
The simplest Grassmann manifold Grass(1, 2) is isomorphic to the circle S1 ∼= SO(2). The

mapping that achieves this isomorphism is built as follows: fixing a reference r on the unit circle
centered at the origin o, each element Yk of Grass(1, 2) - i.e. each line in the plane - makes
an angle φk and φk + π with the reference direction −→or. Defining θk = 2φk, the mapping from
Grass(1, 2) to θk ∈ S1 is one-to-one and conserves the initial metric of Grass(1, 2). The basis
representation of Grass(1, 2) by elements of St(1, 2) is the quotient of (cos(φk), sin(φk)) by the
elements ±1 of O(1). The corresponding projector representation is

Πk =
(

cos2(φk) sin(φk) cos(φk)
sin(φk) cos(φk) sin2(φk)

)
=

1
2

(
1 + cos(θk) sin(θk)

sin(θk) 1− cos(θk)

)
(5)

from which the correspondence with an element
(

cos(θk) sin(θk)
)T ∈ S1 is obvious.

The Lie group SO(n) In its canonical representation, a point of the special orthogonal Lie
group SO(n) is characterized by a real n× n orthogonal matrix Q with determinant equal to +1.
SO(n) can be viewed as the set of positively oriented orthonormal bases of Rn, or equivalently as
the set of rotation matrices in Rn; hence in practical applications, it is the natural state space for
the orientation of a rigid body in Rn. SO(n) has dimension n(n − 1)/2. It is easily understood
that SO(2) is isomorphic to the circle S1.

In the present report, SO(3) serves as an important example to clarify the developments of
Section 4 because the dynamics of the rotating rigid body in 3 dimensions are both well-known and
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non-trivial. The Lie algebra so(3) corresponding to SO(3) is the set of skew-symmetric matrices
ω∧. Defining the vectorized form ω = (ω∧)∨ by

ω∧ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ←→ ω =




ω1

ω2

ω3


 ,

the vector ω is the usual angular velocity of the solid expressed in body coordinates. The
Lie bracket on the vectorized form of so(3) is simply the vector product of the arguments, i.e.
[ωk, ωj ] = ωk × ωj , such that (3) becomes the well-known Euler equation

Jω̇k = (Jωk)× ωk + τk . (6)

The adjoint representation on so(3) is expressed on matrix forms by AdQω
∧ = Qω∧QT or on

vector forms by AdQω = Qω. These are simply the expressions for coordinate changes on g in
matrix and vector forms respectively. From this, one immediately concludes that, for instance,
if ωk denotes the angular velocity of agent k in body frame k, then Qkωk designs this angular
velocity in absolute space, and QT

j Qkωk expresses it in the reference frame of body j.
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3 Induced arithmetic mean and consensus reaching on Lie
groups

This first part of the work focuses on a definition of consensus and related concepts on compact Lie
groups. Methods to achieve consensus in a swarm of agents with restricted interconnections are
presented for simple integrator models. On the way, an easily computable “average position” on
compact Lie groups is introduced, for which the denomination induced arithmetic mean is chosen
in reference to the work of [46]. Most results of the present section can be readily generalized to
homogeneous manifolds, as is shown at the end of the section. More details about these results,
most notably with a deeper treatment of examples, can be found in the paper [1].

3.1 The induced arithmetic mean

3.1.1 Definition and discussion

Consider a set of N points on a connected compact (CC) Lie group G; the position of a point k
is denoted by yk and its weight by wk. Furthermore, G is embedded in a Euclidean space E of
dimension m; the element of E corresponding to yk is denoted yk. Any compact Lie group can
be represented in this way using the adjoint representation. Moreover, the adjoint representation
of a compact Lie group is always unitary, such that ‖yk‖ = cst for any yk ∈ G, where ‖ · ‖
denotes the usual Euclidean norm in E . For notational convenience, the elements yk will mostly
be considered as vectors of Rm, though the actual adjoint representation would rather consider
them as square matrices; for instance, the norm ‖yk‖2 will mostly be written as yT

k yk, while a
matrix representation would require to write trace(yT

k yk).
In this setting, the following definition is introduced in this work for the induced arithmetic

mean and the anti-[induced arithmetic mean] of agents on G; the terminology is derived from [46]
where this object is called the projected arithmetic mean for the special case of SO(3).

Definition 1: Given a set of N agents positioned at yk, k = 1...N on a CC Lie group G and a
set of associated positive weights wk, the induced arithmetic mean (IAM) C of these agents
in G is the set of points in G that globally minimize the weighted sum of the squared Euclidean
distances in E to each of the agents:

C = argmin
c∈G

N∑

k=1

wkd
2(yk, c) . (7)

Similarly, the anti-[induced arithmetic mean] (AIAM) AC of these agents in G is the set
of points in G that globally maximize the weighted sum of the squared Euclidean distances in E to
each of the agents:

AC = argmax
c∈G

N∑

k=1

wkd
2(yk, c) . (8)

The important fact in this definition is that the distances are measured in the embedding space
E and not along the manifold corresponding to G. Explicitly, if yk is considered as a vector of
length m, then

C = argmin
c∈G

N∑

k=1

wk(yk − c)T (yk − c) and AC = argmax
c∈G

N∑

k=1

wk(yk − c)T (yk − c) . (9)
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The induced arithmetic mean is not the canonical mean of points on a Riemannian manifold
corresponding to G. Indeed, the latter is defined as the Karcher mean, which is the set of points
in G that minimize the weighted sum of the squared distances to all the points along the manifold,
that is

CKarcher = argmin
c∈G

N∑

k=1

wkd
2(yk, c) (10)

where d(b, c) denotes the Riemannian distance between points b and c along the manifold - in
contrast to d(b, c) which denotes the distance in E . Because the curvature is necessarily bounded,
the induced arithmetic mean and the Karcher mean become equivalent when the agents are all
located in an infinitesimal subset of G.

The induced arithmetic mean C has the following properties.

1. The induced arithmetic mean of a single point y1 is the point itself.

2. C is invariant with respect to permutations of agents of equal weights.

3. C is compatible with an action of the group G on itself (typically, a left- or right-multiplication
of all the yk by g ∈ G implies that C is also multiplied by g).

4. C does not always reduce to a single point; however, this feature seems unavoidable for any
mean on a CC Lie group (including the Karcher mean).

The main advantage of Definition 1 is that the IAM and AIAM are easily computed, in contrast
to the Karcher mean. The latter gets even more problematic to evaluate as soon as the agents
are not located in a convex set of G, which causes no difficulty for the IAM; as an illustration, see
the local minima LM1 and LM2 appearing in the computation of the Karcher mean on Figure 1,
while the IAM is directly found thanks to the following property.

The IAM and AIAM are closely related to the well-known notion of centroid in E .

Definition 2: The (weighted) centroid Ce in E of N agents located at y1...yN in G ⊂ E is defined
as

Ce =
1
W

N∑

k=1

wkyk , W =
N∑

k=1

wk . (11)

Since the norm ‖c‖2 is constant, by considering the yk as m-vectors, one easily verifies that
alternative definitions for the IAM and AIAM are

C = argmax
c∈G

(cTCe) and AC = argmax
c∈G

(−cTCe) . (12)

Hence, the computation of the IAM and AIAM just involves the search for the global maxima of
a linear function on E in a very regular search space (namely, a CC Lie group).

Local maximization methods even suffice provided that the linear function has no maxima on
G other than the global maxima. It turns out that this is the case for many Lie groups and homo-
geneous manifolds, including SO(n) and Grass(p, n) with the embeddings of the present paper,
as well as the canonically embedded n-dimensional sphere in Rn+1. In absence of a formal proof
in the literature, the following blanket assumption is formulated; it must be seen as a condition
on the Lie group, maybe including the way it is embedded, which is emphasized with the notation
G.

Assumption 1: The local maxima of a linear function f(c) = cT b over c ∈ G, with b fixed in E,
are all global maxima as well.
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3.1.2 Examples

The circle: The canonical embedding of SO(2) ∼= S1 in R2 satisfies Assumption 1. Ce is simply
the average of the corresponding positions in R2 and C is its central projection onto the circle.
Hence C corresponds to the whole circle when Ce = 0 (i.e. the centroid in R2 is located at the
center of the circle) and reduces to a single point in other situations; using a polar representation
of Ce ∈ R2 ∼= C, this writes

C =
{

arg(Ce) , Ce 6= 0
S1 , Ce = 0 .

The Karcher mean may also contain multiple points when Ce = 0 (for example, when all the agents
are uniformly distributed around the circle), but generally not the whole circle. The Karcher mean
uses the arc length between two points as their distance, while the IAM considers the “chordal”
distance in R2. The difference between IAM and Karcher mean is illustrated on Figure 1.

-

6
uy1

u
y2

uy3

d(y1, y2)
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Figure 1: Induced arithmetic mean C and Karcher mean CKarcher of 3 equally-weighted points
on the circle. In addition to the different positions of the two means, note the local minima LM1

and LM2 appearing in the computation of the Karcher mean.

The special orthogonal group: SO(n) is embedded in Rn×n with the usual matrix represen-
tation. The group SO(n) acts by matrix multiplication on Rn×n and the Frobenius norm of an
orthonormal matrix is ‖Qk‖ =

√
trace(QTQ) =

√
trace(In) =

√
n.

On SO(n), Ce =
∑

k Qk is a general n× n matrix. The induced arithmetic mean is linked to
the polar decomposition of Ce: any square matrix B can be decomposed into a product UR where
U is orthogonal and R is symmetric positive semi-definite; R is always unique, U is unique if B is
non-singular [72]. The matrix U obtained is the point in O(n) that is closest to B according to the
canonical distance of Rn×n. As a consequence, when det(Ce) ≥ 0, the induced arithmetic mean
contains the matrices U with positive determinant obtained from the polar decomposition of Ce;
this fact has already been noticed and proven in [46]. When det(Ce) ≤ 0, the result is somewhat
more complicated but also has a closed-form solution.

Proposition 1: The induced arithmetic mean C of N points on SO(n) is characterized as follows.

• If det(Ce) ≥ 0, C contains the matrices U with positive determinant resulting from the
polar decomposition UR of Ce; it reduces to a single point when the multiplicity of 0 as an
eigenvalue of Ce is less or equal to 1.
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• If det(Ce) ≤ 0, C = UHJHT where U is an orthogonal matrix of negative determinant re-
sulting from the polar decomposition UR of Ce, H contains the orthonormalized eigenvectors
of R with an eigenvector corresponding to the smallest eigenvalue of R in the first column,
and

J =
( −1 0

0 In−1

)
.

Now C reduces to a single point when the smallest eigenvalue of R has multiplicity 1.

Proof: The proof is postponed because it makes use of calculations presented later in the section.
Specifically, it will first be shown that SO(n) satisfies Assumption 1. Then the analytical form of
the IAM is established by selecting the local maxima among the critical points of (12).

4
These examples exclusively considered the induced arithmetic mean; note that from (12), the

conclusions are trivially modified for the anti-[induced arithmetic mean] by replacing Ce with −Ce.

3.2 Consensus as an optimization task

3.2.1 Definition

Consider a set of N agents on a CC Lie group satisfying Assumption 1 and denote their embedded
positions by yk. Suppose that the agents are interconnected according to a fixed digraph G of
adjacency matrix A = [ajk]. In the remainder of this report equal weights wk = 1 are assigned
to all agents for notational convenience; the generalization to weighted agents is straightforward.
The following definitions are introduced in the present work.

Definition 3: N agents are said to have reached synchronization when they are all located at
the same position on G.

Definition 4: N agents are said to have reached a consensus configuration with communica-
tion graph G if each agent k is located at a point of the induced arithmetic mean of its neighbors
j Ã k, weighted according to the strength of the communication links:

yk ∈ argmax
c∈G


cT

N∑

j=1

ajkyj


 ∀k . (13)

Similarly, N agents are said to have reached an anti-consensus configuration when the previous
definition is satisfied by replacing the IAM by the AIAM:

yk ∈ argmin
c∈G


cT

N∑

j=1

ajkyj


 ∀k . (14)

The consensus defined by (13-14) is graph-dependent; this can be interpreted as the fact that
each agent considers that it has reached consensus when it is located at the best possible place
according to the agents from which it receives information. In the case of a tree or an equally-
weighted complete graph Gc, consensus means synchronization.

Proposition 2: When G is a tree or G = Gc, the only possible consensus configuration is
synchronization.
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Proof: For the complete graph, according to Definition 4, at consensus the property

yT
k

∑

j 6=k

yj ≥ cT
∑

j 6=k

yj

must be satsified for all k and any c ∈ G. Furthermore, it is obvious that yT
k yk > yT

k c for any
c 6= yk ∈ G. As a consequence, at consensus

yT
k

N∑

j=1

yj > cT
N∑

j=1

yj

for any c 6= yk ∈ G. According to (12), this means that yk is located at the IAM of all the agents
(including itself), and moreover that the latter reduces to a single point. Since this must hold for
all k, all the agents must be located at this single point (which is then trivially their IAM).

For the tree, start with all agents fixed except a leaf k. The obvious unique IAM of the neighbors
of k is the position of its parent; therefore all leaves must be synchronized with their parent. Now
consider synchronized moves of a parent j and its leaves. As the leaves follow j everywhere, the
obvious global minimum in (7) occurs when j is synchronized with its own parent, which brings
us back to the previous situation. An inductive argument is then used up to the root.

4
Synchronization is a configuration of complete consensus. It is the only consensus configuration

common to all graphs. The opposite of synchronization is more difficult to define because there
exists no anti-consensus configuration common to all graphs. A meaningful property to charac-
terize a configuration of complete anti-consensus would be to require that the IAM of the agents
is the entire manifold G. This is called a balanced configuration in the present work.

