
Supervised Learning for Sequential and Uncertain
Decision Making Problems

Application to Short-Term Electric Power Generation Scheduling

Thesis by

Bertrand Cornélusse

Université de Liège
Faculté des sciences appliquées

October 2010

Contents

Résumé v

Abstract vii

Acknowledgements ix

Foreword xi

1 General introduction 1
1.1 Abstract view of the proposed approach 2

1.1.1 Families of similar optimization problems 2
1.1.2 Generalizing solutions by supervised learning 3
1.1.3 Combining simulation, optimization, and learning 4
1.1.4 Overall motivations of the research theme 4
1.1.5 Methodological approach 6

1.2 Background in dynamic optimization under uncertainty 7
1.2.1 Adopting a deterministic view of the environment 7
1.2.2 Taking into account environment uncertainty 9
1.2.3 State-of-the-art in solution methods 14
1.2.4 Summary . 16

1.3 Background in machine learning 16
1.3.1 Supervised learning . 18
1.3.2 Reinforcement learning 28

1.4 Illustrative example: optimally driving a car 30
1.4.1 Problem setting . 30
1.4.2 Learning and optimizing the driver’s strategy 31

1.5 Thesis content and contributions 33
1.5.1 Part I – Short-term electricity generation scheduling and

recourse policies computation 33
1.5.2 Part II – Prior knowledge in supervised learning algorithms 35

I Short-term electricity generation scheduling and recourse policies
computation 37

2 Day-ahead and intra-day electricity generation scheduling 39
2.1 Partition of the generation scheduling problem 39

i

ii Contents

2.2 Day-ahead electric power generation scheduling 41
2.2.1 Automatic balancing of the load 42
2.2.2 Thermal generation units 43
2.2.3 Hydroelectric valleys . 44
2.2.4 Targeted performance . 45
2.2.5 Deterministic optimization model 46

2.3 Intra-day adjustment of the generation schedule 47
2.3.1 Real time exploitation . 47
2.3.2 Deterministic receding horizon optimization 49
2.3.3 Example of scenario-based stochastic programming formu-

lation . 52
2.3.4 Literature survey on the incorporation of uncertainty in the

generation scheduling problem 53
2.4 Motivation of a simulation based supervised learning approach . . 56

3 SL of recourse policies for intra-day generation rescheduling 59
3.1 Overview of the proposed approach 59
3.2 Generation of perturbed scenarios 62
3.3 Computation of the adjustments to the perturbed scenarios 62

3.3.1 Simulation of the ancillary services 63
3.3.2 Re-optimization of the day-ahead schedule 63
3.3.3 Limitation on the number of adjustments per recourse . . 65
3.3.4 Remarks . 65

3.4 Supervised learning application 66
3.4.1 Choice of the input space X 68
3.4.2 Choice of the output space Y and induced post-processing 68
3.4.3 Decomposition or reformulation of the learning problem . . 71

3.5 Exploitation and validation . 72
3.5.1 Online exploitation . 72
3.5.2 Offline validation of a recourse strategy 73

4 Experiments 75
4.1 Test system . 75

4.1.1 Composition of the generation system 75
4.1.2 Example of generation schedule 76

4.2 Generation of training and validation scenarios 80
4.2.1 Generation of perturbed demand curves 80
4.2.2 Generation of the reference scenario, a sample of perturba-

tions, and their adjusted generation schedule 83
4.2.3 Discussion . 84

4.3 Computation of the adjustments to the reference schedule 85
4.3.1 No limitation on the number of adjustments 85
4.3.2 Limitation on the number of adjustments 87

4.4 Predicting power generation levels 90
4.4.1 Learning the recourse policy 92
4.4.2 Importance of variables 99
4.4.3 Obtaining feasible adjustments 99
4.4.4 Overall adjustment costs 105

Contents iii

4.5 Predicting the subset of thermal generation units to adjust 108
4.5.1 Solving the learning problem 109
4.5.2 Solving the simplified intra-day scheduling problem 111

4.6 Summary . 118

5 Conclusion of Part I 121
5.1 Summary . 121
5.2 Machine learning problem formulations 123

5.2.1 Comparison of the two evaluated formulations 123
5.2.2 Related work . 125
5.2.3 Further work . 126

5.3 Relation with two-stage stochastic programming 127
5.3.1 Related work . 128
5.3.2 Further work . 128

5.4 Robustness to outliers . 129
5.4.1 Further work . 129

5.5 Actively selecting the scenarios to simulate 129
5.5.1 Further work . 130

5.6 Evaluating a strategy in the face of uncertainty 130
5.6.1 Further work . 131

5.7 Multiple recourse opportunities 132
5.8 Broader application contexts . 132

II Prior knowledge in SL algorithms 133

6 Preliminary remarks 135

7 Regularizing tree-based SL models using non-standard information 137
7.1 Motivation . 137
7.2 Regularizing an ensemble of regression trees 138

7.2.1 Nature of the problem . 138
7.2.2 Tree-based ensemble methods 139
7.2.3 Regularization of a tree ensemble model 141
7.2.4 Problem dimensions and computational complexity 142

7.3 Related work . 142

8 Applications and experimental results 145
8.1 Censored data . 145
8.2 Manifold regularization for semi supervised learning 146
8.3 Other types of prior knowledge and objectives 148

9 Conclusion of Part II 151

10 General conclusion 153
10.1 Summary . 153
10.2 Further work . 154

Appendices 157

A Supervised learning algorithms 159
A.1 Top-down induction of a regression tree 159
A.2 The Extra-Trees supervised learning method 161
A.3 Support Vector Regression . 162

B Detailed optimization formulations for the problems of Part I 165
B.1 Generation scheduling problem 165

B.1.1 Model of the thermal generation units 165
B.1.2 Model of the hydroelectric valleys 169
B.1.3 Coupling constraints . 171
B.1.4 Objective function . 173

B.2 Generation rescheduling problem 173
B.2.1 Before the recourse period 173
B.2.2 During the recourse period 174

B.3 Post-processing . 177
B.3.1 From predicted generation levels to feasible adjustments . 177
B.3.2 From adjustment indicators to feasible adjustments 178

C Related optimization algorithms 179
C.1 Mixed Integer Linear Programming 179

C.1.1 Lagrangian relaxation . 179
C.1.2 Branch-and-cut . 180

References 187

Résumé

Cette thï¿ 1
2 se a pour origine une classe de problèmes pratiques de prise de déci-

sions séquentielles dans le contexte de la gestion de la production d’électricité
sous incertitudes. Ces problèmes sont généralement traités comme des prob-
lèmes d’optimisation déterministes résolus périodiquement (horizon glissant)
et/ou comme des problèmes de programmation stochastique. La programma-
tion stochastique permet de déterminer des décisions optimales compte tenu des
évolutions possibles de l’environnement du parc de production (de diffï¿ 1

2 rents
scï¿ 1

2narios) et d’ajuster ces décisions – s’il existe des possibilités de recours –
après avoir collecté de l’information sur l’évolution réelle de l’environnement
du système.

Bien que des techniques de décomposition existent, la programmation sto-
chastique n’est actuellement pas réellement exploitable dans le cadre de la pro-
duction d’électricité journalière ou infra journalière et, d’autre part, ne permet
pas d’obtenir des stratégies de recours explicites. Cela rend également difficile
l’ï¿ 1

2valuation de la valeur de cette approche sur des scénarios indépendants de
ceux utilisï¿ 1

2 s pour l’optimisation.
Nous proposons une méthodologie fondée sur l’apprentissage supervisé afin

de dï¿ 1
2 terminer une stratégie de recours explicite pour un plan de production

donnï¿ 1
2 , sur base d’ajustements optimaux du parc de production calculï¿ 1

2 s
pour une série de conditions perturbées de l’environnement du système. Cette
méthode peut être considï¿ 1

2 rï¿
1
2e comme complémentaire à une approche par

programmation stochastique. Dans le contexte d’une optimisation à horizon
glissant, notre méthode permet de rï¿ 1

2aliser une partie significative des calculs
en avance, tout en offrant la possibilité d’infï¿ 1

2 rer rapidement des décisions
d’ajustement durant l’exploitation du parc de production. Notre mï¿ 1

2 thode
peut facilement ï¿ 1

2 tre validï¿ 1
2e hors ligne sur un ensemble de scénarios in-

dépendants. En outre, comme la stratégie de recours généralise les informa-
tions contenues dans les décisions relatives à des instances perturbées du prob-
lème d’optimisation du plan de production, elle fournit une certaine robustesse
par rapport à l’incertitude sur les paramètres du problème. À cet égard, nous
bénéficions des propriétés de régularité de certains algorithmes d’apprentissage
supervisé.

Sur une instance réaliste du problème d’ajustement de la production d’élec-
tricité en mode infra journalier, nous montrons comment générer des scénarios
de perturbations, comment calculer les ajustement optimaux, comment for-
muler le problème d’apprentissage supervisé pour obtenir une stratégie de re-
cours, comment restaurer la faisabilité des ajustements prédits et enfin com-

v

vi Résumé

ment évaluer la stratégie de recours sur un ensemble de scénarios indépendants.
Nous analysons diverses formulations du problï¿ 1

2me d’apprentissage, à savoir
soit le problï¿ 1

2me consistant ï¿ 1
2 prï¿ 1

2dire l’ajustement détaillé de toutes les
unités de production, soit le problï¿ 1

2me consistant ï¿ 1
2 prédire des variables

qualitatives qui permettent d’accélérer la procédure de calcul d’ajustement du
plan de production en facilitant le problème d’optimisation sous-jacent.

Notre approche est intrinsèquement adaptable ï¿ 1
2 des problèmes de ges-

tion de production de grande échelle, et peut en principe traiter toutes sortes
d’incertitudes et de contraintes d’ordre pratique. Nos résultats montrent la
faisabilité de notre mï¿ 1

2 thode et sont également très prometteurs en termes
d’efficacité économique des stratégies d’ajustement. Notre approche peut égale-
ment fournir des informations interprétables sous la forme de mesures d’influence
de différents paramètres sur les stratégies de d’ajustement.

Les solutions du problème d’optimisation de la production doivent satis-
faire des contraintes de diverses natures. Bien que ces contraintes ne soient
pas prises en compte par les algorithmes d’apprentissage classiques, un algo-
rithme d’apprentissage qui ignore ces contraintes parvient tout de mï¿ 1

2me
à modï¿ 1

2 liser la sensibilité de la solution aux paramètres du problème de
maniï¿ 1

2 re satisfaisante. Cela a néanmoins attirï¿ 1
2 notre attention sur un aspect

particulier de la relation entre les algorithmes d’apprentissage et les algorithmes
d’optimisation. Lorsqu’on applique un algorithme d’apprentissage supervisï¿ 1

2
qui cherche dans un espace d’hypothèses ï¿ 1

2 partir de données qui satisfont un
ensemble connu de contraintes, peut-on garantir que l’hypothèse sélectionnï¿ 1

2e
prï¿ 1

2dira des sorties qui satisfont les contraintes ? Pouvons-nous au moins prof-
iter de notre connaissance des contraintes afin d’éliminer certaines hypothèses
durant l’apprentissage, et par consï¿ 1

2quent espï¿ 1
2 rer que l’hypothèse choisie

a une meilleure capacitï¿ 1
2 en généralisation ?

Dans la deuxième partie de cette thèse, oï¿ 1
2 nous tentons de rï¿ 1

2pondre
ï¿ 1

2 ces questions, nous proposons une extension générique des méthodes ï¿ 1
2

base d’ensembles d’arbres de rï¿ 1
2gression qui permet d’incorporer des données

incomplètes, mais aussi des connaissances a priori sur le problème. Cette ap-
proche consiste ï¿1

2 rï¿ 1
2 soudre un problème d’optimisation convexe qui a pour

but de régulariser un ensemble d’arbres en ajustant les étiquettes assignï¿ 1
2es

aux feuilles de l’ensemble d’arbres de régression, et/ou les sorties des observa-
tions de l’échantillon d’apprentissage. Notre formulation permet d’incorporer
des informations supplémentaires telles que de l’information partielle sur les
étiquettes de sortie (ce qui arrive en pratique quand les données sont censurées
ou en apprentissage semi-supervisé), des observations dont la prï¿ 1

2cision est
variable, ou encore un a priori fort sur la structure du modèle recherché.

En plus d’améliorer la précision en exploitant des informations qui ne peu-
vent ï¿ 1

2 tre exploitï¿ 1
2es par les mï¿ 1

2 thodes classiques, l’approche proposée
peut être utilisée pour produire des modèles qui, naturellement, se confor-
ment mieux aux contraintes de faisabilité devant être satisfaites dans de nom-
breux problï¿ 1

2mes de prise de décisions, spécialement dans des contextes oï¿ 1
2

l’espace de sortie est de grande dimension et/ou structuré par des invariances,
des symétries et d’autres types de contraintes.

Abstract

Our work is driven by a class of practical problems of sequential decision making
in the context of electric power generation under uncertainties. These problems
are usually treated as receding horizon deterministic optimization problems,
and/or as scenario-based stochastic programs. Stochastic programming allows
to compute a first stage decision that is hedged against the possible futures and
– if a possibility of recourse exists – this decision can then be particularized to
possible future scenarios thanks to the information gathered until the recourse
opportunity.

Although many decomposition techniques exist, stochastic programming is
currently not tractable in the context of day-ahead electric power generation
and furthermore does not provide an explicit recourse strategy. The latter ob-
servation also makes this approach cumbersome when one wants to evaluate
its value on independent scenarios.

We propose a supervised learning methodology to learn an explicit recourse
strategy for a given generation schedule, from optimal adjustments of the sys-
tem under simulated perturbed conditions. This methodology may thus be
complementary to a stochastic programming based approach. With respect to
a receding horizon optimization, it has the advantages of transferring the heavy
computation offline, while providing the ability to quickly infer decisions during
online exploitation of the generation system. Furthermore the learned strategy
can be validated offline on an independent set of scenarios. Furthermore as the
recourse strategy generalizes the information contained in decision sequences
relative to perturbed instances of the generation scheduling problem, it pro-
vides some robustness with respect to uncertainty on problem parameters. In
this respect, We benefit of the regularity properties of some supervised learning
algorithms.

On a realistic instance of the intra-day electricity generation rescheduling
problem, we explain how to generate disturbance scenarios, how to compute
adjusted schedules, how to formulate the supervised learning problem to ob-
tain a recourse strategy, how to restore feasibility of the predicted adjustments
and how to evaluate the recourse strategy on independent scenarios. We an-
alyze different settings, namely either to predict the detailed adjustment of
all the generation units, or to predict more qualitative variables that allow to
speed up the adjustment computation procedure by facilitating the “classical”
optimization problem.

Our approach is intrinsically scalable to large-scale generation management
problems, and may in principle handle all kinds of uncertainties and practical

vii

viii Abstract

constraints. Our results show the feasibility of the approach and are also very
promising in terms of economic efficiency of the resulting strategies. Our ap-
proach may also provide interpretable information in the form of measures of
influence of different parameters on the decision strategies.

The solutions of the optimization problem of generation (re)scheduling must
satisfy many constraints. However, a classical learning algorithm that is (by na-
ture) unaware of the constraints the data is subject to may indeed successfully
capture the sensitivity of the solution to the model parameters. This has nev-
ertheless raised our attention on one particular aspect of the relation between
machine learning algorithms and optimization algorithms. When we apply a
supervised learning algorithm to search in a hypothesis space based on data
that satisfies a known set of constraints, can we guarantee that the hypothe-
sis that we select will make predictions that satisfy the constraints? Can we
at least benefit from our knowledge of the constraints to eliminate some hy-
potheses while learning and thus hope that the selected hypothesis has a better
generalization error?

In the second part of this thesis, where we try to answer these questions,
we propose a generic extension of tree-based ensemble methods that allows
incorporating incomplete data but also prior knowledge about the problem. The
framework is based on a convex optimization problem allowing to regularize a
tree-based ensemble model by adjusting either (or both) the labels attached to
the leaves of an ensemble of regression trees or the outputs of the observations
of the training sample. It allows to incorporate weak additional information in
the form of partial information about output labels (like in censored data or
semi-supervised learning) or – more generally – to cope with observations of
varying degree of precision, or strong priors in the form of structural knowledge
about the sought model.

In addition to enhancing the precision by exploiting information that cannot
be used by classical supervised learning algorithms, the proposed approach may
be used to produce models which naturally comply with feasibility constraints
that must be satisfied in many practical decision making problems, especially
in contexts where the output space is of high-dimension and/or structured by
invariances, symmetries and other kinds of constraints.

Acknowledgements

First of all I would like to express my gratitude to my advisor Prof. Louis
Wehenkel. He was at the origin of this research, identified my wish to work on
an applied problem and connected me with the research environment of EDF.
He transmitted me the taste for research, especially in machine learning and
optimization and encouraged me all along the past four years. He impressed me
by the quality of his guidance and his reactivity despite his very busy agenda.

I sincerely thank the members of the jury for devoting themselves to the
reading of this manuscript and to all the related administrative duties.

I am grateful to Damien Ernst, Pierre Geurts (also for the source code of
the Extra-Trees) and Quentin Louveaux for their valuable advices on various
aspects of my research, as well as the members of the OSIRIS team from EDF
and especially to (in chronological order) Yannick Jacquemart, Patrick Pruvot,
Gérald Vignal, Jérome Quenu, Vincent Grellier, Céline Le Goazigo, Jérome
Collet and Ala Ben Abbes for welcoming me for several meetings and stays,
for the interesting discussions we had about the various topics of electricity
generation scheduling and for the material they provided me.

During these four years I was fortunate to be financed by the Belgian Fund
for Research in Industry and Agriculture (FRIA) and to be hosted by the
University of Liï¿ 1

2ge. I also thank EDF for their financial support during my
stays in Paris.

I would like to thank my colleagues and friends of the System and Modeling
research unit and more broadly of the Montefiore Institute for their support
and for the interesting discussions we had together during the last four years:
especially Florence Belmudes, Arnaud Declercq, Boris Defourny, Renaud Detry,
Raphael Fonteneau, Marie-Berthe Lecomte, Thibaut Libert, Laurent Poirrier,
Diane Zander and all the others that I did not mention.

Finally I thank all my family, especially my father who has given me the
taste of science and engineering and persuaded me to accomplish a Ph.D., my
mother for the emotional support and of course my everyday and invaluable
support, Laurie, to whom I dedicate this work.

ix

Foreword

This thesis is the result of a collaboration with Électricité de France (EDF)
for studying the application of machine learning to the electricity generation
scheduling problem. We have voluntarily focused on one particular aspect of
the problem that EDF is confronted to, namely the intra-day generation re-
scheduling problem, although we believe that machine learning may be of more
general interest. In general the family of problems we are interested in are
treated using independently the tools of statistics and mathematical program-
ming. Our goal is to use machine learning tools and concepts to bring together
these domains by somewhat merging the analysis of uncertainties impacting
the problem and the process of finding near optimal solutions to the prob-
lem. Another attempt to bridge these domains from another perspective comes
from the field of stochastic programming. The conceptual differences with our
approach will be explained in this thesis.

This collaboration extends a long-standing relationship between the Uni-
versity of Liï¿ 1

2ge and EDF. My advisor Prof. Louis Wehenkel has devoted his
earlier work to the application of Machine learning to dynamic security assess-
ment of electrical power systems. The present thesis is also at the confluence of
the topics treated by other researchers of the Systems and Modeling research
unit of the University of Liï¿ 1

2ge, especially Pierre Geurts who has developed
and analyzed the Extra-Trees supervised learning algorithm, Damien Ernst
who is working on optimal control problems from the reinforcement learning
point of view and Quentin Louveaux whose research topic is mixed-integer
programming, i.e. the domain of mathematical programming that is currently
used to solve the family of problems we are focusing on in this thesis.

xi

Chapter 1

General introduction

Our work is driven by a class of practical problems of sequential decision making
in the context of electric power generation under uncertainties. As we will see,
these problems may be formulated either in a probabilistic setting, in which
case they typically lead to an objective of minimizing an expected cost over
a distribution of scenarios, or in a robust framework, where they lead to an
objective of minimizing the maximal cost and/or ensuring feasibility over a set
of scenarios.

In practice, these problems are natively very-high-dimensional and non-
convex; while their deterministic counterpart may often be satisfactorily for-
mulated as a large-scale mixed integer linear programming problem (MILP)
and solved with existing state-of-the-art solvers, no satisfactory direct opti-
mization strategy for solving the uncertain (robust or stochastic) counterparts
of such problems is yet available from the shelf.

Our research goal was to investigate the possible uses of combinations of
simulation, optimization, and machine learning, in order to help providing bet-
ter solutions for such problems. Specifically, we have considered the use of
tree-based supervised learning in order to offline determine decision strategies
for online use in intra-day rescheduling of electric power generation, to help
operators to react to deviations from planned conditions.

Our empirical investigations, reported in Part I of this thesis, show on a
realistic test system that it is indeed possible to exploit supervised learning in
this specific context in a practically useful way, by

• using Monte-Carlo simulations, in order to generate sets of scenarios rep-
resenting the possible deviations of the next day’s operating conditions
with respect to the nominal conditions,

• computing for each scenario optimal intra-day adjustments of the nominal
generation plan, by using state-of-the-art optimization solvers,

• applying machine learning algorithms based on ensembles of regression
trees, in order to extract intra-day recourse strategies from the simulated
datasets, and combining them with simple post-processing algorithms in
order to restore feasibility.

1

2 1 General introduction

While our work was mainly driven by this specific problem, we believe
that our contributions are of general interest and could be applied in other
contexts of planning under uncertainty and/or solving complex optimization
problems. We therefore start in the first section of this chapter by describing
in an abstract way the types of problems addressed, the proposed solution
strategy, its open questions and its overall motivations. Then we will outline
the main mathematical formulations of sequential decision making problems
under uncertainty and introduce in an intuitive way some important ideas
from the machine learning domain, in order to settle notations and provide the
required background for understanding the rest of this thesis. We proceed by
describing some practical examples of problems that fall in the general class of
problems addressed by our work and conclude this chapter by explaining the
organization of the rest of the manuscript and by stating our contributions.

1.1 Abstract view of the proposed approach

1.1.1 Families of similar optimization problems

We consider families of optimization problems, parameterized by a vector p ∈
P ⊂ Rnp of parameters, with a decision space U(p) ⊂ Rnu , a performance
criterion f(u, p) : Rnu × Rnp → R, and some inequality constraints g(u, p) ≥ 0
(g is also a vector, say of dimension ng). In a given family, the optimization
problems have to be repeatedly solved, by repeatedly computing for different
values of p ∈ P an optimal decision

u∗(p) ∈ arg{u∈U(p):g(u,p)≥0}min f(u, p).

We assume that for a given family of optimization problems its descrip-
tion is completely known (meaning that functions f , g, and spaces P and
U(p) are known) and that we dispose of an optimization algorithm (denot-
ing {P,U(p), f, g} by z) Azo(p) able to compute for each problem instance p a
“point-wise” solution u∗(p) or at least a “sufficiently accurate” approximation
u∗(p) + ε (approximation that we will denote by ũ(p) in the sequel).

With respect to the standard way of looking at optimization problems,
the distinguishing feature of our setting is that instead of considering a single
instance of an optimization problem, we consider solving a family of similar
problems parameterized by a vector p residing in an a priori specified subset
of parameter values P . By doing so, we hope to be able to exploit similarities
of solutions of different problem instances in a same family so as to improve
overall solution quality and/or speed of computation.

Example 1.
In day-ahead electric power system generation planning, every day, an optimization
problem is solved for deciding on the operation schedules of the different (say ngen)
plants during the next day (say every 30 minutes); together these form the decision
variable u (in practice nu = 48×ngen, i.e. in the order of a few thousand components
for a large company such as EDF), while p in this case would represent a vector
describing the forecasted system capacity requirements and generator availabilities
specified for each time step (say np = (ngen +3)×48, or even more). The performance

1.1 Abstract view of the proposed approach 3

criterion f would here be the cost of operation integrated over the next day, and the
hard constraints g would reflect the technical constraints such as minimum down/up-
time, ramping constraints, emission constraints, demand covering constraints, etc.

Example 2.
In intra-day operation of a power generation company, a set of such problem families
need to be solved, one for each recourse opportunity, allowing to adapt the schedule
to the information collected during operation (p would then denote deviations from
forecasts re-estimated at the time of recourse) while u would become the vector of
generation schedule adjustments over the remaining time horizon. Problem complex-
ity, performance criteria, and hard constraints would essentially be similar to those
used in day-ahead planning.

Example 3.
In medium-term (seasonal, or yearly) planning of electric power generation, a set of
such problems would have to be solved every week, month, or seasonally, to determine
optimal strategies for purchasing fuel, shutting down plants for maintenance, exploit-
ing hydroelectric reservoirs, establishing forward contracts etc, over the next horizon.
In this context, the optimization horizon would typically span over several weeks or
months, with a predominantly economic criterion. Problem instances p would need
to take into account the stochasticity of the environment, and thus each problem in-
stance p would be described for example by a “tree” of possible future realizations of
power demand and plant availabilities, water in-flows, temperatures, prices, etc., over
the optimization horizon, while decision variables would correspond to the planned
daily operation of the generators over the optimization horizon.

Each one of these three example problems corresponds to a different setting,
but each one of them needs to be solved repeatedly in practice, for different
values of the parameter, say every day, every 30 minutes, or every week or
month. Here, the need for re-solving different problem instances is induced
by the fact that, as time proceeds, additional information becomes available
that can be fruitfully exploited in order to revise decisions that could not be
anticipated for correctly. As a matter of fact, the complexity of these problems is
such that with bounded computational resources it is not possible to determine
once and for all a ‘no-regret’ decision strategy. Thus, computational resources
are used in a time-receding fashion in a race between optimization and physical
information flow. Notice that there exist many other classes of problems where
repeated solutions are necessary, such as for instance problems where one wants
to assess the influence of parameters on decisions by solving different problem
instances for different values of parameters. In this case, one disposes as well
of a specific “computing budget”.

1.1.2 Generalizing solutions by supervised learning

Assuming that we have already solved a number N of problems using Azo
(for fixed z, but for different values of p), which has yielded a dataset D =
{(pi, ũi)}Ni=1 of problem-solution pairs, it is possible to exploit supervised learn-
ing (SL) in order to determine an approximation of Azo.

Generically, supervised learning (in batch mode) operates in the follow-
ing way: given an input space X , an output space Y, a sample (dataset)

4 1 General introduction

{(xi, yi)}Ni=1, a hypothesis space of input-output functions H ⊂ YX , and a
loss-function ` ∈ R(Y×Y)

+ , it determines an input-output function (a hypothe-
sis)

hD ∈ arg min
h∈H

N∑
i=1

`(yi, h(xi)),

or at least a good approximation of it.
We will denote by AHl ∈ H(X×Y)∗ such a supervised learning algorithm

mapping any dataset D of any size N over (X × Y) on an element of H.
Here we propose to apply supervised learning to datasets provided by opti-

mization algorithms repeatedly applied to different instances of a same family
of optimization problems, by substituting xi with pi and yi with ũi and select-
ing an appropriate hypothesis space and search strategy.

Under suitable conditions, namely, if the dataset D is representative enough
of the set of problem instances, if the optimization algorithm Azo(p) is accurate
enough, and if the supervised learning algorithm AHl is well adapted to the
target strategy u∗(·) and dataset size, this approach may lead to good quality
approximations hD(·) of u∗(·).

1.1.3 Combining simulation, optimization, and learning

We consider situations where the generation of the dataset D is part of the
overall solution. The design of a solution strategy is thus based on three main
choices, namely

1. Simulation: how to generate problem instances {p1, . . . , pN}.

2. Optimization: how to compute the solutions {ũ1, . . . , ũN} to yield D.

3. Supervised learning: choosing H and its search strategy to get hD.

The different design choices for these three steps should ideally be adapted to
the practical problem of concern, so as to yield the best possible solution given
the available computing budget.

In order to verify the quality of the computed approximations it is also
necessary to develop a suitable validation strategy, so as to be able to compare
in a sound way alternative solutions produced by alternative approaches. We
will see in the subsequent chapters that the question of validation, already well
studied in the context of supervised learning, needs further consideration in
the context of our “learning to optimize” framework.

1.1.4 Overall motivations of the research theme

The interests of combining a supervised learning based approach with opti-
mization are manifold. While, we will review them in the concluding chapter
of this thesis, we state them now in order to clarify our motivations.

1.1 Abstract view of the proposed approach 5

Speed up the search for an optimal response. First, from a computational
point of view, one may hope that by using supervised learning based approx-
imations hD to the available direct optimization-based solution Azo, it may
be possible to significantly reduce the response time needed to obtain a deci-
sion once a new value of p is presented. This may allow leveraging algorithmic
solutions available in offline environments to real-time contexts. Thus the su-
pervised learning based approach may be a successful strategy (among others)
to significantly speed up rational decision making. In the context of intra-day
generation scheduling this is a main goal, and we will assess computational
speed-up in this context in Part I. Note that in this thesis we apply the su-
pervised learning based approach to a MILP context where it is very hard to
obtain information about the sensitivity of the solution to problem parame-
ters. However this may also be of interest in a linear or convex programming
context where we know how the solution and the objective vary with small
variations of the parameters, but have only qualitative information about the
global behavior of the solution.

Measure the influence of parameters. Second, since supervised learning
looks at the global relationship between p and u∗, it may allow one to assess
which of the components of p indeed influence the solution u∗ in a significant
way; indeed the supervised learning methodology includes methods that allow
one to assess the importance of input variables and further to select a small
subset of them that are sufficient to infer the output in a reliable way. From
a practical point of view, this allows to reduce the complexity of the solution
strategy and could help human experts to focus on the most important aspects
of their problem. Both of these features may help engineers to better formulate
their optimization problems and operators to become more confident in their
solution strategies and more effectively justify them.

Improve optimization based solutions thanks to the properties of SL algo-
rithms. Since supervised learning is already a very rich and mature, while still
extremely lively field of investigation both from a theoretical and from a prac-
tical point of view, all its ongoing progresses may be exploited in the future.
In particular, supervised learning theory provides guaranties about noise filter-
ing, meaning that one can show that under suitable conditions the algorithms
are able to recover near-optimal solutions even if the samples of the dataset
are corrupted by noise. In practice this may help to find better solutions to
optimization problems for which no tractable and sufficiently accurate direct
solution algorithm is yet available.