Definition 5: N agents are said to be in a balanced configuration when their induced arithmetic
mean is the entire manifold G.

Balancing implies some spreading of the agents on the manifold. It can be a meaningful objec-
tive in several applications. Nevertheless, a full characterization of balanced configurations seems
complicated. Balanced configurations do not always exist (typically, when the number of agents
is too small relative to the manifold dimension) and are mostly not unique (they can appear in
qualitatively different forms). Finally, the following link exists between anti-consensus for Gc and
balancing.

Proposition 3: All balanced configurations are anti-consensus configurations for Gc.

Proof: Note that for the equally-weighted complete graph, (14) can be written as

yk ∈ argmin
c∈G

(
cT (NCe − yk)

) ∀k . (15)

Assume that the agents are in a balanced configuration. This means that f(c) = cTCe must be
constant over c ∈ G. Therefore condition (15) reduces to yk = yk which is trivially satisfied.

4
Note that in contrast to Proposition 2, Proposition 3 does not establish a necessary and

sufficient condition: anti-consensus configurations for Gc that are not balanced do exist, though
they seem exceptional. The examples below illustrate these considerations.
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3.2.2 Examples

The circle: In [13] and [14], (anti-)consensus configurations are fully characterized for an equally-
weighted complete graph on the circle S1 ∼= SO(2). It is shown that (for N > 1) the only anti-
consensus configurations that are not balanced occur for N odd and correspond to (N+1)/2 agents
at one position and (N − 1)/2 agents at the opposite position on the circle. It is not difficult to
show that balanced configurations are unique for N = 2 and N = 3, while there is a continuum of
such configurations for N > 3.

Another situation where (anti-)consensus configurations are not too difficult to characterize is
for the equally-weighted undirected ring interconnection graph in which each agent k is connected
to two neighbors such that the graph forms a single closed undirected path. In this case, regular
configurations are states where consecutive agents in the path are all separated by the same
angle χ ≥ 0; it turns out that χ ≤ π/2 corresponds to consensus configurations and that χ ≥ π/2
corresponds to anti-consensus configurations. In addition, for N ≥ 4, there are irregular consensus
and anti-consensus configurations where non-consecutive angles of the regular configurations are
replaced by (π − χ/2). As a consequence:

• There are several possible qualitatively different consensus and anti-consensus configurations.

• There are consensus and anti-consensus states which correspond to equivalent configurations
when discarding the underlying graph. For example, the positions occupied by the agents
are strictly equivalent for 7 agents separated by 2π/7 (consensus) or separated by 4π/7 (anti-
consensus); the only difference, based on which agent is located at which position, concerns
the way the communication links are drawn.

• There may even be degenerate configurations that correspond to consensus and anti-consensus
(for example when consecutive agents are separated by π/2 for N = 4, 8, ...); this singularity
is specific to the undirected ring graph.

• There is no common anti-consensus state for all possible ring graphs. Indeed, considering an
agent k, a common anti-consensus state would require that for any two other points selected
as neighbors of k, either they are separated by π or they are at both sides of k at a distance
χ ≥ π/2; one easily verifies that this cannot be satisfied for all k.

The special orthogonal group: Simulations of the algorithms proposed in this paper suggest
that balanced configurations always exist for N ≥ 2 when n is even and for N ≥ 4 when n is odd.
Furthermore, convergence to an anti-consensus state for Gc that is not balanced is never observed.

3.2.3 Consensus optimization strategy

The presence of a maximization condition in the definitions of the previous sections naturally
points to the use of optimization methods to compute (anti-)consensus configurations. As a
consequence, it is natural to introduce a cost function whose optimization leads to (anti-)consensus
configurations.

For a given graph G with adjacency matrix A = [ajk] and associated Laplacian L(i) = [l(i)jk ],
the cost function PL is defined as

PL(y) =
1

2N2

N∑

k=1

N∑

j=1

ajky
T
j yk = cst1 − 1

4N2

N∑

k=1

N∑

j=1

ajk‖yj − yk‖2 (16)
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where y symbolizes (y1, ...yN ) and the constant cst1 = ‖y1‖2
4N2

∑
k

∑
j ajk. The index L refers to

the fact that (16) can also be written as a quadratic form on the graph Laplacian:

PL(y) = cst2 − 1
2N2

N∑

k=1

N∑

j=1

l
(i)
jk y

T
j yk (17)

where the constant cst2 = ‖y1‖2
2N2

∑
k d

(i)
k . In [55] and [14], this form of PL is studied on the circle

for undirected equally-weighted graphs.
For the unit-weighted complete graph, the cost function P := PL + ‖y1‖2

2N is proportional to the
squared norm of the centroid Ce:

P (y) =
1
2
‖Ce‖2 . (18)

This is a classical measure of the synchrony of phase variables on the circle S1, that has been used
for decades in the literature on coupled oscillators; in the context of the Kuramoto model, P (y)
has been called the “complex order parameter”4. In [13], P is used to derive gradient algorithms
for synchronization (by maximizing (17)) or balancing (by minimizing (17)) on S1.

Proposition 4: Synchronization of the N agents on G is the unique global maximum of PL

whenever the graph G associated to L(i) is weakly connected.

Proof: Obvious from the second form of (16).

4
Proposition 5: Given N agents on a CC Lie group G that satisfies Assumption 1, consider an
undirected graph G and the associated cost function PL(y) as defined by (16). A local maximum
of PL necessarily corresponds to a consensus configuration and a local minimum of PL necessarily
corresponds to an anti-consensus configuration for G.

Proof: Suppose that the system has reached an extremum y∗ = (y∗1 , ...y
∗
N ) of PL. When all yj = y∗j

are fixed except for a particular agent k, since A = AT , the variation of PL takes the form

PL(yk) = cst3 +
1
N2

yT
k

N∑

j=1

ajky
∗
j

of which y∗k must be a local maximum (resp. minimum). According to Assumption 1, the extrema
of the linear function PL(yk) are all global extrema. Hence y∗k must be an element of the IAM
(resp. AIAM) considered in Definition 4. Since this must be true for all k, Definition 4 is satisfied
at y∗.

4
Note that Proposition 5 establishes that a sufficient condition for finding (anti-)consensus con-

figurations is to optimize PL. However, nothing guarantees that this condition is also necessary. In
general, optimizing PL will thus provide some (anti-)consensus configurations, but not necessarily
all of them. An exception to this rule is synchronization: since this is the only consensus config-
uration for Gc, it must correspond to the (unique) maximum of P , such that in this particular
case, Proposition 5 is also sufficient.

In the remainder of this section, algorithms that drive the swarm to (anti-)consensus
configurations are presented. These algorithms are based on the optimization of the cost functions
PL or P ; as a consequence of the previous remark, they do not target all possible (anti-)consensus
configurations.

4This terminology stems from the fact that R2 is usually identified with the complex plane in that context.
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3.2.4 Example

In practice, it is interesting to write PL using matrix forms for the embedding. On SO(n), one
obtains

PL =
1

2N2

N∑

j=1

N∑

k=1

ajktrace(QT
j Qk) . (19)

Observing that the trace is maximal for the identity matrix and considering the particular case
of SO(2), one can easily imagine how the trace of QT

j Qk = Q−1
j Qk can characterize the distance

between Qj and Qk on SO(n). Indeed, particularizing to the circle, the trace measure of SO(2)
yields 2 cos(θj − θk), such that the basic element of PL is a sum of cosines of the phase differences
between the agents. This is exactly equal to the traditional measure of synchrony used to study
the Kuramoto model (see [13] or [55]).

3.3 Gradient consensus algorithms

After the previous definitions, attention is now turned towards algorithms that lead the agents
of a swarm towards consensus states in a distributed way ; in particular, the option to compute a
consensus state in closed form and drive each agent towards it is rejected, in favor of a situation
where each agent (simple integrator) adjusts its own motions according to the relative positions of
its neighbors (defined by the interconnection graph). The previous observations point to the use of
ascent and descent algorithms for P in order to achieve synchronization and balancing respectively.

3.3.1 Gradient algorithms for fixed undirected graphs

A gradient algorithm for PL yields the update equation

ẏk(t) = 2N2αDk,G(PL) (20)

where α > 0 (resp. α < 0) for consensus (resp. anti-consensus), ẏk denotes the time-derivative
of the agent’s position with respect to a fixed reference frame and Dk,G(s) denotes the gradient
of s with respect to yk along the group manifold G. In practice, the gradient can be computed
according to the standard way for embedded submanifolds of Rm (projecting Dk,E , the gradient in
Rm, onto the tangent space to G) or directly along the manifold (see [52]). The second approach
may be more efficient if the dimension of G is substantially lower than m. The first approach
yields

Dk,E(PL) =
1

2N2

∑

j

(ajk + akj)yj

which leads to the reformulation of (20) as

ẏk(t) = αProjTG,k


∑

j

(ajk + akj)yj


 = αProjTG,k


∑

j

(ajk + akj)(yj − yk)


 (21)

where ProjTG,k denotes the projection from E onto the tangent space to G at yk; the last equality
comes from the fact that ProjTG,k(yk) = 0. It shows that in order to implement this consensus
algorithm, each agent k must know the relative position with respect to itself of all the agents j
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such that j Ã k or k Ã j. Since the information flow is restricted to j Ã k, the algorithm can
only be implemented for undirected graphs, for which it becomes

ẏk(t) = 2αProjTG,k


∑

j

ajk(yj − yk)


 . (22)

In the special case of a complete unit-weighted graph, a formulation equivalent to (22) is

ẏk(t) = 2αN ProjTG,k

(
Ce − yk

)
. (23)

Proposition 6: Consider a group of N agents moving according to the update law (22) on a
CC Lie group G that satisfies Assumption 1. This swarm always converges to a set of equilibrium
points. If α < 0, the only stable equilibria are anti-consensus configurations for the undirected graph
G associated to A = [ajk]. If α > 0, the only stable equilibria are consensus configurations for G;
in particular, for the complete graph G = Gc, the only stable configuration is synchronization.

Proof: Obvious from the properties of gradient systems and the previous discussion.

4

3.3.2 Extension to directed and time-varying graphs

Formally, Algorithm (22) can be written for directed and even time-varying graphs. However, the
gradient descent property is lost for directed graphs; obviously, it has no meaning in the time-
varying case, since the form of the cost function PL would change with time. Nevertheless, some
weak results about synchronization can be provided for the general case of (22) with varying and
directed graphs.

A positive theoretical fact is that the synchronized state still is a stable equilibrium; it is
asymptotically stable if disconnected graph sequences are excluded. Its basin of attraction includes
the configurations where all the agents are located in a convex set of G. Indeed, the existing
convergence results on Euclidean spaces can be adapted to manifolds when all the agents are
located in a convex set (see e.g. [43]). On the other hand, it is already mentioned in [55] that
examples where algorithm (22) with α > 0 runs into a limit cycle can be built for as simple cases
as undirected equally-weighted (but varying) graphs on the circle.

Concerning experimental results, simulations on SO(n) seem to indicate that for randomly
generated digraph sequences5, the swarm eventually converges to synchronization when α > 0;
this would correspond to generic convergence (i.e., probability 1 convergence in the absence of
constraints on the graphs).

Finally, it must be pointed out that the present synchronization algorithm can lead to a
generalization of Vicsek’s phase update law (see [41]) to CC Lie groups. The Vicsek model is a
discrete-time algorithm that governs the headings of particles in the plane, and hence operates on
the circle SO(2). Using the definitions introduced in the present report, it can be written as

yk(t+ 1) ∈ IAM({yj(t)|j Ã k in G(t)} ∪ {yk(t)}) (24)

where the neighborhood relations depend on the positions of the particles in the plane (so-called
“proximity graphs”). In this form, the Vicsek law can be readily generalized to any CC Lie group.
From the previous discussions, one easily understands why (24) can be viewed as a discrete-time
variant of (22). See [55] for a precise relationship in the particular case of algorithms on the circle.

5More precisely, the following distribution was examined: initially, the elements ajk of A take a value in {0, 1}
according to an independent identically distributed probability Prob(1) = p. The corresponding graph remains for
a time tgraph randomly chosen in [tmin, tmax] with a uniform distribution, after which a new graph is built as
initially.
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3.3.3 Examples

The circle: Consensus algorithms on the circle are studied in [13, 55, 47, 14]. The specific form
of (22) for S1 is

θ̇k = β
∑

jÃk

sin(θk − θj) . (25)

For G = Gc, this is strictly equivalent to the famous Kuramoto model [39] with identical (zero)
natural frequencies.

The present report just adds an illustration that shows how algorithm (22) can run into a limit
cycle for varying graphs. Consider an equally-weighted ring graph G1 and assume that the swarm
is in a consensus state (local maximum of PL1) with consecutive agents spaced by χ ∈ (0, π/2).
Now consider the graph G2 obtained by connecting each agent to the agents that are located at
an angle ψ > π/2 from itself with ψ properly fixed. G2 is either a ring graph or a collection of
disconnected ring graphs. Moreover, the swarm is at a local minimum of PL2 . Hence, starting the
system in the neighborhood of that state and regularly switching between G1 and G2, the system
will oscillate in the neighborhood of this particular state, being driven away by G2 and brought
back by G1 if consensus is intended and reversely if anti-consensus is intended.