Incorporate prior knowledge in the learning problem. From a more “machine
learning oriented” point of view, recent developments (including those that will
be developed in Part II of this thesis) now allow to exploit explicitly constraints
that need to be satisfied by the decision strategy, so as to both improve accuracy
of the inferred hypotheses and to make them more readily useful in practice.
These constraints may be formulated jointly over input-output pairs or solely

6 1 General introduction

among the different components of the output vector (as, e.g., in structured
prediction methods to be shortly discussed in the next subsections).

1.1.5 Methodological approach

In order to carry out our research, we used a problem-driven approach. We
started our work with the analysis of various electric power generation prob-
lems, in order to select a specific practical problem of interest for the industry;
this work was done in collaboration with EDF and led to the choice of the intra-
day rescheduling problem. Subsequently, we studied the existing approaches (in
optimization and in supervised learning) so as to formulate a viable framework
for combining these latter in order to address the selected problem.

Eventually, we decided to exploit existing open-loop optimization of a de-
terministic formulation of the problem as the basis for generating input-output
samples of scenario-decision pairs and analyzed how (and which) available su-
pervised learning algorithms could cope with such datasets in order to infer
decision strategies for a large set of electric power generating units based on
the given information state. Specifically, we considered a MILP formulation of
the deterministic planning problem and based most of our investigations on
supervised learning methods using ensembles of decision/regression trees (with
some side experiments using linear, support-vector based, approaches).

We have then set-up a test-system with the help of engineers of EDF,
deemed representative of their practical problems, and we have established a
protocol for simulating datasets, for inferring from them decision strategies by
supervised learning, and for evaluating these latter with respect to alternative
ones. In this context, a large part of our work was devoted to developing soft-
ware and using it for generating representative datasets and exploiting them
to assess our supervised learning based approach on variants of the test system
and for various classes of uncertainties.

Let us notice that the dimensions of the input and output spaces of the in-
duced decision problems are of large scale (several thousands of dimensions for
either space). Also, the golden standard optimization frameworks for our prob-
lem (multistage stochastic/robust programming) could not be used in order to
generate datasets and/or to benchmark induced decision strategies, because no
satisfactory algorithmic solution was available for them. This means that we
had to address an unusually complex set of supervised learning problems, while
being unable to generate representative samples of problem instances with an
exact solution of them. To overcome this difficulty, a significant part of our re-
search effort has been devoted to the generation of good quality input-output
samples, formulating manageable supervised learning problems, and designing
a sound and feasible evaluation methodology.

In order to introduce the reader to the kind of problems and methods inves-
tigated in this thesis, we next provide some background material about prob-
lem formulations and solution strategies respectively about direct optimization
(Section 1.2) and supervised learning (Section 1.3).

1.2 Background in dynamic optimization under uncertainty 7

1.2 Background in dynamic optimization under uncertainty

In this section we adopt an optimal control formalism to solve a sequential de-
cision making problem under uncertainties. We consider a dynamic system that
must be controlled over the course of time in order to satisfy some constraints
and optimize some performance criterion (typically, minimization of economic
cost of operation). The system lives in a stochastic environment, meaning that
in addition to the control strategy, its dynamic trajectory is also influenced
by the realizations of some random disturbance processes; the environment is
exogenous, which means that these disturbances are not themselves influenced
by control decisions. But these disturbances may render the usage of a fixed
open-loop control sequence computed beforehand suboptimal, or even lead to
catastrophic situations. It is therefore needed to define a control strategy allow-
ing to adapt the controls at successive recourse stages, by taking into account
the information that can be collected at each stage about the realization of the
disturbance process issued by the environment.

The type of system we consider is too complex to be controlled using a
classical PID regulator and would typically rather require human intervention
to define and implement the control decisions. For example we may consider
a large-scale system governed by nonlinear dynamics or containing complex
time-varying operation modes. We assume that we know a good model of the
system and of the performance criterion and that we dispose of information
characterizing the environment behavior, either in the form of a set of possible
disturbance scenarios, or in the form of a statistical model of the disturbance
processes.

Below, we formalize this type of problem mathematically using some opti-
mization formulations of increasing richness and complexity.

1.2.1 Adopting a deterministic view of the environment

Let us first assume that the environment is modeled by the decision maker in a
deterministic way, i.e. without taking into account uncertainties. Thus the set
of possible disturbance process realizations reduces for the decision maker to a
single scenario that he assumes known beforehand.

1.2.1.1 Computation of an optimal open-loop control sequence

Computing an open-loop sequence of decisions for controlling optimally a sys-
tem whose model is known (including that of the environment) – according to
predefined criteria and for a horizon of T time steps – can be formulated, for
example, as the optimization problem of Formulation 1.

We consider a discrete time decision process and denote by t the index of
a time period1. The state variables at time t are gathered in the vector xt,
which is allowed to reside within a set Xt ⊂ RK × ZL; the set X0 may reduce
to a singleton. We assume that the state vector is designed to contain enough
information on the past of the system so as to avoid constraints implying the

1t is nevertheless referred to as “time” in this document.

8 1 General introduction

Formulation 1: Deterministic open-loop control.

min
x,u

T∑
t=1
‖Ctxt − Yt‖+ α

T−1∑
t=0

Rt(xt, ut) (1.1)

s.t. xt+1 = Ft(xt, ut), ∀t ∈ {0, ..., T − 1}, (1.2)
xt ∈ Xt, ∀t ∈ {0, ..., T}, (1.3)
ut ∈ Ut(xt−1), ∀t ∈ {0, ..., T − 1}, (1.4)

state variable at more than two consecutive time steps (Markov property). The
control at time t

ut ∈ Ut(xt) ⊂ RI × ZJ

is typically composed of continuous and discrete control variables. It acts on
the value of the state at time t through the function

Ft : Xt × Ut → RK × ZL,

which represents the dynamics of the system. Globally, X = X0 × . . . × XT
represents the space of all possible evolutions of the state from t = 0 to t =
T . As a shortcut we use x ∈ X to denote x[0:T] = (x0, . . . , xT). Similarly,
U(x) = U0(x0)×. . .×UT−1(xT−1) represents the space of all possible evolutions
of the controls from t = 0 to t = T − 1, and u ∈ U(x) is a shortcut for
u[0:T−1] = (u0, . . . , uT−1). The real matrix Ct maps the state vector into the
quantities of outputs it corresponds to, and Yt ∈ Rp is a vector of desired
outputs at time t. The goal is thus to minimize a trade-off – tuned by the
meta-parameter α – between a term which penalizes the discrepancy between
the produced and desired outputs – according to a custom norm – and a term
representing the cost of using u as sequence of controls. The second term implies
the functions

Rt : Xt × Ut → R

and depends on the state, since the same action taken at a certain time step
while in different system states may lead to different costs.

1.2.1.2 Receding horizon model predictive control

Formulation 1 assumes that the exogenous environment behavior can be per-
fectly predicted, and the formulation thus incorporates these predictions in
the definitions of the functions Ft, Rt, parameters Ct and Yt and constraint
sets Xt and Ut. When the environment is not perfectly deterministic, such an
open-loop strategy must be based on a best guess of the environment. Depend-
ing on the precise formulation of system dynamics, performance criterion, and
environment, it may be difficult to define what would be the best guess for
the problem; moreover, any single best guess formulation may lead to control

1.2 Background in dynamic optimization under uncertainty 9

sequences that under some possible scenarios would drive the system along
undesired or highly suboptimal trajectories.

Receding horizon model predictive control (Maciejowski, 2002) aims at
circumventing these difficulties by allowing the periodical revision of the open-
loop control strategy, by recomputing at each time step (or at a subset of them)
the solution of the optimization problem over the remaining steps based on
information gathered about the current system state (and possibly, by revising
the predicted best guess of the environment behavior).

However driving the system by using such a deterministic receding horizon
procedure may still lead to states which are costly to adjust, or even possessing
no feasible control solution. It is thus maybe preferable or even necessary to link
explicitly the information about the uncertain environment, system dynamics
and control objective in order to obtain better ways to formulate the optimal
control problem and compute its solutions.

1.2.2 Taking into account environment uncertainty

In the previous section, decisions are computed by either assuming that the
environment is deterministic, or that near-optimal decisions can be computed
(and later-on revised in a receding way) by assuming that the environment
behavior can be compactly represented by a single “nominal” scenario over the
remaining time steps, and consequently without taking into account the way
subsequent decision steps could revise the control decisions.

When this strategy is not appropriate, one can explicitly model the un-
certainty about the environment behavior and/or the fact that decisions may
be revised based on the information that will be gathered later-on about the
environment behavior.

In the present section we discuss formulations which consider explicitly envi-
ronment uncertainties (we will illustrate this in a robust open-loop formulation)
and the possibility to revise decisions (we will illustrate this in a multistage
stochastic programming formulation).

For t = 0, 1, . . . , T , we let ξt be a variable valued in a subset Ξt of a Eu-
clidean space: ξt denotes the uncertain disturbances representing the environ-
ment at time t which we suppose to be observable by the decision maker at
time t+ 1. Hence, ξ[0:t−1] = (ξ0, . . . , ξt−1) represents the information collected
by the decision maker about the environment behavior at time t, when he is
supposed to choose the control input ut. Globally, Ξ = Ξ0× . . .×ΞT represents
the space of all possible evolutions of the environment ξt from t = 0 to t = T .
As a shortcut we use ξ ∈ Ξ to denote ξ[0:T].

In a robust approach, we will assume that the sole knowledge exploited by
the decision maker is the set Ξ of possible disturbances, while in a stochastic
approach, we will assume that a complete probabilistic model is also avail-
able in the form of a joint probability distribution over the random variables
ξ[0:T]. In a single stage approach, we will assume that the decision maker does
not explicitly take into account the subsequent decision making steps, i.e. he
commits decisions at early steps while neglecting his ability to revise decisions
based on later observations of the environment. In a multistage approach, we

10 1 General introduction

will explicitly model the recourse opportunities at later stages in order to select
first-stage decisions.

To highlight these ideas, we first consider the single stage decision making
approach under uncertainty in the robust framework, then we consider the
multistage formulation in the stochastic setting, and finally we wrap up by
briefly discussing the other possible combinations of these two approaches.

1.2.2.1 Robust single stage decision making under uncertainty

In order to take into account uncertainties in the decision making procedure,
let us first consider how to compute an open-loop control sequence while en-
suring that under the worst environmental conditions, the system is still able
to comply with all constraints and would have an optimal performance. More
precisely, we would like to compute a sequence of decisions u such that all the
scenarios ξ ∈ Ξ are manageable and that cost is minimized for the worst of
them. We propose the following formulation to start our discussion.

Formulation 2: Robust single stage decision making problem.

min
x(ξ),u

max
ξ∈Ξ

{
T∑
t=1
‖Ctxt(ξ)− Yt(ξ)‖+ α

T−1∑
t=0

Rt (xt(ξ), ut, ξ)
}

(1.5)

s.t. ∀ξ ∈ Ξ,∀t ∈ {0, ..., T − 1},
xt+1(ξ) = Ft(xt(ξ), ut, ξ), (1.6)
∀ξ ∈ Ξ,
xt(ξ) ∈ Xt, ∀t ∈ {0, ..., T}, (1.7)
ut ∈ Ut(xt(ξ)), ∀t ∈ {0, ..., T − 1}. (1.8)

With respect to Formulation 1, we still search for an open-loop control
sequence u since we cannot revise our decisions, but the trajectory of the state
x(ξ) = (x0(ξ), x1(ξ), . . . , xT (ξ))) is particularized to each possible realization
of the disturbance process, since Ft are now also function of ξ (1.6). The state
at each time t must reside in an acceptable set Xt whatever the realization of
the disturbance process (1.7), and the control sequence must be compatible
with the value of the state (1.8). In the objective function (1.5), the targeted
outputs Yt and the penalization functions Rt are also function of ξ. Taking the
maximum cost over all possible realizations of ξ provides a very conservative
solution minimizing the effect of the worst possible realization. But in some
applications it is necessary to ensure a minimal risk even if the resulting average
cost is high, so that this formulation may be appropriate. Nevertheless, it is
possible to derive variations of this formulation where the cost function depends
only on a fixed “best guess” scenario, so that the solution of the problem
would be optimal with respect to this best guess while being compliant with
the constraints induced by all other possible scenarios. Notice also that the

1.2 Background in dynamic optimization under uncertainty 11

formulation implies a constraint set for each possible scenario, which could
lead in practice to an infinite number of constraints.

Rather than adopting a worst case or a nominal case based objective func-
tion, one could replace the “max” operator in the objective function by an
expectation over a distribution of scenarios. This formulation would lead to a
single stage stochastic programming formulation aiming to compute an open
loop decision sequence which would comply in terms of constraints with all
possible scenarios and lead to a minimal expected cost given the probability
distribution of the environment behaviors. Taking the expectation needs ad-
ditional information about the likelihood of scenarios, but typically leads to a
less conservative solution whose average value is better than the one obtained
with the max operator. One can also add other penalization terms to account
for the variability of the solution (Value at Risk, Conditional Value at Risk, ...,
see Shapiro et al. (2009, Chapter 6) for a comprehensive text on the subject
in the case of convex programming and Märkert and Schultz (2005) in the
case of Mixed Integer Programming).

Earlier remarks about the receding horizon approach discussed in Section
1.2.1.2 may be carried over to the single stage under uncertainty setting of the
present section. A main difference is that in the present approach first stage
decisions are computed in order to be compliant with constraints that may
appear in later stages given the environment evolution, hence the term “robust
planning”.

1.2.2.2 Stochastic decision making with recourse

While in the above formulation uncertainties were explicitly considered in the
model in order to provide robustness to the sequence u, the Formulation 2 is
actually over-constrained, because it computes decisions as if they needed to
be chosen once and for all in an open loop fashion and could not be modified
later-on after having observed the partial realization of ξ.

As explained previously, in practice information may be gathered through
time about the environment behavior, and this information will normally be
used in one or another way by the decision maker to revise his decisions. The
ability to revise decisions at later stages may have a strong impact on what
should be considered as the optimal decisions at earlier stages. In order to incor-
porate this fact into the optimization problem, the formulation of a multistage
approach is required, which has the essential feature that first stage decisions
can be chosen without assuming that later decisions have to be chosen fully in
advance, but instead can take into account the fact that the latter decisions
can be adjusted later on in a way contingent on information collected at the
later stages.

Multistage decision making problem formulations consist in defining one
or more stages of recourses over the time interval; at each stage the control
decisions corresponding to the current and future time steps can be revised and
re-optimized given the information collected about the environment behavior.
This leads to the necessity of optimizing over control strategies for later time
periods, i.e. functions mapping information states (measurements about the

12 1 General introduction

environment and the controlled system) towards decisions. This problem is
notably more difficult than those of finite-dimensional optimization considered
in the previous sections.

Below, we illustrate some formulations of such multistage problems within
the stochastic programming framework. They could as well be adapted to the
robust setting.

A single opportunity of recourse. Let us assume that we want to take into
account the fact that there is a single opportunity before the final stage T
to modify the control decisions computed at step 0, e.g. let us suppose that
at a time step tr, it is possible to (re)adjust the decisions for the subsequent
time-steps until T given the information at hand at time tr. The question then
arises naturally as to how to compute the decision sequence at time 0, so that
the combined process including the modifications computed and applied at tr
would lead to the best overall performances.

Thus, in order to take the decisions at the initial time 0, rather than assum-
ing no-adjustment of control decisions, we should take into account the degrees
of freedom that can be exploited at the later decision steps, by modeling the
information flow about environment behavior and by taking into account the
computational procedures that will be used at the later stages to adjust de-
cisions, in addition to the dynamics of the controlled process (cf. Figure 1.1).
Indeed it is preferable to compute the open loop sequences and the adjustment
sequences jointly in order to reach a better overall optimum since both are
interdependent. In the latter case, the open loop sequence will be referred to
as the first stage and the adjustment sequence as the second stage and we thus
face a two-stage problem. Note that a stage does not in general refer to an
absolute time step but to a moment tr at which the process ξ is observed and
control decisions for subsequent time steps may be revised. In Formulation 3,
the control actions ut are thus now dependent of the realization of the random
variables ξt from time 0 to time tr − 1. However the first stage decisions must
be unique, whatever the realization of ξ up to time tr − 1, since we must im-
plement it before having observed this realization. We formalize this setting by
letting ut become dependent on ξ[0:tr−1] and by imposing that for t < tr they
are independent on ξ (1.13). Assuming that a probabilistic model Pξ of ξ is
available, we formulate the problem as an expectation minimization problem.

To simplify the notations, we use the convention ξ[t] = ξ[0:t] = (ξ0, . . . , ξt).
The dependence of the sequence of controls on the uncertainty is denoted by

time
0

u[0:tr−1]

First stage

ξ0 ξ1 . . . ξtr−1 ξtr . . . ξT Information

Decisions

tr

u[tr :T](ξ[0:tr−1])

Second stage

T

Figure 1.1: Information and decision flows.

1.2 Background in dynamic optimization under uncertainty 13

Formulation 3: Two-stage decision making problem.

min
x(ξ),u(ξ[tr−1])

EPξ

{
T∑
t=1
‖Ctxt(ξ)− Yt(ξ)‖

+α
T−1∑
t=0

Rt
(
(xt(ξ), ut(ξ[tr−1]), ξ

)}
(1.9)

s.t. ∀ξ ∈ Ξ,∀t ∈ {0, ..., T − 1},
xt+1(ξ) = Ft(xt(ξ), ut(ξ[tr−1]), ξ), (1.10)

∀ξ ∈ Ξ,
xt(ξ) ∈ Xt, ∀t ∈ {0, ..., T}, (1.11)
ut(ξ[tr−1]) ∈ Ut(xt(ξ)), ∀t ∈ {0, ..., T − 1}, (1.12)
ut(ξ[tr−1]) = ut, ∀t ∈ {0, ..., tr − 1}. (1.13)

u(ξ[tr−1]) =
(
u0(ξ[tr−1], . . . , uT (ξ[tr−1])

)
. Notice that if (ξ0, ..., ξtr−1) has a dis-

crete probability distribution the solution of the above problem thus provides
an optimal adjustment sequence ut(ξ[0:tr−1]) ∀t ∈ {tr, ..., T} for each value of
(ξ0, ..., ξtr−1), but otherwise the second stage decision is a policy, i.e. a function
mapping an infinite number of realizations (ξ0, ..., ξtr−1) towards second stage
decisions. Even if the first stage decisions can be computed in some cases of
this latter circumstance, one will in general need to recall for a computational
procedure to calculate second stage decisions for each possible realization of
the process over {0, . . . , tr − 1}.

As the deterministic and robust formulations, Formulation 3 may be used
in a receding horizon manner by applying the first stage and discarding the
second stage and repeating the optimization procedure periodically, the first
stage being regarded as hedged against the uncertainty.

Several opportunities of recourse. More generally one can also consider sev-
eral opportunities of recourse to adjust the decisions and thus consider a mul-
tistage problem. In that setting a recourse policy πt for a recourse instant t is
a mapping from the space Ξ to the space of continuous and discrete actions:

πt : Ξ→ UT−t

ξ 7→ u[t:T].

Among all the possible recourse policies, we are interested in the class of
policies Πt which use only the information collected until time t to output
a decision (non-anticipativity). In this context, Π0 is the class of constant
functions. Note that we cannot make the assumption that the recourse policy is
stationary, which means that we cannot apply the same policy at each recourse
instant, for two complementary reasons: we are working over a finite horizon,
and we target problems with a strongly time-dependent environment.

14 1 General introduction

1.2.3 State-of-the-art in solution methods

We made no particular assumptions on the nature of the components of For-
mulation 1. Of course their nature determines the type of optimization problem
that needs to be solved. In the application of Part I, the problem is usually
formulated as a MILP (Appendix C.1 exposes the most widespread algorithms
to solve such problems). But the formulation presented may as well encompass
general nonlinear or convex problems.

For Formulation 2 and Formulation 3 one must take into account the
stochastic process ξ. In such stochastic programs, often one cannot use as such
the usual tools of mathematical programming except when ξ has a discrete
probability distribution, in which case one can enumerate the possibilities un-
der the max operator in Formulation 2 or replace the expectation operator by
an average in Formulation 3. In the latter case these formulations usually have
the same nature than Formulation 1 but result in much larger instances, for
which specialized decomposition techniques are necessary. A common approach
to tackle the case of a continuous distribution for ξ is to sample it and solve the
problem as if the distribution were discrete. Each sample is called “scenario”.
Figure 1.2 depicts four scenarios ξ(k), k ∈ {1, 2, 3, 4}, represented by piecewise
linear curves.

Scenario based optimization. A deterministic procedure would a priori ag-
gregate the scenarios (e.g. by taking their mean if this is relevant) to produce
a single scenario problem (cf. Formulation 1) and thus a single solution, whose
value could however be poor regarding the uncertainty. Another procedure
consists in optimizing independently the scenarios as such, thus discarding the
non-anticipativity constraints, and would provide a distinct solution for each
scenario (Figure 1.2). But as the realization is not known beforehand, the user
must make a choice, possibly by comparing the solutions, and thus takes a
risk. This risk can be mitigated by the possibility to switch to the solution of
another scenario when parts of the realization of the uncertain process become

stage
1 2 3

(x, u)(1)

ξ(1)

(x, u)(2)

ξ(2)

(x, u)(3)

ξ(3)

(x, u)(4)

ξ(4)

Figure 1.2: Four scenarios labeled with their individual optimal solutions.

1.2 Background in dynamic optimization under uncertainty 15

available, i.e. in a receding horizon way as explained above. However this pro-
cedure has some drawbacks: switching from one solution to another may not be
feasible or may require a transition period; this procedure overfits the informa-
tion available when making the choice; and it does not provide an estimation
of the overall risk related to this choice.

Some algorithms, e.g. progressive hedging (cf. Rockafellar and Wets
(1991)) or Dual Decomposition in Stochastic Integer Programming (DDSIP, cf.
Carøe and Schultz (1999)) compute a solution of the original problem based
on the solutions of these single scenario sub-problems iteratively modified to
impose the non-anticipativity constraints. Another method consists in reducing
the size of the optimization problem by merging some scenarios and creating
a scenario tree whose solution is a good approximation to the solution of the
original problem. The tree structure imposes implicitly the non-anticipativity
constraints. For example in Figure 1.3 the fan of scenarios of Figure 1.2 is
replaced by a tree: sets of sufficiently similar sub-scenarios are incrementally
merged (cf. Dupacova et al. (2000)) to form the branches of the tree and
only one sequence of decisions is attached to a merged branch.

Thus when discretizing a continuous distributions one ends up with a set of
action sequences for each scenario or for each branch of the scenario tree and
not with a recourse policy. As we cannot apply them directly to novel unseen
scenarios, it does not allow one to assess the quality of a policy computed
using an independent test set of scenarios for the same problem or to exploit
the policy in practice.

Quality of the recourse policy. In practice one can assess the quality of re-
course policies from two viewpoints.

First, on the basis of their optimality, in the sense that it should lead to
the smallest possible adjustment cost regarding the possible future realizations
of the stochastic process. One should ideally take into account the effect of the

stage
1 2 3

(x[1], u[1])(1)

(x[2], u[2])(1)

(x[3], u[3])(1)

(x[3], u[3])(2)

(x[2], u[2])(2)

(x[2], u[2])(3)

Figure 1.3: Scenario tree and associated optimal solutions for the different
stages. Thickness of segments is representative of the number of merged sub-
scenarios with respect to Figure 1.2

16 1 General introduction

discretization of the disturbance process ξ in this respect.
Secondly, and maybe more importantly, based on the feasibility of the de-

cisions that they provide. A policy should output feasible schedules for any
realization of ξ, thus not lead to infeasibility at the subsequent recourse in-
stants. This is the case of Formulation 2 if we do not discretize the disturbance
process ξ. But as soon as we discretize the disturbance process, any of the for-
mulations exposed so far applied in a receding horizon fashion may end up in
a state where no sequence of actions may drive the system through a feasible
sequence of states.

1.2.4 Summary

In the preceding subsections we exposed the problem of optimizing sequential
decision making procedures under uncertainty. We have exposed both robust
and probabilistic approaches, either in the context of single stage or in the
context of multistage formulations. These formulations often lead in practice
to intractable optimization problems, which need to be addressed by heuristic
and suboptimal approaches. The avenues for solving these problems rely on a
combination of problem statement simplification and systematic approaches for
exploiting approximate solutions of problem instances. The rest of this thesis
will elaborate on combinations of these two lines of research.

1.3 Background in machine learning

Machine learning aims at developing algorithms to make a computer able to
learn decision rules from empirical data. It is divided in several sub-fields char-
acterized by the type of data and by the properties and the abilities of the deci-
sion rules one wants to extract from it. We first present a typical categorization
of these sub-fields and in the following subsections we detail the sub-fields that
we are directly dealing with or which are related to the concepts developed in
the remainder of this thesis. In this section we mainly aim at introducing the
basic concepts to the reader who is not familiar with machine learning. For a
more complete treatment and a more advanced theoretical analysis, we refer
the reader to the large body of literature (an excellent treatment of supervised
and unsupervised learning is given in Hastie et al. (2009)).

We assume that the data is organized as a collection of objects. Let Ω be
the set of all possible objects, and let (Ω, ε,P) be a probability space, where
ε denotes a sigma-algebra of measurable subsets of Ω and P is a probability
measure defined over these events. Then let us consider a collection of random
variables2 each one mapping the space (Ω, ε,P) to some observation space. A
dataset D is defined as a collection of joint observations of the values of these
random variables, over a collection of objects drawn according to some sam-
pling mechanism3. The generic objective of machine learning is to exploit such

2We use the expression “random variable” even when the value is a vector or any other
complex data-structure.

3Normally one assumes that objects are drawn independently and identically distributed
according to the measure P to form the dataset D, but in some circumstances other sampling

1.3 Background in machine learning 17

(Ω, ε) (X , εX)

h(·) = ?o2

o1

x1

x2

y1

y2
(Y, εY)Y (·)

X(·)

Figure 1.4: The supervised learning setting.

datasets in order to “learn” about the relations among the considered random
variables and build predictive models allowing one to make predictions about
their future values. The field of machine learning is concerned with the design
of such algorithms with different objectives in mind, such as predictive accu-
racy (the ability to make correct predictions), computational scalability (the
ability to exploit high-dimensional observation spaces and large datasets), and
interpretability (the ability to produce results that may be easily confronted
with human domain knowledge or assumptions).

In supervised learning (SL), one distinguishes between two types of variables
X and Y mapping (Ω, ε,P) to respectively the measurable spaces (X , εX) and
(Y, εY) (see Figure 1.4). In a classical setting, X is called the input-feature
space and has usually dimension greater than one, while Y is the output space
and is often of dimension one. The observation of X is assumed to be easy
or cheap, while Y is difficult or costly to observe. When both X and Y are
observed, we say that the object is labeled, and we say that it is unlabeled
when only X is observed. In supervised learning, the dataset D is composed
of labeled objects, and one is essentially interested in building a predictive
model able to estimate the output label of any object, given the observed
values of its input-features. In other words, one is interested in estimating the
conditional probability distribution of Y given X, PY |X , from which one could
derive a mechanism allowing to predict the value of Y given X that is optimal
in expectation with respect to a given loss function `(·, ·) ∈ RY×Y+ . Specifically,
one searches for a function h(·) ∈ YX , such that h(x) is as close as possible
to arg miny′ EPY |x{`(Y, y′)} for every possible value x of X. Notice that the
conditional distribution PY |X can be written in terms of the joint probability
distribution of X and Y as

PY |x(y) = PX,Y (x, y)
PX(x) ,

mechanisms may as well be of interest.

18 1 General introduction

so that the optimal predictor could as well be derived from PX,Y . Supervised
learning approaches which operate by modeling the joint distribution are called
“generative” approaches, while those which rely on modeling the conditional
distribution are called “discriminative” approaches. The next subsection elab-
orates further on these approaches and provides some examples.

On the other hand, unsupervised learning (UL) aims at modeling the re-
lations among all observed variables without distinguishing among inputs and
outputs. In other words, based on the observation of a dataset over a collection
of random variables, the goal of UL is to identify some relations among these
variables. For example, a common task is to identify clusters of objects which
exhibit the same property (Kaufman and Rousseeuw (2005)), which may
be viewed as “modes” of the joint distribution. Another common task in un-
supervised learning is to identify probabilistic independencies among subsets
of variables, and to build models of their joint distribution exploiting these
independencies.

Transductive learning (TL) is slightly different of SL. Only one part of the
data is labeled and we want to estimate the output of the unlabeled objects
using all the information of the data set. We do not try to generalize to all
possible other objects, just to give an accurate prediction for the specific set of
unlabeled objects given a priori. Semi supervised learning (SSL) is a combina-
tion of the SL and UL paradigms. Again only one part of the data is labeled
(typically a small fraction), but here we want to use all the data set to gen-
eralize to other objects. Thus TL and SSL can be seen as combinations of SL
and UL.

A sub-field which is directly related to sequential decision making is rein-
forcement learning (RL). The goal of RL is to design autonomous agents able
to interact in an optimal fashion with an a priori unknown environment. The
agent can take some actions influencing the state of the environment, and col-
lect some information about the state of the environment and its performance
by using sensors. By repeating this several times, it may then learn a control
strategy from the collected information in order to improve its performance
over time, and eventually reach near-optimal behaviors. At the end of this sec-
tion, we will provide an example of a reinforcement learning algorithm, and
make the connection with the optimization based optimal control approaches
of the previous section.

1.3.1 Supervised learning

In the SL paradigm, the data is organized as a set of N objects described by
their input features and their output label,

{(x1, y1), (x2, y2), . . . , (xN , yN)}.

The features xi are easily obtained by observation, while the output value
yi is provided by an expert, or is the result of a difficult observation and/or
computation. Often instead of first computing an estimate of PY |X or PX,Y and
then deriving predictions from it, SL algorithms directly search for a mapping

h : X → Y

1.3 Background in machine learning 19

between the feature space and the output space that generalizes well to elements
for which the output value has not been observed. To this end, one defines a
loss function

` : Y × Y → R+

and searches for a mapping h which minimizes the expected loss

EPX,Y {`(h(x), y)}

over the joint X ×Y space. As one usually does not know the joint distribution
of the objects, one can instead search for a function that minimizes an estimate

1
N

N∑
i=1

`(h(xi), yi)

of the expected loss, also called the empirical loss.
A SL problem can be categorized either as a classification problem if the

output is qualitative and belongs to a finite set of labels, or as a regression
problem if the output is a real value.