The special orthogonal group: It is a well-known fact of group theory that the tangent space
to SO(n) at the identity In is the space of skew-symmetric n × n matrices. Using the group
action, the projection of B ∈ Rn×n onto the tangent space to SO(n) at Qk is QkSkew(Q−1

k B) =

Qk(QT
k B
2 − BT Qk

2 ). This leads to the following explicit form of algorithm (22) on SO(n) where the
right-hand side only depends on relative positions of the agents with respect to k:

Q−1
k Q̇k = α

∑

j

ajk

(
Q−1

k Qj −Q−1
j Qk

)
. (26)

Knowing the formula for the gradient of a function defined on SO(n) and using the following
Lemma 1, it can now be proven that SO(n) satisfies Assumption 1, such that (26) leads to syn-
chronization for α > 0 andG = Gc. The proof of this result also includes the proof of Proposition 1.

Lemma 1: The matrix QTB with Q ∈ SO(n) and B ∈ Rn×n is symmetric iff Q = UHJHT

where

J =
( −Il 0

0 In−l

)
,

B = UR is a polar decomposition of B, l is even if det(U) > 0 and odd if det(U) < 0, and the
columns of H contain (orthonormalized) eigenvectors of R.

Proof: It is easy to verify that all matrices Q of the given form satisfy the requirement that QTB
is symmetric. The following constructive proof shows that this is the only possible form.

Obviously, UTB = R is symmetric with U ∈ O(n). Define T = UTQ ∈ O(n). This reformulates
the problem as finding all matrices T ∈ O(n) such that S = TTR is symmetric and det(T ) =
det(U). Without loss of generality, work in a basis of eigenvectors H∗ diagonalizing R with its
eigenvalues placed in decreasing order λ1 ≥ λ2... ≥ λn ≥ 0. The jth column of S is simply the jth

column of T multiplied by the corresponding eigenvalue λj .

• First consider the case where two or more eigenvalues are equal, λi = λj . In this case,
the corresponding submatrix of T can be arbitrary, but H∗ may be chosen such that it is
diagonal.

• Now consider that λp+1 = 0, λp 6= 0. If S is symmetric, this implies that the submatrix
T (n − p : n, 1 : p) obtained from the intersection of the last n − p rows and the first p
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columns of T must be identically 0. Moreover, from the previous argument, the submatrix
T (n − p : n, n − p : n) is diagonal. Hence the only non-zero element in the last n − p rows
of T is on the diagonal. Since the rows and columns of T are normalized, this implies that
T (1 : p, n− p : n) must also be identically zero.

• Finally, consider an index i− and denote by i+ the index of the first eigenvalue λi+ < λi− .
Note that

n∑

j=1

T 2
i−j =

n∑

j=1

T 2
ji− = 1 (orthogonality) and

n∑

j=1

S2
i−j =

n∑

j=1

S2
ji− (symmetry). (27)

The following is an inductive argument. Start with i− = 1 and assume that λi+ > 0. (27)
can only be satisfied if Tjk = Tkj = 0, ∀j ≥ i+ and ∀k− ∈ [i,i+); using the first item, this
actually means Tjk = Tkj = 0 ∀j 6= k and ∀k ∈ [i−, i+). The present argument can be
repeated by defining the new i− as being the previous i+, until this leads to λi− = λn > 0
or to a new i+ with λi+ = 0; the latter case is covered by the second item.

In every case, T ends up being diagonal. The orthogonality of T only allows values 1 or −1 on this
diagonal; the number l of −1 elements must be compatible with the requirement det(T ) = det(U).

The final form is simply obtained by returning from the eigenbasis of R to the general basis
and reordering the eigenvectors such that those corresponding to −1 elements of T appear in the
first columns.

4
Proposition 7: The Lie group SO(n) satisfies Assumption 1.

Proof (+ Prop.1): Consider a linear function f(Q) = trace(QTB) as in Assumption 1, with Q ∈
SO(n) and B ∈ Rn×n. The computation Dk,Rn×n(f) = B leads to Dk,SO(3)(f) = Q

2 (QTB−BTQ).
Since Q is invertible, critical points of f appear when (QTB −BTQ) = 0, which means that they
are of the form described by Lemma 1. Using the notations of Lemma 1, write R = HΛHT where
Λ contains the (non-negative) eigenvalues of R. This leads to QTB = HJΛHT , whose trace is
equal to

f(Q) = −
l∑

j=1

Λjj +
n∑

j=l+1

Λjj .

One readily verifies that

• if l ≥ 2, any infinitesimal rotation on the submatrix J(i, j) with i ∈ {1, 2} and j ∈ {1, 2}
increases f(Q) unless Λ11 = Λ22 = 0.

• if l = 1 and there is some m such that Λmm < Λ11, then any infinitesimal rotation on the
submatrix J(i, j) with i ∈ {1,m} and j ∈ {1,m} increases f(Q).

This shows that all maxima of f(Q) are global maxima and characterizes the IAM when selecting
B = Ce. Indeed,

• if det(B) ≥ 0, any local maximum requires l = 0 such that Q = U and f(Q) is equal to the
sum of the eigenvalues of R;

• if det(B) ≤ 0, any local maximum requires that U takes the form of Lemma 1 with l = 1,
and Λ11 ≤ Λmm∀m; this implies that the first column-vector of H corresponds to a smallest
eigenvalue of R and f(Q) is equal to the sum of the n− 1 largest eigenvalues of R minus the
smallest one.

4
The algorithms obtained on SO(n), and in fact on any CC Lie group, are all strict extensions

of the ones of [13, 14] for undirected graphs on the circle SO(2). The reader who rewrites the
algorithms for SO(2) in terms of angles θk will obtain update equations of the form (25).
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3.4 Consensus algorithms with estimator variables

The gradient-type algorithms lead to consensus situations which are linked to the interconnection
graph. However, in many applications, the interconnection graph is just a restriction on com-
munication possibilities, under which one actually wants to drive the swarm towards a consensus
for the complete graph. Moreover, allowing directed and time-varying communication graphs is
desirable for robustness. The following algorithms achieve the same performance as the previous
gradient algorithms for G = Gc - that is, driving the swarm to synchronization on one hand, and
to a subset of the anti-consensus configurations for Gc (which seems to contain little more than
balancing) on the other hand - under very weak conditions on the required communication graph.

However, this reduction of information channels must be compensated for by adding an estima-
tor variable xk ∈ E to the state space of each agent. It is assumed that interconnected agents are
able to communicate their estimator variables. This idea was originally developed for the circle,
as published in [47, 38, 14].

3.4.1 Synchronization algorithm

For synchronization purposes, the agents implement a consensus algorithm for their estimator
variables in E , while the positions yk of the agents on G independently track (the projection of)
xk. This leads to the synchronization algorithm

ẋk = β

N∑

j=1

ajk(xj − xk) (28)

ẏk = γS Dk,G(yT
k xk) = γS ProjTG,k(xk) , (29)

where yk and xk are represented as m-dimensional vectors and β, γS are positive scalars. Equa-
tion (28) is a classical consensus algorithm in the Euclidean space E ∼= Rm, where ẋ(t) points
from xk(t) towards the (appropriately weighted) centroid of the xj(t) for which j Ã k at time t.
According to [43, 44, 29], if the time-varying communication graph G(t) is piecewise continuous
in time and uniformly connected, then the states of all the agents exponentially converge to a
common consensus value x∞; moreover, if G(t) is balanced for all t, then x∞ = 1

N

∑N
k=1 xk(0) (in

other words, x∞ is the centroid of the initial positions). This implies the following convergence
property for (28),(29); the notation IAMg generalizes the definition (12) of the IAM to the case
where the initial points are not on G.

Proposition 8: Consider a piecewise continuous and uniformly connected bounded time-varying
δ-digraph G(t) and a CC Lie group G satisfying Assumption 1. Further assume that the initial
estimators xk(0) are randomly chosen in E. Then the only stable point of algorithm (28),(29) is
synchronization at y∞; if G(t) is balanced, y∞ = IAMg{xk(0)|k = 1...N}.
Proof: The convergence of (28) towards xk = x∞ ∀k is ensured by the result of [44]; the property
x∞ = 1

N

∑N
k=1 xk(0) for balanced graphs is easy to check (see [29]). As a consequence, the

asymptotic form of (28),(29) is a set of N independent systems

xk = x∞ (30)
ẏk = γS ProjTG,k(x∞) (31)

where x∞ is a constant. According to [73], the ω-limit sets of the original system (28),(29)
correspond to the chain recurrent sets of the asymptotic system (30),(31). The first equation is
trivial. Since (31) is a gradient ascent algorithm for the linear cost function f(yk) = yT

k x∞ and
smooth (as the gradient of a smooth function along the smooth manifold G), according to [74] its
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chain recurrent set is equal to its critical points and the stability analysis is reduced to the critical
points of (31). Since G satisfies Assumption 1, all maxima of f(yk) are global maxima on G, so
the only stable points for the gradient ascent algorithm are the points belonging to the projection
of x∞ on G. To conclude it remains to show that the projection of x∞ on G reduces to a single
point y∞ with probability 1.

Since (28) and the associated initial conditions are invariant with respect to translations (and
rotations) in E , for every particular graph sequence, x∞ has an equal probability to take any value
in E . It must be shown that the set O of points in E whose projection onto G is not uniquely defined
has measure zero in E , such that x∞ /∈ O with probability 1. Select any point xa ∈ O and denote
by Ga ⊂ G its projection on G. Choosing any x∗a ∈ Ga, the set of points Ωa = {xa + σx∗a|σ > 0},
has a unique projection on G, namely x∗a; hence, to the singular point xa corresponds an infinite
set Ωa of regular points. Now consider another point xb ∈ O and an associated x∗b ∈ Gb. The sets
Ωb = {xb + ρx∗b|ρ > 0} and Ωa do not intersect. Indeed,

• if x∗b 6= x∗a, then the points of Ωb and Ωa are projected onto different points of G and so
cannot be equal.

• if x∗b = x∗a, it holds that xa = xb + (ρ − σ)x∗a. Supposing without loss of generality that
ρ > σ, this leads to xa ∈ Ωb which contradicts xa ∈ O.

Thus, to every point of O corresponds an independent infinite set of points in E\O such that O
has measure 0 in E .

4

3.4.2 Anti-consensus algorithm

Using the estimator variables xk, one can also design algorithms that converge to anti-consensus
configurations with limited communication. In analogy with the previous strategy, the position
yk of each agent evolves according to a gradient algorithm in order to maximize its distance to
xk(t). When xk(t) asymptotically converges to Ce(t), this becomes equivalent to the gradient
anti-consensus algorithm (23). For Ce(t) to be the consensus value of the local estimator variables
xk(t), it is necessary to require that xk(0) = yk(0) and that G(t) is balanced. Then the following
algorithm is designed, where vector representations are used throughout; β is still a positive scalar,
but γB is negative.

ẋk = β

N∑

j=1

ajk(xj − xk) + ẏk (32)

ẏk = γB Dk,G(yT
k xk) = γB ProjTG,k(xk) , (33)

Note that the variables xk and yk are fully coupled; this essential feature of the balancing algo-
rithm must be retained in the form of implicit discrete-time update equations in order to ensure
convergence in a discrete-time version of this system (see [47] for details).

The following proposition characterizes the convergence properties of (32),(33).

Proposition 9: Assume that G(t) is a piecewise continuous, uniformly connected and balanced
bounded time-varying δ-digraph and that G satisfies Assumption 1. Then, algorithm (32),(33) with
initial conditions xk(0) = yk(0) ∀k always converges towards a set of equilibrium configurations;
the only stable sets are anti-consensus configurations for Gc.

Proof: Since the interconnection graph is balanced,

N∑

k=1

ẋk = β

N∑

j=1

(
N∑

k=1

ajk

)
xj − β

N∑

k=1




N∑

j=1

ajk


xk) +

N∑

k=1

ẏk(t) =
N∑

k=1

ẏk(t)
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and integrating both sides with xk(0) = yk(0) one gets

1
N

N∑

k=1

xk(t) =
1
N

N∑

k=1

yk(t) = Ce(t) .

The Lyapunov function

W (t) =
1
2
‖x‖2

is never increasing along the solutions of (32),(33). Indeed, denoting by (x)j the vector containing
(xk)j for k = 1, 2...N and j fixed in {1...m}, and using the Laplacian L(i)(t) of the varying graph
associated to the ajk, one has

Ẇ (t) =
N∑

k=1

xk(t)T ẋk(t)

=
N∑

k=1

xk(t)T ẏk(t)− β
n∑

j=1

(x)T
j L

(i)(x)j

=
1
γB

N∑

k=1

‖ẏk(t)‖2 − β
n∑

j=1

(x)j(t)TL(i)(t)(x)j(t) ,

where the last equality is obtained using the fact that

xk(t)T ProjTG,k(xk(t)) =
(
ProjTG,k(xk(t))

)T

ProjTG,k(xk(t)) .

The term containing the Laplacian is non-positive because L(t) is positive semi-definite for bal-
anced graphs (see [75]); as γB < 0, this yields Ẇ ≤ 0. This implies that x is uniformly bounded;
as a consequence, ẏk in (33) is uniformly bounded as well. By combining the latter two observa-
tions with the fact that the Laplacian L(i) is bounded, it is observed from (32) that x is Lipschitz
continuous in t with some associated constant r1.

Since W (t) is bounded above by its initial value W (0) = N
2 ‖y1‖2 and below by 0, it holds that

1
|γB |

N∑

k=1

∫ +∞

0

‖ẏk(t)‖2 ≤ −
∫ +∞

0

Ẇ (t)dt ≤ N

2
‖y1‖2

which means that each ẏk(t) is a function in L2(0,+∞). From (33), ẏk is Lipschitz in yk (as
the gradient of a smooth function along the smooth manifold M) and linear in xk. Adding that
ẏk is uniformly bounded, one easily verifies that ẏk is Lipschitz in t. Then ẏk(t) is a uniformly
continuous function in L2(0,+∞) and ẏk → 0 ∀k from Barbalat’s Lemma.