Bayes model of a prediction problem. For a moment, suppose that Ω is
finite, that the distribution P is known, and that it is possible to evaluate the
features X(o) and the output Y (o) ∀o ∈ Ω. Then both X and Y are also finite
sets, and the most probable value B(x) of Y knowing that X = x could be
computed using the method of Table 1.1; B(x) is called the Bayes classifier.

More generally, for a given problem defined by a loss function and a joint dis-
tribution of input and outputs, a function that actually minimizes the expected
loss is called a Bayes model for that problem. For example in regression prob-
lems, and when we use the so-called square-loss (i.e. `sq(y, y′) = (y− y′)2), the
Bayes model is obtained by computing the conditional expectation of the out-
put given the input, i.e. B(x) = EPY |x{Y }. In these words, the Bayes classifier is
the Bayes model obtained for the so-called 0/1 loss-function, `0/1(y, y′) = δy,y′ ;
it has the property of minimizing the probability of predicting a wrong label.

The expected loss of the Bayes model is called the residual loss, since by
definition no hypothesis may yield a smaller expected loss. A learning problem
is called “deterministic”, if its residual loss is equal to zero, meaning that it is
possible to find a hypothesis that leads to an average loss of zero.

Constraining the hypothesis space of supervised learning algorithms. In the
context of supervised learning, neither can we assume in general that Ω is finite,
nor do we have access to the probability measure P nor to the functions X and
Y . The only knowledge about the problem that we have to help us guessing the
Bayes model is a sample of input-output observations that is assumed to be
drawn independently from P. In this case, searching for a model in the space of
all possible input-output functions (which is in almost all situations of practical
interest of infinite dimension, or of a practically intractable finite dimension)
while disposing only of a finite number of information items (the dataset) is an
ill-posed problem.

20 1 General introduction

Table 1.1: Computation of the Bayes Classifier.

1. Compute (∀x ∈ X ,∀y ∈ Y)

PX,Y (x, y) =
∑
o∈Ω δX(o),xδY (o),yP(o),

PX(x) =
∑
o∈Ω δX(o),xP(o),

=
∑
y∈Y PX,Y (x, y),

2. deduce (∀x ∈ X ,∀y ∈ Y)

PY |x(y) = PX,Y (x, y)
PX(x) ,

3. build the model B(x), i.e. ∀x ∈ X compute

B(x) = arg max
y

PY |x(y). (1.14)

Where

δa,b =
{

1 if a = b,
0 otherwise.

One common approach in supervised learning therefore consists in restrict-
ing the search space of models to a finite dimensional space of input-output
functions H, called the hypothesis space of the supervised learning algorithm.
Typically, this is carried out by defining a parameter vector of finite dimension
Θ. Denoting by hθ an element of H, with θ ∈ Rn, supervised learning can then
be reduced to solving the optimization problem

θ∗(D) ∈ arg min
θ∈Θ

1
N

N∑
i=1

`(hθ(xi), yi).

Choosing a hypothesis space thus consists in restricting the search space
for h to a class H(Θ) of functions parameterized by a finite set of parameters.
Each SL approach (linear models, decision trees, artificial neural networks,
support vector machines, ...) thus uses a particular hypothesis space. Choosing
one of them amounts to assuming that the relation between X and Y has a
particular structure. The Bayes model can represent any mapping B from the
feature space to the output space and the set of possible Bayes models thus
defines the largest possible hypothesis space. A supervised learning algorithm
applied to a specific problem may lead to excellent results if its hypothesis
space is both of small dimension (compared to the size N of the dataset)
and contains models which are close enough to the Bayes model. For a given
problem, the representation bias of a hypothesis space is defined by the degree

1.3 Background in machine learning 21

of sub-optimality of the best hypothesis in this space with respect to the Bayes
model.

Intuitively, if the hypothesis space is of small dimension compared to the
sample size, the principle of empirical loss minimization should lead to the
identification with high probability of the best hypothesis in this space. On
the other hand, the smaller the hypothesis space, the more likely it is that the
Bayes model of a given problem cannot be well approximated withinH (i.e. that
the representation bias is large). Thus, a fundamental problem in supervised
learning is to choose the right hypothesis space for a given problem. Often,
smaller hypothesis spaces also lead to more efficient computational solutions to
the problem of minimizing the empirical loss. The restriction of the hypothesis
space is exemplified by the class of learning algorithms using linear models in
Example 4.

Example 4.
In the regression problem illustrated on Figure 1.5 the true model is a parabola
(continuous black curve) to which we have added a Gaussian noise of zero mean.
We have repeated three times the procedure of sampling 5 points representing the
realizations of the random variable Y for 5 values of X (represented by different
colors) to obtain 3 datasets. The colored lines correspond to linear least ssquares fits
of the points in each dataset. We see that the choice of a linear model is probably
too restrictive. However we observe as well that by repeating the experiment several
times the learned model does not change a lot.

●

●

●

●

●

1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

X

Y

●

●

●

●

●
●

●

●

● ●

True model
Learned linear model 1

Learned linear model 2
Learned linear model 3

Figure 1.5: Restricting the hypothesis space to the class of linear models.

Rationality of the empirical risk minimization principle. Once a hypothesis
space is chosen, designing an algorithm that produces an element of this space
of minimal empirical loss seems to be a reasonable approach to supervised
learning. Indeed, for a given hypothesis, its empirical loss is an unbiased esti-
mate of its theoretical loss. Nevertheless, if the hypothesis space H is very large
(e.g. if it contains all possible input-output functions), then, for any dataset the

22 1 General introduction

empirical loss of the best function of H (one of those minimizing the empirical
loss) may perform very well on the given dataset but be very far away from
the Bayes model as illustrated in the Example 5.

Example 5.
Continuation of Example 4. Figure 1.6 illustrates the application of the empirical risk
minimization principle in the hypothesis space of fourth degree polynomials. As there
are 5 points in the dataset there always exists a polynomial of degree 4 interpolating
the 5 points. The hypothesis space is thus too large and thus causes overfitting, i.e. the
selected hypotheses focus too much on their dataset and it results in a high variability
of the selected hypothesis when the dataset changes.

●

●

●

●

●

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

X

Y

●

●

●

●

●●

● ●
●

●

True model
Learned polynomial model 1

Learned polynomial model 2
Learned polynomial model 3

Figure 1.6: Choosing a too large hypothesis space: selecting the class of poly-
nomial models of degree 4.

On the other hand, it is well known that for some classes of hypothesis
spaces (e.g. for linear models), the principle of empirical loss minimization
indeed leads to a procedure that will identify, with probability tending to 1
when the dataset size grows to infinity, the best model of this space in terms
of the theoretical loss. Statistical learning theory (Vapnik (1998)) has delin-
eated the general conditions on the hypothesis space that are both necessary
and sufficient for the empirical loss minimization principle to be consistent. Its
main result shows that H needs to be of finite “VC-dimension”, in order to
ensure that for any learning problem the empirical loss minimization leads to
hypotheses which in the large sample regime will converge (in terms of theoret-
ical loss) to the best possible hypothesis in this space. The theory also provides
probabilistic bounds on the theoretical loss as a function of the empirical loss,
although these bounds are typically very conservative. Note for example that
the VC-dimension of the space of hyperplanes over n real-valued input-features
(X = Rn, Y = {0, 1}) is equal to n + 1, hence finite, while the VC-dimension
of all possible functions in {0, 1}R

n

is infinite.
When we select a hypothesis space that is believed too large for the prob-

lem at hand, regularization may be used to automatically direct the search

1.3 Background in machine learning 23

towards the simplest model that explains sufficiently well the training data.
Regularization thus establishes a trade-off between these concurrent goals. In
the SL algorithms which are naturally formulated as constrained optimization
problems, such as LASSO (Hastie et al. (2009, Chapter 3)) or Support Vec-
tor Regression (SVR) (cf. Appendix A.3), a term penalizing the complexity of
the model is explicitly included in the objective function. This is illustrated in
Example 6.

Example 6.
Continuation of Example 5. The blue curve of Figure 1.7 is the result of the search
in a hypothesis space theoretically equivalent to the space of polynomial models of
degree 4 but with a regularization term penalizing too complex models. While not
totally perfect, we see that it is likely to perform better in generalization than the
linear and fourth degree polynomial models fitted to the same dataset.

●

●

●

●

●

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

X

Y

True model
Learned linear model

Learned polynomial model
epsilon−SVR (learned)

Figure 1.7: ε-SVR with polynomial kernel of degree 4 (cf. Appendix A.3), com-
pared to the linear and polynomial models of Figures 1.5 and 1.6.

Constraining the algorithmic complexity of supervised learning algorithms.
Many successful SL methods do not fit in the above framework, i.e. we do
not know the VC-dimension of the hypothesis space they search. Instead of
constraining a priori the hypothesis space to a space of finite VC-dimension,
an alternative approach to the design of supervised learning algorithms consists
in designing the algorithm mapping a dataset to a function h in such a way that
it produces its result in an efficient way, i.e. so that the computing time of the
algorithm grows relatively slowly with the size of the dataset. In this view, the
challenge is to design fast algorithms producing hypotheses with a low empirical
loss. When constraining the algorithmic complexity of a SL algorithm, one also
constrains, although in an implicit fashion, the subset of reachable hypotheses.
In other words, this approach consists in deciding a priori that some “details”
about the dataset will not be exploited in order to choose a hypothesis, which
is equivalent to reducing the hypothesis space.

24 1 General introduction

Example 7.
Continuation of Example 6. The restriction of the search complexity is exemplified by
the class of learning algorithms using tree-based models (cf. Appendix A.1). In tree-
based methods, regularization is achieved either by early stopping the development of
nodes or a posteriori by removing parts of the tree. By construction, one thus wants to
limit the representation power of the learned hypothesis. In this example we illustrate
the fact of limiting the depth of the trees during their top-down induction by acting
on a parameter nmin which defines the number of objects contained in a node under
which the node is not split. In Figure 1.8a a single tree with nmin = 2 interpolates
all the points of the dataset since the tree is fully developed, while when nmin = 3
the tree is already less focused on the points of the dataset. These methods proved to
have a high variance because the position of the splits, i.e. of the vertical segments in
Figure 1.8a, is very sensitive to the content of the dataset. Thus several alternatives
have been proposed to enhance their properties, relying on the aggregation of an
ensemble of trees randomized in some fashion (bagging, random forests, Extra-Trees).
In the Extra-Trees (cf. Appendix A.2), the simplification of the search complexity is
operated by randomizing the composition, the size and the tested values of the subset
of input features considered at each node during the tree induction. We illustrate the
construction of an ensemble of 50 extremely randomized trees on Figure 1.8b. Again
when nmin = 2 the model interpolates all the points of the dataset since each tree
is fully developed, while when nmin = 3 the learned hypothesis comes closer to the
true value, similarly to what was observed in Example 6 for the regularized model.

Such algorithms, which cannot be directly studied by the theory of the
preceding paragraph, may be characterized as well theoretically by the notion of
algorithmic stability (Poggio et al., 2004): a stable algorithm is an algorithm
that produces hypotheses that are not very sensitive to small perturbations of
the dataset, for example the removal of a few observations.

Bias and variance of learning algorithms. In addition to the residual error
which is determined only by the supervised learning problem statement, two
other sources of error linked to the choice of the learning algorithm arise in the
SL context; they are respectively called bias and variance. We will explain these
notions in the context of regression problems, although they are also relevant
in the context of classification problems and more general output spaces.

On the first hand, any hypothesis space is characterized by a certain rep-
resentation bias. For example if one restricts H to the class of linear models,
there is no hope in approximating perfectly a non linear Bayes model4 between
X and Y . Also, the learning algorithm itself may under-exploit in a systematic
way the information contained in the dataset, leading to a second source of
bias. Both sources of error are normally difficult to distinguish and are there-
fore lumped into the term “bias”. For a given learning problem (characterized
by PX,Y and ` which we suppose to be the square loss), and for a given dataset
size N , the (squared) bias of a learning algorithm at a point x0 is defined by

(B(x0)− ED{hD(x0)})2
.

Bias measures how far the average model produced by the algorithm (averaging
over an ensemble of datasets) is from the Bayes model. Typically, using larger

4Without applying a transformation to the input features.

1.3 Background in machine learning 25

●

●

●

●

●

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

X

Y

True model
Single Tree (n_min=3)

Single Tree (n_min=2)

(a) One single regression tree for two values of the parameter nmin.

●

●

●

●

●

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

X

Y

True model
Ensemble of trees (n_min=3)

Ensemble of trees (n_min=2)

(b) One ensemble of randomized regression trees for two values of the parameter nmin.

Figure 1.8: Illustration of tree based methods.

hypothesis spaces leads to reducing the bias, while using more “rough” learning
algorithms increases the bias.

On the other hand, the variance error originates from the sensitivity of
the optimal parameters θ (or equivalently the hypothesis h computed by the
algorithm) on the particular dataset of size N used as input. Namely, using the
same algorithm with two different datasets of a given problem will normally
produce two different models, both different from the average model, even if
the average model is close to the Bayes model. This source of variation leads
to additional suboptimalities, e.g. measured in regression at a point x0 by

ED
{

(hD(x0)− ED{hD(x0)})2
}
.

Variance measures how strongly the hypotheses computed by a learning algo-

26 1 General introduction

rithm depend, for a given problem, only on the random nature of the dataset.
In the context of regression problems, with the square-error loss function,

the three terms, namely residual loss (EY |x0

{
(Y −B(x0))2}), (squared) bias

and variance, simply add up to produce the expected loss of the learning algo-
rithm, i.e. the expectation over datasets of a given size of the expected loss of the
hypotheses produced by this algorithm over the joint input-output distribution.
These ideas also carry over to other settings, e.g. classification problems and
problems with more complex output spaces. Thus one main direction of research
in supervised learning is to characterize bias and variance of algorithms and
designing algorithms with low bias and/or variance (see e.g. Geurts (2002)).

Model selection, model evaluation and cross-validation. In the context of
SL one is interested in the ability of h to approximate the outputs of the data
used to train it, but also in the generalization capacity of h to predict the
outcome for independent data. For the inference on new objects, i.e. the gener-
alization, all the available dataset is used by the learning algorithm to optimize
the parameters of h, which is then used to make the prediction. However evalu-
ating its error on the complete data set generally yields an optimistic estimate
of the generalization error. Thus a usual way for evaluating the expected loss
of h is to divide the data set in two disjoint sets. On the one hand a training
set allows to optimize the parameter θ of the model. On the other hand a test
set is used to evaluate the empirical error of the learned mapping. To obtain a
more accurate estimate when the data set is too small to estimate the empirical
error, one often resorts to n−fold cross-validation (CV) instead of the simple
above procedure (cf. Table 1.2).

Table 1.2: n−fold cross-validation procedure.

Split the data set in n disjoint folds S1, . . . , Sn.
Then for i ∈ {1, ..., n}:

1. choose Si as test-set and gather the n − 1 other subsets of S in the
training set,

2. learn h using the training set,

3. Evaluate h on the test set,

4. compute the empirical error of the learned method and optionally other
byproducts of the method.

Afterward one can compute statistics (e.g. mean error) over the n iterations.

Batch and online learning. Batch learning means that the data set is fixed
and processed entirely by the learning algorithm. On the other hand online
learning algorithms have been developed either when the data collection process
and the learning are imbricated, or when the memory or the processing capacity

1.3 Background in machine learning 27

of the computer are restricted so that the learning algorithm processes the
data gradually. In this thesis we consider batch mode learning because there
is apparently no need to learn in real time and there is no limiting effect of
the available computation power and memory. However in our application of
Part I the inference of decisions, or predictions, from the trained model should
be relatively fast, since we aim to use it in quasi real time.

Structured prediction. Traditionally most of the work in the SL community
dealt with univariate outputs, both in classification and in regression. Some-
times the related methods can be readily extended to multivariate outputs,
e.g. in regression when passing from scalar to vector outputs, but may not
model correctly the relations between outputs. Nowadays SL research is more
and more oriented towards learning from and predicting complex structured
data (labeled sequences, time series, images, XML trees,), i.e. when inputs
and/or outputs exhibit a (known) structure which makes them interdependent.

For example, the book of Bakir et al. (2007) contains some variants of
kernel-based methods adapted to structured data. The main idea is to embed
the input-output pairs (x, y) in a feature space thanks to a function φ(x, y) and
to formulate the prediction problem for a new input x∗ as

h(x∗) = arg max
ŷ∈Y

w>φ(x∗, ŷ), (1.15)

where w>φ(x∗, ŷ) measures the compatibility between x∗ and ŷ, and w must
be learned. However, under certain conditions, similarly to the SVR algorithm
exposed in Appendix A.3, it is possible to use only the kernel

k((x, y), (x′, y′)) .= φ(x, y)>φ(x′, y′)

to compare two input-output pairs for learning and for prediction, without
explicitly computing the dot product in the feature space induced by φ. To work
well this technique thus requires the definition of a kernel appropriate to the
particular structured prediction problem. The learning procedure is applicable
to any problem without modification once the kernel is defined. The inference
procedure, or pre-image problem (1.15), may be hard to solve in practice for
general kernels, and some special properties are thus desired to render this
problem tractable.

Geurts et al. (2006b) extend tree-based ensemble methods to the pre-
diction of structured outputs using a kernelization of the algorithm that allows
one to grow trees as soon as a kernel can be defined on the output space.

In Maes (2009) the structured prediction problem is cast on the RL frame-
work (cf. Section 1.3.2 below). One of the particularities of this work is to con-
struct incrementally the output prediction, as opposed to the previous methods.

Even though the emphasis is not exactly in line with these developments
in this thesis, it will become clear that these works are very relevant for our
application of Part I. Indeed, our work of Part II can be understood as a way
to take into account the structure of the data by the regularization of a learned
tree-based model, thanks to prior knowledge expressed as constraints between
outputs or between input-output pairs.

28 1 General introduction

1.3.2 Reinforcement learning

Usually, the aim of RL is to provide an agent with the ability to achieve a goal
in an unknown environment. To achieve this goal the agent takes some actions
to interact with the system and collect some data. RL aims at extracting from
this interaction data a control policy for the agent. RL techniques are also
used in the optimal control framework, when the system to control is a priori
unknown.

Markov Decision Process. Markov Decision Processes (MDPs) (Puterman
(1994)) provide a mathematical framework for RL. The agent’s situation is
represented by a state xt. At each time t, the agent observes the state xt and
then selects an action ut to make its state move from xt to xt+1. State and
actions belong respectively to a state space X and an action space U (which
could be either discrete, continuous or mixed). The agent’s environment defines
a function F which models such transitions and is assumed to be Markovian,
meaning that the state xt+1 is fully conditioned by the state and the action at
time t, irrespectively of previous states and actions:

xt+1 = F (xt, ut, ξt),

where ξt denotes a disturbance process that is dependent on past quantities
only through xt and ut.

At each time step the agent receives a scalar reward which quantifies the
quality of the action ut taken while in state xt. The function R associates this
reward to a couple (xt, ut) and may as well be function of the disturbance ξt:

rt = R(xt, ut, ξt).

We can distinguish two concepts at this point. The fact that little informa-
tion about the system is available to the agent is obviously a source of uncer-
tainty when exploring the system. However this does not reflect the stochas-
ticity of the system, but rather the lack of knowledge of the agent about its
environment. We must thus distinguish this from the uncertainty arising from
the fact that F and R can be function of a random process ξt.

Formulation of the RL problem. Within the MDP framework, a stationary
policy π is a mapping that assigns an action u to any state x. RL algorithms
typically search for a policy which is able to achieve a goal in a minimum time,
by collecting some instantaneous rewards. To do so they search for a policy
that maximizes the expected infinite sum of discounted reward.

The state-value function of a stationary policy π starting from an initial
state x can be defined as the expected value of the infinite sum of the discounted
rewards that will be accumulated when following that policy,

V π(x) = EPξ

{
lim
T→∞

T−1∑
t=0

γtR(xt, π(xt), ξt) | x0 = x

}
,

1.3 Background in machine learning 29

where the discount factor γ ∈ [0, 1[allows to tune the dominance of short-term
rewards (γ → 0) over long-term rewards (γ → 1). The optimal state-value
function is defined as

V ?(x) = max
π

V π(x),

from which one can extract an optimal control policy as follows:

π?(x) = argmaxuEPξ {R(x, u, ξ) + γV ?(F (x, u, ξ))} . (1.16)

Alternatively, the state-action value function of a policy π defined as

Qπ(x, u) = EPξ {R(x, u, ξ) + γV π(F (x, u, ξ)} , (1.17)

and the optimal state-action value function as

Q?(x, u) = max
π

Qπ(x, u),

can also be used. In terms of the latter function we have

π?(x) = argmaxuQ?(x, u). (1.18)

According to Busoniu et al. (2010), RL algorithms can be grouped in
three categories.Value iteration algorithms consist in modeling V ?(x) orQ?(x, u)
first and exploiting (1.16) or (1.18) respectively. The latter option seems eas-
ier since the knowledge of R and F are not necessary. Note that often it is
necessary to approximate the state-action value function using SL algorithms
(Ernst et al., 2005). Policy iteration algorithms evaluate V π or Qπ for a set
of policies and searches for an improved policy based on these values. Policy
search algorithms explore directly the policy space without modeling explicitly
a value function.

Note that in an online setting there is a trade-off between the exploration
which allows to collect potentially new information but can lead to bad per-
formance of the agent, and the exploitation of the policy inferred from already
sampled data.

Example of solution method. We adopt an offline setting and suppose that
we dispose of a set F of 4-tuples (xt, ut, rt, xt+1) reflecting the interaction of the
agent with the environment. To illustrate how such data can be used to derive a
stationary policy for the agent, we reproduce in Table 1.3 the fitted Q iteration
algorithm proposed in Ernst et al. (2005). This algorithm transposes the
RL problem into a sequence of SL problems. The first SL problem yields the
approximation Q̂1 of the reward function R. Then the solution of the N th

SL problem, denoted by Q̂N , is learned from a modified learning set, updated
according to an equation derived from (1.17) and the solution of the previous
SL problem, Q̂N−1. Q? is approximated by the solution of the last SL problem,
when some stopping criterion is satisfied.

Despite they are computationally limited when one attempts to solve prob-
lems in large state and action spaces, especially when they are continuous, RL
algorithms have the advantage of making no (or few) assumption(s) on the

30 1 General introduction

Table 1.3: The fitted Q iteration algorithm.

Inputs: a set of 4-tuples F and a regression algorithm Al.
Initialization:
Set N to 0.
Let Q̂N be equal to zero everywhere on X × U .
Iterations:
Repeat until stopping conditions are reached

1. N ← N + 1.

2. Build the dataset D = {(il, ol), l = 1, . . . , |F|} based on the function
Q̂N−1 and on the full set of 4-tuples F :

il = (xlt, ult), (1.19)
ol = rlt + γmax

u∈U
Q̂N−1(xlt+1, u). (1.20)

3. Use the regression algorithm Al to induce fromD the function Q̂N (x, u).

underlying model of the system (e.g. linear vs. nonlinear). Also, since the RL
algorithms usually make no strong assumption on the model of the system,
they are more likely to adapt the control policy if the system varies with time.

A connection, in the deterministic framework, between RL and the optimal
control formulations presented in Section 1.2 can be found in Ernst et al.
(2009) together with a detailed case study. It also briefly discusses the stochastic
case.

1.4 Illustrative example: optimally driving a car

We provide a simple example not deemed to be representative of a real situation
but which allows us to relate the different concepts and solution techniques
discussed so far.

1.4.1 Problem setting

Imagine that a person drives a car from his home to his workplace, along a path
composed of 3 segments, each characterized by a maximum speed Vi, i = 1, 2, 3
(cf. Figure 1.9). The driver can decide of the desired speed ui, i = 0, 1, 2, of the
car on each segment i+1 before entering that segment. The car is equipped with
a speed regulator, hence the driver does not have to care about maintaining
a desired speed ui. Some exogenous uncertain events ξi, i = 0, 1, 2, (e.g. other
drivers, traffic jams, ...) perturb his desired speed ui on the road segment
i+ 1. After a deceleration, the speed regulator brings the speed back to ui. We
denote by vi(ξ), i = 0, 1, 2, 3, (for velocity) the actual average speed of the car
on segment i. The average speed achieved on one segment may influence the
average speed on the next segment. A first objective of the driver is to arrive

1.4 Illustrative example: optimally driving a car 31

Home Workplace

V1 V2 V3

Desired speedu0 u1 u2

Uncertaintyξ0 ξ1 ξ2

Average speedv1 v2 v3

Figure 1.9: The three segments of the path together with their speed limi-
tations, desired speeds, uncertainties and actual average speeds. Continuous
arrows illustrate the direct influences between the variables of the problem.
Dashed arrows illustrate that the uncertainties on the different segments may
be correlated.

at his work as fast as possible, i.e. to minimize

EPξ

{ 3∑
i=1

(Vi − vi(ξ))
}
. (1.21)

But depending on ξi, vi+1(ξ) may be different of ui. The driver considers that
he receives a penalty when his desired speed ui is very different from its actual
speed vi+1(ξ) on segment i + 1. This penalty, measured by R : R2 → R+,
penalizes the excessive fuel consumption, usage of the brakes, etc. We do not
detail this function, but require that R(u, v(ξ)) = 0 if u = v(ξ). A second
objective of the driver is thus to minimize

EPξ

{ 2∑
i=0

R(ui, vi+1(ξ))
}
. (1.22)

If the driver defines the desired speed ui to drive at the highest allowed speed
Vi+1 on segment i+ 1, he is ensured to minimize the driving time (1.21) since
he always drives at the maximum allowed speed except when some unexpected
events perturb his desired speed. However the big disadvantage of this strategy
is that the sum of penalties (1.22) may be very high, because he does not
account for uncertainty to adapt ui, i = 0, 1, 2.

Using Formulation 45, the driver may compute the speed u0 for segment
1 without having any information about ξ, and then establish some recourses
strategies u1(ξ[0]) and u2(ξ[1]) for the subsequent segments provided the obser-
vation of ξ on the previous segments. To establish a trade-off between the con-
current objectives (1.21) and (1.22), as they may not have the same importance
for the driver, the coefficient α is introduced in the objective function (1.23).
The functions Fi model the environment of the driver.

1.4.2 Learning and optimizing the driver’s strategy

Experience based supervised learning. A first procedure to compute auto-
matically a driving strategy would be to record in a dataset the actions ui

5v(ξ) = (v0, v1(ξ), v2(ξ), v3(ξ)) (we may assume that v0 = 0) and ξ = (ξ0, ξ1, ξ2).

32 1 General introduction

Formulation 4: Driver’s problem

min
v(ξ),u

EPξ

{ 3∑
i=1

(Vi − vi(ξ)) + α

2∑
i=0

R
(
ui(ξ[i−1]), vi+1(ξ)

)}
(1.23)

s.t. ∀ξ ∈ Ξ,
vi+1(ξ) = Fi(vi(ξ), ui(ξ[i−1]), ξ), ∀i ∈ {0, 1, 2}, (1.24)
vi(ξ) ∈ [0, Vi], ∀i ∈ {0, 1, 2, 3}, (1.25)
u0(ξ[−1]) = u0, u1(ξ[0]), u2(ξ[1]) ∈ R. (1.26)

taken by the driver along the complete path and the realization of the stochas-
tic processes that have perturbed his behavior, for a series of trips from his
home to his workplace. Then we would estimate a mapping allowing to predict
the actions to take as a function of the stochastic events perturbing the driver.
With this architecture we can use SL to approximate the strategy of the driver.
But if the actions taken by the driver are too suboptimal with respect to the
objective (1.23) defined over the whole path we cannot hope to improve his
strategy. We can of course remove of the dataset the actions which led to bad
performances and thus avoid learning from these bad actions.

Reinforcement learning. If we assign a reward to the actions of the driver
(e.g. inspired of the objective function of Formulation 4), we could determine,
given a collection of tuples of the form (current state, action, next state, reward)
– where the next state is function of current state, the action and the stochastic
process – a strategy which does not only take into account good actions, but is
also aware of the actions yielding bad rewards. With RL we could thus optimize
the strategy of the driver (e.g. by using algorithm of Table 1.3) from its sole
experience. We could also generate tuples from simulation of the system, if the
latter were known and that a statistical model of the uncertainty were available.

Optimal simulations based supervised learning. On the other hand if one has
a model of the system i.e. of Fi and R, and also a statistical model to generate
some disturbances ξ, thus a mean to simulate offline the quasi-optimal actions
to respond to a sequence of simulated disturbances, one can hope to learn by
SL a better strategy than the one obtained with experience based SL. This
is the type of approach we investigate in Part I. Then comes the question
of the information available at the time the driver takes the actions. In the
experience based SL setting, the driver uses the information he currently has
to take the decisions and thus acts non-anticipatively. In an offline computation
setting one must take care of that in order to obtain decisions which do not
depend explicitly of the future of the stochastic processes, but only of the
information gathered until the moment at which the decisions are taken. This

1.5 Thesis content and contributions 33

is a fundamental concern of stochastic optimization paradigms (Section 1.2.2)
which account for this gradual information flow.

Receding horizon optimization. If one is able to determine sufficiently fast
an optimal sequence of actions accounting for the uncertainty, one can imagine
applying it before each road segment when an action is needed, implement the
first action proposed by the optimization algorithm and discard the rest of the
sequence, observe the realization of the stochastic process until the next action
is required, reapply the optimization algorithm, implement its first action, and
so on. This would be a receding horizon strategy.

1.5 Thesis content and contributions

Sections 1.5.1 and 1.5.2 summarize the content and present the organization of
the two parts of this document. They also state the contributions of this thesis,
the published material as well as the developed software.

1.5.1 Part I – Short-term electricity generation scheduling and
recourse policies computation

Content and organization. In Part I we develop the idea of computing a re-
course policy by learning from simulations of the optimal actions to take to
control a system under perturbed conditions. In particular, in the electricity
generation scheduling context, Part I deals with the design of intra-day recourse
strategies which may be used by operators to decide in real-time the modifi-
cations to bring to planned generation schedules of a set of units in order to
respond to deviations from the forecasted operating scenario, i.e. when they
collect information about the outcome of some exogenous random variables
which influence the generation schedules. Chapter 2 introduces the short and
very short-term generation scheduling problems in details, and presents the
related work mainly founded upon the stochastic programming paradigm. Our
aim is to design strategies that are interpretable by human operators, that com-
ply with real-time constraints and that cover the major disturbances that may
appear during the next day. To this end we propose in Chapter 3 a framework
using supervised learning to infer such recourse strategies from simulations of
the system under a sample of scenarios representing possible deviations from
the forecast. This chapter describes the different steps and alternatives of the
proposed supervised learning approach and contains the main methodological
contributions of Part I. They are supported by experimental validation results
on a realistic test system of medium size in Chapter 4. Chapter 5 concludes
this first part and discusses directions for further work. Some background infor-
mation about the supervised learning algorithms used, the formulation of the
generation scheduling problem and the optimization-based solution techniques
can be found in the appendices.

Contributions. The main contributions of the first part are

34 1 General introduction

• the formulation of the problem of recourse policy computation from a set
of optimal open-loop adjustment decisions to some disturbance scenarios
as a supervised learning problem:

– this approach allows to perform (nearly) all the time consuming
computations offline,

– to apply online, thanks to the generalization properties of supervised
learning models, the resulting policy to any new scenario represent-
ing the actual conditions of the system,

– and thus also provides an elegant and fast way to evaluate offline
the resulting policy on an independent set of scenarios;

• the discussion of the connection and the complementarity between the
approach we propose and the stochastic-programming based approaches.

• the validation of our method on a realistic problem encompassing a hy-
drothermal electricity generation system.

• the definition of several SL formulations (of which two are evaluated) from
which we can select the degree of information provided by the recourse
policy and the type of post-processing that one wants to apply.

Publications. One part of the work presented in Part I has been published
in the proceedings of the IEEE PowerTech Conference (Cornélusse et al.,
2009b). It covers approximately and with fewer details the material of Chapter 3
and of Section 4.4.

Another work (Cornélusse et al., 2007) indirectly related to this part
was published during my first Ph.D. year and discusses the application of SL
to the verification of the usage of primary control devices (cf. Section 2.2.1).

Implementation. A significant effort has been devoted to the development of
several pieces of software to obtain the results of Chapter 4.

1. A C++ software interfacing the CPLEX MILP solver (about 3500 source
lines of code6) takes a description of the generation system as input and
computes a generation schedule, solution of the problem exposed in Ap-
pendix B. XML document types have been defined to represent scenarios
and generation schedules. A set of options allows to use this software to
generate the optimal adjustments to some generation schedules for per-
turbed scenarios, thus to generate the output part of the training set, and
to post-process the decisions provided by the SL based recourse policies
for offline validation or online exploitation.

2. A Python/Gtk User Interface (about 2000 source lines of code) for the
simulation of scenarios, for the collection of data, for the formatting of
data in order to apply SL, and for the synthesis of the results.

6We report on physical lines, cf. http://en.wikipedia.org/wiki/Source_lines_of_
code.

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Source_lines_of_code

1.5 Thesis content and contributions 35

3. Some Matlab routines (about 500 source lines of code) allowing the ap-
plication of SL algorithms and the application of the recourse strategies.

4. A C++/Qt User Interface (about 1000 source lines of code) to ease the
visualization of the generation schedules.

1.5.2 Part II – Prior knowledge in supervised learning algorithms

Content and organization. As explained in Section 1.1, we propose in Part I a
supervised learning methodology to approximate the set of solutions of a family
of optimization problems. In many cases the outputs of the resulting learning
problem are restricted by complex relations arising from the constraints of the
optimization problems. We thus believe that it is worth to analyze how this
knowledge about the structure of the output space Y, or more generally of
the joint input-output space X × Y, is or could be exploited by the learning
algorithm.

• When we apply a SL algorithm to search in a hypothesis space based on
data that satisfies a known set of constraints, can we guarantee that the
selected hypothesis will make predictions that satisfy the constraints?

• Can we benefit of our knowledge of the constraints to eliminate some
hypotheses while learning and thus enhance the generalization error of
the selected hypothesis?

These questions initiated the work presented in Part II.
However in Part II we do not discuss these questions with respect to the

application of Part I, but rather with respect to problems arising in the ma-
chine learning community that share some structural similarities. Chapter 7
motivates the interest of this work when learning from censored data and in
the framework of semi-supervised learning. It then presents the optimization
formulation developed in order to modify an ensemble of regression trees so
as to incorporate prior knowledge. In Chapter 8, learning from censored data
and manifold regularization for incorporating unlabeled data are cast in the
general formulation, and the way to incorporate other types of information is
also discussed. Chapter 9 concludes the second part.

Contributions.

• We have developed an original method for regularizing ensembles of re-
gression trees using prior knowledge.

• We have applied this method to some problems which cannot be treated
directly by standard tree-based methods.

Publication. Part II is mainly based on the work presented in Cornélusse
et al. (2009a), but contains some additional illustrations and examples.

36 1 General introduction

Implementation. I have used the Matlab interface to the Extra-Trees learning
algorithm developed by Pierre Geurts as a starting point for the implementation
of the method. I have used SeDuMi (Sturm (1998)) for the resolution of the
optimization problem through the Yalmip interface (Löfberg (2004)).

Part I

Short-term electricity generation
scheduling and recourse policies

computation

37

Chapter 2

Day-ahead and intra-day electricity
generation scheduling

In this chapter we introduce the problems that are faced everyday by an elec-
tric power generation company1 in order to operate their generation system
optimally. We start by a discussion of the typical partition of the global prob-
lem in Section 2.1. Then we provide some details about the two problems of
this partition that we study in this thesis, namely day-ahead (Section 2.2) and
intra-day (Section 2.3) scheduling, show how these problems fit in the frame-
work exposed in Section 1.2, and outline the solutions proposed in the literature
in this framework. We end this chapter by highlighting in Section 2.4 the in-
terests of the approach exposed in Section 1.1, which makes use of the machine
learning tools and concepts discussed in Section 1.3.

2.1 Partition of the generation scheduling problem

To allow the development of the electricity market in Europe, the activities
of generation, supply, transmission and distribution of electricity, which were
usually grouped inside electrical utilities, have been reorganized and attributed
to different companies. Generation companies are in charge of physically gener-
ating the electricity from other sources of energy. Electricity retailers purchase
electricity directly to generation companies or through the electricity markets
and sell it to some customers. A transmission system operator (TSO) is in
charge of the security and the safety of the high voltage transmission infras-
tructure over a geographical area (e.g. a country). TSOs are responsible for
the transmission of electrical power from nodes of the network where power is
injected to nodes where power is consumed. Distribution operators are compa-
nies that operate the low-voltage part of the network to distribute electricity
to the end users. Some (small-scale) distributed generation may also be con-
nected to this network (e.g. solar cells). Generation companies and electricity
retailers often play the role of “balance responsible entities”, i.e. they must
ensure that the balance between their injected and consumed electricity (e.g.
on a half-hourly basis) in a given “perimeter” is satisfied, otherwise they pay

1The shorthand “generation company” will be used from now on.

39

40 2 Day-ahead and intra-day electricity generation scheduling

some penalties to the TSO in charge of this perimeter. TSOs are themselves
responsible for the balance in their geographical area and must provide the
physical means to adjust the generation to the consumption level dynamically.

In this thesis we take the point of view of a generation company which wants
to generate electricity in an optimal way, i.e. to satisfy some demand require-
ments at minimum cost, and do not consider the network related problems,
although some network related constraints appear indirectly in the studied
problem, as will be explained further in this text.

Globally optimizing the electricity generation is a very complex problem. It
implies decision making ranging from the creation of new power plants to the
decision of which generators should be adjusted to maintain a perfect balance
between generation and demand in a quasi real-time context. As a consequence,
a hierarchy of easier problems spanning different time horizons has emerged.
Problems over a given time horizon are decoupled from the problems over
shorter horizons by aggregating some decision variables and simplifying the
constraints they are subject to, and from those over longer time horizons by
considering the decision variables related to these problems as fixed parameters.

Long-term problems span several years and relate to investments in new
power plants and new generation techniques. Should the company opt for fossil
or nuclear fuel? Does-it have the possibility to build new dams and hydroelectric
capacities? Should it invest in renewables? These questions usually involve
social and political considerations in addition to the strategic decisions of the
generation company.

Typical generation systems contain a mix of generation units: classical ther-
mal plants, nuclear plants, hydroelectric generators, wind turbines, and other
renewable energy based plants. Medium-term decisions (one year) consist in
determining the way these units will be used altogether to fulfill the load. One
has to decide when to stop plants for maintenance, when to buy some fuel,
when to refuel the nuclear reactors, how to use the water reserves, ... (see for
example Wood and Wollenberg (1996, Chapter 8) for a detailed description
of the problem and Aïd et al. (2004) for an application of RL in this context).

Today in the context of bulk power generation, the wind turbines are often
considered as non controllable and must-run units; their generation can thus be
seen as a stochastic negative load. On the other hand, the operation of thermal
plants and hydroelectric generators has to be planned in advance every day.
The process of deciding the schedule of the units one day for the next day
(or possibly for several days) is called day-ahead generation scheduling, and is
described in more details in Section 2.2.

Finally, during the day, when the schedule computed one day ahead is ap-
plied, the generation company has the opportunity to adjust the dispatching
of its units to correct deviations of uncertain processes (demand, availability
of units, ...) from their forecast. To this end the generation company elabo-
rates intra-day recourse strategies that are used by operators in order to decide
of economically efficient and feasible modifications to make to the generation
schedule. To be useful, such recourse strategies must comply with real-time
constraints and be interpretable by human operators. At the same time, they
should cover all the major likely or unlikely disturbances that may appear dur-

2.2 Day-ahead electric power generation scheduling 41

ing the day, such as the loss of any generation unit and/or significant deviations
from forecasted demand conditions. In current practice, a day-ahead schedule
(unit commitment) of all power plants is typically computed one day ahead
for the next 24 hours, by using a detailed model of the generation system and
an appropriate optimization algorithm, while the intra-day recourse strategies
are pre-determined by experts during offline studies. This problem is further
discussed in Section 2.3. Within this context, the purpose of our work is to de-
velop a systematic and essentially automatic approach to (re)design intra-day
recourse strategies compatible with real-time constraints and interpretable by
human operators, so as to allow them to respond to an a priori defined set of
disturbances in a near-optimal way.

The above mentioned problems can all be described as sequential decision
making problems under uncertainty. They are sequential because some deci-
sions, or actions, must be taken repeatedly, with different time constants for
each problem, and uncertain because all of these problems are subject (with
varying degrees) to many uncertain events such as the uncertainty on the elec-
trical load, the outage of some generation units, the uncertainty on natural
water flows, the prices of fuels, ..., which are themselves function of the tem-
perature, the precipitations, and so on.

2.2 Day-ahead electric power generation scheduling

We consider hydro-thermal generation systems, meaning that the generation
company owns a number of thermal generation units and also exploits the
water retained in reservoirs along some valleys. The generation company has
to compute a schedule of its generation units for the next day such that the
total generated power balances a demand curve2. Many causes influence the
profile of the demand curve. Among them the temperature is probably the most
prominent one. But in addition the generation capacity related to the renewable
sources of energy is highly stochastic on a daily basis, and the power generated
by such means must often be consumed directly. In a sense, the power generated
from renewable sources can be deduced when estimating the demand forecast.
Although some large-scale energy storage such as water reserves or batteries
could provide the flexibility to cover deviations of the demand curve, they are
in general either not available in sufficient amounts or of limited use because
of operating and environmental constraints. Finally, some generation plants
are scheduled for maintenance or refueling, and there may be fortuitous plant
outages. In typical operating conditions all these factors imply the necessity of
an automatized system for deciding when generation units must be started or
stopped and which generation levels must be modified. The generation company
has multiple objectives when computing the generation schedule. Maybe the
most obvious one is to maximize the profit. We study this aspect from a slightly
different point of view, namely the minimization of the power generation costs.
Another quantity needs to be minimized, originating from a second objective
which is to provide a generation schedule of good quality which is safe and

2The word “demand” reflects here the expected quantity of power that has to be served,
while the word “load” refers to the realization of the process underlying the consumed power.

42 2 Day-ahead and intra-day electricity generation scheduling

robust from the electrical network point of view. A third objective is to compute
a generation schedule which does not violate the technical limitations of the
individual generation units or their environment. A fourth objective is the
robustness with respect to uncertainty on the parameters of the model used to
compute the generation schedule.

Thus two sets of constraints appear in the context of short-term generation
scheduling: on the one hand the cumulative generation pattern must satisfy
some balancing constraints which couple all the generation units, on the other
hand the generation of each thermal unit (Section 2.2.2) and each hydroelec-
tric valley (Section 2.2.3) is restricted by individual operation constraints. To
compute a generation schedule, the most widespread practice among gener-
ation companies is currently to partition the next day in small time periods
(e.g. periods of 30 minutes) and to compute the schedule (Section 2.2.5) which
best fits a demand curve, according to a criterion to be defined (Section 2.2.4),
assuming a reference scenario for all the parameters of the system that can be
subject to uncertainty. Typically the reference scenario contains the availability
of the generation units for the next day as well as their generation restrictions
and other characteristics, an estimate of the demand curve and an estimate
of the other uncertain events having a significant influence on the generation
schedule, e.g. the flows of water in valleys caused by rain, snow melting, ...

A schedule computed using this procedure is automatically adjusted in real-
time the next day in order to compensate the differences between the real-
time conditions and the forecasts (Section 2.2.1). Above the automatic devices
acting in real-time, some periodical reorganizations of the generation schedule
implying a decision making process are nevertheless required in order to restore
a secure an economically efficient operation (Section 2.3) of the generation
system.

2.2.1 Automatic balancing of the load

To maintain tightly the balance between generation and load in real time oper-
ation some generation reserves are typically required by the TSO. Using these
reserves, some control systems – called ancillary services – guarantee a reliable
operation of the synchronous electrical network to which the generation system
is connected. In the context of this thesis, a hierarchy of three types of service
exist, namely primary, secondary and tertiary control. The expression “gen-
eration reserve” must be understood as the generation capacity which can be
activated or deactivated quickly, depending on the type of control, whatever the
type of generation unit considered. For example, the quantity of reserve pro-
vided by a thermal generation unit is function of its extreme generating levels
and of its ramp rates if it is started, and zero otherwise (except for some special
units which can be started up or shut down very fast). The total quantity of
reserve that must be provided by the generation company for each service is
determined by the TSO in order to be able to restore the nominal situation
after a perturbation. The required quantity can vary with the time of the day
and thus typically one reserve curve is predefined for each ancillary service. The
first two services are implemented on the generation units by automatic regu-

2.2 Day-ahead electric power generation scheduling 43

lators driven by measurements of some electrical network characteristics. Both
types of control are complementary and aim jointly at balancing the generation
and the load, and at restoring the frequency of the network at its nominal value
after a perturbation. Their differences are pointed out below.

The reserve dedicated to primary control represents the total variation of
generated power that can be accomplished within a few seconds after the occur-
rence of a perturbation of the frequency caused by an imbalance between gen-
eration and load. Primary control is a decentralized control achieved through
the speed regulators of generators. This control is proportional to the difference
between the measured frequency and the nominal frequency of the network. It
is thus a common reaction among all the generators of the same synchronous
area (the continental Europe network for example). Because of its proportional
nature it leaves a permanent frequency error and since it is a reaction common
to several generation companies it results in errors between planned and actual
cross-border power exchanges.

Secondary control is on the other hand a centralized and proportional-
integral control based on the measurement of the frequency error, but also
on the measurement of cross-border exchanges imbalances. It restores primary
control reserves and acts in order to cancel the frequency error and to transfer
the compensation of the imbalance inside the control area of the generation
company where the perturbation originated. The total secondary reserve inside
a control area should be sufficient to correct any perturbation in this area.

The third type of service, tertiary control, is triggered by human operators
and aims at re-dispatching the action of secondary control in an economical way
and at reestablishing the secondary reserve level to face another perturbation.
Its associated reserve can be understood as a robustness margin to recover
from usual random disturbances. As pointed out in Carpentier et al. (1996),
this way of tackling the problem may lead to solutions distant from the optimal
operation of the generation system, because it takes into account the stochastic
nature of the problem very roughly. This is the reason why only the first two
are considered in this thesis and that the tertiary reserve requirement has not
been modeled in our work. Indeed it is the purpose of this thesis to design
adjustment strategies for optimally rescheduling the generation means after a
perturbation has been observed.

The actual quantity of reserve that is used in operation is thus function of
some measurements, but also of the characteristics of the regulators for primary
and secondary control, and of a decision making process for the tertiary control.
Additional information about the purposes of the ancillary services can for
example be found in UCTE (2004, 2009) or RTE (2004).

2.2.2 Thermal generation units

Thermal generation units of different types (nuclear, coal, fuel oil, gas) are
characterized by different generation costs and dynamics. When a thermal unit
is started it must operate above a minimum positive level Pmin and below
a technical maximum level Pmax, i.e. in the gray interval of the p axis in
Figure 2.1a. As illustrated on this figure, the operation cost is the sum of a fixed

44 2 Day-ahead and intra-day electricity generation scheduling

Cfixed + pCprop

0 Pmin Pmax p

Cost

Cfixed

(a) Cost per hour.

Cfixed

p + Cprop

0 Pmin Pmax p

Cost

Cprop

(b) Cost per Mega Watt hour.

Figure 2.1: Illustration of the thermal generation cost as a function of the
generation level.

cost and of a cost proportional to the generation level. Figure 2.1b represents
the cost per unit of energy generated and stresses the fact that due to the fixed
cost it is more profitable to operate near the maximum level. Costs are also
incurred at each start-up and are function of the time the generation unit has
been stopped before being started again. The dynamics of a thermal unit are
restricted by a set of constraints. In the model we use in this thesis (described
in appendix B), a generation unit must stay in the same On/Off state for a
minimum duration, depending on that state, and maximum ramp rates limit
the variation of the generation level between consecutive time steps. However
many other practical constraints may restrict their dynamics, such as a limit
on the number of times the generation level of a unit may be modified each day,
or particular generation curve that the unit must follow in case of start-ups or
of shutdowns. Knowing all these constraints, the generation company has to
decide when to start and when to stop thermal units and to fix their generation
level when they are committed.

2.2.3 Hydroelectric valleys

A hydroelectric valley contains a set of reservoirs interconnected by hydro-
electric plants. Hydroelectric plants may themselves contain generation and/or
pumping capacity. In the sequel hydroelectric generation plants and pumping
plants are considered as distinct entities, even though they may be gathered
in a single plant in practice. Figure 2.2 illustrates a valley composed of two
reservoirs, two generation plants and one pumping plant. The arrows indi-
cate the allowed direction of water flows. The generation and pumping plants
are connected to the electrical network. Electricity can thus be generated and
transmitted to the network by turbining water from reservoir 1 and sending it
to reservoir 2, and/or by turbining water from reservoir 2. Alternatively one
can choose to send water back from the second to the first reservoir using the
pump, and thus consuming electricity. The volume of reservoirs must stay in a
predefined interval at each time step (the interval may shrink to a single value
in order to restore some levels at some particular instants). The volume of each

2.2 Day-ahead electric power generation scheduling 45

Inflow 1 Reservoir 1

Electrical
network Turbine 1 Pump 1

Inflow 2 Reservoir 2

Turbine 2

∞-capacity
reservoir

Spill 1

Spill 2

Figure 2.2: Representation of a hydroelectric valley.

reservoir evolves as a function of the water flows passing by the surrounding
power-plants, the natural flows and the water spilled out when the reservoir is
full. A hydroelectric generation plant is composed of turbines that must often,
in practice, be started in a given sequence. In this work, the electric power
generated by a hydroelectric plant is modeled as a piecewise linear function
of the water passing through it. Pumping plants have rated discrete levels of
operation. The variation of the head height has a significant impact on the
power generated but causes nonlinearities and is not considered in our work.

The cost associated with the use of the water contained in a valley is com-
puted on the basis of the value assigned to its upper reservoirs. This value –
evaluated in the medium-term problem (cf. Section 2.1) – is considered given
and constant in the short-term context, and reflects the opportunity cost of
using the water, itself function of the abundance or scarcity of the water (sea-
sonality, ...), instead of other sources of energy.

For the hydroelectric valleys one has to decide when to use water to generate
electricity, when to store some water by pumping and when to spill water out
of dams.

2.2.4 Targeted performance

The objective of the generation company is to minimize the generation costs,
including fuel costs, thermal units start-up costs and opportunity costs for the
utilization of water in hydroelectric power plants, in order to satisfy the bal-
ancing of generation and load as well as the ancillary services requirements.
To some extent, computing a generation schedule which satisfies the demand
requirement tightly may be hard to achieve numerically, and even unnecessary
since some means are available to balance the actual load, which is generally not

46 2 Day-ahead and intra-day electricity generation scheduling

equal to the demand forecasted one day ahead. To soften this requirement, some
slack variables are introduced to represent the discrepancy between generation
and demand and are penalized in the objective function through a piecewise
linear and convex function. If the penalization function approximates, for ex-
ample, a quadratic function, this tends to penalize more, proportionally, large
discrepancies than small discrepancies. Similarly some slack variables are in-
troduced to represent the discrepancy between required and provided ancillary
services reserves. The penalization function equals zero when the provided re-
serve exceeds the requirement. Thus only the deficit of reserve is penalized.
Again the penalization is convex, and piecewise linear if one wants to preserve
a problem whose relaxation is a linear programming problem. Note that al-
though excess of reserve is not penalized explicitly, it moves the solution away
from the economical optimum.

2.2.5 Deterministic optimization model

The detailed optimization model that we use in our experiments of Chapter 4
is provided as an appendix (cf. Appendix B) to make the text more easily
readable. We present a condensed version in Formulation 5 to provide a basis
for the sequel.

Formulation 5: Deterministic generation scheduling.

min
x,xslack,u

T∑
t=1

L(xslack,t) +
T−1∑
t=0

∑
i∈I

Ri(xi,t, ui,t) (2.1)

s.t. ∀t ∈ {1, ..., T},
xslack,t = Yreq,t −

∑
i∈I

Cixi,t, (2.2)

xslack,t ∈ R3, (2.3)
∀i ∈ I,
xi,t+1 = Fi(xi,t, ui,t), ∀t ∈ {0, ..., T − 1}, (2.4)
xi,t ∈ Xi,t, ∀t ∈ {0, ..., T}, (2.5)
ui,t ∈ Ui(xi), ∀t ∈ {0, ..., T − 1}. (2.6)

The generation scheduling model presented in Appendix B contains con-
tinuous variables (the generation levels, the power reserves, the water flows,
...) and binary variables (the On/Off status of thermal units, the auxiliary
variables used for expressing the piecewise linear relationships of hydroelec-
tric turbines, ...). However the constraints and objective function are all linear
expressions. The continuous relaxation of the problem obtained by replacing
the binary variables by continuous variables ranging in [0, 1] is thus a linear

2.3 Intra-day adjustment of the generation schedule 47

program (LP), and the scheduling problem a MILP3.
This formulation is consistent with the optimal control Formulation 1 except

that the state, the control actions, the functions F and R and the matrix C are
indexed by generation unit, and that the tracking error is represented by an
auxiliary vector xslack,t at each time step. Here xi,t is a vector representing the
state of the unit i at time t, belonging to the set of (thermal and hydroelectric)
generation units I. For example the state vector of a thermal generation unit
contains its generation level, its generation reserves and its status at time t,
plus the information necessary to express the operation constraints (2.5) to
(2.6), and the operation costs. This latter information actually consists of the
generation and status of unit i for times t′ ∈ {t − Di . . . t − 1} where the
parameter Di ≥ 1 depends on the characteristics of the unit. The vector ui,t of
control actions modifies the state xi,t through the function Fi. The continuous
variables of ui,t are essentially the modification of the generation and margins
levels while the discrete variables are the decisions to start or stop a thermal
generation unit or turbines and pumps in a hydroelectric plant. The function
Ri(·) : X × U → R expresses the operation costs, e.g. the fixed, proportional
and start-up costs of thermal generation units.

In the coupling constraints (2.2), the slack vector xslack,t ∈ R3 gathers
the imbalances between the required levels of generation and ancillary services
Yreq,t ∈ R3 at time t and the actual levels provided by all the units. The
contribution of a unit i to these requirements is obtained by multiplying xi,t
by the matrix Ci. Non-zero values of the slack variables are penalized in the
objective through the loss function L(·) : R3 → R+.

Instances of Formulation 5 are routinely solved by generation companies
to derive every day the planned operation of their assets for the next 24
hours. Appendix C.1 describes the most common approaches to solve such
instances. Finally, note that often there exists additional constraints which
cannot be included in the optimization formulation and are imposed during a
post-processing stage by altering the solution of Formulation 5.

2.3 Intra-day adjustment of the generation schedule

2.3.1 Real time exploitation

In the system we consider, a reference schedule for the complete optimiza-
tion period must be communicated to the TSO one day ahead. The TSO can
then perform network security analyses and optionally modify the generation
schedule before its implementation. Then during the application of the sched-
ule computed one day ahead, some events can motivate a generation company
to re-dispatch its generation units. In practice there exists several predefined
recourse instants (e.g. t1 and t2 in Figure 2.3) at which it is possible to observe
the realization of the uncertain process (Figure 2.3a and 2.3b) impacting the
generation system and to adjust the scheduled operations (Figure 2.3c). It is
thus not possible to adjust the schedule continuously, or at least at arbitrary

3A continuous relaxation of a MILP will be referred to as a LP relaxation in the sequel.

48 2 Day-ahead and intra-day electricity generation scheduling

time

Power

1 t1 t2 T

(a) Demand/load curve.

time

Unit i

Available

Unavailable

1 t1 t2 T

(b) Availability of generation units.

time

U

π0

πt1 (ξ)
πt2 (ξ)

1 t1 t2 T

(c) Generation schedule.

Figure 2.3: Illustration of the intra-day generation rescheduling problem: (a)
forecast (thin) and realization (thick) of the load curve, (b) forecast (thin) and
realization (thick) of the availability of a generation unit and (c) illustration of
the recourse policies πt1(ξ) and πt2(ξ), where the thin curve depicts the sched-
uled actions computed one day ahead, the thick curve represents the recourses
taken at time t1 thanks to πt1(ξ) after having observed the load deviation on
[1 : t1], and the dotted curves represents the recourses taken at time t2 thanks
to πt2(ξ) after having observed the load deviation on [1 : t2] and the unit outage
happening during [t1 : t2].

2.3 Intra-day adjustment of the generation schedule 49

instants, as primary and secondary controls do. An updated schedule can be
provided at each recourse instant, and it must span the whole time interval un-
til the end of the optimization period. The adjustments made to the schedule
aim at maintaining the balance between generation and load at lowest cost,
while also satisfying the operation constraints of the units and restoring the
ancillary services reserves. This process is thus related to tertiary control, as
explained in Section 2.2.1. The information gathered on the stochastic process
ξ up to the recourse instant gives insight on the variation of the parameters
influencing the generation schedule on the recourse period and thus on the ad-
justments to make to the reference schedule. Note that in practice there may
be an additional constraint to the scheduling problem in the intra-day context
that sets a limit on the number of generation units that can be modified (cf.
Section 3.3.3).

The main uncertainty sources are the variation in forecasted temperature
which cause load variations and possibly restrictions on the capacity of gener-
ation units, the outages of generation units, the variations of the natural water
flows incoming in reservoirs, the fluctuations of the other renewables and the
evolution of the fuel and of the spot market prices. In this thesis we have cho-
sen to focus on load variations and outages of (or restrictions on) generation
units because they have typically the most significant impact on the genera-
tion schedules. The other sources of uncertainty may sometimes be gathered
in the load disturbances (e.g. solar and wind energy) or may influence other
parameters of the models (e.g. water flows, fuel prices). Some may also require
additional modeling effort (e.g. spot markets).

2.3.2 Deterministic receding horizon optimization

To adjust the reference schedule, a straightforward procedure consists in re-
optimizing completely the schedule at each recourse instant, using one updated
forecast of the demand and one updated forecast of the availability of the
generation units, from the current state of the system at that instant, i.e. in a
deterministic receding horizon manner.

Example. To give some insight on this procedure, Figure 2.4 illustrates the
optimal adjustments of a subset of generation units owned by the generation
company to a series of scenarios. The subset is composed of one hydroelectric
plant and one pumping plant situated as Turbine 1 and Pump 1 in Figure 2.2,
one 128 MW thermal generation unit and another one of 585 MW. First we
optimized the generation schedule for a reference scenario, as would be done one
day ahead in practice. Then we considered 11 perturbed scenarios containing
each the outage of the same generation unit, but occurring at a different time
step from time 0h00 to 10h00 with a 1 hour interval. The same load curve was
used in all the simulations and the complete generation system is the same as
in Cornélusse et al. (2009b). In each subfigure of Figure 2.4, the horizontal
axis indexes the scenarios by the hour of occurrence of the outage. The vertical
axis represents the optimization horizon, and the color indicates the magnitude
of the adjustment. We assume that we can implement a recourse at each hour,

50 2 Day-ahead and intra-day electricity generation scheduling

thus directly after the occurrence of the outage, and have enough time to re-
optimize the generation schedule completely. Figure 2.4a shows the resulting
adjustments if the lost unit is a 900MW unit, while Figure 2.4b shows the result
of losing a 1300 MW unit.

In Figure 2.4a, the top left subfigure indicates that if the outage occurs
early in the morning the pump stops sending water to the upper reservoir. As
a consequence the turbine situated between the same reservoirs generates less
power than planned in the reference schedule during the afternoon and during
the evening peak. On the other hand, the 585 MW thermal unit is started as
soon as possible and the unit of 128 MW remains stopped. If a 1300MW nuclear
unit is lost instead of a 900MW one (Figure 2.4b), we observe nearly the same
behavior, except that the turbine is almost stopped during the evening peak
load. The 585 MW thermal unit operates at its maximal power, and the 128
MW thermal unit is started up. These kinds of pictures provide interesting
information since they show the optimal adjustments resulting from a unit
outage and also the influence of the occurrence time of the outage.

Discussion. The updated forecast on which the optimization is based is how-
ever never perfect, and as for the short-term generation scheduling problem,
building the adjustments without taking into account the uncertainty on the
forecast may lead to suboptimal decisions as uncertainty unveils. The overall
problem, encompassing short to very short-term operation, should thus ideally
be handled as a multistage stochastic problem.

As the number of recourse instants increases the available computation and
implementation times decrease. It thus becomes harder to re-optimize com-
pletely the system from scratch at each recourse instant. Adjustments im-
plementation related issues in general prevent a complete re-optimization of
the generation schedule. Moreover it is maybe preferable for the generation
company to have a small quantity of adjustments to perform. Thus some con-
straints may be incorporated in order to limit the number of adjustments (cf.
Appendix B.2.2.2). Although such a requirement may seem to decrease the
difficulty of the adjustment computation task since one has to search for sim-
pler solutions, this is generally not the case for an optimization based solution,
since it adds a combinatorial layer to the problem. To speed up the computa-
tion of the adjustments one thus typically uses some hand-made and empirical
recourse rules.