Equation (32) is equivalent to a consensus algorithm in E with an additive perturbation ẏ(t) ∈
L2(0,+∞); the addition of this perturbation does not destroy the asymptotic convergence of the
exponentially stable consensus algorithm. As a consequence, each xk is driven to some common
consensus value x∞, which must be equal to limt→+∞ Ce(t) according to the first observation of
the proof. The asymptotic dynamics for yk are thus

ẏk(t) = γB ProjTG,k(Ce(t)) (34)

which is exactly equal to the gradient descent algorithm (23) with γB = 2αN . Since ẏk → 0,
the solutions must asymptotically converge to a set of equilibria of (34) and it follows from the
corresponding considerations about the gradient algorithms that the anti-consensus configurations
for Gc are the only stable sets.

4

30



3.4.3 About the communication of estimator variables

In order to implement these synchronization and anti-consensus algorithms, interconnected agents
must communicate the values of their estimator variable xk. However, the estimators xk evolve
in E while the original system lives on G; the relative position of agents on G is a meaningful
measurement, but nothing ensures that a similar thing can be done in the a priori artificial space
E . It is important to note that the variables xk may not just be a set of abstract scalars for each
agent k: since xk interacts with the geometric yk, it must be a geometric quantity too. Hence,
the way of meaningfully communicating the estimators must be addressed.

A general solution to this problem is to assume a common (and thus external) reference frame
for E - with a fixed embedding G of G. In this case, the swarm unfortunately loses its full au-
tonomy; however, the external frame is just used for “translation” purposes and does not interfer
with the dynamics of the system.

For CC Lie groups, it is possible to reformulate the algorithms such that they work completely
autonomously if interconnected agents measure their relative positions. Indeed, the geometric
relation between yk and xk in (29) and (33) occurs through the scalar product yT

k xk for vector
representations, or equivalently the form trace(yT

k xk) for the matrix representations which are
preferred in the remainder of this section. Furthermore, using group operations, the projection of
the gradient on the tangent space at yk can be computed as

ProjTG,k(xk) = ykProjg(y
T
k xk)

where g is the Lie algebra (or tangent space at the origin). Since the yk are orthogonal matrices,
the change of variables zk = yT

k xk = y−1
k xk ⇔ xk = ykzk (all variables in matrix form) is well-

defined. With this new variable zk, equations (29) and (33) can be written with shape entities,
yielding

yT
k ẏk = γ Projg(zk) (35)

where γ is replaced by γS or γB for synchronization or balancing respectively, and now zk can be
considered as a matrix in the Lie algebra, without any link to a physical reference.

However, by doing this one must ensure that a correct link subsists between xk and xj in
equations (28) and (32). This can be done by introducing the relative positions yT

k yj such that
yT

k (xj − xk) = (yT
k yj)zj − zk. Moreover, a change of variable from xk to zk must be operated on

the left hand side of these equations. This leads to an additional term on the right hand side, such
that (28) and (32) are respectively replaced by

żk = (yT
k ẏk)T zk + β

N∑

j=1

ajk((yT
k yj) zj − zk) (36)

or

żk = (yT
k ẏk)T zk + β

N∑

j=1

ajk((yT
k yj) zj − zk) + (yT

k ẏk) . (37)

Note that the derivative of yk, as defined in (35), appears in (36) and (37).

3.4.4 Example

Algorithm (28),(29) is easily expressed on the particular manifold SO(n). Introducing the aux-
iliary n × n-matrices Xk and denoting their vectorized forms by xk, equation (28) may be tran-
scribed verbatim. Exploiting the previous discussions, the gradient of (29) is easily expressed by
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ProjTG,k(Xk), which leads to

Q̇k =
γS

2
Qk

(
QT

kXk −XT
k Qk

)
(38)

on SO(n). The balancing algorithm is directly obtained in the same way. The reformulation in
shape variables leads to the synchronization algorithm

Żk = (QT
k Q̇k)TZk + β

N∑

j=1

ajk

(
(QT

kQj)Zj − Zk

)
(39)

QT
k Q̇k =

γS

2
(
Zk − ZT

k

)
(40)

or the balancing algorithm

Żk = (QT
k Q̇k)TZk − β

N∑

j=1

ajk

(
(QT

kQj)Zj − Zk

)
+ (QT

k Q̇k) (41)

QT
k Q̇k =

γB

2
(
Zk − ZT

k

)
(42)

where Zk, (QT
kQj) = (QT

j Qk)T and (QT
k Q̇k) are the actual variables used by agent k.

Note that the exchange of the entire matrices Zk may be largely sub-optimal since an n × n
special orthogonal matrix Qk can be retrieved with reduced information - typically, it is well known
that any d-dimensional compact manifold can be embedded in a 2d-dimensional Euclidean space.

3.5 Extension to homogeneous manifolds

The special properties of Lie groups are but scarcely used in the algorithms derived so far. In
fact, the basis for all the previous developments is just the perfect symmetry of the manifold, i.e.
all the points of the manifold must be geometrically strictly equivalent. This symmetry does not
require the manifold to be a Lie group. Perfectly symmetric objects like spheres or Grassmann
manifolds are not Lie groups, but quotients of Lie groups; these are called homogeneous manifolds.

In the previous developments and algorithms, the CC Lie group G may be replaced everywhere
by a CC homogeneous manifold M. All the discussions and results hold for M, except for the
two following points.

Unitary embedding It is a well-known fact of differential geometry that any smooth manifold
of dimension m can be smoothly embedded in R2m (Whitney’s embedding theorem). It seems
logical that any proper embedding should respect the symmetry properties of M. Furthermore,
given the high symmetry of CC homogeneous manifolds, it seems plausible that it should be
possible to embed them such that ‖y‖ = cst for any y ∈ M; indeed, if some points yk had
different norms in E , they could be considered different on that basis. In the absence of further
knowledge on this issue, another blanket assumption is formulated, which the CC homogeneous
manifolds should satisfy in order to apply the formalism of the present work.

Assumption 2: M is smoothly embedded in a compact subset of a Euclidean space E of dimension
m such that

a) the action of the transitive symmetry group ofM can be expressed as an action of a subgroup
of the transitive symmetry group of E;

b) the Euclidean norm ‖yk‖ is constant (or without loss of generality, equals 1) over M.
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Communication of estimator variables The only point where Lie group properties are ex-
tensively used in the preceding developments is in the reformulation of the estimator variable
algorithms in terms of local coordinates. Indeed, the group multiplication is a vital tool for the
change of variables used in these developments. As a consequence, on CC homogeneous manifolds
it seems difficult, if not impossible, to derive a reformulation with estimator variables expressed
with respect to the agent positions instead of a common reference frame for E . At the current
state of research, the existence and use - for communication purposes only - of such a common
frame for E must thus be assumed in order to implement the algorithms of section 3.4 on CC
homogeneous manifolds.

3.5.1 Example

The Grassmann manifolds (see section 2.2) are interesting examples of CC homogeneous man-
ifolds. They can be useful to compute means of, reach agreement on, or distribute, a set of
subspaces of a larger vector space. The Grassmann manifolds satisfy all the assumptions needed
to apply the results of this work and algorithms are easily written using the projector representa-
tion6. The Frobenius norm ‖yk‖ of a p-rank projector is

√
p. The projection of a matrix M ∈ S+

n

onto the tangent space to Grass(p, n) according to the projector representation is given in [71] as
ΠkMΠ⊥k + Π⊥kMΠk.

Induced arithmetic mean The IAM on Grass(p, n) can be characterized analytically in the
following way.

Proposition 10: The centroid Ce of N points in the projector representation of Grass(p, n) is
generally a symmetric positive semi-definite matrix of rank ≥ p. The induced arithmetic mean
then contains the eigenspaces C corresponding to p largest eigenvalues of Ce; it reduces to a single
element of Grass(p, n) when the p-largest and (p+ 1)-largest eigenvalues of Ce are different.

Proof: The proof of this statement follows the same lines as for SO(n) and is provided somewhat
later.

4
In fact, if ΠB = BBT where B ∈ St(p, n) contains p orthonormal vectors spanning the subspace

corresponding to ΠB, the cost function in (12) becomes

f(ΠB) = trace(ΠBCe) = trace(BTCeB) = p
‖BTCeB‖
‖BTB‖ (43)

where the last expression is equal to the generalized Rayleigh quotient for the computation of the
dominant p-dimensional eigenspace of Ce. The geometric computation of eigenspaces from the
cost function (43) is extensively covered in the work of P.-A. Absil [60, 52]. Furthermore, it is a
well-known fact of linear algebra that the p largest eigenvalues (the others being 0) of ΠBΠk are
the squared cosines of the principal angles φi

k, i = 1...p between the subspaces B and Yk. From
this, one can easily show that the point C is the subspace that minimizes the sum of the squared
sines of the principal angles between the set of subspaces Yk and a centroid candidate subspace B:

C = argmin
B

N∑

k=1

p∑

i=1

sin2(φi
k) . (44)

6The basis representation of Grass(p, n) with elements Yk ∈ St(p, n) respects the two items of Assumption 2,
but it is not an embedding of Grass(p, n). The use of the projector representation, embedding Grass(p, n) in S+n ,
is necessary to properly define the induced arithmetic mean. Indeed, when simply summing up arbitrary elements
Yk ∈ St(p, n) representing Yk to get Ce and projecting back onto Grass(p, n), the result depends on the particular
Yk chosen.
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This provides a geometrical meaning for the induced arithmetic mean of subspaces. Moreover, it
illustrates its equivalence with the Karcher mean for infinitesimal angles; indeed, the cost function
for the Karcher mean would be equal to the sum of the squared principal angles in the case of
Grass(p, n). This observation is also made in a section of [60] on the computation of a “centroid
of subspaces” approximation, and in [35, 36] where the measurement of the distance between two
subspaces of Grass(p, n) as the Frobenius norm of the difference between the associated projectors
is called the chordal distance.

Consensus cost function and balancing On Grass(p, n), (19) can be rewritten as

P =
1

2N2

N∑

j=1

N∑

k=1

ajk

(
p∑

i=1

cos2(φi
jk)

)

where φi
jk is the ith principal angle between the subspaces j and k. Similar remarks are made in

[36, 35, 60].
The balanced states on Grass(p, n) correspond to the situation where all eigenvalues of Ce are

equal. Note that trace(Ce) = 1
N

∑
k trace(Πk) = p, such that this requirement leads to Ce = p

nIn.
This is not always possible with N orthonormal projectors of rank p 7. As for SO(n), simulations
tend to indicate that it is possible when N is large enough. However, it seems a bit more tricky
to compute the minimal value of N that is needed for a given n and p.

Gradient type algorithms On Grass(p, n), the gradient consensus algorithm of section 3.3
can be written as

Π̇k = 2α
∑

j

ajk(ΠkΠjΠ⊥k + Π⊥kΠjΠk) . (45)

In practice, it may be handier to use the basis representation with Yk ∈ St(p, n) instead of Πk in
the algorithms; indeed, this allows to deal with n× p and p× p matrices instead of possibly much
larger n× n matrices. This operation is possible because it is not necessary to embed a manifold
in order to compute gradients on it. The calculation of Dk,Grass(p,n) on a quotient manifold is
explained in [60]; it is based on the projection of the gradient with respect to Yk onto the so-called
horizontal space, which is achieved by Π⊥k in the present case. This leads to the algorithm

Ẏk = 4αΠ⊥k

∑

j

ajkΠjYk = 4α
∑

j

ajk

(
YjMjT k − YkM

T
jT kMjT k

)
(46)

where the p × p matrices MjT k are defined as MjT k = Y T
j Yk. Note that, though the gradient in

[60] was computed in the non-compact Stiefel manifold, (46) keeps the matrices Yk on the compact
Stiefel manifold (i.e. Yk(t)TYk(t) = Ip ∀t if Yk(0)TYk(0) = Ip). The reader will also notice that
the projector representation algorithm obtained from (46) and the identities (4), differs from (45)
by a factor 2. This difference can be understood from the fact that components (Πk)ij and (Πk)ji

of the symmetric matrix Πk are considered independent in the projector representation, while
the basis representation captures their symmetry by construction. For theoretical purposes, the
projector representation is a better choice, as for the following proofs.

Proposition 11: The Grassmann manifold Grass(p, n) satisfies Assumption 1.

Proof (+ Prop.10): Consider a linear function f(Π) = trace(ΠTB) as in Assumption 1, where
B ∈ S+

n and Π represents Y ∈ Grass(p, n). From Dk,Rn×n(f) = B one gets Dk,Grass(p,n)(f) =

7In fact, the global minimum of P corresponding to balanced states is a solution of the relaxed convex problem:
minimize

Pn
j=1(λj)

2 over λj ≥ 0 under the constraint
Pn

j=1(λj) = p. In order to be a feasible solution for the

unrelaxed problem, the λj should further be the eigenvalues of the matrix Ce built from N orthonormal projectors
of rank p.
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ΠkBΠ⊥k + Π⊥kBΠk. Since the ranges of the first and second terms in this last expression are at
most Y and its orthogonal complement respectively, they must both be equal to zero at a critical
point Y∗. This implies that Y∗ must be an invariant subspace of B. In an appropriate basis
(e1...en), one can then write Π = diag(1, ...1, 0, ...0) and B = diag(µ1, ...µp, µp+1...µn). If there
exist d ≤ p and l > p such that µl > µd, then any variation of Π rotating ed towards el strictly
increases f(Π). Therefore, at a local maximum of f(Π), the p-dimensional space corresponding to
Π must be an eigenspace of B corresponding to p largest eigenvalues of B. This implies that the
value of f(Π) at any local maximum equals the sum of p largest eigenvalues of B and Assumption
1 is satisfied. Moreover, replacing B by Ce, Proposition 10 is proven.