As discussed in Section 1.2.2, since the reference schedule can be adjusted
at several recourse instants to compensate stochastic variations of the model
parameters, it would be comfortable to compute on the one hand a reference
schedule accounting for the uncertainty on the model parameters and the re-
course opportunities, and on the other hand some recourse policies that would
be used to adjust the reference schedule at the recourse instants. Actually, the
recourse policies should be computed jointly with the reference schedule since
the recourse actions for a particular recourse instant depend of the reference
schedule and of the recourse actions implemented at previous recourse instants,
and should not lead to costly adjustments or infeasibility at subsequent time
steps.

2.3 Intra-day adjustment of the generation schedule 51

(a) Outage of a 900 MW generation unit.

(b) Outage of a 1300 MW generation unit.

Figure 2.4: Optimal adjustment of a subset of units a generation company after
the outage of a thermal generation unit and influence of the occurrence time of
the outage. The color range indicates the power variation with respect to the
generation schedule.

52 2 Day-ahead and intra-day electricity generation scheduling

2.3.3 Example of scenario-based stochastic programming
formulation

We provide in Formulation 6 a two-stage stochastic programming formulation
of the generation scheduling problem in line with Formulation 3, in order to
discuss its interpretation and to ease the understanding of the related work
surveyed in Section 2.3.4. Formulation 6 is an alternative to Formulation 5 as-
suming that a single opportunity of recourse arises at time tr. Since optimizing

Formulation 6: Two-stage stochastic generation scheduling.

min
x(k),x

(k)
slack

,u(k)

K∑
k=1

wk

(
T∑
t=1

L(x(k)
slack,t) +

T−1∑
t=0

∑
i∈I

Ri(x(k)
i,t , u

(k)
i,t)
)

(2.7)

s.t. ∀k ∈ {1, ...,K}, ∀t ∈ {1, ..., T},
x

(k)
slack,t =

∑
i∈I

Cix
(k)
i,t − Y

(k)
req,t, (2.8)

x
(k)
slack,t ∈ R3, (2.9)

∀i ∈ I, ∀k ∈ {1, ...,K},
x

(k)
i,t+1 = F

(k)
i,t (x(k)

i,t , u
(k)
i,t), ∀t ∈ {0, ..., T − 1}, (2.10)

x
(k)
i,t ∈ Xi, ∀t ∈ {0, ..., T}, (2.11)

u
(k)
i,t ∈ Ui(x

(k)
i,t), ∀t ∈ {0, ..., T − 1}, (2.12)

∀i ∈ I, ∀t ∈ {0, ..., tr − 1},
u

(1)
i,t = u

(2)
i,t = . . . = u

(K)
i,t . (2.13)

the recourse policy implies optimizing over a function space, which is hardly
achievable for practical problems, a commonly used approach consists in ap-
proximating the stochastic process ξ by a set of K scenarios ξ(k) corresponding
to realizations of the stochastic process (cf. Section 1.2.3). A scenario repre-
sents the temporal evolution of the demand curve (Y (k)

req,t) and of the limitation
or the unavailability of some generation units (F (k)

t). The objective (2.7) is to
minimize the expected cost of adjusting the first stage to the different scenar-
ios. The expectation is replaced by the average over all the scenarios, and a
weight wk ∈ [0, 1] (with

∑K
k=1 wk = 1) is assigned to each scenario to represent

its probability.
The first and second stages contain commitment (integer) and generation

level (real continuous) variables. Constraints (2.13) express that there cannot
be any adjustment or specialization to a scenario until time period tr (non-
anticipativity). We impose the non-anticipativity of the control actions and
not of all the optimization variables indexed by a time smaller than tr, since
the state may differ in the different scenarios. From time tr on, the schedule
may be adjusted to track a particular scenario. This formulation allows the

2.3 Intra-day adjustment of the generation schedule 53

decomposition of the problem in sub-problems related e.g. to single scenarios
using the DDSIP algorithm described in Carøe and Schultz (1999). How-
ever for computational reasons we cannot hope to include a large number of
scenarios in the tree. This may not be harmful to compute a good first stage
solution, but it renders impractical the application of the second stage, since in
the real time context the realization of the uncertain process is likely to differ
to a large extent from the scenarios considered in the above formulation.

We can arbitrarily define the reference schedule, i.e. the schedule that would
be submitted one day ahead to the TSO, as the schedule obtained for scenario
ξ(1). This reference could be used to state some constraints limiting the magni-
tude of the adjustments made to reschedule the first stage for other scenarios.
However each such constraint would couple the reference schedule with one
schedule fitted to another scenario ξ(k), k 6= 1 and, as non-anticipativity or
constraints coupling the generation units, must be relaxed to obtain a tractable
problem. We will see in Chapter 4 that such constraints applied to a single sce-
nario rescheduling problem already lead to a large increase of the computation
time.

2.3.4 Literature survey on the incorporation of uncertainty in the
generation scheduling problem

This section reviews the different ways under which uncertainty has been in-
troduced in short-term electric generation scheduling as well as the solution
and evaluation methods that have been proposed.

A multistage stochastic programming formulation is proposed in Takriti
et al. (1996). Decisions, i.e. status variables and generation levels, are attached
to the nodes of a scenario tree. Scenarios contain perturbed load curves and
a generator failure is handled as a load increase of an amount equal to the
maximum generation level of the corresponding unit. Stages are delimited by
the precise instants at which the recourse can be taken. The progressive hedging
algorithm (Rockafellar and Wets, 1991) is used to decompose the problem
in single scenario sub-problems, i.e. to relax the non-anticipativity constraints,
and to iteratively modify these sub-problems to impose the non-anticipativity
constraints progressively. Each scenario related sub-problem is solved using
Lagrangian relaxation of the coupling constraints. Progressive hedging is proved
to converge to a global optimum in the convex continuous case but has no
guarantee to converge in the mixed-integer framework. However the authors
report quick convergence and good quality of the solution. The authors apply
this procedure to a weekly generation scheduling problem containing about 20
scenarios. To measure the value of the hedged schedule, the authors first apply
the deterministic schedule obtained for each scenario to all the other scenarios
and compute the average cost. Then they apply the hedged schedule to all the
scenarios that composed the scenario tree and again measure the average cost.
They observe significant savings thanks to the stochastic formulation in these
experiments. Spinning (tertiary) reserve constraints are not implemented in the
stochastic model, the authors stating that the extreme system conditions may
be hedged by including special scenarios in the scenario tree.

54 2 Day-ahead and intra-day electricity generation scheduling

In Renaud (1993), EDF presents its new tools for computing daily gen-
eration schedules. The Augmented Lagrangian technique is used to solve the
deterministic generation scheduling problem. The author points out the idea to
move toward a quasi real time actualization of the generation schedule in order
to correct the inaccuracies in load forecasts or to face any other unforecasted
event; he thus argues for a receding horizon procedure in the intra-day context.
The author also pins down the main difficulties of this upgrade: the necessity
to satisfy accurately all the operating constraints because a time consuming
manual post-processing is by nature not affordable, the integration of network
secure operation, etc.

Almost at the same time as the work presented in Takriti et al. (1996),
Carpentier et al. (1996) report on applying the Augmented Lagrangian
technique to the multistage stochastic generation scheduling problem. Instead
of relaxing the non-anticipativity constraints, the coupling constraints are re-
laxed first. The problem then decomposes into stochastic sub-problems (one for
each unit of the thermal system considered). To compare the stochastic solution
with respect to the deterministic one containing spinning reserve constraints,
simulation trees are used and an “Open Loop Feedback Optimization” scheme
is considered. A simulation tree has the same characteristics as a scenario tree
used for optimization, but is larger in order to assess the decision methods
for a larger spectrum of uncertainties. To evaluate the stochastic approach,
a stochastic problem is solved at each node of the simulation tree by using
an optimization tree, and the root decision only is implemented. To evaluate
the deterministic approach, a deterministic problem with spinning reserve is
solved at each node of the simulation tree (for the remaining horizon at the
time the current node corresponds to), and the first decision is implemented.
They report a benefit of approximately 2 % for using the stochastic solution
when considering both load uncertainties and one unit failure events (but this
depends on the way the optimization trees are built).

A two-stage formulation is adopted in Schultz and Carøe (1998) in order
to obtain a robust schedule, in opposition to the work of Takriti et al. (1996)
and Carpentier et al. (1996) which implement a receding horizon proce-
dure, where only the first stage decisions are implemented while the decisions
related to the other stages are discarded. In Schultz and Carøe (1998) the
first stage gathers the start-up decisions of the coal fired units for the whole
time horizon, and the recourse stage consists of the generation levels of all the
started units as well as the start-up decisions of quick gas fired units for each
scenario. Here both stages thus cover the same time horizon. Hence the re-
course costs are taken into account when computing the first stage. Schedules
are hedged against start-ups only, but are implementable for the whole time
horizon. As in Takriti et al. (1996), non-anticipativity constraints are re-
laxed, but a branch-and-bound algorithm consisting in progressively imposing
the non-anticipativity constraints is used to obtain convergence in a finite num-
ber of steps. Bounds are obtained thanks to the value of the dual problem (cf.
Carøe and Schultz (1999)). The reported results are mainly oriented towards
computational experience and convergence evaluation, without a real evalua-
tion of the hedged policy. Similar considerations are reported in Gollmer

2.3 Intra-day adjustment of the generation schedule 55

et al. (2000). Nowak et al. (2005) formulate a two-stage stochastic pro-
gram that incorporates day-ahead trading in the problem, and also uses the
solution method proposed in Carøe and Schultz (1999).

The paper of Dentcheva and Römisch (1998) somewhat unifies the pre-
ceding discussion by presenting two kinds of models, which differ by the quality
of the information available about the demand uncertainty: a dynamic model
and a two-stage stochastic model. The dynamic model is dedicated to short
term operation – it is in fact a multistage model similar to the models of
Takriti et al. (1996) and Carpentier et al. (1996) – where the future
consequences of the current scheduling decisions are taken into account as well
as future demand uncertainty: demand is supposed to be completely known
at the beginning of the horizon and the uncertainty grows with the number
of time periods. The two-stage model is comparable to the model in Schultz
and Carøe (1998), except that start-up of large units may also happen in
the recourse stage. It is dedicated to a longer term operation than the dy-
namic model. The objective is thus to find an optimal schedule for the whole
system and scheduling horizon such that the uncertain demand can be com-
pensated by the system (in probability), the system constraints are satisfied
and the generation plus expected recourse costs is optimal. The paper then
describes in details the solution method for the two models, the Lagrangian
relaxation of the coupling constraints as well as the sub-gradient algorithm
used to solve the dual problem. No evaluation of the schedules is reported.
Gröwe-Kuska et al. (2000) reports on the same methodology to solve the
multistage model, but adds an algorithm to build representative but not too
complex scenario trees in order to obtain a tractable problem. Only load uncer-
tainty is considered. Nowak and Römisch (2000) is again devoted to the same
topic, but puts the emphasis on the sub-problems solution methods and on the
Lagrangian heuristics needed to recover a feasible primal solution. Nürnberg
and Römisch (2002) incorporate stochastic fuel prices in the two-stage model
described in Dentcheva and Römisch (1998). Gröwe-Kuska et al. (2002)
add stochastic fuel prices and water inflows in the dynamic model described in
Nowak and Römisch (2000). Heitsch and Römisch (2005) reports on the
reduction of multivariate scenario trees, in particular load/water inflow trees.

In all the above stochastic formulations, the spinning reserve requirement
is neglected because it is assumed that taking into account multiple scenar-
ios when planning provides enough flexibility. Ruiz et al. (2008) nevertheless
incorporate spinning reserve requirements in a two-stage formulation where
the first stage contains the commitment decisions and the second stage the
economic dispatch to meet specific scenarios load (thus close to the model of
Schultz and Carøe (1998)). The rationale is that the (few) scenarios that
may be included in a tractable stochastic formulation cannot capture the whole
spectrum of uncertainty. Furthermore they claim that there should be a bal-
ance between the reserve requirements enforced and the scenarios included in
the stochastic problem, and the reserve requirements may be scenario depen-
dent. An interesting evaluation procedure is used to compare unit commitment
decisions, i.e. the on/off part of the generation schedule. One deterministic and
two stochastic unit commitments are computed – the stochastic ones differ

56 2 Day-ahead and intra-day electricity generation scheduling

only in the reserve requirements associated to the scenarios – and only unit
outages are considered. Then the economic dispatch problem is solved for a
large number of simulation scenarios, distinct of the scenarios used to compute
the unit commitments. Finally the different first stages are compared on the
basis of their expected cost and energy slack on the simulation scenarios for
several reserve requirement levels. The stochastic unit commitment where no
reserve is required for scenarios containing an outage turns out to be a good
compromise. It is interesting to note that a small number of scenarios are used
and that they do not use any decomposition technique to solve the problem for
the thermal based generation pool considered.

2.4 Motivation of a simulation based supervised learning
approach

Real instances of the short-term scheduling problem are typically large-scale.
For example, the real system of which the test system of Section 4.1 is a sub-
set contains more than one hundred heterogeneous generation units and ten to
twenty recourse stages. By nature, the electricity generation scheduling problem
is very complex because of the presence of discrete variables in addition to con-
tinuous variables. Thus currently the formulations discussed in Section 2.3.4,
which use scenario-based stochastic programming, are intractable from a com-
putational point of view for the kind of system we consider in a day-ahead or
intra-day context. Furthermore they do not provide explicit recourse policies.
Currently, empirically designed good practice rules are thus used to propose
adjustments for the very short term management of the generation pool (Re-
naud, 1993).

In this work we study an alternative solution to scenario-based stochastic
programming. We compute the optimal schedules individually for a set of dis-
turbance scenarios to build a dataset of scenario-adjustment pairs, and then
apply supervised learning to this dataset to learn an explicit mapping repre-
senting the recourse strategy. The interests of such a formulation are manifold.

1. Instead of providing schedules specialized for particular scenarios, this
approach provides a policy which generalizes these specialized schedules
and outputs tuned decisions for scenarios which were not used to con-
struct the policy.

2. This allows to validate the recourse policy before actually using it, thanks
to some independent scenarios held out of the learning dataset.

3. We may use the regularity properties of SL algorithms to compute a
recourse strategy that generalizes well the information contained in the
scenario-schedule pairs of the dataset, and which is robust to small vari-
ation of the parameters, i.e. in our case of the uncertainty (cf. Exam-
ples 6 and 7). The predicted decisions are based not only on the solution
of one scenario, but are also sensitive to the solution of scenarios in a
neighborhood. Neighborhoods are automatically induced from data by

2.4 Motivation of a simulation based supervised learning approach 57

the learning algorithm, depending on the value of some meta-parameters
which can be optimized during the validation (cf. item 2).

4. SL algorithms may be able to filter the schedules associated to scenarios
for which it was not possible to compute a near-optimal solution, assum-
ing that such scenarios do not represent a large proportion of the dataset,
and thus to increase the performance of the optimization algorithm on
these particular scenarios.

5. Heavy computations would be done offline and a relatively long time be-
fore the exploitation of the policy, using standard optimization techniques
and custom scenario generation procedures. The time required to accom-
plish the whole procedure may be easily forecasted, thus the available
computation time could be fully consumed.

6. Consequently the recourse strategy is applicable in quasi real-time if the
inference process is kept simple and if its decisions can be made compliant
with operation constraints thanks to a post-processing stage.

7. Some SL techniques algorithms provide side information, such as the de-
gree of influence of some parameters on the decisions, the weight associ-
ated to the learning samples in the learned model, the degree of confidence
on the decisions, or simply an interpretable explanation of the decision
as a set of if-then rules.

8. There exists some flexibility on the formulation of the SL problem: first
on the description of the input features, secondly on the choice of the
output variables to predict. The latter option allows to tune the extent
to which we believe the method is useful by selecting the set of variables
that one wants to predict.

9. This procedure is to a large extent automatic (automatic learning and
automatic validation) and can handle the dimensions of the real problem.

10. Finally, simulations could be replaced by or complemented with the sched-
ules computed for scenarios which occurred in the past, allowing the ex-
ploitation of historical data.

These aspects will be exemplified in the next chapters. The proposed approach
is exposed in greater details in Chapter 3, and validated in Chapter 4 on a
representative benchmark problem.

Chapter 3

Supervised learning of recourse policies for
intra-day generation rescheduling

In this chapter we expose our vision of the connections between the problems of
day-ahead and intra-day generation (re)scheduling. We propose a way to com-
bine simulation, optimization and SL in order to compute recourse strategies
for the intra-day rescheduling problem.

3.1 Overview of the proposed approach

As already suggested in the previous chapters, in the short-term generation
scheduling problem of a generation company, there are two main sub-problems
that need improved solution methods.

1. Given uncertainties about the next day conditions, compute offline an
“ideal” reference schedule for the next day given the information available
the day before, so as to choose market positions and then announce the
resulting schedules to the TSOs that are involved. This problem may
actually lead to several iterations, if one or the other of the involved
TSOs is unable to plan secure operation of his area with the schedules
submitted by the different generation companies bidding in his area;

2. Define “recourse” strategies that will be used on the next day by the
operators of the generation company in order to exploit incoming in-
formation about unexpected events gathered during operation, so as to
reschedule the generation system with minimal cost, given the schedules
and opportunities of recourse that the generation company has negoti-
ated. For a particular recourse opportunity, this problem depends on the
decisions committed at the previous steps, including both the day ahead
“ideal” schedules negotiated with the TSOs he is interacting with and
the decision policies settled and used for previous intra-day “recourse”
opportunities.

These two problems are strongly intertwined, because what is optimal to an-
nounce the day before depends on how well one will be able to react the next

59

60 3 SL of recourse policies for intra-day generation rescheduling

day and vice versa, and because the optimal reactions during the next day
depend on what has been announced the day before.

In this chapter, we approach these two problems by proposing an approach
that may be used in order to compute, the day ahead, strategies for rescheduling
operation based on the incoming information flow, once the reference sched-
ule has been decided. We will thus assume that the problem 1 of defining an
ideal reference schedule is already solved, and exploit this reference schedule to
simulate possible unexpected events and pre-compute ways to react to them.
As concerns problem 2, given that in practice it is not possible to analyze in
advance all possible unexpected events that could happen the next day, we rely
on sampling “disturbance” scenarios in a finite number to represent this uncer-
tainty. For each possible unexpected event (or sampled disturbance scenario),
it is also not possible to exactly compute how to react to it in an optimal way,
and we will only be able to rather roughly determine in advance what would
be the optimal recourse decisions for coping with it, by formulating tractable
approximate optimization problems to model these decision stages.

With these limitations in mind, we propose to apply a combination of
Monte-Carlo simulation, optimization, and supervised learning methods in or-
der to do the following (see Figure 3.1 for an overview of the different steps):

• the day head, and given a reference scenario/schedule, sample a finite
relevant set of disturbance scenarios for the next day (step 1) and obtain
near-optimal recourse decisions coping with each one of them (step 2);

• use supervised learning methods to (step 3):

– extrapolate generic intra-day decision rules (recourse strategies) from
the finite number of simulations carried out in steps 1 and 2, based
on the reference scenario and reference schedule;

– filter out in this way inconsistencies and sub-optimalities from this
available finite sample of simulations;

• combine the learned decision rules with fast constraint satisfaction proce-
dures (post-processing) in order to provide recourse strategies which are
feasible and still fast to validate by Monte-Carlo simulation (step 4) and
easy to implement in online exploitation;

• assess which parameters describing the uncertainty set are most impor-
tant for formulating intra-day recourse strategies.

Anticipating on the subsequent discussions, let us mention the following
stakes of the proposed approach:

• intra-day decisions are subject to constraints, which may not be ensured
in general by the predictors computed by machine learning; hence a post-
processing step is required to make the learned policies of practical use;

• to model correctly the context of application of a recourse strategy, it
is necessary to model the reaction of the system during the time period
preceding the application of the recourse decisions; it turns out that this

3.1 Overview of the proposed approach 61

Offline computation

Online exploitation

1. Scenario generation
2. Simulation

3. Learning

4. Validation

Reference schedule Model of the system

Training scenarios MILP Solver

Scenario generator
Dataset of scenarios

and simulated
adjustments

Supervised Learning

Test scenarios Recourse strategy

Observed/updated
scenario

Figure 3.1: Schematic overview of the proposed supervised learning-based ap-
proach for building intra-daily recourse strategies. Continuous arrows illustrate
the creation of the content of the destination node from the origin node. Dashed
arrows illustrate the utilization of the content of the origin node by the desti-
nation node.

problem is rather difficult since it involves information about the whole
network which is normally not available the day ahead; we will expose
how we treat this problem in this thesis;

• to compute a recourse decision strategy for a given recourse instant, it
would be necessary to already know how the subsequent recourse oppor-
tunities are going to be exploited, and vice versa, for computing these
latter it is also useful to know how previous decisions will be taken.

Our approach consists in developing a method to design recourse strategies for
a given recourse instant assuming that previous and posterior decision making
schemes are already established. However, our recourse strategies are designed
to be efficiently implementable given any simulated scenario; hence there is a
possibility of iterating in order to adapt anterior and posterior decision stages

62 3 SL of recourse policies for intra-day generation rescheduling

by taking into account results produced by our approach. These latter oppor-
tunities are not evaluated in this thesis but will be discussed in Chapter 5.

Finally, Figure 3.1 illustrates the steps which can be performed offline (light
gray area), i.e. at least one day ahead, and the steps which are performed online
(dark gray area), i.e. at each recourse stage.

3.2 Generation of perturbed scenarios

We need a way to generate a set of demand and availability scenarios repre-
senting the range of disturbances of the forecast that we want to cover with our
recourse strategies. In practice, there are essentially two approaches to gather
a set of such scenarios, namely their collection from actual operation of the sys-
tem or the use of a Monte-Carlo simulation approach exploiting a probabilistic
model of possible deviations from forecasts. Within our proposed methodology
we can use either of these two approaches, or even a combination of them,
since the input to the next step is merely a set of time series representing the
deviation of load from the forecast and the moments at which a particular
generation unit becomes unavailable.

Consider a set D of demand patterns, and a set O of generation units
which are supposed available along the complete optimization horizon in the
reference schedule, but could become unavailable the next day. In our case study
of Chapter 4 (cf. Section 4.2), we start from the reference scenario containing
the day ahead demand forecast and the generation units availabilities used
to compute the reference schedule. To obtain D, we then generate different
perturbed curves randomly around the reference demand curve by combining
a probabilistic model of demand-forecast errors. To obtain O, we consider all
the thermal generation units that are started before the recourse opportunity.

Let Ξ be the set of scenarios ξ(k), k = 1, . . . ,K made of one demand curve
d ∈ D and of a unit outage of O imposed at a time in {0 . . . tr − 1}, where tr
is a fixed recourse instant belonging to {0 . . . T − 1}.

3.3 Computation of the adjustments to the perturbed
scenarios

Let π(1)? = (x?[0:T−1], u
?
[0:T−1]) be the optimal schedule associated to a scenario

ξ(1) (cf. Figure 3.2) that we consider as the reference, i.e. the scenario used one
day ahead for solving problem 1 (cf. Section 3.1). π(1)? is thus the reference
schedule. We want to compute an optimal recourse strategy π∗tr (ξ[0:tr−1]) for a
single a priori fixed recourse time tr. Thus, we want to know the modifications
to make to the day-ahead schedule of all the generation units from time tr to
time T − 1 once that the real behavior of the system between time 0 and time
tr − 1 is observed (e.g. ξ(k)

[0:tr−1]) and that, possibly, an updated load forecast is
available1.

1Note that there is a slight change of convention from here until the end of Part I, as
well as in Appendix B. We consider that the first step of the generation schedule for the next

3.3 Computation of the adjustments to the perturbed scenarios 63

time
0 tr T − 1

ξ(1)
ξ(k)

(a) Two scenarios of Ξ. ξ(1) is the scenario used to compute the reference schedule.

time
0 tr T − 1

π(1)?

(b) The reference generation schedule π(1)?.

Figure 3.2: Illustration of the reference scenario and schedule, and of the per-
turbed scenario ξ(k).

3.3.1 Simulation of the ancillary services

We suppose that unforecasted events occurring in the interval {0 . . . tr − 1}
are compensated by the ancillary services which act in continuous time. Thus
the automatic regulation processes associated to the ancillary services (cf. Sec-
tion 2.2.1) modify the schedule planned between two recourse opportunities,
and thus also between the beginning of the implementation of the day ahead
schedule and the first opportunity of recourse. We denote by π(1,k)† the gener-
ation schedule corresponding to the reference schedule automatically adjusted
thanks to the ancillary services if scenario ξ(k) happen instead of ξ(1) (cf. Fig-
ure 3.3). The automatically adjusted schedule, π(1,k)†, must comply with the
margins of ancillary services allocated in the reference schedule π(1)?.

3.3.2 Re-optimization of the day-ahead schedule

The reference schedule π(1)? optimally adjusted to satisfy the scenario ξ(k) ∈ Ξ
on {tr . . . T − 1} is denoted π(1,k)?. To compute π(1,k)? under real system con-
ditions, the reference schedule automatically adjusted thanks to the ancillary
services, π(1,k)†, must be imposed on {0 . . . tr − 1}. In Figure 3.4b, the dashed
curve represents the schedule π(k)?, which is optimal with respect to scenario

day is time 0 and that the schedule ends at time T − 1. It thus spans T time steps, and the
recourse occurs at time tr, based on the information gathered up to tr − 1.

64 3 SL of recourse policies for intra-day generation rescheduling

time
0 tr T − 1

ξ(1)
ξ(k)

(a) Two scenarios of Ξ. ξ(1) is the scenario used to compute the reference schedule.

time
0 tr T − 1

π(1)?

π(1,k)†

(b) Automatic adjustment of the reference generation schedule π(1)?.

Figure 3.3: Effect of the ancillary services.

ξ(k) for the entire optimization period {0 . . . T − 1}, while π(1,k)? is thus op-
timal for scenario ξ(k) on {tr . . . T − 1} conditionally on the assumption on
its behavior on {0 . . . tr − 1}. Because schedule π(1,k)? is constrained to stay
closer to π(1)? on {0 . . . tr − 1}, π(1,k)? and π(k)? are quite likely to differ on
{tr . . . T − 1}.

The difference π(1,k)? − π(1)? (Figure 3.4b, gray shaded area) actually rep-
resents the difference between the open loop schedule computed the day ahead
from the forecasts and the optimally adjusted schedule if at time tr perfect in-
formation became available about the realization of the scenario for the whole
period {0 . . . T − 1}. Notice that in real-time operation the information avail-
able at time tr to take the recourse decision is not so strong; while it may
perfectly describe the realization up to tr it will in general only reduce, but
not totally remove, the uncertainty about the future realization of the process
during {tr . . . T − 1}. Therefore, the re-optimization of the perturbed scenarios
provides a dataset of generation adjustments which are optimistically biased
because they assume perfect information about the behavior of the system at
time steps subsequent to tr. This over-fitting of the sample of perturbed scenar-
ios can however partially be countered by the application of supervised learning
at the next step of the proposed approach which can enforce the projection of
this information on a set of non-anticipative decision strategies which are only
function of the information actually available at time tr.

3.3 Computation of the adjustments to the perturbed scenarios 65

time
0 tr T − 1

ξ(1)
ξ(k)

(a) Two scenarios of Ξ. ξ(1) is the scenario used to compute the reference schedule.

time
0 tr T − 1

π(1)?

π(k)?

π(1,k)?

(b) Re-optimization of the automatically adjusted reference generation schedule
π(1,k)† on {tr . . . T − 1}.

Figure 3.4: Obtaining quasi-optimal adjustment to ξ(k) on {tr . . . T − 1}.

3.3.3 Limitation on the number of adjustments per recourse

As exposed in Section 2.3, the number of adjustments that can be implemented
at each recourse opportunity may be limited for practical and regulatory rea-
sons. This constitutes an additional requirement for the re-optimization phase.
From the schedule computed one day ahead, we can only switch to a relatively
close schedule when a recourse opportunity occurs: the number of thermal units
and hydroelectric valleys on which we can act for all the recourse period is lim-
ited to an integer K smaller than the total number of units (Nt +Nv) allowed
to be adjusted. The problem is thus to select the best subset of units and then
to re-optimize their generation schedule to cover the new demand forecast. Se-
lecting K units to adjust beforehand, i.e. independently of the optimization of
the generation levels, obviously leads to a suboptimal solution.

3.3.4 Remarks

To obtain quasi-optimal adjustments π(1,k)? to the reference schedule π(1)? for
a scenario ξ(k) on the period {tr . . . T − 1}, we must account for the ancillary
services that automatically adapt π(1)? to scenario ξ(k) on the period {0 . . . tr−
1}. Some additional constraints may apply to the re-optimization on the period
{tr . . . T − 1} to limit the number of adjusted units.

This re-optimization procedure can be repeated for each scenario of Ξ. Prac-
tically, it can be performed with the same optimization algorithm as the one

66 3 SL of recourse policies for intra-day generation rescheduling

used to compute the reference schedule by applying a few modifications to
Formulation 5 (cf. Appendix B.2). As exposed in Section 2.2.1, the ancillary
services affect the power generated by the units of the system according to
deviations of the synchronous network frequency and of the planned exchanges
between areas, which are themselves influenced by events occurring in and out-
side the generation system under consideration (load variations, ...). In real-
time exploitation the local modifications to the planned schedule caused by
the regulators implementing the ancillary services can be measured and cen-
tralized to provide an appropriate estimation of the state of the generation
system before taking some adjustment decisions. However, during an offline
a priori study, the information available is not sufficient to evaluate the next
day use of the ancillary services, since the information contained in scenarios
is restricted to the area of the generation company. Without a model and sce-
narios encompassing the whole network it is thus not possible to reconstruct
the actual realization of the ancillary services.

We expose in Appendix B.2 the procedure that we implemented to tackle
this problem for the experiments of Chapter 4.

Appendix B.2 also exposes how the subset selection problem can be incor-
porated in the re-optimization procedure.