4

Algorithms with estimator variables First of all, it must be recalled that the issue of com-
municating the estimator variables in a meaningful way without using a common reference frame
in E has not been solved. Therefore, no reformulation of the algorithms in terms of local variables
is available. Assuming the existence of a common reference frame in E for translation purposes,
equation (28) may be transcribed verbatim and (29) becomes

Ẏk = 2γS(In − YkY
T
k )XkYk or Π̇k = γSΠkXkΠ⊥k + γSΠ⊥kXkΠk . (47)

The balancing algorithm is directly obtained analogously. Note that here, the full projector rep-
resentation absolutely must be used in (28) and (32), such that using n × n matrices becomes
unavoidable. Unfortunately, this can be a quite heavy overload with respect to an intrinsic for-
mulation when p¿ n.
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4 Synchronization of autonomous Lie group solids

Section 3 is concerned with the definition of consensus configurations and the design of individual
control laws for simple integrator models that drive the swarm towards these configurations. The
present Section 4 focuses on the development of coordination algorithms for mechanical models,
namely the so-called Lie group solids.

In order to focus on the mechanical part, the objective is somewhat simplified to the achieve-
ment of synchronization (i.e. the agents are all at the same (maybe moving) point on G) and
occasionally arbitrary coordinated motion (i.e. the relative positions of the agents on G remain
constant, but at arbitrary values, throughout their motion). Mathematically, these 2 situations
imply y−1

k yj → e ∀j, k for synchronization and y−1
k yj → cst ∀j, k for arbitrary coordinated motion.

The basic strategy to design the algorithms in Section 3 is to formulate consensus as an opti-
mization task. This basic strategy still serves for the design of control algorithms for mechanical
models in the present section. The difference lies in the way the optimization problem must be
solved. For the consensus tracking point of view (Section 4.3), a consensus algorithm is used at a
task planning level to define desired trajectories which are tracked by the individual mechanical
agents. A second, more inherently mechanical point of view (Section 4.4) applies the “energy
shaping” method: the cost function of the optimization problem is used as an artificial potential
and properly designed artificial dissipation asymptotically stabilizes the synchronized state as a
minimum of the artificial potential, like in ([5, 7, 10, 11]).

The non-triviality of the mechanical model of the Lie group solid (2),(3) makes the extension
with respect to the previous simple integrator models an insightful task. Therefore the problem
deserves some discussion before rushing to the control algorithms.

4.1 Problem setting

It is worth recalling the basic ingredients before proceeding to the actual discussion.

The task is thus to synchronize (the motion of) N identical Lie group solids, frequently called
agents in the following. The mechanical model of a Lie group solid imposes the following equations
of motion [70]

ẏk = ykξk (48)
Jξ̇∨k = [Jξ∨k , ξ

∨
k ] + τ∨k (49)

where the relevant quantities are defined in Section 2.2.2; just recall that τ∨k is the generalized
control torque to be designed. For the special case of a rigid body in 3-dimensional space, G =
SO(3) and the equations of motion become (Euler equations)

Q̇k = Qkω
∧
k (50)

Jω̇k = (Jωk)× ωk + τk (51)

where Qk is a rotation matrix characterizing the orientation of body k, ωk is the angular velocity
vector and τk is the control torque, both expressed in body frame. Without loss of generality, it
is assumed in the example sections about SO(3) that J = diag(J1, J2, J3) with J1 > J2 > J3.

A synchronized state is characterized by yk = yj ∀k, j, whatever the absolute position and
velocity may be. However, as noted in [5, 64], only the absolute position can be factored out of
the state space. Indeed, the dynamics (48),(49) are invariant with respect to a fixed translation
(group multiplication) of all the agents by g ∈ G, but not with respect to any arbitrary synchro-
nized motions since the absolute velocity ξk explicitly appears in the dynamics (49). This can
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be seen both as bad news or as good news: on one hand, it means that the absolute velocity is
likely to appear in the control laws, but on the other hand it means that this absolute velocity
can somehow be retrieved, without requiring an external reference, by an inertial sensor (in fact,
the generalization of the gyroscope in SO(3) to general Lie group solids).

When designing the control inputs, the agents are assumed to be fully actuated, but only have
access to information from a subset of the other agents, which are their neighbors according to the
interconnection graph. For simplicity, a unit weight ajk = 1 is attributed to all the communication
links. It is assumed that agent k gets the following information from each of its neighbors j:

• its relative position y−1
k yj ;

• its relative velocity, Ady−1
k yj

ξj − ξk ;

• possibly a set of scalar auxiliary variables xk.

In addition, agent k may have to measure ξk, its own velocity with respect to an inertial frame.
However, it never knows its absolute position yk. This is consistent with the symmetries of the
dynamics.

Note that in the present part of the report, a matrix of the adjoint representation of the group
element yk is simply designed by yk itself; also remember that y−1

k = yT
k .

4.2 Coordination strategy

The strategy for Lie group solid coordination strongly builds on the results of Section 3. It turns
out that the obtained developments are not entirely new: other authors have previously worked
out similar strategies, mainly on SO(3), although without reaching the final results of the present
work.

The two approaches considered in the present work to generalize the results of Section 3 to
mechanical models - consensus tracking and energy shaping - are well-known in the control liter-
ature. The viewpoint adopted in the present section highlights the similarities of the consensus
and energy shaping approaches to Lie group solid synchronization. Therefore the opportunity is
taken to refer to related work in more detail when relevant. Of course, this oversimplified review
does not capture all the many specificities of both approaches. Most notably, the important work
on mechanical symmetries and reduction described among others in [5, 10, 11, 64] is not taken
into account. Notations and formulations have also been adapted, for the sake of simplicity and at
the cost of generality. The interested reader is kindly asked to consult the corresponding literature.

4.2.1 From integrators to mechanical systems

Consider the function PL defined by (16) as the basis for the optimization strategy. With unit
weights and the matrix representation, it becomes PL = 1

2N2

∑N
k=1

∑
jÃk trace

(
yT

j yk

)
. The

corresponding form for SO(3) (simply replacing yk by Qk) was itself already introduced in a
mechanical/energy-shaping framework in [5, 50, 64, 7].

In the present context, the goal is synchronization of the agents. According to Proposition 2,
synchronization is the only maximum of PL at least when the undirected graph G associated to the
agent interconnections is a complete graph Gc or a tree. Therefore most global convergence results
in this section assume that G is a tree or Gc. However, for arbitrary graphs one can still get local
results; in particular, the work of Moreau ([43, 44]) seems to indicate that the basin of attraction
of the synchronized state contains all situations which are such that the agents eventually end up
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in a convex subset of G for t larger than some t̄.

In an energy-shaping framework, PL is used to build an artificial potential σPL, σ < 0, whose
global minimum corresponds to the synchronized state ([5, 7, 10, 11]). This leads to the following
basic control torque:

τ
(S)
k = −σDk,G(PL) . (52)

Unsurprisingly, since the torque is equal to minus the gradient of the potential σPL, this control
input is (up to a positive multiplication constant) equal to the one for the gradient synchronization
algorithm for simple integrators in Section 3.3; as such, it only uses information on relative posi-
tions of the agents in a fixed, undirected interconnection graph G ([7, 11, 5, 10]). The difference
is that now, the input does not directly govern the motion of the agent on G but acts as a torque
in a second-order mechanical model.

For SO(3), using the Energy-Momentum method [65], it is proven in [7, 10, 11] that the syn-
chronized state where all the rigid bodies rotate together about their aligned short axis, is a stable
equilibrium of (50),(51) with the control (52). A weaker form of this result is proven in [5] using
Semidirect Product Reduction [67] and the Energy-Casimir method [66]: the synchronized state
where the agents are non-rotating is stable. However, the Hamiltonian of the system (consisting
of the kinetic energy and the artificial potential, such that (52) is accounted for by the artificial
potential) is conserved, such that some form of dissipation must be added to obtain asymptotic
stability. This is left as an open question in [7] and solved with the help of an external reference
in [10, 11]. In [5], it is suggested to use external dissipation (drag) to obtain asymptotic stability.
Dissipation without any external reference is considered in the present report. The design of rela-
tive dissipation in mechanical systems in general is also addressed in [68] with a different approach.
Due to the derivation of the control torques from the potential σPL, the energy shaping approach
is restricted to fixed undirected interconnection graphs G and sensitive to the local minima of σPL

imposed by G.

This limitation can be removed in the consensus tracking framework. In this approach, a
first layer of algorithms defines desired kinematic trajectories to maximize PL, assuming that the
generalized angular velocity ξk is a direct control input. This is exactly what is done in Section
3, so this first layer actually uses one of the consensus algorithms described earlier in the present
report. WhenG is fixed and undirected, a gradient-type consensus algorithm can be used and when
G is directed and/or time-varying, estimator variables must be introduced to ensure convergence.
Note that, with the estimator variables, by using a consensus algorithm in Euclidean space, the
problem of local maxima is circumvented. This first layer thus provides desired evolutions for
ξk = yT

k ẏk, denoted by ξ
(d)
k . The equations defining ξ(d)

k are directly obained by substitution of
yT

k ẏk by ξ(d)
k in (22) and (35),(36), leading to

ξ
(d)
k = αk

2N2 Projg


yT

k

∑

jÃk

(yj − yk)


 (53)

and

żk = ξT
k zk + α

(1)
k

∑

jÃk

((y(−1)
k yj) zj − zk) (54)

ξ
(d)
k = α

(2)
k

2 Projg(zk) (55)

respectively where αk, α
(1)
k , α

(2)
k > 0.

At a second layer, tracking algorithms are used by the mechanical agents in order to individ-
ually track their desired trajectories as defined by the consensus algorithm. As is shown in the
following Section 4.3, by properly coupling the two layers of algorithms, synchronization of the
swarm can be achieved.

38



4.2.2 Example

In fact, the specialization of the mathematical expressions appearing in the preceding discussion
to SO(3) was already done in Section 3. Nevertheless, they are repeated hereunder for the sake
of easier referencing.

The torque resulting from the gradient of PL on SO(n) is given in (26). Introducing unit
weights and noting that the control torque is related to the vectorized form of the angular velocity(
QT

k
d
dtQk

)∨
, equation (52) becomes

τ
(S)
k = −σ

2N2


 ∑

jÃk

(QT
kQj −QT

j Qk)



∨

. (56)

The right hand side defining the desired trajectories for the gradient consensus algorithm is strictly
similar:

(ω(d)
k )∧ = αk

2N2

∑

jÃk

(
QT

kQj −QT
j Qk

)
. (57)

If estimator variables are used for consensus, the desired trajectories are defined by (39),(40) which
are repeated below.

Żk = (QT
k Q̇k)TZk + β

∑

jÃk

(
(QT

kQj)Zj − Zk

)
(58)

(ω(d)
k )∧ =

γS

2
(
Zk − ZT

k

)
(59)

4.3 Consensus tracking

The consensus algorithms directly assign a desired velocity to each agent k at each time instant t.
A second step is required to obtain explicit expressions for the control torques τk. This is discussed
in the following.

4.3.1 Basic considerations

The knowledge of an individual’s own absolute velocity ξk is unavoidable for the present consensus
tracking control laws. With this information, it is rather obvious to make the agents individually
track a desired velocity field ξ

(d)
k defined by a consensus algorithm. In fact, the simplest control

strategy based on (54) defines the desired position y
(d)
k to be the projection of xk on G; equation

(55) is replaced by a dynamical tracking algorithm on G. The projection process may present
discontinuities; for example, the projection from R3×3 to SO(3) presents a discontinuity when xk

is singular. As a consequence, y(d)
k is not necessarily continuous. However, it is unimportant to

track the transient trajectory: the only objective is to synchronize the Lie group solids towards
the final consensus value of xk. In this setting, it might even seem useless to move the rigid bodies
before the auxiliary variables approach a consensus situation. Moving the rigid bodies into the
desired attitude after the agents have reached consensus on xk would just require a global position
stabilization controller for each agent. Algorithms for tracking or stabilization on SO(3) (“atti-
tude tracking”) or more general Lie groups may be found among others in [23, 49, 50, 51, 42, 76].
Tracking approaches to attitude coordination can also be found in [6, 26, 27], though the strong
presence of a common external reference is necessary for their results. The following explicitly
considers some control torques for a consensus tracking synchronization strategy for which easy
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convergence proofs can be provided. It is likely that these rather naive controllers are not the
most efficient in practice. For a better performance, other tracking controllers can be selected
according to the needs of particular applications.

Both (53) and (55) impose zero velocity when synchronization is achieved. To be more general,
a common constant velocity ξ0 (in body frame) is imposed to the synchronized swarm (ξ0 may e.g.
result from a consensus algorithm in the vector space g). For algorithms based on the gradient
consensus approach, ξ0 is simply added to the desired velocity for synchronization to get

ξ
(d)
k = αk

2N2 Projg


yT

k

∑

jÃk

(yj − yk)


 + ξ0 . (60)

For algorithms based on the estimator variable consensus algorithm, the desired position for yk

becomes xkexp(t ξ0) and the desired velocity becomes

ξ
(d)
k = ξ0 + α

(2)
k

2 Projg(zkexp(t ξ0)) . (61)

4.3.2 The computed torque method

The so-called computed torque method is a rather radical way to deal with mechanical systems:
the inherent dynamics (i.e. the dynamics that drive the agents when the input τk = 0) are simply
countered by an equivalent control torque such that any desired evolution can be imposed to ξk.