3.4 Supervised learning application

We want to exploit the datasets generated by the approaches explained in
Sections 3.2 and 3.3 to obtain an approximation πtr (ξ[0:tr−1]) of an optimal
recourse strategy π?tr (ξ[0:tr−1]) mapping the information about the realization
of the uncertain processes available at time tr to the optimal generation ad-
justments at subsequent time steps. We propose to formulate a supervised
learning problem in order to compute an approximation of this mapping. We
have a sample of K realizations of the uncertain process ξ,

{
ξ(1), . . . , ξ(K)} and

the corresponding set of K − 1 optimal adjustments of the reference schedule
π(1)?,

{
π(1,2)?, . . . , π(1,K)?

}
(cf. Figure 3.5). Schematically, we want to learn

a mapping from the gray shaded area of the top graph of Figure 3.5 to the
gray shaded area of the bottom graph of this figure. For example, a direct
formulation of this SL problem consists in setting:

• as output space Y the space of multivariate time series representing the
evolution of the generated power of all the generation units for t ≥ tr,

• as input space X the space representing the state of the generation system
at time tr and the information about the realization of the load and
generation availability scenario collected until tr (which are also time
series).

The overall description of the methodology used to learn a recourse strategy
is summarized in Table 3.1. One can in principle apply any available supervised
learning algorithm to this problem.

3.4 Supervised learning application 67

time

Scenario

ξ(1)
ξ(2)
ξ(3)

πtr (ξ[0:tr−1])

time

Schedule

0 tr T − 1

π(1)?
π(1,2)?
π(1,3)?

Figure 3.5: Illustration with K = 3 of the supervised learning application to
compute an approximation of π?tr (ξ[0:tr−1]).

Table 3.1: Computation of a recourse strategy.

Input:
an optimal schedule π(1)? associated to a reference demand scenario d(1) ∈ D.
Output:
a recourse strategy πtr (ξ[0:tr−1]) for π(1)? and for the recourse time tr.

1. Let Ξ be the set of scenarios made of one demand of D and of a unit
outage event of O,

2. compute the automatic adjustment π(1,k)† of π(1)? from 0 to tr − 1 to
each scenario ξ(k) ∈ Ξ,

3. compute a schedule π(1,k)? adjusted from tr to T − 1 to each scenario
ξ(k) ∈ Ξ by imposing the schedule π(1,k)† on {0 . . . tr − 1},

4. solve a supervised learning problem in order to derive an approximation
πtr (ξ[0:tr−1]) of the optimal recourse strategy for time tr, ξ[0:tr−1] being
the state information available at time tr.

68 3 SL of recourse policies for intra-day generation rescheduling

3.4.1 Choice of the input space X

There exists some flexibility on the inputs of the SL formulation. We can define
the input space so as to enforce the learned strategy to exploit exclusively the
observation of the realization of ξ up to tr − 1. The learned recourse strategy
will tend to predict adjustments which are good on average for multiple possible
futures given the observed realization on {0 . . . tr−1}. Alternatively the learned
strategy may also exploit an updated forecast of the demand on {tr . . . T −
1}. However, since the coupling constraints are only implicitly present in the
learning sample and not explicitly imposed during the learning of the recourse
strategy, there is no guarantee to obtain schedules with a cumulative generation
curve close to the updated demand forecast. It is not possible to conclude a
priori which formulation is the best, because it is related to the quality of the
updated demand forecast and to the possible deviations of the load from the
latter. This must thus be kept in mind when validating (cf. Section 3.5.2 and
Section 5.6).

3.4.2 Choice of the output space Y and induced post-processing

One interesting aspect of a SL-based approach to compute the recourse strategy
is that we can a priori choose which part(s) of the available information on
the adjusted generation schedules we actually want to predict, and define the
output space Y consequently. For example, instead of predicting the precise
generation level of the units we can predict a cruder approximation of the
generation schedule, e.g. only the on-off state of the thermal generation units
and the number of turbines or pumps that are activated in each hydroelectric
plant. The projection on a precise updated forecast may then be performed
during a post-processing phase, as we do in Section 4.5.

Depending on the choice of Y, a post-processing is required for one or more
of the following reasons.

1. We must obtain detailed generation schedules for all the generation units.

2. We must ensure that the predictions are feasible with respect to the
individual dynamic and operating constraints of the generation units: for
example, the generation interval of a unit is non-convex (it is either 0 MW,
or between Pmin and Pmax), a unit must stay on for a certain amount of
time once it has been started, etc. There is no guarantee that a recourse
policy computed with a SL algorithm generates adjustments which satisfy
the operating constraints of the generation units, since these constraints
are only implicitly present in the learning sample. However, the feasibility
of the adjustments in this sense is a strict requirement. Thanks to a post-
processing phase the predicted adjustments can be projected onto the
feasibility domain delimited by the operating constraints of the thermal
and hydroelectric generation units.

3. We must ensure the load-generation balance with respect to a particular
load forecast.

3.4 Supervised learning application 69

Furthermore, depending on the structure of Y and on the choice of the learning
algorithm, a decomposition or a reformulation of the problem may be necessary.
In the next subsections we analyze these aspects for a few choices of Y.

3.4.2.1 Predicting the subset of generation units that should be adjusted

One of the simplest choices for Y is, following the discussion of Section 3.3.3,
to predict the optimal subset of K generation units that should be adjusted.
Indeed from the simulations of Section 3.3 we can define an adjustment indi-
cator Yi for each unit i, that is equal to one if the corresponding unit has been
adjusted with respect to the reference schedule, and equal to zero otherwise.
As output space we have thus

Y = {0, 1}Nt+Nv .

Even though the adjusted schedules from which we evaluate the indicators Yi
comply with the limitation on the number of adjustable units (K), the learned
recourse strategy may produce predictions that are not compliant with the
latter limitation and thus require a post-processing stage to enforce it.

Then, to obtain generation schedules for all the generation units of the
system, one must have an updated forecast of the demand curve and solve a
smaller instance of Formulation 5 containing at most K adjustable generation
units (e.g. typically, containing K = 30 adjustable units in a system made of
Nt +Nv = 150 units). This setting is experimented in Section 4.5.

3.4.2.2 Predicting start-up and shut-down decisions

Predicting start-up and shut-down decisions is equivalent to predicting the
On/Off status of the generation units and the number of turbines or pumps
activated in each hydroelectric plant, i.e. the value of the integer variables of
the problem. These predictions cannot be used directly to obtain the detailed
adjustments of the generation schedules because

1. first, one must ensure that the sequences of integer decisions predicted
are feasible (since SL algorithms do not guarantee this per se),

2. then, one has to compute the power generation levels (continuous vari-
ables).

If these two problems can be solved sequentially, then one could imagine to
solve problem 1 for each unit independently, and to solve problem 2 globally,
i.e. for all the generation units together, to target an updated demand forecast.

These two types of post-processing may be solved sequentially for thermal
generation units since for the integer variables one just needs to ensure that the
delays between start-ups and shut-downs are sufficiently long, without having
to consider the continuous variables. Once integer variables are fixed, continu-
ous variables can be optimized.

However for hydroelectric units these two types of post-processing cannot
be solved sequentially. Integer variables determine the range of water flows and

70 3 SL of recourse policies for intra-day generation rescheduling

there is a bijective correspondence between the water flows and the power gen-
eration levels. Water flows determine the evolution of the volume of reservoirs.
Since the allowed volume variation range is at some time steps very narrow (or
even null), the activation or deactivation of some turbines or pumps may be
necessary. Thus one must be able to act on both integer and continuous types
of variables simultaneously.

In summary, predicting directly start-up or shut-down decisions seems valu-
able only for thermal generation units. In this setting, Formulation 5 could be
solved with the integer variables of the thermal units set according to the post-
processed predicted values while the hydroelectric sub-problems may contain
both integer and continuous variables.

3.4.2.3 Predicting power generation levels

The evolution of the generation level of each generation unit over the recourse
horizon is the most informative output that we can predict, since it also de-
fines the On/Off status of the thermal units, the water flows and the ancillary
services reserves. As mentioned in Cornélusse (2008), predicting the indi-
vidual generation level of all the hydroelectric units of a valley is quite harder
than for their thermal counterparts, because of the more chaotic structure of
their schedule due to severe restrictions on the volume of reservoirs and to the
couplings induced by the water flow networks (cf. Figure 2.2). We therefore
propose to predict the total power that must be generated by a hydroelectric
valley along the recourse horizon. Learning one regression model for all gen-
eration units corresponds to a multivariate real valued time series prediction
problem.

In this setting, we can interpret the output of the learned strategy as a de-
mand to satisfy for each thermal generation unit and for each valley. We thus
obtain a unit by unit decomposition of the generation re-scheduling problem.
However we have no guarantee that these demands are individually satisfiable
when taking into account the operating constraints of the generation units.
For example, using tree-based ensemble methods (Appendix A.2) to compute
a regression model, the prediction for any input scenario is essentially a convex
combination of some outputs present in the learning set; a SVR hypothesis
(cf. Appendix A.3) predicts weighted sums of kernel evaluations based on the
input features of different objects of the training dataset; etc. Instead of cus-
tomizing the learning algorithm to obtain predictions that comply with the
constraints of the generation scheduling problem, we decided to use classical
learning algorithms and to post-process the prediction to ensure the feasibility
of the adjustments (cf. Appendix B.3.1). Each post-processing sub-problem is
nevertheless much smaller than the problem of computing the reference sched-
ule, and we can thus hope that it fits in the time requirements of intra-day
recourse management.

As we decompose the problem and do not enforce the coupling constraints
a posteriori, if the adjusted generation schedule leads to a discrepancy between
the total generation and the total load, it must be compensated by reserve
energy purchase and is (strongly) penalized when evaluating the cost induced

3.4 Supervised learning application 71

by this strategy. The quality of the predicted adjustments in this respect must
thus by experimentally analyzed (cf. Section 4.4).

3.4.3 Decomposition or reformulation of the learning problem

All the learning problems exposed in Section 3.4.2 exhibit a complex structure.
We discuss below four formulations of the SL learning problems to deal with
their structure when the latter contains both a spatial dimension (i.e. several
units) and a time dimension.

Case 1. We solve the problem by taking as output space the space of multi-
variate time series (cf. Figure 3.6). Each output can be seen as a matrix
where rows represent units and columns represent time steps of the re-
course horizon.

h
x[tr:T−1]xtr−1

d[0:tr−1]

X Y

Figure 3.6: Illustration of decomposition of case 1. Learning a multivariate time
series as a function of the state of the system and the observation of the demand
until time tr − 1.

Case 2. To decrease the complexity of the problem we decompose the learning
problem unit by unit into univariate time series prediction problems (cf.
Figure 3.7), i.e. by rows of the output space of Case 1. We thus have
N = Nt+Nv supervised learning problems and the recourse strategy h =
(h1, . . . , hN) is the composition of N mappings. However we somewhat
lose the coupling of the units even though the decisions on which each hi
is trained are globally optimal.

xN,[tr:T−1]

x1,[tr:T−1]

xtr−1

d[0:tr−1] h1

hN

X

Y1

Y2

Figure 3.7: Illustration of the decomposition of case 2. Decomposition along
generation units.

Case 3. Instead of decomposing unit by unit another possibility is to decom-
pose Case 1 along the time dimension by explicitly appending the pre-
diction time in the inputs of the learning problem, i.e. column by column

72 3 SL of recourse policies for intra-day generation rescheduling

(cf. Figure 3.8). Learning from this formulation can take into account
the correlation between outputs at consecutive time steps since, e.g. a
tree-based model may contain splits on the time periods and thus explic-
itly partition the time domain. Indeed this is rather a reformulation than
a decomposition since we keep a single learning problem. We somewhat
break the dimensionality of the output space since in this setting the
number of learning examples is multiplied by the number of time steps
of the recourse horizon, T − tr, and the dimension of the output space is
consequently divided by T − tr. We thus gain a (T − tr)2 factor on the
ratio of the dimension of the output space over the number of learning
examples with respect to Case 1.

h

T − 1

xtr−1

d[0:tr−1]

xT−1

tr

xtr−1

d[0:tr−1]

xtr

X Y

Figure 3.8: Illustration of the decomposition of case 3. Incorporation of the
time variable in the input space.

Case 4. In order to apply some standard SL algorithms which operate with a
scalar (i.e. one-dimensional) output space, we note that we can combine
Case 2 and Case 3 to yield a scalar output learning problem for each
generation unit.

An alternative to the above approaches is to identify a priori clusters of
adjustment decisions for each generation unit and to turn the problem into a
classification problem. If cluster centers are feasible, this alternative requires
no post-processing stage. However, the a priori identification procedure may
be cumbersome and the definition of the optimal number of clusters hard to
define.

3.5 Exploitation and validation

3.5.1 Online exploitation

The most important requirement is to obtain recourse decisions that satisfy
the operating constraints of the generation units. To ensure the satisfaction of

3.5 Exploitation and validation 73

real-time feasibility constraints of a given unit, we impose them a posteriori, at
the moment where the recourse action is applied. First we compute a recourse
based on the information gathered in ξ[0:tr−1] and the decision rules built by
supervised learning. Then we modify these recourses and impose constraints
unit by unit.

3.5.2 Offline validation of a recourse strategy

In order to validate the recourse strategies computed by supervised learning,
we use an independent set of scenarios in the following way. First, each scenario
is solved optimally, in the same fashion as we computed the recourse decisions
for the learning sample. This yields for each validation scenario a generation
schedule that minimizes the costs of operation under the hypothesis of perfect
information. Then, for each scenario the recourses are computed by using the
learned decision rules, by post-processing them, and by computing the overall
induced operating costs, including the penalization of the possible violation
of the coupling constraints. Finally, by comparing the resulting costs, we may
measure the distance between the inferred strategies under different conditions
(e.g. using different settings of the learning method, different sets of input
features, or different sizes of learning samples) and assess them also with respect
to the (admittedly unreachable) ideal strategy based on perfect information,
or any other candidate strategy.

Chapter 4

Experiments

We begin with a description of the generation system (Section 4.1) used through-
out this chapter and provide some details about the scenario generation proce-
dure (Section 4.2). Then we analyze under different settings the computation
of quasi-optimal adjustments to the reference schedule for the set of perturbed
scenarios considered (Section 4.3), the learning of adjustment strategies, their
post-processing to obtain some implementable decisions and the overall perfor-
mance of the proposed approach (Sections 4.4 and 4.5). These settings differ
by the information assumed available when making the recourse decisions and
by the type of decisions one wants to infer.

4.1 Test system

4.1.1 Composition of the generation system

The test system we use in our experiments is composed of 16 thermal units of
different capacities, generation costs and technical characteristics (Figure 4.1),
and of 6 hydroelectric valleys (Figure 4.2) (this is twice the size of the gener-
ation system considered in Cornélusse et al. (2009b)). It is composed of
elements of the generation system of EDF, which contains about 111 nuclear
and thermal units and 38 Valleys. The maximal peak load that we consider in
our experiments is about 15 GW while the maximal peak load for France is
about 90 GW (cf. Section 4.2.1). Roughly there is thus a 1 to 6 ratio between
our test system and the true EDF system. On the other hand our test system
is comparable to the generation system of Electrabel in Belgium in terms of
generated megawatts, but contains proportionally more hydroelectric capacity.
The values of the parameters are adapted from real data provided by EDF.

The reference load curve is shown in Figure 4.3. The ancillary services re-
quirements are approximately constant all along the optimization period (130
MW for the primary reserve, 100 MW for the secondary reserve). The simu-
lations follow EDF’s industrial practice: to compute the schedule for the next
day the optimization horizon is divided into periods of 30 minutes and contains
two days, although the procedure is repeated every day, to obtain scheduling
decisions which drive the system into an acceptable state for repeating the

75

76 4 Experiments

Unit Type Pmin Pmax Fixed Proportional
[MW] [MW] cost cost

ARRI5T1 Gas 77 128 very high very high
BLENOT4 Coal 60 220 medium medium
CORD5T4 Coal 210 510 high medium
PORC2T3 Fuel oil 175 585 high high
GRAV 5T2 Nuclear 210 903 very low very low
SSEA2T1 Nuclear 180 910 very low very low
CATTET1 Nuclear 310 1303 very low very low
FLAMAT2 Nuclear 260 1330 very low low

(a) Technical characteristics.

0 10 20 30 40 50

(b) Start-up costs against stopped time: BLENOT4 red,
CORD5T4 green, PORC2T3 blue. No start-up cost are in-
curred to other units.

Figure 4.1: Description of thermal generation units. Two units of each type are
included in the model, with different fixed and proportional costs.

procedure the next day.

4.1.2 Example of generation schedule

After an automatic pre-processing1 the optimization problem contains about
39, 000 variables, one half of them being binary, and about 56, 000 constraints.
The optimization problems are solved using the branch-and-cut algorithm im-
plemented in CPLEX (ILOG, 2007) (cf. Appendix C.1.2).

If we want to solve the problem to optimality, a solution is found after 752
seconds after having explored more than 11, 000 nodes of the branch-and-bound
tree. When solving the problem with a tolerated integrality gap of 1% and a
maximum allowed computation time of 600 seconds, a solution is found after 51
seconds and only ten nodes explored thanks to a heuristic which quickly finds
feasible solutions and tightens the optimality gap. In this case the estimated
achieved integrality gap is about 0.8%. The actual gap between the provably
optimal solution and the approximated solution is about 0.5%.

1A preliminary stage performed before starting the branch-and-cut to tighten the al-
lowed range of variables and remove redundant constraints. This usually strengthens the LP
relaxation of the problem and decreases its size.

4.1 Test system 77

REVISR

REVI5H REVI5P

REVIIR

BOCALH

(a)

G.MARR CBONR

G.MAIH G.MAIP SSGUIH

VERN7R CLAPIR

OZ H CLAPIH

B.ROMR

B.ROMH

(b)

VOUGLR

VOUGLH VOUGLP

S.MORR

S.MORH

COISER MOUXR

COISEH MOUXH

BOLOZR

BOLOZH

ALLEMR

ALLEMH

CUSSER

CUSSEH

(c)

Figure 4.2: The three types of valleys used in the simulations. Two instances of
each type are included in the model, with different water values assigned to the
head reservoirs. Natural water flows and spills are not shown (cf. Figure 2.2).

The total power generated by hydroelectric units almost follows the varia-
tion of the load, while the total power generated by thermal units (Figure 4.3)
is nearly piecewise constant along the optimization period and thus offsets the
hydro generated power. The generation curves of some thermal units are de-
picted in Figure 4.4 (all nuclear power plants operate close to their maximal
output and are thus not illustrated). The evolution of the volume of the reser-
voirs and of the power generated by the plants in one of the six valleys are
depicted on Figure 4.5.

78 4 Experiments

0 20 40 60 80 100

−5000

0

5000

10000

15000

Time steps of 30 minutes

P
ow

er
 in

 M
W

Demand
Hydroelectric generation
Thermal generation

Figure 4.3: Two days demand forecast and corresponding cumulative thermal
and hydroelectric generation in the reference schedule.

0 20 40 60 80 100

0

100

200

300

400

500

Time steps of 30 minutes

P
ow

er
 in

 M
W

ARRI5T_1
ARRI5T_2

BLENOT_4
BLENOT_5

CORD5T_4
CORD5T_5

PORC2T_3
PORC2T_4

Figure 4.4: Evolution of the generation level of the classical thermal units (i.e.
non-nuclear) in the reference schedule. Units of the same type are grouped
by color. The two small gas units are not used, as well as one fuel oil unit
(PORC2T4). In the remaining groups, the less expensive units operate at their
maximal level during high demand periods while the most expensive units
provide reserves for ancillary services.

4.1 Test system 79

0 20 40 60 80 100

0e+00

2e+06

4e+06

6e+06

8e+06

Time steps of 30 minutes

Vo
lu

m
e

in
 c

ub
ic

 m
et

er
s

Inferior reservoir (REVIIR)
Superior reservoir (REVISR)

(a) Reservoirs.

0 20 40 60 80 100

−400

−200

0

200

400

Time steps of 30 minutes

P
ow

er
 in

 M
W

Turbine (REVI5H)

Pump (REVI5P)

(b) Plants.

Figure 4.5: Evolution of the volume of the reservoirs and of the generation levels
of the plants in a valley of type (a) (cf. Figure 4.2) in the reference schedule.
In this schedule the lower turbine (BOCALH) is never activated, and thus all
along the optimization period the sum of the water stored in each reservoir is
constant.

80 4 Experiments

4.2 Generation of training and validation scenarios

In order to generate our dataset of scenarios for the next day, we have to make
two choices:

1. Choose a reference scenario for the next 48 hours (96 time steps of 30
minutes).

2. Generate perturbed versions of the reference scenario representing pos-
sible deviations from the reference scenario, which should be covered by
the recourse strategy.

In our setting a scenario encompasses a demand curve and a generation unit
outage. In order to achieve the generation of perturbed demand curves in a
realistic way, we have used historical demand forecast and realization curves
from three years provided by EDF, properly scaled down to the size of our
generation system, both in order to choose the reference scenario and to build
a generative model of deviations from the forecasted demand curves. The ex-
act procedure is explained in Section 4.2.1. We then describe and discuss the
generation of joint demand-generation perturbation scenarios in Sections 4.2.2
and 4.2.3 respectively.

4.2.1 Generation of perturbed demand curves

In order to obtain a generative model of the demand forecasting errors, we
proceeded in two steps exploiting the historical data: first we have pre-processed
the historical forecasts in order to obtain a normalized and sorted set of demand
patterns, then we have derived a model of the forecasting error by building
an autoregressive model of the difference between the forecasted and realized
demand. We eventually used the autoregressive model in order to generate a
sample of fixed size (in our case 900) of demand deviations around a reference
demand forecast over 96 time periods.

Normalizing and clustering the demand forecasts. The following procedure
is inspired by Gröwe-Kuska and Römisch (2005). Our historical data is
derived from a set of forecasted demand levels, di,t, where i = 1, . . . , I = 1095
represents a particular day, and t = 1, . . . , T = 48 represents a particular time
step during a day. We first compute for each day the average consumption of
that day, namely

d̄i = 1
T

T∑
t=1

di,t,

which we subtract from the original data by computing a new series of hourly
deviations from the average daily values by

d̃i,t = di,t − d̄i,

which we gather in an RI×T data matrix D, whose lines represent daily demand
deviations from the average of that day.

4.2 Generation of training and validation scenarios 81

0 10 20 30 40

15
00

0
0

10
00

0

Cl
us

te
r 1

0 10 20 30 40

15
00

0
0

10
00

0

Cl
us

te
r 2

0 10 20 30 40

15
00

0
0

10
00

0

Cl
us

te
r 3

0 10 20 30 40
15

00
0

0
10

00
0

Cl
us

te
r 4

Figure 4.6: Clustering of the daily mean-corrected forecasts contained in D. In
each cluster the thick black curve represents the medoid, and the grey curves
are the remaining demands of the cluster.

The next step of the procedure consists in partitioning the lines of D into
clusters of similar daily patterns. We used a variant of the k−medoids algorithm
(Kaufman and Rousseeuw, 2005) to do this and chose a value of k = 4 by
trial and error. As a matter of fact, the 4 clusters (Figure 4.6) of demand
shapes correspond roughly to a partition into week-end (clusters 1 and 2) and
week days (clusters 3 and 4) combined with a partition along the two daylight
saving time periods (winter for clusters 1 and 4, summer for clusters 2 and
3). Each cluster cj , j = 1, . . . , J = 4 corresponds to a subset of days, and is
characterized by its medoid denoted below by imj and the average value of daily
average consumptions in that cluster, namely

d̄cj = 1
#cj

∑
i∈cj

d̄i.

From this we get a very simple (and admittedly rough) forecasting method to
obtain a reference demand:

• choose the cluster j corresponding to the next day

• predict its demand by dim
j
,t, (t = 1, . . . , T = 48)

• if the prediction is carried out over the next two days, as in our simula-
tions, it is completed by dim

j
+1,t, (t = 1, . . . , T = 48).

82 4 Experiments

Computation of a demand forecasting error model. Assuming that the clus-
ter is always chosen correctly, the forecasting errors of this procedure are com-
posed of two parts, namely the deviation of the average daily load forecast
from that of the realization and the deviation of the shape of the forecast from
the shape of the realization. In the same way than for the demand forecast, we
introduce the realized demand levels, or load, denoted by li,t, and define the
daily average load as

l̄i = 1
T

T∑
t=1

li,t,

which we subtract from the original data by computing a new series of hourly
deviations from the average daily values by

l̃i,t = li,t − l̄i.

We can then define the prediction error for the daily average consumption ēi
and the mean-corrected shape ẽi,t as

ēi = d̄i − l̄i

and
ẽi,t = d̃i,t − l̃i,t.

In order to build a generative model of these forecasting errors, we have
proceeded as follows:

• In each cluster we assume a normal distribution of ēi of mean

µēj = 1
#cj

∑
i∈cj

ēi

and standard deviation

σēj =
√

1
#cj

∑
i∈cj

(ēi − µēj)2.

• To build a generative model of the intra-day deviations from the medoid,
we build a second dataset E in the same way than D but containing the
mean-corrected error shapes ẽi,t, and then according to Le Goazigo and
Collet (2006) fit an autoregressive (AR) model (cf. Brockwell and
Davis (1996, Chapter 5)) of these forecasting errors. Assuming that Xt

is the process of zero mean that we want to model and εt ∼WN(0, σ2
ε),

the AR model of order p writes

Xt =
p∑
j=1

φjXt−j + εt.

We have estimated the order p of the model and the values of the pa-
rameters φ1, . . . , φp using the default Akaike Information Criterion (AIC)
implemented in the R2 function ar.

2http://stat.ethz.ch/R-manual/R-devel/library/stats/html/ar.html

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/ar.html

4.2 Generation of training and validation scenarios 83

Scaling the demand curve to our reduced generation system. The moti-
vation for working with a reduced generation system is to reduce the size of
the optimization problem instances that we need to solve repeatedly. However
we are not constrained to divide the demand curve of the complete generation
system by the factor characterizing the generation system reduction (i.e. about
6 as stated in Section 4.1). Thus we have proceeded as follows to establish the
reference demand of the reduced generation system:

1. choose the peak demand dmax of the desired reference demand curve,

2. set its minimal level at M% of the peak demand,

3. compute the minimum dmincj = min{di,t : i ∈ cj} and the maximum
dmaxcj = max{di,t : i ∈ cj} of the medoid of the cluster j.

4. Subtract dmincj from the medoid of the cluster j and divide it by (dmaxcj −
dmincj) so that its range is in [0; 1],

5. multiply the result by (100−M)%×dmax and addM%×dmax to obtain
the desired reference demand.

We have chosen dmax = 14GW and M = 50, which yields proportionally to
the real system a wider variation range since dmax

2 = 7GW while the range of
the medoid is of 19GW . With these values the range of the reference schedule
and of the perturbed curves are sufficient to cause start-ups or shut-downs
of thermal units. We have generated perturbations around the medoid before
scaling and applied the same procedure than above (i.e. steps 4 and 5) to scale
the perturbed curves.

4.2.2 Generation of the reference scenario, a sample of
perturbations, and their adjusted generation schedule

Our reference scenario is directly obtained from the historical data, by choos-
ing a typical sequence of two days, and assuming that all generation units are
available. Specifically, we chose as reference scenario the historical data corre-
sponding to the medoid of the third cluster, thus corresponding to a week day in
the winter season, together with the day immediately following which is of the
same type, in order to yield a 96 time steps scenario used in our optimization
phase. The scenario is solved, yielding a reference generation schedule π(1)?

over the corresponding 96 time periods (NB: the reference scenario is actually
the one used for illustration in the Section 4.1).

Next we choose a recourse stage tr, a total number N of scenarios to gen-
erate and the proportion po of them for which we impose the outage of a
generation unit outage prior to tr. In our experiments reported in the rest of
this chapter, we set N = 900, tr = 12 (i.e. 6AM) and po = 50%.

The dataset of scenario perturbations and schedule adjustments is then
generated as follows. To obtain scenario ξ(k):

• use the generative model of the cluster from which the reference scenario
was drawn in order to generate deviations for 96 time steps from the

84 4 Experiments

0 10 20 30 40 50

6000

8000

10000

12000

14000
P

ow
er

 in
 M

W

Figure 4.7: Reference (thick black) and perturbed (gray) demand curves. The
horizontal axis indexes time steps of 30 minutes.

reference, by first drawing a deviation of the daily average using the
normal distribution and then using the autoregressive model over 96 time
steps (Figure 4.7),

• with probability po choose at random a generating unit among those
in operation in the reference scenario at time t = tr − 1 and make it
unavailable for the rest of the horizon (until t = 96).

• adjust the generation schedule over the period tr, . . . , T − 1 (cf. Section
4.3) to obtain π(1,k)?.

4.2.3 Discussion

Admittedly choosing as demand forecast for the next day the medoid of one of
the cluster is a rough procedure. However this is just intended for a simulation
purpose and in real-life one should use an up to date forecast if available.
We have put more emphasis on the demand perturbation generation procedure
which to us is a real need in our approach. We believe that this is done properly
since the forecasting error is modeled quite accurately. An alternative would
have been to use as perturbation signals the history of forecasting errors. Note
that in Figure 4.7 the fact that perturbed curves are biased towards smaller
demands reflects the reality of our dataset.

The choice of a probability of outage occurrence of 50% may seem exag-
gerated. However on the first hand we do not have accurate estimates of these
probabilities, and on the other hand we do not believe that it is an inconve-
nient, since we are almost sure to generate scenarios encompassing the outage
of each type of unit for each type of demand curve.

4.3 Computation of the adjustments to the reference schedule 85

Furthermore, for each scenario we compute a sequence of quasi optimal
decisions assuming the reference schedule given – as opposed to what stochastic
programming would do, i.e. compute a first stage hedged against all possible
scenarios – and the extraction of a recourse strategy is performed at the next
step with the possibility to filter out outliers.

The choice of tr − 1 as the outage occurrence time is motivated by the fact
that we re-optimize only from time tr on and thus, if the outage had occurred
earlier, adjustments to the planning would have been made at earlier recourse
stages (since in reality there are such opportunities say every hour).

Finally note that a few other settings have been investigated during the
research but we have chosen to standardize the setting in this manuscript for
the sake of comparison between experiments of Sections 4.4 and 4.5.

4.3 Computation of the adjustments to the reference
schedule

In this section we provide some information about the computation of the
quasi-optimal adjustments to the perturbed scenarios generated according to
Section 4.2. In a first run we do not impose any limitation on the number of
adjusted units and in a second run we set a limit of 6 units to be adjusted (cf.
Appendix B.2.2). From this section to the end of the chapter the results related
to the costs, the demand satisfaction and the illustration of the adjustments
are presented for the recourse horizon cropped at the end of the first day,
although we compute adjustments spanning also the second day. However for
the results related to the computation time, the optimality gap and the variable
importance we do not (or cannot) make this distinction.

4.3.1 No limitation on the number of adjustments

Figure 4.8 illustrates the timing of the quasi-optimal adjustments computation
phase when a budget of 600 seconds is devoted to the rescheduling of each
scenario and an optimality gap3 of 0.5 % is tolerated. The time budget is
exhausted for almost 400 scenarios and the optimality tolerance is not always
satisfied. By plotting the computation time against the optimality gap one
can indeed verify that the set of scenarios requiring the whole computation
time budget corresponds to an optimality gap greater than 0.5 % while the
complementary of this set corresponds to an optimality gap smaller or equal
than 0.5 %.

Figure 4.9 represents the adjustment cost (thus integrated over [tr : T −
1]) against the difference of energy between the reference and the targeted
demand curves. In this plot the size of points is an affine function of the lost
generation capacity consecutive to a unit outage. One can distinguish clusters
of points corresponding to the same type of unit outage. In each cluster the
points seem to be situated on a piecewise linear curve. Large outages together

3The optimality gap represents the relative difference between the best integer solution
and the lower bound obtained from the continuous relaxation (cf. Appendix C.1.2).

86 4 Experiments

Computation time

F
re

qu
en

cy

10
0

20
0

30
0

40
0

50
0

60
0

0

100

200

300

400

Optimality gap

F
re

qu
en

cy

0 2 4 6 8 10

0

100

200

300

400

Figure 4.8: Left: histogram of the time required to compute the optimal ad-
justments (in seconds), with a time limit of 600 seconds. Right: histogram of
the achieved Optimality gap (in %) with a tolerance of 0.5 %.

−30 −20 −10 0 10 20

−
50

0
50

10
0

20
0

Energy difference (in GWh)

A
dj

us
tm

en
t c

os
t

Figure 4.9: The adjustment cost against the difference of energy between the
forecasted and realized scenarios (the point size is function of the unit outage).

with large increases of the demand with respect to the day-ahead forecast
generally lead to high adjustment costs. Figure 4.10 gives further insight in
the repartition of the cost of the adjusted schedules between the costs related
to thermal generation, hydroelectric generation, and the penalization of the
non-satisfaction of the demand and of the ancillary services requirements. The
box4 corresponding to the demand satisfaction indicates that high adjustment

4A box plot is a convenient way for graphically comparing several samples. The left
and right extremities of one box represent respectively the lower and upper quartiles of one
sample, while the median of the sample is depicted by the thick segment inside of the box.
Whiskers extend (dashed line) from each extremity of the box to the farthest adjacent sample
point within 1.5 times the interquartile range. Outliers (represented by circles) are sample
points with values beyond 1.5 times the interquartile range from each side of the box.

4.3 Computation of the adjustments to the reference schedule 87

costs of Figure 4.9 correspond to scenarios for which the optimization algorithm
is not able to compute a schedule matching the targeted demand curve, thus
yielding a high penalization of the discrepancy between the generation and the
demand. However the median of the adjustment cost induced by the demand
and ancillary requirements satisfaction is equal to 0 %, and most of the time the
costs are distributed among the thermal generation costs and the hydroelectric
opportunity costs.

●●●

●●●●●●●●●●●●●● ●● ●● ●●●● ●●●●● ●● ●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●● ●●●● ●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●● ●●● ●●●● ●●●●●● ●●●● ●●●●●●●●●●● ●● ●●●●● ●

●●●●● ●●●● ●● ●●● ●●●● ●●● ●● ●●●●●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●● ●●● ●● ●●● ●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●● ●● ●●● ●●●● ●●●●●●●●● ●● ●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●● ●●●● ●● ●●●● ●●●● ●●● ●●●● ●●●●● ●●●●● ●● ●●●●●●●●●●●●●● ●●● ●● ●●

Thermal
Hydro

Demand
Primary

Secondary

0 50 100 150 200

Figure 4.10: Box plot of the costs of the adjusted schedules as a percentage of
the cost of the reference schedule.

Figure 4.11 and Figure 4.12 provide some insights on the variability of the
adjustments of the thermal generation units and of the valleys respectively.
Note that the frontiers of the envelopes do not necessarily represent feasible
schedules since we have represented the pointwise extrema among all the ad-
justed schedules. Also the thermal unit outages were removed from the dataset
before computing these envelopes to make the distinction between voluntary
and involuntary shutdowns. The reference schedule is depicted by the thick
curve. From Figure 4.11 one can observe that the eight smallest units in terms
of generation capacity are the most frequently adjusted and are sometimes
switched on or off. Indeed only two nuclear units are adjusted, but they are
never shut down. Figure 4.12 shows that the adjustments to the hydroelectric
generation fluctuates a lot around the reference schedule.

Over the full set of 900 scenarios, the median number of units (i.e. thermal
units and valleys) for which the schedule is modified is about 12 and oscillates
between a minimum of 10 and a maximum of 15 units.

4.3.2 Limitation on the number of adjustments

In a second experiment we add some constraints to the optimization problem,
according to Section 3.3.3, to limit the maximum number of adjustments to 6.
Although this might seem a very strict limitation since on average 12 units are
adjusted when there is no limitation, this value creates an arbitrage between
adjusting the hydroelectric units or the thermal generation units. By experi-
ment, a higher value of K results in making adjustments to all the valleys and
using the remaining adjustments on the thermal units.

For modeling the adjustment indicators we have tried the two formula-
tions presented in Appendix B.2.2.2. Experimentally the second formulation

88 4 Experiments

0 10 20 30 40 50

0
20

40
60

80
10

0

0 10 20 30 40 50

0
20

40
60

80
10

0

0 10 20 30 40 50

0
50

10
0

15
0

20
0

0 10 20 30 40 50

0
50

10
0

15
0

20
0

0 10 20 30 40 50

20
0

30
0

40
0

50
0

0 10 20 30 40 50

0
10

0
20

0
30

0
40

0
50

0

0 10 20 30 40 50

0
10

0
30

0
50

0

0 10 20 30 40 50

0
10

0
30

0
50

0

0 10 20 30 40 50

60
0

80
0

10
00

12
00

0 10 20 30 40 50

60
0

80
0

10
00

12
00

0 10 20 30 40 50

60
0

80
0

10
00

12
00

0 10 20 30 40 50

60
0

80
0

10
00

12
00

0 10 20 30 40 50

80
0

90
0

11
00

13
00

0 10 20 30 40 50

80
0

90
0

11
00

13
00

0 10 20 30 40 50

12
40

12
80

13
20

0 10 20 30 40 50

40
0

60
0

80
0

12
00

Figure 4.11: Illustration of the adjustments unit by unit. Each graph shows
the envelope of the pointwise minimum and maximum power generated by the
corresponding thermal unit, while the thick curve corresponds to the reference
schedule. The units are ordered from left to right and form top to bottom
according to the order of Table 4.1a. The Y-axis is indexed in MW.

4.3 Computation of the adjustments to the reference schedule 89

0 10 20 30 40 50

−
40

0
−

20
0

0
20

0
40

0

0 10 20 30 40 50
−

40
0

−
20

0
0

20
0

40
0

0 10 20 30 40 50

−
10

00
−

50
0

0
50

0
10

00
15

00

0 10 20 30 40 50

−
50

0
0

50
0

10
00

15
00

0 10 20 30 40 50

50
10

0
15

0
20

0

0 10 20 30 40 50

50
10

0
15

0
20

0

Figure 4.12: Illustration of the adjustments valley by valley. Each graph shows
the envelope of the pointwise minimum and maximum power generated in
the corresponding valley, while the thick curve corresponds to the reference
schedule. From top to bottom, each row represents the valleys of type (a), (b)
and (c) (cf. Figure 4.2). The Y-axis is indexed in MW.

90 4 Experiments

has turned out to be more efficient and we used it exclusively. Nevertheless,
we had to adapt the time limits and the tolerated gap in the following way.
We did a first run with the same values as in Section 4.3.1. However the solver
did not manage to find a feasible solution for almost 300 scenarios. We then
restarted the optimization procedure for these scenarios with a tolerance of 1%
and a time limit of 1 hour. Compared to Figure 4.8, Figure 4.13 shows a much
bigger span for the optimality gap in addition to an increase of the computation
time. Indeed for many scenarios for which a feasible solution is found after 600
seconds the gap is very high compared to the experiment of Section 4.3.1. For
the scenarios requiring an extension of the computation time, the proportion
of solutions below the tolerated gap is higher than for the feasible solutions
found in 600 seconds or less. Yet, for about 30 scenarios the allowed time is
consumed, and 30 scenarios are not solved. With respect to the simulations

Computation time

F
re

qu
en

cy

50
0

10
00

15
00

20
00

25
00

30
00

35
00

0

100

200

300

400

500

Optimality gap

F
re

qu
en

cy

0 10 20 30 40 50

0

100

200

300

Figure 4.13: Limitation on the number of adjustments. Left: histogram of the
time required to compute the optimal adjustments (in seconds). Right: his-
togram of the achieved Optimality gap (in %).

of Section 4.3.1, the decrease of performance of the branch-and-cut algorithm
can be understood as follows. The linear relaxation of the constraints added
to model the adjustment indicators is very weak and does not provide a lot
of information about the actual optimal values of the adjustment indicators.
This results in the necessity to develop a lot the branch-and-bound tree, and
increases dramatically the resolution time.

With respect to Figure 4.9, Figure 4.14 shows the degradation of the ad-
justment cost due to the limitation on the number of adjustments. One can see
on Figure 4.15 that this is due to generation-demand imbalances and not to
thermal or hydroelectric costs.

4.4 Predicting power generation levels

Now that we have generated a set of scenarios and computed quasi-optimal ad-
justments of the reference schedule to these scenarios, we can apply supervised
learning to derive a recourse policy. In this section, we want to predict for each

4.4 Predicting power generation levels 91

−30 −20 −10 0 10 20

0
10

0
20

0
30

0

Energy difference (in GWh)

A
dj

us
tm

en
t c

os
t

Figure 4.14: The adjustment cost against the difference of energy between the
forecasted and realized scenarios when a limitation on the number of adjust-
ments is imposed. The size of the points is function of the lost capacity con-
secutive to a unit outage.

●●

●●●● ●● ●●● ●●● ● ●●● ● ●● ●●● ●●● ●● ●●● ●● ●●● ● ● ●●● ●●● ●●● ● ● ●●● ●● ●● ●●●● ●● ●●●● ● ●● ●● ●● ● ●●● ●●● ●● ●●●●● ● ●●● ●●● ●●●●●●●●● ● ●● ●● ●●● ●● ● ●● ●● ● ●●● ●●● ●● ●●● ● ●● ●●●● ● ● ●● ●● ● ●● ●●● ●●●

●●

●● ●●●

Thermal
Hydro

Demand
Primary

Secondary

0 50 100 150 200 250

Figure 4.15: Repartition of the costs of the adjusted schedules as a percent-
age of the cost of the reference schedule when a limitation on the number of
adjustments is imposed.

thermal unit and each valley which trajectory to follow inside the grey shaded
area of Figure 4.11 and Figure 4.12 to adjust the reference schedule, given
the observation of the realized scenario on [0 : tr − 1]. The adjustments pre-
dicted according to the learned recourse policy are individually post-processed
to ensure their feasibility (see Section 4.4.3). We analyze the fact of knowing
an updated demand forecast when computing the adjustments with respect
to the fact of ignoring this information. When an updated demand forecast is
available it is included in the inputs of the formulation, but the post-processing
phase ignores this information and thus does not aim at improving the satisfac-
tion of the adjusted generation versus updated forecast balance. We compare
our approach to the adjustments obtained when re-optimizing the day-ahead
schedule in order to satisfy the updated forecast.

92 4 Experiments

4.4.1 Learning the recourse policy

We opt for the formulation of Case 3 in Section 3.4.3 since it yields a single
learning problem which takes into account explicitly the influence of the time
variable in the adjustments sequences and preserves the coupling of the genera-
tion units. Table 4.1 describes an entry of the learning set for this formulation.

Table 4.1: An entry of the learning set for the recourse prediction task

Inputs Outputs

• state of the system at time tr − 1,

• observed load deviation from the demand
forecast on [0 : tr − 1],

• unit(s) outage before time tr,

• prediction time tp,

• updated demand forecast on [tr : T − 1]

vector of thermal units
generation levels and
power generated in each
valley at time tp.

The state of the system is represented by

• the generation level and the ON/OFF status of each thermal unit and
the number of time steps since which the unit has the same status,

• the volume of the reservoirs,

• the generation level and the number of groups activated of each hydro-
electric plant.

The observed load deviation as well as the updated demand forecast are rep-
resented as time series, with some additional features computed from these
series such as the energy. The outage is described by the maximal, minimal
and actual generation levels of the lost unit as well as its costs.

The problem formulated in this way contains 340 input variables and 22
output variables, while the number of objects is multiplied by the number of
time steps over the period [tr : T − 1]. Note that for Random-Access Memory
saturation reasons (using the Matlab interface to the Extra-Trees), we have
randomly selected a subset of 500 scenario-schedule pairs among the 900 that
we have simulated for the rest of the experiments of this Section. The dataset
thus contains 500× (T − tr) = 500× 84 = 42000 objects.

We adopt the Extra-Trees (cf. Appendix A.2) to model the recourse strat-
egy, since our preliminary experiments (cf. Cornélusse (2008)) showed that
the Extra-Trees clearly outperformed the ε-SVR (cf. Appendix A.3) on this
problem, at least for the common kernels that we have tested.

The experiment is structured as follows. The training set is partitioned in 5
folds randomly. Then repeatedly one fold is isolated for testing and a recourse
strategy is learned from the 4 remaining folds. The parameters of the ensemble

4.4 Predicting power generation levels 93

of trees are tuned using a grid search, and we have implemented an inner two-
fold cross-validation procedure to this end. We build an ensemble of 100 trees.
The best values of K and nmin are respectively 340 and 5. The overall time
required to run the nested CV is about several hours on a single threaded
machine, and it takes about one hour to run the outer CV with the best values
of the parameters. Note that the Extra-Trees can easily be computed in parallel,
thus the computation time may be roughly divided by the number of trees if
sufficient computer capacity were available. In addition the inner CV loop used
to optimize the parameters may be skipped since the selected parameters values
are almost constant over repeated experiments in practice. Indeed one can
observe the following phenomena: over all the experiments the best value of K
is equal to the number of input features. The accuracy in terms of learning error
and the overall performance (as will be described below) constantly increases
when the number of trees in the ensemble increases. The optimal value of the
parameter nmin which sets the number of learning objects under which a node
is not split any further (cf. Appendix A.2) is about 5, meaning that the trees
must almost be completely developed (otherwise the predicted adjustments
would be excessively smoothed). The overfitting effect that results from such
a small value for nmin is countered by the ensemble effect, hence the necessity
of a large number of trees in the ensemble.

At this stage we can analyze the prediction error with respect to the ad-
justments of the data set used to train and validate the learned recourse policy.
Figure 4.16 depicts the distribution of the prediction error unit by unit. Clearly,
the thermal units’ adjustments are better predicted than the hydroelectric ad-
justments where errors of several hundreds of MW occur frequently. However
there may be many good solutions to the adjustment problem and thus the
unit by unit prediction error analysis does not tell much about the optimality
of our recourse policy in terms of coupling constraints satisfaction and overall
adjustment cost. For example, with respect to the quasi optimal adjustment, a
large positive error in one valley may be compensated by a large negative error
in another valley. Furthermore the training examples are not totally optimal.

A
R

R
I5

T
_1

A
R

R
I5

T
_2

B
LE

N
O

T
_4

B
LE

N
O

T
_5

C
O

R
D

5T
_4

C
O

R
D

5T
_5

P
O

R
C

2T
_3

P
O

R
C

2T
_4

G
R

AV
5T

_2

G
R

AV
5T

_3

S
S

E
A

2T
_1

S
S

E
A

2T
_2

C
AT

T
E

T
_1

C
AT

T
E

T
_2

F
LA

M
AT

_2

F
LA

M
AT

_3

R
ev

in

R
ev

in
2

R
om

an
ch

e

R
om

an
ch

e2

A
in

A
in

2

−300

−200

−100

0

100

200

300

M
W

Figure 4.16: Distribution of the prediction error unit by unit. Outliers are not
shown.

94 4 Experiments

Thus we must also analyze the optimality in terms of the satisfaction of the
coupling constraints. Contrary to the unit by unit analysis it makes sense to
compare the solution of several policies. Figure 4.17 illustrates the policy which
re-optimizes the reference schedule based on the updated demand forecast (Fig-
ure 4.17a), the reference schedule itself (Figure 4.17b) and the learned policy
(Figure 4.17c) in this respect. In the left column we have illustrated the time
evolution of the distribution of the difference between the updated demand and
the adjusted generation on the recourse period, i.e.d′t −

Nt−1∑
i=0

p̂ti,t +
Nv−1∑
j=0

p̂hj,t

T−1

t=tr

,

where d′t is the updated demand forecast at time t, Nt and Nv are respectively
the number of thermal generation units and hydroelectric valleys, and p̂ti and
p̂hj are respectively the predicted generation of thermal unit number i, i =
0, . . . , Nt − 1, and valley number j, j = 0, . . . , Nv − 1, at time t. In the right
column we have illustrated the histogram of the energy slack, defined as

T−1∑
t=tr

∣∣∣∣∣∣d′t −
Nt−1∑

i=0
p̂ti,t +

Nv−1∑
j=0

p̂hj,t

∣∣∣∣∣∣ .
In the first row one can observe, as in Figure 4.10, that the updated demand
forecast is not always satisfied after the re-optimization of the reference sched-
ule (circles are outliers). However the median energy slack is about 0.004 GWh.
The second row illustrates the large discrepancy between generation and de-
mand if the reference schedule were applied without adjustment. The discrep-
ancy fluctuates over the recourse horizon with no apparent trend and the me-
dian energy slack equals 8.7 GWh. On the other hand the discrepancy of the
learned recourse policy is larger from time steps 12 (6 AM) to 28 (2 PM) than
on the rest of the recourse period, except at the moment of the peak load, and
the median energy slack equals 2.43 GWh.

We show an illustration of the predicted adjustments for one particular
scenario on Figures 4.18, 4.19, and 4.20 of the adjusted generation schedule
(blue) which yields an energy slack of 1.3 GWh while the energy slack would
be 11.9 GWh if the reference schedule were applied without modification to
that scenario (red).

Figure 4.18 shows the aggregated generation curves obtained by summing
the contributions of all the generation units for the three policies (upper part) as
well as the residuals with respect to the updated demand forecast (lower part).
In this scenario the updated demand is higher than the demand curve used
to compute the reference schedule, and there is no unit outage. In accordance
with Figure 4.17, the residuals of the approximated recourse are much smaller
than those of the reference schedule.

Figure 4.19 shows the adjustment made to the thermal units. Almost no
modification is done to the nuclear units (the lower eight units). On the other
hand there are some interesting phenomena to notice about the classical ther-
mal units. Reading the figure from left to right and top to bottom, the first

4.4 Predicting power generation levels 954.4 Predicting power generation levels 87

!
!!
!
!!!!
!!
!
!!!
!
!
!!!!!!!
!
!!
!!
!!
!
!!
!
!
!!!!
!!!!
!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!

!

!

!

!

!

!!

!

!!!
!
!

!

!!!!!!!!!!!

!

!!

!

!!!!

!

!!
!
!!

!

!!!!!

!

!!!!!

!

!

!!!!!!!!!!

!

!!!!!!!!!
!!!

!

!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!

!

!!!!

!

!!!!!!!!!!

!

!!

!

!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!

!

!!

!

!!!!!

!

!!

!

!!!!!!!!!!!!!

!

!!!!!!!!!!!

!

!!!!!!!!!!!
!!!!!!!!!!!!
!

!

!!!!!!!!!!

!

!!!!!!!

!

!!!

!

!!!

!

!
!!

!

!!!!!

!

!!!!!!!!!!

!

!!

!

!!!!

!

!!!

!

!

!!

!

!

!

!

!

!!
!

!
!!

!

!!!!!!!!!!!

!

!!

!

!
!
!!!

!

!

!

!

!!

!
!
!

!!

!

!!
!
!!

!

!!!!!!!!!!!

!

!

!

!

!!

!

!

!

!

!!

!

!
!

!
!
!

!

!!

!

!

!

!!!!!!
!
!!!!

!

!!

!

!!!!

!

!

!

!

!

!

!
!

!
!!

!

!!

!

!

!

!!!!!!!!!!
!

!

!
!

!

!!!!!

!

!

!

!

!!

!

!

!
!!

!

!!

!
!

!

!!!!!!!!!!!

!

!!
!

!!!!

!

!

!
!

!!!

!

!!!

!

!!!!!!

!

!!!!!!!!!!!!!

!

!!!!!!

!

!

!

!!!!

!

!!!!

!

!!!!!
!
!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!
!
!!!!!
!

!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!
!
!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!
!
!!!

!

!!!!!!!
!
!!!!!!!!!!!!

!
!!!!!

!

!!!!!!!!!!!

!

!!!!!!!!!!!!!

!

!

!!

!

!

!!!

!

!!

!

!!

!

!

!!!!!!!!!!
!
!!!

!

!

!!

!!!!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!!!

!

!
!
!!

!

!

!!!!!!!!!
!
!!
!
!!!!!

!

!

!

!

!!
!
!!!!

!

!

!

!

!
!

!!

!
!

!

!

!

!

!

!!!!

!

!
!
!
!

!

!

!!

!

!

!

!!!!!

!

!!!!

!

!

!

!

!!!!!!

!

!

!

!

!

!

!!

!
!

!

!!!

!

!!

!

!
!
!
!

!

!

!!!!

!

!!!!!!!!!

!

!

!

!

!!!
!
!

!

!

!

!!!

!

!!!!

!

!!!!
!

!

!!!!!!!!!!

!

!!

!

!!!!!

!

!!!!!!!!!!!!!!!
!!!!!!!!!!!

!

!!
!

!!!!!!!!!!!!
!
!!

!!!!!!!!!!!!!!!!!
!!
!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!

!!!!

!

!!!!!!!!!!!!
!!
!!!!!!!
!
!!
!
!!!!!!!!
!
!!!!!!!!!!!!!!!

!!
!
!
!!!!!!!!!!!!!!!!!
!
!
!
!!!!!!!

12 16 20 24 28 32 36 40 44

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Predicted adjustments
G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
10
0

20
0

30
0

40
0

!
!

!!
!

!

!
!

!
!

!

!
!

!!
!

!

!
!

!
!

!
!
!

!

!!
!!
!

!

!
!

!
!!

!

!

!

!
!

!

!!!

!
!!
!
!

!
!
!

!!!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!!
!

!

!

!

!!!!
!
!!

!

!

!
!
!!

!!

!
!
!!

!

!!
!

!
!!
!

!

!

!!!!!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!
!

!

!

!!!
!

12 16 20 24 28 32 36 40 44

!2
!1

0
1

2
3

Predicted adjustments

G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
20

40
60

!

!!!
!

!!

!

!!

!!

!
!

!!
!

!

!

!

!!

!
!
!

!
!!

!

!

!

!

!!

!
!

!

!

!
!!

!

!
!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!
!!
!!
!

!

!

!!

!!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!
!!!!!
!

!

!

!
!
!

!!

!

!!

!

!

!!

!

!

!!

!!

!

!

!
!!!

!

!

!

!

!

!

!
!!

!

!!!

!

!!
!!

!

!!!

!

!!!

!

!

!

!

!

!

!
!!

!

!
!

!

!

!

!

!
!
!
!

!

!

!!
!
!!!!

!

!!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!
!!

!

!

!
!

!

!

!!!!

!

!

!

!

!!

!

!

!

!

!

!!

!

!!
!!

!!
!

!

!

!

!

!!

!

!
!

!!

!

!
!

!

!

!

!!

!

!
!!

!

!
!

!

!

!!
!

!

!!
!

!

!

!!!

!

!

!

!

!

!

!
!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!

!

!
!

!!
!

!

!

!

!

!

!

!
!!!

!

!

!

!!

!

!!

!!

!
!

!

!

!!

!

!!!
!!
!

!

!

!

!

!!

!

!

!

!

!

!!
!!

!
!

!

!

!

!

!

!

!

!
!
!!

!

!

!

!

!

!!

!!

!

!

!!

!

!

!

!

!

!

!

!
!!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!
!!

!

!

!
!
!

!

!
!
!

!
!

!

!
!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!
!

!!!!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!

!
!

!!
!

!!
!!!

!

!

!

!
!
!!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!
!
!

!
!!

!

!
!
!!!

!

!

!

!
!
!

!

!
!

!

!

!!

!

!!
!
!!

!

!

!

!
!
!!

!

!
!!
!

!

!

!

!!

!!

!

!

!

!!!
!

!

!

!

!
!

!
!

!
!

!
!!
!!

!

!
!

!

!

!
!

!!!

!

!
!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!!!
!!!!
!

!

!

!

!

!

!

!!!

!

!

!

!

!!

!!

!!

!

!

!

!

!

!
!!!!

!

!

!

!
!
!

!

!

!!
!
!

!

!!
!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!!

!

!

!

!

!!
!
!

!

!

!

!

!!

!

!

!

!!

!!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!!!!!

!

!
!!

!

!

!
!!!

!

!!

!

!

!!!!!

!

!

!
!
!

!

!!!
!
!!

!
!
!
!

!!!

!

!
!!
!!

!

!

!

!

!
!

!

!

!
!
!

!

!

!

!

!
!

!

!!

!!

!

!

!

!

!!

!

!

!

!!

!!!!!

!

!

!

!

!

!

!

!

!!!

!

!
!
!
!

!

!

!

!

!

!

!
!

!
!
!
!

!

!!

!
!
!!
!!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!
!
!!

!

!

!

!
!

!

!

!!

!

!

!

!!!
!!
!

!

!

!

!

!

!!!

!!!
!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!!!!

!
!

!

!

!!
!

!!

!

!!

!

!

!

!

!!

!
!

!!
!

!

!

!!
!

!

!
!

!!!

!

!

!

!

!

!

!

!

!
!

!!!

!

!

!

!

!
!
!
!!

!!

!!

!

!

!

!

!!

!
!!
!

!

!!!

!

!

!

!

!
!!!!

!

!

!!
!
!

!

!

!

!!
!

!

!

!

12 16 20 24 28 32 36 40 44

!1
0

1
2

Predicted adjustments

G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
50

10
0

15
0

Figure 4.15: Analysis of the demand satisfaction error for three policies. Left
column: time evolution of the distribution of the error as boxplots. Right
column: histogram of the energy slack (breaks are distant of 1 GWh). The red
vertical line represents the median of the distribution.

Draft: September 15, 2010

(a) Quasi-optimal adjustment.

4.4 Predicting power generation levels 87

!
!!
!
!!!!
!!
!
!!!
!
!
!!!!!!!
!
!!
!!
!!
!
!!
!
!
!!!!
!!!!
!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!

!

!

!

!

!

!!

!

!!!
!
!

!

!!!!!!!!!!!

!

!!

!

!!!!

!

!!
!
!!

!

!!!!!

!

!!!!!

!

!

!!!!!!!!!!

!

!!!!!!!!!
!!!

!

!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!

!

!!!!

!

!!!!!!!!!!

!

!!

!

!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!

!

!!

!

!!!!!

!

!!

!

!!!!!!!!!!!!!

!

!!!!!!!!!!!

!

!!!!!!!!!!!
!!!!!!!!!!!!
!

!

!!!!!!!!!!

!

!!!!!!!

!

!!!

!

!!!

!

!
!!

!

!!!!!

!

!!!!!!!!!!

!

!!

!

!!!!

!

!!!

!

!

!!

!

!

!

!

!

!!
!

!
!!

!

!!!!!!!!!!!

!

!!

!

!
!
!!!

!

!

!

!

!!

!
!
!

!!

!

!!
!
!!

!

!!!!!!!!!!!

!

!

!

!

!!

!

!

!

!

!!

!

!
!

!
!
!

!

!!

!

!

!

!!!!!!
!
!!!!

!

!!

!

!!!!

!

!

!

!

!

!

!
!

!
!!

!

!!

!

!

!

!!!!!!!!!!
!

!

!
!

!

!!!!!

!

!

!

!

!!

!

!

!
!!

!

!!

!
!

!

!!!!!!!!!!!

!

!!
!

!!!!

!

!

!
!

!!!

!

!!!

!

!!!!!!

!

!!!!!!!!!!!!!

!

!!!!!!

!

!

!

!!!!

!

!!!!

!

!!!!!
!
!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!
!
!!!!!
!

!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!
!
!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!
!
!!!

!

!!!!!!!
!
!!!!!!!!!!!!

!
!!!!!

!

!!!!!!!!!!!

!

!!!!!!!!!!!!!

!

!

!!

!

!

!!!

!

!!

!

!!

!

!

!!!!!!!!!!
!
!!!

!

!

!!

!!!!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!!!

!

!
!
!!

!

!

!!!!!!!!!
!
!!
!
!!!!!

!

!

!

!

!!
!
!!!!

!

!

!

!

!
!

!!

!
!

!

!

!

!

!

!!!!

!

!
!
!
!

!

!

!!

!

!

!

!!!!!

!

!!!!

!

!

!

!

!!!!!!

!

!

!

!

!

!

!!

!
!

!

!!!

!

!!

!

!
!
!
!

!

!

!!!!

!

!!!!!!!!!

!

!

!

!

!!!
!
!

!

!

!

!!!

!

!!!!

!

!!!!
!

!

!!!!!!!!!!

!

!!

!

!!!!!

!

!!!!!!!!!!!!!!!
!!!!!!!!!!!

!

!!
!

!!!!!!!!!!!!
!
!!

!!!!!!!!!!!!!!!!!
!!
!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!

!!!!

!

!!!!!!!!!!!!
!!
!!!!!!!
!
!!
!
!!!!!!!!
!
!!!!!!!!!!!!!!!

!!
!
!
!!!!!!!!!!!!!!!!!
!
!
!
!!!!!!!

12 16 20 24 28 32 36 40 44

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Predicted adjustments

G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
10
0

20
0

30
0

40
0

!
!

!!
!

!

!
!

!
!

!

!
!

!!
!

!

!
!

!
!

!
!
!

!

!!
!!
!

!

!
!

!
!!

!

!

!

!
!

!

!!!

!
!!
!
!

!
!
!

!!!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!!
!

!

!

!

!!!!
!
!!

!

!

!
!
!!

!!

!
!
!!

!

!!
!

!
!!
!