In order to drive ξk towards ξ(d)
k , an exponential evolution

J d
dt (ξ

∨
k − (ξ(d)

k )∨) = −βk(ξ∨k − (ξ(d)
k )∨) (62)

is imposed, where βk > 0 and d
dtξ

(d)
k is deduced from (60) or (61) and (54). Given (49), this leads

to the control input
τ∨k = J d

dt (ξ
(d)
k )∨ − βk(ξ∨k − (ξ(d)

k )∨)− [Jξ∨k , ξ
∨
k ] (63)

which achieves (62) by using available information: ξ(d)
k and d

dtξ
(d)
k involve relative positions and

relative velocities of interconnected agents (and possibly auxiliary variables if the estimator con-
sensus strategy is chosen); the knowledge of oneself’s absolute velocity ξk is unavoidable for the
consensus tracking control laws. The following convergence properties hold.

Proposition 12: Consider a swarm of N agents exchanging their relative positions and velocities
according to a fixed undirected graph G and applying the control torque (63) where ω(d)

k is defined
by (60). If αk = α∀k or ξ0 = 0, then the swarm is asymptotically driven towards an equilibrium
set where ξk = ξ0 ∀k and the yk are at a critical point of PL. The only stable equilibria are the
maxima of PL.

Proof: Consider the candidate Lyapunov function

W =
1

4N2

N∑

k=1

∑

jÃk

‖yj − yk‖2 +
N∑

k=1

δk

2 (ξ∨k − (ξ(d)
k )∨)TJ(ξ∨k − (ξ(d)

k )∨)

where δk are positive constants to be fixed. Obviously, W ≥ 0. The first term of (64) is equal to
−PL up to an additive constant. Note that

d
dtPL =

∑

k

trace
(
(Dk,G(PL))T d

dtyk

)
=

∑

k

1
αk

trace
(
(yk(ξ(d)

k − ξ0))T (ykξk)
)

=
∑

k

1
αk

trace
(
(ξ(d)

k − ξ0)T ξk

)
=

∑

k

q
αk

((ξ(d)
k )∨ − ξ∨0 )T ξ∨k
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where q is a constant positive factor relating the scalar product of the vectorized forms ξ∨k to the
trace of products of the matrix forms ξk; for SO(3), the factor q = 2. The time derivative of the
second term in (64) is directly obtained from (62). A few basic calculations lead to

d

dt
W =

∑

k

−qγ
αk(1−γ)‖ξ∨k − (ξ(d)

k )∨‖2 − q
αk

(‖ξ∨k − ξ∨0 ‖2 + ‖(ξ(d)
k )∨ − ξ∨0 ‖2)

+ q
αk

(ξ∨0 )T ((ξ(d)
k )∨ − ξ∨0 ) (64)

where (1 − γ) = q
αkδkβk

is chosen in (0, 1) through a proper choice of δk. One easily checks from

(60) that
∑

k((ξ(d)
k )∨ − ξ∨0 ) = 0, such that the last term vanishes when ξ0 = 0 or all the αk are

equal. As a consequence, all the terms in (64) are non-positive. Hence W decreases from its initial
value towards a set of points where d

dtW = 0. The latter requires ξk = ξ0 = ξ
(d)
k ∀k. According

to the definition (60) of ξ(d)
k , the requirement ξ(d)

k = ξ0 characterizes the critical points of PL.
Writing W as a function of state variables (Qk, εk = ξk − ξ(d)

k ) instead of (Qk, ξk), it is obvious
that the set of equilibria for W are the critical points of PL with εk = 0 ∀k and the stable points
must be maxima of PL (and minima of εT

k εk, which is trivial).

4

Proposition 13: Consider a swarm of N agents exchanging their relative positions and velocities
according to a piecewise continuous bounded δ-digraph G and applying the control torque (63)
where ω(d)

k is defined by (61), in combination with the consensus algorithm (54). If G is uniformly
connected and the initial values of zk are randomly chosen in E, then the only stable limit set for
t→ +∞ is synchronization of the positions yk with ξk = ξ0 ∀k.
Proof: Similarly to the proof of Proposition 12, consider the candidate Lyapunov function

W = −
N∑

k=1

∑

jÃk

trace(zkexp(ξ0t)) +
N∑

k=1

δk

2 (ξ∨k − (ξ(d)
k )∨)TJ(ξ∨k − (ξ(d)

k )∨)

The time derivative of the second term is directly obtained from (62). For the first term, re-
membering the fact that the estimator variables xk = ykzk evolve independently of the yk, write

d
dt

(
trace(yT

k xkexp(ξ0t)
)

= trace
(
yT

k ẋkexp(ξ0t) + ξT
k y

T
k xkexp(ξ0t) + yT

k xkξ0exp(ξ0t)
)

= trace
(
yT

k ẋkexp(ξ0t
)

+trace
(
ξT
k (zkexp(ξ0t))

)− trace
(
ξT
0 (zkexp(ξ0t))

)
(65)

where the facts that ξ0 and exp(ξ0t) commute and that ξ0 must be skew-symmetric have been
used. The first term in (65), involving ẋk, will be considered later. The second term in (65) is
a scalar product (expressed in matrix form) between ξk ∈ g and zkexp(ξ0t). Therefore, replacing
zkexp(ξ0t) by its projection on g changes nothing and according to (61) this second term can be
written as

2q

α
(2)
k

(ξ∨k )T ((ξ(d)
k )∨ − ξ0) .

Similarly, the third term in (65) can be written as

2q

α
(2)
k

(ξ∨0 )T ((ξ(d)
k )∨ − ξ0) .

After a few calculations, analogous to those for Proposition 12, the time derivative of W can be
written as

d

dt
W =

∑

k

−qγ

α
(2)
k (1−γ)

‖ξ∨k − (ξ(d)
k )∨‖2 − q

α
(2)
k

(‖ξ∨k − ξ∨0 ‖2 + ‖(ξ(d)
k )∨ − ξ∨0 ‖2)

− trace
(
yT

k ẋkexp(ξ0t)
)

(66)
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where, as previously, (1−γ) = q

α
(2)
k δkβk

is chosen in (0, 1) through a proper choice of δk. From this

one observes that Ẇ is negative definite, except for the last term. However, this last expression
asymptotically goes to zero since ẋk → 0 when the xk synchronize. The latter fact is ensured by
the fact that the conditions for consensus in Euclidean space, as required in [44], are satisfied.
Moreover, considering convexity properties for the evolution of the estimator variables ([44]), it is
easy to show that W is bounded above as well as below once the initial states have been chosen. As
a consequence, if the negative definite terms stay smaller than some φ < 0, after some time they
will dominate the behavior of Ẇ , such that W continuously decreases at a rate close to φ. Since
this is impossible for Wmax > W (t) > Wmin ∀t, the negative definite terms must asymptotically
go to 0. The remaining conclusions are similar to the proof of Proposition 12.

4

The control torque (63) includes a term that exactly cancels the free Lie group solid dynam-
ics. This is characteristic of the computed torque method and requires perfect knowledge of the
parameters of the mechanical systems. In order to ensure this fact in real applications, a model
adaptation algorithm may be required. Alternatively, a different tracking algorithm can be used,
as the following one for instance.

4.3.3 The high gain method

A close alternative to the computed torque method is the high gain method, where the free Lie
group solid dynamics are dominated instead of cancelled. Indeed, if βk is large enough, it is not
necessary to include the last term of (63) cancelling the free Lie group solid dynamics. Thus, the
control torque reduces to

τ∨k = J d
dt (ξ

(d)
k )∨ − βk(ξ∨k − (ξ(d)

k )∨) . (67)

The high gain method allows to impose motions ξ0 satisfying [Jξ∨0 , ξ
∨
0 ] = 0 only. Thus the imposed

final motion is always an equilibrium of the free Lie group solid dynamics. This is coherent with
the fact that the free Lie group solid dynamics is not cancelled. Moreover, it is probably the
most useful case in practice, as maintaining other motions with whatever algorithm would require
persistent control torques.

The following Propositions state the exact convergence results. Note that the bounds were not
derived with much care and hence may be quite loose; the main purpose is to show that high gain
can be applied. Jmax denotes the largest eigenvalue of J .

Proposition 14: Consider a swarm of N agents exchanging their relative positions and velocities
according to a fixed undirected graph G and applying the control torque (67) where ω(d)

k is defined
by (60). Assume that either ξ0 = 0 or αk = α∀k and ξ0 satisfies [Jξ0, ξ0] = 0. Moreover, set

βk > 2Jmax(‖ξ∨0 ‖+ αk
√
q‖y‖dk/N

2) (68)

for all agents k, where dk is the number of neighbors of k, q is a constant positive factor relating
the scalar product of the vectorized forms ξ∨k to the trace of products of the matrix forms ξk,
and ‖y‖ denotes the norm of the elements of G in the matrix representation. Then the swarm
is asymptotically driven towards an equilibrium set where ξk = ξ0 ∀k and the yk are at a critical
point of PL. The only stable equilibria are the maxima of PL.

Proof: Consider the same Lyapunov candidate as for Proposition 12. The time derivative of the
first part does not change. The time derivative of the second part includes an additional term of
the form δk(ξ∨k − (ξ(d)

k )∨)T [Jξ∨k , ξ
∨
k ]. As a consequence, (64) becomes
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d
dtW =

∑

k

−qγ
αk(1−γ)‖ξ∨k − (ξ(d)

k )∨‖2 − q
αk

(‖ξ∨k − ξ∨0 ‖2 + ‖(ξ(d)
k )∨ − ξ∨0 ‖2)

+ q
αkβk(1−γ) (ξ

∨
k − (ξ(d)

k )∨)T [Jξ∨k , ξ
∨
k ] (69)

where the fact that the last term in (64) is equal to zero has already been taken into account. The
goal is to bound the indefinite term by the definite terms of Ẇ . First rewrite

[Jξ∨k , ξ
∨
k ] = [J(ξ∨k − ξ∨0 ), (ξ∨k − ξ∨0 )] + [J(ξ∨k − ξ∨0 ), ξ∨0 ] + [Jξ∨0 , (ξ∨k − ξ∨0 )]

where the fact that [Jξ∨0 , ξ
∨
0 ] = 0 has been taken into account. Further, the first term in the above

expansion is orthogonal to (ξ∨k − ξ∨0 ) so the scalar product of this term with (ξ∨k − (ξ(d)
k )∨) is equal

to the scalar product with (ξ∨0 − (ξ(d)
k )∨).

Now the worst-case evolution for W is
d
dtW ≤

∑

k

−qγ
αk(1−γ)‖ξ∨k − (ξ(d)

k )∨‖2 − q
αk

(‖ξ∨k − ξ∨0 ‖2 + ‖(ξ(d)
k )∨ − ξ∨0 ‖2)

+ qJmax

αkβk(1−γ)

(
2‖ξ∨k − (ξ(d)

k )∨‖ ‖ξ∨k − ξ∨0 ‖ ‖ξ0‖+ ‖ξ∨0 − (ξ(d)
k )∨‖ ‖ξ∨k − ξ∨0 ‖2

)
. (70)

The first term in the last line can be rewritten thanks to

2‖ξ∨k − (ξ(d)
k )∨‖ ‖ξ∨k − ξ∨0 ‖ = −

(
(‖ξ∨k − ξ∨0 ‖ − ‖ξ∨k − (ξ(d)

k )∨‖)2 − ‖ξ∨k − ξ∨0 ‖2 − ‖ξ∨k − (ξ(d)
k )∨‖2

)
.

For the second term, note that according to (60), ‖ξ(d)
k − ξ0‖ ≤ αkdk

N2 ‖y‖. This finally leads to

d
dtW ≤

∑

k

−q
αk
‖(ξ(d)

k )∨ − ξ∨0 ‖2 − qJmax‖ξ∨0 ‖
αkβk(1−γ)

(
‖ξ∨k − ξ∨0 ‖ − ‖ξ∨k − (ξ(d)

k )∨‖
)2

− q
αk

(
1− Jmax(‖ξ∨0 ‖+αk

√
q‖y‖dk/N2)

βk(1−γ)

)
‖ξ∨k − ξ∨0 ‖2

− qγ
αk(1−γ)

(
1− Jmax‖ξ∨0 ‖

βkγ

)
‖ξ∨k − (ξ(d)

k )∨‖2

where the first line is non-positive definite and the second and third lines are non-positive definite
if βk is large enough. Choosing γ = 1/2, the condition for the coefficient of the third line is
automatically satisfied when the condition for the second line is satisfied. The latter provides
condition (68). The rest of the proof is the same as for Proposition 12.

4

Proposition 15: Consider a swarm of N agents exchanging their relative positions and velocities
according to a piecewise continuous bounded δ-digraph G and applying the control torque (67)
where ω(d)

k is defined by (61), in combination with the consensus algorithm (54). Moreover, assume
that G is uniformly connected, the initial values of zk are randomly chosen in E and ξ0 satisfies
[Jξ0, ξ0] = 0. Moreover, set

βk > Jmax(2‖ξ∨0 ‖+ α
(2)
k

√
q‖zk‖) (71)

for all agents k, where q is a constant positive factor relating the scalar product of the vectorized
forms ξ∨k to the trace of products of the matrix forms ξk, and ‖zk‖ denotes the norm of zk in
the matrix representation. Then the only stable limit set for t → +∞ is synchronization of the
positions yk with ξk = ξ0 ∀k.
Proof: The proof is simply a mix of those for Propositions 13 and 14 and is therefore not reproduced
in full length. The difference in the bound comes from the fact that (61) is used instead of (60)
and hence ‖ξ(d)

k − ξ0‖ is now bounded by α(2)
k ‖zk‖/2.

4
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The bound for Proposition 15 involves the values of ‖zk‖. As has been hinted in the proof
of Proposition 13, those are ensured to be bounded because a general property of the consensus
algorithms in Euclidean space ([44]) is that, for whatever interconnection graph and at any time,
the values of xk(t) lie in the convex hull of the initial values {x1(0), x2(0), ...xN (0)}.

Before proceeding to the energy shaping approach, the flexibility of the consensus tracking
approach must be highlighted once more. It has already been mentioned that the 2 tracking
methods considered in the present work, along with explicit convergence proofs, are but examples
selected for the simplicity of their theoretical analysis and may be replaced by others for better
performance or robustness. Even in the present algorithms, the parameters αk, βk, ... can be chosen
according to specific criteria. In fact, there is even no fundamental need for them to be constant.
Therefore, their values may be adapted according to other constraints of the system - as long as
the hypotheses for convergence are still satisfied (for instance, all αk equal if ξ0 6= 0 in Proposition
12). The algorithms may have to be slightly modified - for instance a term in d

dtαk would appear
in the expression of d

dtξ
(d)
k .

When ξ0 = 0, the conditions (68) and (71) suggest to maintain comparable values of βk

αkdk

for the different agents. It can be observed that the choice αk = α
dk

is a natural choice often
encountered in the consensus literature (where βk is absent since only kinematics are considered).

4.3.4 Example

It is straightforward to write the particular forms of the control torques on SO(3) using previously
given information. Propositions 12 and 13 require no further particularization either.

The constant velocity ξ0 simply becomes a constant angular velocity ω0 in body frame. Hence
at the synchronized equilibrium, the synchronized rigid bodies would rotate with a fixed angular
velocity (in body frame and hence also in inertial space). Though this has not been further
explored, it may be that for G 6= Gc, a rotation of every agent at velocity ω0 in its own frame turns
out to be incompatible with the requirement to stay at a particular critical point of PL different
from synchronization. It could thus be that the introduction of ω0 6= 0 favors synchronization
of the rigid bodies, in place of other local minima of PL. This remark probably also applies to
general Lie group solids.

Regarding Propositions 14 and 15, the requirement [Jξ∨0 , ξ
∨
0 ] = 0 becomes (Jω0) × ω0 = 0

which implies that ω0 must be aligned with a principal axis of the rigid body. Jmax is simply the
largest principal moment of inertia, J1. The matrix norm ‖y‖ is equal to

√
3.

4.4 Energy shaping

When the interconnection graph is fixed and undirected, an elegant alternative to the consensus
tracking approach is the energy shaping approach, where PL is used in an artificial potential.
As previously mentioned, the energy shaping approach to synchronization on SO(3) has been
initialized in the work of [5, 7, 10, 11], where the basic control torque (52) was first proposed. The
goal in the present section is to obtain asymptotic synchronization with control torques satisfying
the assumptions about available information.

The energy shaping approach leads to simpler and arguably more robust control laws. More-
over, the basic control torque (52) can be computed without requiring any information about
velocities; those will only appear through the dissipation, which is designed in the present work.
As a consequence, (52) imposes no restrictions on the final motion of the synchronized agents; the
set of possible motions will only be reduced according to the symmetries of the inherent dynamics
and the dissipation term. At the end of this section, a control torque that can be implemented
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without absolute velocity measurements is presented and local convergence towards synchroniza-
tion is proven for SO(3). The most fundamental (current) limitation of energy shaping is that the
interconnection graph G must be fixed and undirected (and connected).

The control torque derived from the potential σPL ensures that the maxima of PL are stable
equilibria of the Lie group solid dynamics. However, without any further control input, they are
not asymptotically stable. Indeed, the system obtained from (48),(49) with the control τk = τ

(S)
k

defined in (52) ∀k is a conservative mechanical system with the energy function

H = Tk + σPL .

In order to obtain asymptotic stability and hence actually drive the agents towards consensus
configurations, a dissipative torque τ (D)

k must be added, such that τk = τ
(S)
k + τ

(D)
k . The energy

function H then evolves as
d
dtH =

∑

k

(ξ∨k )T (τ (D)
k )∨ . (72)

4.4.1 Dissipation in inertial space

Simply introducing dissipation on the motion of each individual agent is admissible if each agent
measures its own velocity. This was already suggested in [5]. This leads to the control torque

τ
(D)
k = −bkξk , bk > 0 (73)

for which the following can be proven.

Proposition 16: Consider a swarm of N agents exchanging their relative positions according to
a fixed undirected graph G. The control torque defined as the sum of (52) and (73), drives the
swarm towards an equilibrium set where ξk = 0 ∀k and the yk are at a critical point of PL. The
only stable equilibria are the maxima of PL.

Proof: The proof follows automatically by noting that the controlled swarm is equivalent to a
mechanical system with dissipation. Combining (72) and (73), the energy H decreases in time
according to

Ḣ = −
∑

k

bk‖ξ∨k ‖2

such that the velocities ξ∨k converge to 0. The invariant set with ξk = 0 ∀k consists of the critical
points of the potential, hence of PL. The stable equilibria are the minima of the potential, hence
the maxima of PL.

4

Proposition 16 uses a simplified control torque with respect to Propositions 12 and 14, for an
equivalent result with ξ0 = 0. In particular, no exchange of relative velocities is needed, the free
Lie group solid dynamics are not counteracted and there is no condition on the strength of the
control torques.

However, the introduction of dissipation in inertial space stabilizes the agents at rest. Though
adaptations similar to those in Section 4.3 can be imagined to stabilize a synchronized motion
at velocity ξ0, the reference to absolute velocities will always imply an explicit control on the
motion of the agents. In some practical situations, it may be unnecessary to explicitly control
the motion of the synchronized agents. The only (or primary) objective could be to synchronize
the agents, whatever their synchronized motion, and unnecessary resources would be spent to
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additionally achieve a specific motion. More importantly, it may be desirable to use a control
law that synchronizes the agents without affecting their synchronized motion, in order to couple
it with another algorithm that would control the motion of the synchronizd swarm. This can be
achieved by replacing the dissipation with respect to inertial space by “inter-agent dissipation” as
is considered in the following.

4.4.2 Dissipation in shape space

A more elegant way to introduce dissipation in the context of relative motions is through the
relative velocities. This replaces the measurement of absolute velocities ξk by relative velocities
of interconnected agents, such that the agents can implement their control torque without any
absolute information about their own state. The resulting control torque is

τk = τ
(S)
k − b

∑

jÃk

(ξk −Ady−1
k yj

ξj) (74)

with b > 0. A fundamental property of (74) is the fact that the torques Adyk
τk in inertial space

sum to zero, such that the total generalized angular momentum of the swarm
∑

k Adyk
Jξ∨k is

conserved.
The control (74) always asymptotically leads to velocity synchronization, i.e. Adyk

ξk = Adyjξj
∀k, j. This means that asymptotically, the relative positions yT

k yj in the swarm are constant. As
a consequence, the control torques τk are all constant as well. However, the control law does not
necessarily lead to attitude synchonization. A simple counterexample with just 2 rigid bodies (i.e.
Lie group solids on SO(3), see Section 4.4.3) indicates that asymptotic orientation synchronization
- even locally - requires at least an additional assumption on the relative strength of the artificial
potential with respect to the kinetic energy. The fact that such a condition is also sufficient to
ensure local convergence towards synchronization is only proven for the specific case of SO(3) in
Section 4.4.3, though it is believed that similar proofs can be made for any specific compact Lie
group. In contrast , the following property is easy to prove in general.

Proposition 17: Consider a swarm of N agents exchanging their relative positions according to a
connected, fixed undirected graph G. The control torque (74) where τ (S)

k is defined in (52), drives
the swarm towards an invariant set under (52) with synchronized velocities Adyk

ξk (and hence
fixed relative positions yT

k yj).

Proof: As for Proposition 16, consider the evolution of the energy H. From (72) it follows that

Ḣ = −b
∑

k

(ξ∨k )T
∑

jÃk

(ξ∨k AdyT
k yj

ξ∨j )

= −b
∑

k

∑

jÃk

(Adyk
ξ∨k )T (Adyk

ξ∨k −Adyjξ
∨
j )

= −b{Adξ∨}(L⊗ Im){Adξ∨} (75)

where {Adξ∨} denotes the vector containing all the Adyk
ξ∨k , L is the Laplacian of the undirected

graph G and (L ⊗ Im) denotes the Kronecker product of L with an identity matrix that has the
size of ξ∨k , such that the Laplacian L operates componentwise on the Adyk

ξ∨k . According to the
properties of the Laplacian of undirected graphs, (75) is strictly negative unless the velocities
Adyk

ξk are all equal within each connected component of G. When G is connected, this means
that all the velocities must ultimately synchronize. This implies that τ (D)

k = 0 for all k and hence
the swarm must end up in a set satisfying (48),(49) with the conservative control (52).

M
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Note that though velocity synchronization is achieved, the value taken by the common velocity
is not imposed; in fact, it does not even have to be constant and will indeed in general vary with
time. When the agents are all synchronized, the control torques τk defined by (74) all vanish;
hence any synchronized free Lie group solid motion is an equilibrium trajectory for (48),(49) with
control (74). There may however be many other combinations of relative positions and motion
that are invariant under (48),(49) with a non-zero conservative control torque (52).

Also note that the sum appearing in τ
(D)
k of (74) need not consider the same interconnection

graph G as for τ (S)
k . It is just a natural assumption in the present context.

4.4.3 Example

The energy shaping control laws are readily particularized to SO(3), recalling among others that
Adyk

ξ∨k becomes Qkωk. The main interest of the present example section is to go somewhat fur-
ther regarding convergence properties of (74) for the particular case of SO(3).

Counterexample First, the counterexample mentioned above, showing that (74) does not al-
ways lead, even locally, to position synchronization, is briefly developed. Consider 2 identical
rigid bodies A and B. Imagine them in a synchronized situation where they both have the same
orientation and rotate around e1 with angular velocity ω, where e1, e2, e3 denote the principal axes
corresponding to J1, J2, J3 respectively. This is an equilibrium situation for the 2 rigid bodies,
with τA = τB = 0. Now consider that the real situation is slightly different: with respect to
the synchronized situation, body A is tilted by an angle φ around e2 and body B is tilted by
−φ around the same axis; however, they still rotate around the axis corresponding to the initial
orientation of the synchronized e1 axes, which now makes an angle φ with their actual axes e1 A

and e1 B (see Figure 2). This situation is not an equilibrium for the free rigid bodies. Indeed,
denoting by ω the angular velocity in inertial space and by ωA and ωB the angular velocities in
body frames,

(JωA)× ωA =




J1 cosφ ‖ω‖
0

J3 sinφ ‖ω‖


×




cosφ ‖ω‖
0

sinφ ‖ω‖


 = ‖ω‖2 (J1−J3)

2




0
sin(2φ)

0




and similarly (JωB) × ωB = −‖ω‖2 (J1−J3)
2 sin(2φ)e2. Since J1 > J3, this indicates that the free

rigid body dynamics produce torques around e2 that pull the bodies A and B even further away
from the synchronized state. The control torques on A and B must still be added to this effect in
order to obtain the total behavior.

Consider that the motion described in Figure 2 is indeed stabilized, such that τ (D)
A = τ

(D)
B = 0

(since both bodies have the same angular velocity AdQk
ωk = ω). The effect of τ (S)

A = −τ (S)
B is to

pull A and B back to the synchronized situation. After a few developments, one gets

τ∨A = −τ∨B = −κ sin(2φ)e2

where κ is some positive constant. Hence if ‖ω‖2 (J1−J3)
2 = κ, the control torques exactly cancel

the torques imposed by the free rigid body dynamics and the motion of Figure 2 is an equilib-
rium. Local stability of this situation can be verified through simulations or linearization. Further
developments determine the angle φ as a function of the initial configuration of the rigid bodies,
making use of angular momentum conservation. The angle φ can be arbitrarily small, attracting
solutions that are arbitrarily close to synchronization, such that the synchronized state is not
locally asymptotically stable.
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Figure 2: Non-synchronized situation for 2 rigid bodies from which control law (74) does not
achieve synchronization if no bound is imposed on σ. The represented vectors all lie in the same
plane, except e2 A = e2 B which is perpendicular to the plane. This situation can be achieved
arbitrarily close to the synchronized state, i.e. with φ arbitrarily small.

Asymptotic synchronization result Finally, as mentioned in Section 4.4.2, a local conver-
gence result can be proven for (74) on SO(3) when a bound is imposed on the strength of the
potential with respect to the kinetic energy. The following proposition states this result.

Proposition 18: Consider a swarm of N agents exchanging their relative positions and velocities
according to a connected, fixed undirected graph G. The control torque (74) where τ (S)

k is defined
in (52), drives the swarm towards an invariant set under (52) with synchronized angular velocities
Qkωk (and hence fixed relative orientations QT

kQj). Moreover, for every set of initial angular
velocities, there exists a constant σ∗ < 0 (actually depending on N , J , G and the initial kinetic
energy T (0) only) such that when |σ| > |σ∗|, the orientations Qk of the agents locally asymptotically
synchronize.

Proof: The synchronization of the angular velocities Qkωk is simply Proposition 17. For the syn-
chronization of the orientations Qk, the proof is in two steps. First, it is shown that given a
neighborhood W of synchronization, there exist a value |σ1| and a neighborhood U of synchro-
nization such that starting in U imposes staying in W for |σ| > |σ1|. Then it is shown, using
linearization, that there exists a value |σ2| such that for |σ| > |σ2|, synchronization is a locally
unique solution of (50),(51),(52) with identical angular velocities Qkωk. Choosing W such that
this linear/local result is valid inside W then allows to conclude that solutions starting in U must
converge to synchronization for |σ| > max(|σ1|, |σ2|).

For the first part, assume that it is wanted to ensure that trace(I −QT
kQj) < ε ∀k, j and for

all time. Obviously, this will be satisfied if

1
2

∑

k

∑

jÃk

trace(I −QT
kQj) = 3E −N2PL(t) < ε

where E is the number of edges in the graph G (the factor 1
2 comes from the fact that each distance

is counted twice in the sum). Since the energy H is decreasing in time, H(t) = T (t) + σPL(t) ≤
T (0) + σPL(0) which implies that σ(PL(t) − PL(0)) ≤ T (0) − T (t) ≤ T (0). Hence if |σ| > |σ1|,
then PL(0)− PL(t) ≤ T (0)/|σ1| or

3E −N2PL(t) ≤ (3E −N2PL(0)) + N2

|σ1|T (0) .
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Choosing the initial neighborhood U of synchronization such that 3E − N2PL(0) < ε/2 and
|σ1| > 2N2

ε T (0), one obtains 3E −N2PL < ε as desired.

The second part involves much more calculations, which will not all be detailed. A central
element in the proof is the conservation of total angular momentum for the control law (74).

First denote the final common angular velocity by Qkωk = Ω ∀k and note that ‖Ω‖2 is bounded
by T (0). Indeed, denoting by MT the (conserved) total angular momentum, it is obvious that
‖Ω‖ ≤ MT

NJ3
. Further, applying the inequality (

∑
k xk)2 ≤ N

∑
k x

2
k to xk = Jωk(0), one obtains

M2
T ≤ 2NJ1T (0) such that finally

‖Ω‖2 ≤ 2J1
NJ2

3
T (0) .

Next consider the first derivative of Ω = Qkωk. One obtains

Ω̇ = −σ
N2QkJ

−1
∑

jÃk

(QT
kQj −QT

j Qk)∨ +QkJ
−1QT

k (QkJQ
T
k Ω)× Ω (76)

which must be equal ∀k. In the following, the values of (76) are compared for two agents k and
j. Remember that, staying in W , trace(I − QT

kQj) < ε ∀k, j and denote by εkj its actual value.
With several calculations, one can show that

‖QkJ
−1QT

k (QkJQ
T
k Ω)× Ω−QjJ

−1QT
j (QjJQ

T
j Ω)× Ω‖2 ≤ 16J2

1
J2
3
‖Ω‖4εkj

which implies that the same bound must hold for the difference of the first parts of (76),

σ2

N4 ‖QkJ
−1

∑

lÃk

(QT
kQl −QT

l Qk)∨ −QjJ
−1

∑

mÃj

(QT
j Qm −QT

mQj)∨‖2 .

Summing this condition over all k, j, after several calculations one obtains

2λ3
2

J2
1

(1− ε) |εkj |max ≤ 64J4
1E

J6
3

N2T (0)2

σ2
|εkj |max +O

(
(|εkj |max)3/2

)

where E is the number of edges in G, λ2 > 0 is the second-smallest eigenvalue of the Laplacian
L of G and |εkj |max denotes the maximal value of εkj among all pairs of connected agents. It is
easy to choose W (and thus U and actually σ1) such that the higher order terms represent, for
instance, less than 10 percent of the right member. In that case the condition becomes

|εkj |max ≤ 32J6
1E

0.9J6
3λ

3
2(1− ε)

N2T (0)2

σ2
|εkj |max =

σ2
2

σ2
|εkj |max . (77)

Taking σ2 > σ2
2 , (77) can only be satisfied if |εkj |max = 0 which means that all the rigid bodies

must be synchronized.

M

In the reduced state space (TSO(3))N/TSO(3) of relative orientations and relative angular ve-
locities, the statement about orientation synchronization is equivalent to local asymptotic stability
of the isolated equilibrium QT

kQj = I3, Qkωk − Qjωj = 0 ∀k, j. The absolute angular velocity
- which can not been factored out of the rigid body dynamics but is not part of the state space
of relative orientations and velocities - is then considered as an external variable inducing time-
varying dynamics. The bound |σ| > |σ∗(T (0))| for synchronization is non-uniform with respect to
the (initial) absolute angular velocity.

As previously mentioned, thanks to the absence of the absolute angular velocity in the control
torques (74), the agents, once synchronized, may still freely rotate according to any free rigid
body motion. The following Figure 3 illustrates this fact by showing a typical simulation result of
control law (74) applied to a swarm of 5 rigid bodies with random initial orientations and angular
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Figure 3: Angular velocities ωk = (ω1
k ω

2
k ω

3
k) (top) and orientation error (bottom) of five agents

applying control law (74). The orientation error is defined as the maximal Euler rotation angle
between any couple of agents. The interconnection graph is a ring. Initial orientations and
velocities are randomly chosen.

velocities. The interconnection graph is a ring (i.e. 1 is connected to 5 and 2, 2 is connected to
1 and 3,...). On the first graph, one observes the asymptotic synchronization of angular velocities
and their ongoing periodic variation after synchronization is reached. The second graph displays
the maximal orientation error - defined as the Euler rotation angle - between any two pairs of rigid
bodies in the swarm. The convergence of this error towards zero indicates that the orientations
also asymptotically synchronize.
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Finale

Recap - Overview of the contributions revisited

The present work makes several main contributions.

The goal of the first part (Section 3) was to provide extended definitions of the mean position
of N points and of consensus configurations for N points evolving on a connected compact Lie
group, or more generally a connected compact homogeneous manifold. Simple integrator models
are assumed for the agents in order to design control algorithms that drive the swarm towards
these configurations under constrained communication interconnections and without the use of
any external reference.

First, the induced arithmetic mean of N points is defined on an embedded connected compact
homogeneous manifold M; though it differs from the traditional Karcher mean, this mean has
a clear geometric meaning with the advantage of being easily computable - in fact, analytical
solutions are presented for SO(n) and Grass(p, n).

Secondly, an extended definition of consensus is presented on these manifolds, which is directly
linked to the induced arithmetic mean. In particular, the notion of balancing introduced in [13]
for the circle is extended to CC homogeneous manifolds.

Thirdly, an optimization setting is developed for the consensus problem and related distributed
consensus algorithms are designed for N simple integrator agents moving on a CC homogeneous
manifold. Gradient algorithms for fixed undirected interconnection graphs are first considered,
whose only stable equilibria are consensus and anti-consensus configurations under a specific as-
sumption on the manifold. When the interconnections are allowed to be directed and/or to vary,
the convergence properties of the same algorithms are weakened. Consensus for the equally-
weighted complete graph Gc is equivalent to synchronization of the swarm. Likewise, it appears
that anti-consensus simulations for Gc always converge to balancing of the swarm (when N is large
enough), even though that property could not be proven. In a second step, the algorithms are
modified by incorporating for each agent an estimator variable for the centroid. In this setting,
convergence to the (anti-)consensus states of Gc can be established theoretically for time-varying
and directed interconnection graphs. The problem of meaningful communication of the estimators
between agents seems to restrict these last results to CC Lie groups.

The goal of the second part was to explore the issues arising when synchronization algorithms
on Lie groups are designed at a dynamical level with limited inter-agent communications and
relative position and velocity measurements only. However, in contrast with the simple integrator
description of Section 3 and ([12, 14, 15],...), the Lie group solid mechanics cannot be formulated
in shape entities only, because they do not retain full symmetry with respect to any synchronized
motion of the agents in state space ([5, 64]). This poses some interesting questions for autonomous
synchronization of mechanical systems on Lie groups.

For fixed undirected interconnection graphs, the energy shaping approach can be applied ([7, 10,
11]). The main issue here is to design artificial dissipation without referring to absolute velocities.
Though control laws could be designed to ensure convergence to an arbitrary coordinated motion
for Lie groups solids, the achievement of synchronization seems more difficult. The present work
only provides a local result for G = SO(3). Another advantage of the energy shaping approach,
even when absolute velocities are used, is that it avoids to explicitly counter the free rigid body
dynamics as is done with the consensus tracking approach.

When the interconnection graphs are directed and/or varying, the energy shaping approach
of the present work cannot be applied and a consensus tracking ([6, 49, 50, 51, 42]) approach is
used. In this approach, the consensus algorithms of Section 3 are used in order to define desired
trajectories, which are then tracked by the individual mechanical agents. Many tracking con-
trollers can be used in place of the theoretically simple ones considered in Section 4.3 and the real
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control performance depends on the choice of the tracking controller. However, all of them require
each individual to know its own absolute velocity. It may be argued that this is not a problem
for autonomy, since a (generalized) gyroscopic sensor should be able to provide this information;
however, the presence of the absolute velocity in the control laws biases the swarm’s behavior such
that only specific synchronized motions can be easily stabilized.

Practical examples on SO(n) and Grass(p, n) illustrate the validity of the results and provide
some geometric insight. In [1], the example treatment of Section 3 is further particularized to
Grass(1, 2) and SO(2), which are isometric to the circle S1, in order to observe their strict equiva-
lence with existing models and results for S1 (most significantly [13],[14]). This draws a link from
the present discussion to the wide literature about synchronization and balancing on the circle.

Conclusions

The goal of the present work was to explore some issues arising in the study of coordination
algorithms, with limited inter-agent communications and for various dynamical models, on non-
Euclidean manifolds. Due to the strong role played by symmetry in the synchronization problem,
Lie groups were considered a good starting point. It appears that many results in the present
work strongly rely on the fact that the Lie groups are compact. Therefore a major issue for future
work will be to consider non-compact Lie groups.

Anyway, already on compact Lie groups, many specific problems related to the non-Euclidean
character of the state space have been highlighted. Though many paths towards their solution
have been proposed, it would be unrealistic to believe that this first study covers most of them.
Therefore the main conclusion of the present work is that consensus and coordination on Lie
groups is fundamentally different from coordination on vector spaces. As such, it clearly deserves
further research, whatever large the literature about consensus and coordination on vector spaces
may be.

Regarding applications, it appears that many practical situations involve problems related to
multi-agent systems evolving on Lie groups or homogeneous manifolds. The consensus and coor-
dination approach, as well as its formulation as an optimization problem, seems to be a promising
tool for the study of these real-world problems. In particular, it is robust to different intercon-
nections among the agents and leaves sufficient flexibility for practical implementations (choice of
parameters, low-level controllers or additional control loops).

Perspectives for future work

Since the present report is written in the middle of ongoing research, it is important to outline
several directions that can be considered in order to explore multi-agent systems and coordination
in the continuity of the presented results.

Taking a rather focused viewpoint, a few developments close to the present results can be
mentioned.

First, it would be nice to try to combine the energy shaping control of Section 4.4 with estimator
variables as in Section 4.3. This could potentially achieve global position synchronization for
directed and time-varying interconnection graphs, using only relative velocities and maybe simpler
algorithms than in Section 4.3.
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Another extension of the work about mechanical systems on Lie groups would be to consider
more realistic settings for the control of the agents: considering actual actuators (like reaction
wheels or magneto-torques on a spacecraft in SO(3)) and their dynamics, introducing external
forces and realistic disturbances,... In such a framework, questions regarding efficiency in terms of
actual performance and cost could be addressed. Additional robustness questions (what happens
if the agents have slightly different mechanical properties?) and practical constraints (bounds on
achievable controls, fuel balancing among the agents,...) are other issues which would become
meaningful in this setting. At that point, it may become relevant to consider in more detail alter-
native tracking algorithms to those of Section 4.3.

Concerning the first part of the work (definition of consensus and first-order algorithms), the
picture seems rather complete. Minor improvements may deal with a more detailed characteri-
zation of consensus, anti-consensus and balancing configurations on specific manifolds, like what
has been done on the circle by the authors of [14].

From a broader viewpoint, it appears that much research work has to be done about the
study of coordination on Lie groups.

Though the consensus and anti-consensus configurations described in Section 3 appear to be
related to somehow “grouping” and “distributing” a swarm of agents on a homogeneous manifold,
the link to actual applications is not fully clarified yet. It is planned to try to establish a link
between the consensus algorithms of Section 3 and the classical problems involving multiple agents
that are mentioned in Section 1, like packing and clustering tasks. It is hoped that this may provide
useful new insights about the solution of these important problems.

Related to the previous point, but maybe closer to motion coordination, it is certainly inter-
esting to look for a method to stabilize some specific isolated configuration of the agents through
the use of more complex cost functions instead of PL alone. One idea, which could be explored
in a near future, would be to combine a set of cost functions similar to PL but involving different
powers of the relative positions y−1

k yj ; this idea comes from [13] where it is successfully applied
on the circle.

Going further towards coordinated motion control, it seems absolutely important to generalize
the present results to non-compact Lie groups. Indeed, the work on SE(2) and SE(3) presented
in [13, 14] and [12] respectively points towards very rewarding results in this direction. Instead of
aiming at specific relative positions of the agents, it seems interesting to consider as a primary goal
to design control laws such that the relative positions of the agents remain asymptotically constant
- at any value - during the motion of the swarm. This situation is similar to the one described
in Proposition 17 of Section 4. Once this is achieved, it is further possible to assign a specific
coordinated motion to the swarm (like in 3-dimensional space for instance: parallel translation,
rotation on circular paths or helicoidal motion). The definition and stabilization of qualitatively
different motions on Lie groups is also part of current research, see also [77, 22].

The previous point becomes even more interesting when considering underactuated or nonholo-
nomic agents. It seems that the combined constraints on the dynamics and for the achievement of
a relative equilibrium strongly limit the possible combinations of relative positions of the agents
and specific coordinated motion. A clear characterization of this interplay would only be a first
step towards the design of control laws in this framework.

The ultimate goal of this research would be to provide a general methodology for the design
of distributed control laws that asymptotically stabilize specific coordinated motions associated
to general or specific relative equilbria, like in [13, 14] and [12], for possibly underactuated or
nonholonomic systems that evolve on general non-compact Lie groups.
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