!

!

!!!!!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!
!

!

!

!!!
!

12 16 20 24 28 32 36 40 44

!2
!1

0
1

2
3

Predicted adjustments

G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
20

40
60

!

!!!
!

!!

!

!!

!!

!
!

!!
!

!

!

!

!!

!
!
!

!
!!

!

!

!

!

!!

!
!

!

!

!
!!

!

!
!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!
!!
!!
!

!

!

!!

!!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!
!!!!!
!

!

!

!
!
!

!!

!

!!

!

!

!!

!

!

!!

!!

!

!

!
!!!

!

!

!

!

!

!

!
!!

!

!!!

!

!!
!!

!

!!!

!

!!!

!

!

!

!

!

!

!
!!

!

!
!

!

!

!

!

!
!
!
!

!

!

!!
!
!!!!

!

!!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!
!!

!

!

!
!

!

!

!!!!

!

!

!

!

!!

!

!

!

!

!

!!

!

!!
!!

!!
!

!

!

!

!

!!

!

!
!

!!

!

!
!

!

!

!

!!

!

!
!!

!

!
!

!

!

!!
!

!

!!
!

!

!

!!!

!

!

!

!

!

!

!
!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!

!

!
!

!!
!

!

!

!

!

!

!

!
!!!

!

!

!

!!

!

!!

!!

!
!

!

!

!!

!

!!!
!!
!

!

!

!

!

!!

!

!

!

!

!

!!
!!

!
!

!

!

!

!

!

!

!

!
!
!!

!

!

!

!

!

!!

!!

!

!

!!

!

!

!

!

!

!

!

!
!!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!
!!

!

!

!
!
!

!

!
!
!

!
!

!

!
!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!
!

!!!!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!

!
!

!!
!

!!
!!!

!

!

!

!
!
!!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!
!
!

!
!!

!

!
!
!!!

!

!

!

!
!
!

!

!
!

!

!

!!

!

!!
!
!!

!

!

!

!
!
!!

!

!
!!
!

!

!

!

!!

!!

!

!

!

!!!
!

!

!

!

!
!

!
!

!
!

!
!!
!!

!

!
!

!

!

!
!

!!!

!

!
!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!!!
!!!!
!

!

!

!

!

!

!

!!!

!

!

!

!

!!

!!

!!

!

!

!

!

!

!
!!!!

!

!

!

!
!
!

!

!

!!
!
!

!

!!
!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!!

!

!

!

!

!!
!
!

!

!

!

!

!!

!

!

!

!!

!!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!!!!!

!

!
!!

!

!

!
!!!

!

!!

!

!

!!!!!

!

!

!
!
!

!

!!!
!
!!

!
!
!
!

!!!

!

!
!!
!!

!

!

!

!

!
!

!

!

!
!
!

!

!

!

!

!
!

!

!!

!!

!

!

!

!

!!

!

!

!

!!

!!!!!

!

!

!

!

!

!

!

!

!!!

!

!
!
!
!

!

!

!

!

!

!

!
!

!
!
!
!

!

!!

!
!
!!
!!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!
!
!!

!

!

!

!
!

!

!

!!

!

!

!

!!!
!!
!

!

!

!

!

!

!!!

!!!
!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!!!!

!
!

!

!

!!
!

!!

!

!!

!

!

!

!

!!

!
!

!!
!

!

!

!!
!

!

!
!

!!!

!

!

!

!

!

!

!

!

!
!

!!!

!

!

!

!

!
!
!
!!

!!

!!

!

!

!

!

!!

!
!!
!

!

!!!

!

!

!

!

!
!!!!

!

!

!!
!
!

!

!

!

!!
!

!

!

!

12 16 20 24 28 32 36 40 44

!1
0

1
2

Predicted adjustments

G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
50

10
0

15
0

Figure 4.15: Analysis of the demand satisfaction error for three policies. Left
column: time evolution of the distribution of the error as boxplots. Right
column: histogram of the energy slack (breaks are distant of 1 GWh). The red
vertical line represents the median of the distribution.

Draft: September 15, 2010

(b) Day-ahead schedule without adjustment.

4.4 Predicting power generation levels 87

!
!!
!
!!!!
!!
!
!!!
!
!
!!!!!!!
!
!!
!!
!!
!
!!
!
!
!!!!
!!!!
!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!

!

!

!

!

!

!!

!

!!!
!
!

!

!!!!!!!!!!!

!

!!

!

!!!!

!

!!
!
!!

!

!!!!!

!

!!!!!

!

!

!!!!!!!!!!

!

!!!!!!!!!
!!!

!

!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!

!

!!!!

!

!!!!!!!!!!

!

!!

!

!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!

!

!!

!

!!!!!

!

!!

!

!!!!!!!!!!!!!

!

!!!!!!!!!!!

!

!!!!!!!!!!!
!!!!!!!!!!!!
!

!

!!!!!!!!!!

!

!!!!!!!

!

!!!

!

!!!

!

!
!!

!

!!!!!

!

!!!!!!!!!!

!

!!

!

!!!!

!

!!!

!

!

!!

!

!

!

!

!

!!
!

!
!!

!

!!!!!!!!!!!

!

!!

!

!
!
!!!

!

!

!

!

!!

!
!
!

!!

!

!!
!
!!

!

!!!!!!!!!!!

!

!

!

!

!!

!

!

!

!

!!

!

!
!

!
!
!

!

!!

!

!

!

!!!!!!
!
!!!!

!

!!

!

!!!!

!

!

!

!

!

!

!
!

!
!!

!

!!

!

!

!

!!!!!!!!!!
!

!

!
!

!

!!!!!

!

!

!

!

!!

!

!

!
!!

!

!!

!
!

!

!!!!!!!!!!!

!

!!
!

!!!!

!

!

!
!

!!!

!

!!!

!

!!!!!!

!

!!!!!!!!!!!!!

!

!!!!!!

!

!

!

!!!!

!

!!!!

!

!!!!!
!
!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!
!
!!!!!
!

!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!
!
!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!
!
!!!

!

!!!!!!!
!
!!!!!!!!!!!!

!
!!!!!

!

!!!!!!!!!!!

!

!!!!!!!!!!!!!

!

!

!!

!

!

!!!

!

!!

!

!!

!

!

!!!!!!!!!!
!
!!!

!

!

!!

!!!!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!!!

!

!
!
!!

!

!

!!!!!!!!!
!
!!
!
!!!!!

!

!

!

!

!!
!
!!!!

!

!

!

!

!
!

!!

!
!

!

!

!

!

!

!!!!

!

!
!
!
!

!

!

!!

!

!

!

!!!!!

!

!!!!

!

!

!

!

!!!!!!

!

!

!

!

!

!

!!

!
!

!

!!!

!

!!

!

!
!
!
!

!

!

!!!!

!

!!!!!!!!!

!

!

!

!

!!!
!
!

!

!

!

!!!

!

!!!!

!

!!!!
!

!

!!!!!!!!!!

!

!!

!

!!!!!

!

!!!!!!!!!!!!!!!
!!!!!!!!!!!

!

!!
!

!!!!!!!!!!!!
!
!!

!!!!!!!!!!!!!!!!!
!!
!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!

!!!!

!

!!!!!!!!!!!!
!!
!!!!!!!
!
!!
!
!!!!!!!!
!
!!!!!!!!!!!!!!!

!!
!
!
!!!!!!!!!!!!!!!!!
!
!
!
!!!!!!!

12 16 20 24 28 32 36 40 44

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Predicted adjustments

G
W

GWh
Fr
eq
ue
nc
y

0 10 20 30 40 50

0
10
0

20
0

30
0

40
0

!
!

!!
!

!

!
!

!
!

!

!
!

!!
!

!

!
!

!
!

!
!
!

!

!!
!!
!

!

!
!

!
!!

!

!

!

!
!

!

!!!

!
!!
!
!

!
!
!

!!!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!!
!

!

!

!

!!!!
!
!!

!

!

!
!
!!

!!

!
!
!!

!

!!
!

!
!!
!

!

!

!!!!!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!
!

!

!

!!!
!

12 16 20 24 28 32 36 40 44

!2
!1

0
1

2
3

Predicted adjustments

G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
20

40
60

!

!!!
!

!!

!

!!

!!

!
!

!!
!

!

!

!

!!

!
!
!

!
!!

!

!

!

!

!!

!
!

!

!

!
!!

!

!
!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!
!!
!!
!

!

!

!!

!!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!
!!!!!
!

!

!

!
!
!

!!

!

!!

!

!

!!

!

!

!!

!!

!

!

!
!!!

!

!

!

!

!

!

!
!!

!

!!!

!

!!
!!

!

!!!

!

!!!

!

!

!

!

!

!

!
!!

!

!
!

!

!

!

!

!
!
!
!

!

!

!!
!
!!!!

!

!!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!
!!

!

!

!
!

!

!

!!!!

!

!

!

!

!!

!

!

!

!

!

!!

!

!!
!!

!!
!

!

!

!

!

!!

!

!
!

!!

!

!
!

!

!

!

!!

!

!
!!

!

!
!

!

!

!!
!

!

!!
!

!

!

!!!

!

!

!

!

!

!

!
!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!

!

!
!

!!
!

!

!

!

!

!

!

!
!!!

!

!

!

!!

!

!!

!!

!
!

!

!

!!

!

!!!
!!
!

!

!

!

!

!!

!

!

!

!

!

!!
!!

!
!

!

!

!

!

!

!

!

!
!
!!

!

!

!

!

!

!!

!!

!

!

!!

!

!

!

!

!

!

!

!
!!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!
!!

!

!

!
!
!

!

!
!
!

!
!

!

!
!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!
!

!!!!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!

!
!

!!
!

!!
!!!

!

!

!

!
!
!!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!
!
!

!
!!

!

!
!
!!!

!

!

!

!
!
!

!

!
!

!

!

!!

!

!!
!
!!

!

!

!

!
!
!!

!

!
!!
!

!

!

!

!!

!!

!

!

!

!!!
!

!

!

!

!
!

!
!

!
!

!
!!
!!

!

!
!

!

!

!
!

!!!

!

!
!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!!!
!!!!
!

!

!

!

!

!

!

!!!

!

!

!

!

!!

!!

!!

!

!

!

!

!

!
!!!!

!

!

!

!
!
!

!

!

!!
!
!

!

!!
!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!!

!

!

!

!

!!
!
!

!

!

!

!

!!

!

!

!

!!

!!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!!!!!

!

!
!!

!

!

!
!!!

!

!!

!

!

!!!!!

!

!

!
!
!

!

!!!
!
!!

!
!
!
!

!!!

!

!
!!
!!

!

!

!

!

!
!

!

!

!
!
!

!

!

!

!

!
!

!

!!

!!

!

!

!

!

!!

!

!

!

!!

!!!!!

!

!

!

!

!

!

!

!

!!!

!

!
!
!
!

!

!

!

!

!

!

!
!

!
!
!
!

!

!!

!
!
!!
!!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!
!
!!

!

!

!

!
!

!

!

!!

!

!

!

!!!
!!
!

!

!

!

!

!

!!!

!!!
!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!!!!

!
!

!

!

!!
!

!!

!

!!

!

!

!

!

!!

!
!

!!
!

!

!

!!
!

!

!
!

!!!

!

!

!

!

!

!

!

!

!
!

!!!

!

!

!

!

!
!
!
!!

!!

!!

!

!

!

!

!!

!
!!
!

!

!!!

!

!

!

!

!
!!!!

!

!

!!
!
!

!

!

!

!!
!

!

!

!

12 16 20 24 28 32 36 40 44

!1
0

1
2

Predicted adjustments

G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
50

10
0

15
0

Figure 4.15: Analysis of the demand satisfaction error for three policies. Left
column: time evolution of the distribution of the error as boxplots. Right
column: histogram of the energy slack (breaks are distant of 1 GWh). The red
vertical line represents the median of the distribution.

Draft: September 15, 2010

(c) Predicted adjustment.

Figure 4.17: Analysis of the demand satisfaction error for three policies. Left
column: time evolution of the distribution of the error as box plots. Right
column: histogram of the energy slack (breaks are distant of 1 GWh). The red
vertical line represents the median of the distribution.

96 4 Experiments

15 20 25 30 35 40 45

9
10

12
14

G
W

15 20 25 30 35 40 45

−
1.

5
−

0.
5

0.
5

1.
5

G
W

Figure 4.18: Top: total power generation of (black) the optimally adjusted
schedule, (blue) the predicted recourse, (red) the reference schedule, over the
recourse period. Bottom: residuals with respect to the updated forecast.

two units are stopped in the reference schedule and remain stopped in the
quasi-optimal adjustment, but our approach predicts a non-zero generation
level. However the generation levels evolve well under the technical minimums
of these generation units, which are indicated by the dotted black horizontal
lines, and are thus not feasible. This illustrates the necessity of a post-processing
phase, as discussed in Section 3.4.2.3, which in this case should obviously decide
to leave the two units shut off. The predictions are almost correct for units 3
to 7. Finally the learned adjustment strategy decides to start-up unit 8 almost
at same time than the quasi-optimal adjustment, and evolves similarly, except
at the end of the first day where the level stays inside the interval between the
off state and the technical minimum. This again needs to be corrected in the
post-processing phase.

Figure 4.20 shows the adjustment to the power that should be generated
in each valley. These signals are more complex and the learned recourse policy
appears to be less accurate than for the thermal units. The discrepancy be-
tween the total generation and the updated demand is due to the incapacity
of the model to capture the fluctuation of the generation level on the time
interval [12 : 28] but rather outputs a smoothed generation curve (although it
looks acceptable for the valleys of row 2). To decrease the smoothing effect one
solution might be to select a smaller value for the parameter nmin, but this
turned out to decrease the estimate of the overall generalization error in our
experiments. It is also less evident to evaluate a priori whether the predicted
curves can be satisfied tightly when considering the constraints on the volume
of the reservoirs in each valley.

4.4 Predicting power generation levels 97

10 20 30 40 50

0
20

40
60

80
10

0

10 20 30 40 50

0
20

40
60

80
10

0

10 20 30 40 50

0
50

10
0

15
0

20
0

10 20 30 40 50

0
50

10
0

15
0

20
0

10 20 30 40 50

0
10

0
20

0
30

0
40

0
50

0

10 20 30 40 50

0
10

0
20

0
30

0
40

0
50

0

10 20 30 40 50

0
10

0
30

0
50

0

10 20 30 40 50

0
10

0
30

0
50

0

10 20 30 40 50

0
20

0
40

0
60

0
80

0

10 20 30 40 50

0
20

0
40

0
60

0
80

0

10 20 30 40 50

0
20

0
40

0
60

0
80

0

10 20 30 40 50

0
20

0
40

0
60

0
80

0

10 20 30 40 50

80
0

12
00

16
00

10 20 30 40 50

80
0

12
00

16
00

10 20 30 40 50

0
20

0
60

0
10

00

10 20 30 40 50

0
20

0
60

0
10

00

Figure 4.19: Illustration of the adjustments of the thermal units. Each graph
shows the optimal adjustment (black), the reference schedule (red) and the
predicted adjustment (blue) of the corresponding thermal unit. The units are
ordered from left to right and from top to bottom according to the order of
Table 4.1a. The Y-axis is indexed in MW.

98 4 Experiments

10 20 30 40 50

−
40

0
−

20
0

0
20

0
40

0

10 20 30 40 50
−

40
0

−
20

0
0

20
0

40
0

10 20 30 40 50

−
50

0
0

50
0

10
00

15
00

10 20 30 40 50

−
50

0
0

50
0

10
00

15
00

10 20 30 40 50

50
10

0
15

0
20

0

10 20 30 40 50

50
10

0
15

0
20

0

Figure 4.20: Illustration of the adjustments valley by valley. Each graph shows
the optimal adjustment (black), the reference schedule (red) and the predicted
adjustment (blue) in the corresponding valley. From top to bottom, each row
represents the valleys of type (a), (b) and (c) (cf. Figure 4.2). The Y-axis is
indexed in MW.

4.4 Predicting power generation levels 99

4.4.2 Importance of variables

To analyze the influence of input features on the recourse decisions, we show
their importances as evaluated by the Extra-Trees algorithm on Figure 4.21.
The pie chart on the left indicates that the variables related to the state of
the system just before the recourse period are the most important in the de-
cision model, followed by the variables related to the updated demand, the
variables describing the outage, and the time variable spanning the recourse
horizon. Indeed the state of the system just before the recourse period de-
scribes, in addition to the effect of the deviation of the demand on the period
[0 : tr − 1], partially the effect the unit outage; this explains why it has such a
high importance in the decision process. The right part of the figure indicates
the repartition of the importance among the input features representing the
evolution of the updated demand forecast along the scheduling horizon. The
percentage of variance reduction fluctuates between 0% and 1%. The variables
related to the recourse period are more important than the variables related
to the pre-recourse period, except the realized demand at time 0 which is in-
dicative of the bias added in the scenario generation process (cf. Section 4.2).

Demand 25.9%Outage 15.5%

State 32.1% Time 26.4%

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1.0

1.2

%

Figure 4.21: Left: Importance of the categories of input features in the decision
model. Right: percentage of variance reduction of the features representing the
updated load forecast.

4.4.3 Obtaining feasible adjustments

Necessity of a post-processing stage. We need to post-process the predicted
adjustments to render them feasible since the learned model does not guaran-
tee it per se. By feasible, we mean “satisfying the individual operating con-
straints of the units”. Although the learning algorithm does not handle the
coupling constraints explicitly, it is evaluated on this criterion, and we can
penalize the energy slack and the lack of ancillary services reserves. Thus the
non-satisfaction of the coupling constraints penalizes economically the recourse
strategy, and may render it more or less valuable than another strategy, while

100 4 Experiments

the non-satisfaction of the individual constraints renders the recourse strategy
useless. The details of the post-processing procedure that we apply to predic-
tions in order to obtain feasible adjustments are described in Appendix B.3.1.

Impact of the post-processing on individual adjustments. Figure 4.22 il-
lustrates the distribution of the modifications imposed by the post-processing
stage to the adjustments made to each generation unit. More precisely, it rep-

4.4 Predicting power generation levels 93

fined for each generation unit, there is no need to account for the generation
costs anymore. This is in a sense comparable to the minimization phase when
applying Lagrangian relaxation to solve the problem (cf. Appendix C.1.1), but
instead of a demand to satisfy, the Lagrangian multipliers provide the infor-
mation about the marginal price of the electricity power and generators whose
marginal generation costs are higher than this price are not used.

Each problem is thus a MILP, but is much smaller than the global schedul-
ing problem. Once all the problems are solved, the reserves of ancillary services
are straightforwardly deduced from the generation levels. The global cost of the
adjusted schedule is computed by summing the generation costs, the penaliza-
tion of the discrepancies between generation and demand and the penalization
of the discrepancies between the required and provided reserves for the ancillary
services.

Impact of the post-processing on individual adjustments. Figure 4.20 il-
lustrates the distribution of the modifications imposed by the post-processing
stage to the adjustments made to each generation unit.

Satisfaction of the load-generation balance. Similarly to Figure 4.15, Fig-
ure 4.21 illustrates the distribution of the mismatch between generation and
demand for the post-processed adjustments. We have reproduced the plots of
Figure 4.15 corresponding to the predicted adjustments before post-processing

●●●●●●●●●●●●●
●

●

●
●
●●●●
●●
●●
●
●●
●
●●
●●
●●●●

●
●●

●
●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●
●●●
●●●●●●●●●●●●●
●●●
●●●●
●●●
●●●●●●●●●●●●●
●●●●●●

●
●
●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

●

●●
●●●●●●●●●
●●●
●
●
●●●●

●●
●

●
●

●●

●
●●
●●

●●●●
●●●●●●●●●●
●
●●●●●
●●●●●
●

●

●

●●●●●

●
●
●

●
●●●●●●●
●●●
●●●●●●●●●
●
●
●●●
●
●

●●●●●●
●●●●●●●●●●●

●

●
●
●●
●
●●●
●●●●●●●●

●
●
●
●●●
●
●
●●●
●

●
●●●●●●●●

●
●●
●●
●●
●●●●●●●●●
●●●●●●

●

●

●

●

●
●●

●

●

●

●
●
●

●●●●

●●●●

●●

●

●●

●
●●
●
●
●●
●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●
●

●

●

●●

●●●
●●
●●
●
●
●●
●
●

●●

●●

●

●
●

●
●
●
●

●

●

●

●●●●
●●●●●●●●●●●

●
●
●

●
●●
●

●
●

●

●

●
●

●

●

●

●
●
●●●●●●●●●
●●●●●●●●●●
●

●
●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●
●●●●●●●
●●●●●

●

●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●

●●●●●●●●●●●●●
●

●
●●
●●●●●●●●●●
●●
●●●●●●●●
●●●●
●●

●
●
●
●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●
●

●●
●●●●●

●●●
●●●●
●●●●●
●●
●●●●
●●●●
●
●

●
●
●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●
●●

●

●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●
●

●

●
●
●●●
●●
●
●

●●●●

●
●●●

●●●

●

●

●●

●●
●

●●

●

●

●●
●

●

●

●

●

●
●
●●●●●●
●●●●
●●●●●●●●●
●●

●
●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●

●●●●●

●

●

●
●
●
●

●
●

●

●
●

●
●

●

●●●

●
●
●●●
●

●
●

●

●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●

●●

●

●

●
●●●●
●
●●
●●●

●
●●

●

●

●
●●●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●
●●
●
●
●●●●

●

●

●
●

●

●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●
●

●

●●

●

●●●●●
●●
●●
●●●
●

●
●
●●
●●

●
●●●
●
●●

●

●●●●●
●●●●
●

●●
●
●

●

●

●
●
●●●●
●●
●●

●●
●●
●●
●
●●
●
●
●

●
●●

●

●
●

●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●
●
●●
●●●●●●
●
●●●●●●●●●●●●●●●

●●
●●●●●●

●●●

●
●

●●

●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●

●

●

●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●

●

●

●●
●●●●●●●●●●
●●
●

●
●●
●
●●●●●●

●

●

●●●●●●●●●●●●●●●●
●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●
●●●
●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●
●●●●
●

●

●

●
●●●●
●

●
●

●●

●●
●●

●●

●

●
●
●●

●

●●

●●
●

●●●●●●●●●●
●●●●●●●
●

●●●
●

●

●

●
●
●●●●
●●
●●
●
●●●
●●

●

●

●

●●●

●
●

●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●
●

●●●●●●●●●
●●
●●●●●●●●
●●●●●●●
●●●
●

●
●●●
●
●●
●
●●
●●●●●●●●●●●●●●●
●●●●●●
●●●

●●
●●●●●
●
●●●
●●
●●
●
●●●
●●
●●
●
●
●
●●●
●●

●●●
●
●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●
●

●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●
●●

●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●

●
●●
●

●
●●●
●●●●●●
●●●●
●●●●●

●

●●●

●
●
●

●

●●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●●
●
●●●
●
●●●
●●●●●●●●●●
●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●
●●●●●●●●●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●

●
●●
●●
●●

●

●

●●

●

●●●●●●●●●●●●
●

●●
●●●●
●●
●
●●●
●●●
●
●●
●
●●
●
●
●
●●●
●

●

●

●
●
●

●●
●
●
●
●
●●
●
●●
●●
●●●●●●

●

●

●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●●●
●
●●
●●●

●
●
●●●
●●●

●
●●
●
●
●●●●●●●
●●

●
●

●●●

●●

●●●●●●●●●●●●●●●●●
●●
●●
●●●
●
●●●
●●
●●●●

●

●

●
●
●
●●●
●

●●●●

●
●
●

●

●●
●●
●
●

●●

●

●

●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●
●●●●●

●●
●●
●
●●

●●●
●
●
●
●

●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●
●

●
●

●
●●●●●●●●●●
●●

●

●●●

●

●●●●●●●●
●

●

●
●●●●●●

●

●
●

●●
●●
●●●●●●

●
●

●

●

●

●
●●●
●●●
●●

●

●

●

●●●●●●●●●●●●●●●
●

●

●●
●●
●●●●●●
●●●●●●
●●●●
●
●
●

●
●

●

●

●

●●●
●

●

●●
●●●●●●●●●
●●●●
●●
●
●●●
●
●

●●

●
●

●
●●

●

●

●●

●
●

●
●●●
●●●●●●
●●●
●
●●●●●●
●●●

●
●
●●●

●●

●●●●●●●●●●●●●●●
●●●●●●●
●●
●●
●
●●
●

●●●
●●
●●●●●●

●
●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●
●

●●●●●●●●●
●
●●●●●●●

●

●

●
●●●●●●

●●●●
●
●
●
●

●●

●

●●●

●
●

●●

●
●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●
●●●

●●●
●●●●●●●●●●●●

●

●●
●●
●●
●●

●●●
●

●●●
●

●●
●
●
●●

●●
●●

●
●

●●●
●
●●●●●
●●●●
●●
●
●
●●●
●●●

●

●

●

●
●

●●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●

●
●●
●

●●●●●

●

●

●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●●
●●
●
●●
●●
●
●●
●
●●●
●●●

●
●
●●

●

●
●

●
●
●
●●●●
●
●●●
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●
●

●
●●●●●
●●●●

●●●

●

●
●
●

●●

●

●●

●●

●

●

●●●
●●●●●●●●●●
●●●●●
●●●
●●●
●
●
●●●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●
●

●●●●

●

●●
●●●●●●●●●●●●●

●
●●●
●●
●

●

●
●

●
●

●

●●●●●●●●●●●●●●●●●●●
●
●
●●

●
●

●

●

●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●

●●●●●

●

●

●●●●
●●●●●●●●●●
●●●●●

●
●●

●

●

●
●

●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●

●●
●

●●●●●●●
●●●●●
●●
●
●
●●●
●●
●●●
●
●●

●

●

●●●
●
●●

●

●

●

●

●
●●●
●●

●●
●
●
●●
●
●
●●
●
●
●
●

●

●●

●

●
●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●
●●
●
●●●●●●●●●●●●
●●
●

●

●●●●●●●●●●●●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●

●●●●●
●
●●
●●●●●●●●●●●●●●●●●
●●●●
●●
●

●

●
●
●●●
●●
●●●●●●
●●●
●●
●
●●●

●

●

●
●

●

●●

●●●●●●●●
●
●●●
●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●

●

●

●

●

●
●●●●●●
●●
●●
●●
●●●●●●●●

●
●●

●
●
●

●

●
●●●●●●●
●●●●
●●●●●●
●●●●●

●

●●
●
●●
●

●

●●●

●

●

●

●●

●
●
●●●●●●
●
●

●●

●

●●
●●
●

●

●
●●

●
●
●

●●●
●●

●

●

●
●●
●●●●●●
●●●●●
●

●●●
●
●●
●

●
●

●

●

●●

●●●
●

●
●
●●●●●●●●●●
●●
●●
●●
●●●●●
●
●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●

●
●

●●●●●●
●●
●●●●●●●●●●
●
●●●●●

●

●

●
●●

●●●

●
●●●●

●●●

●

●●
●●
●●

●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●
●
●●
●●●●●●●●●●
●
●●●●
●
●●●●●●
●●●
●

●
●●
●

●●
●●

●

●●
●●●●●●●●●●●●●●
●●●●●●
●
●
●

●●

●

●●●●●●●●●

●

●

●

●

●●●●●
●●●●●●●●

●●●●●●

●

●

●●

●
●
●

●●●

●
●●●●●●●●●●●●●●●●
●●
●●●
●

●
●●●●

●

●●●●●●●●●●●
●
●●
●●
●●●●●
●●
●●
●
●●●●●
●●●
●●●●

●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●
●
●
●
●●
●●●●●●●●●●●●●
●●●●●
●●●
●●●●
●●●●●●●
●
●

●

●●

●

●●●●

●
●
●

●
●●●●●
●●
●●●
●●●●●●●●●
●●●●●
●●

●●
●
●●
●●●●●●●
●
●

●
●●
●●●●●●●●
●●●●●
●●●●●●●●
●
●
●
●●●●

●●
●●●●
●●●
●●●●●●●●
●●●●●●●
●●
●

●

●

●

●

●●●
●●●●●●
●
●●●●●

●
●

●

●
●
●
●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●
●●●
●●●●●
●●
●●●
●
●●
●●
●●●●●
●●
●●
●●●

●

●

●
●
●●
●●●●●●●
●
●●●●
●

●●●
●●
●
●
●

●●
●
●
●●
●●●●●
●●●●
●●
●●●●●●
●
●
●
●
●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●●

●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●
●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●
●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●

●●●●●

●●●●
●
●●
●●●●●●
●
●
●●●●
●●
●
●
●●●●

●

●

●
●
●●●●●●●●●●●●●●●●●●●
●
●
●●●●
●●

●

●
●

●
●

●●●
●
●
●●●●
●
●
●

●
●
●●

●
●

●●
●
●●●

●

●
●
●●●

●

●

●
●●
●●
●●●
●●
●
●
●●
●

●

●
●
●

●
●

●●
●

●●
●
●●
●●●●●●●●●●●
●●●●●●
●●●
●
●●●
●
●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●
●●●
●●●●

●●
●●●
●●●

●●●●●●●

●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●●

●

●

●

●●
●●●●
●
●●●
●●●●
●

●
●

●●
●
●●
●
●

●●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●
●

●

●

●

●●
●

●
●
●●

●

●
●

●●●

●

●

●●●

●
●

●
●●●
●●●

●
●●●●
●●●●●
●

●
●
●
●●●●●
●●

●●
●●
●●●
●
●●●●●
●●
●●

●

●

●

●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●
●
●

●

●●

●

●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●
●●●●●●
●
●●●
●●●●●●
●

●
●

●●

●●●●●●●●●●●●●●●●●
●
●●
●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●

●

●
●

●●

●●

●●

●●●

●●
●●

●

●
●●
●●
●●

●●

●●

●●●●●●●●●●●●●●

●

●

●

●●●●●
●●●●●
●●●●●●
●●●●
●●

●
●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●●
●●●
●●

●
●●
●

●

●

●●●
●
●●●●●●●●●●
●●●●●
●●●●●●
●●●●
●

●●
●
●●●●●●●●●●●●●
●●●●
●
●●●●●
●
●
●●●●●●●●●
●●●●●
●
●
●

●

●

●●

●●
●
●●
●●●
●●●●●●●●●●●●●●●

●
●●

●●●
●
●●●●●●●●●●●●●●●
●
●●●●

●

●
●●
●
●

●●

●

●●

●●

●●●
●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●

●
●●

●
●

●●
●●
●●
●●

●●

●●

●
●

●●

●

●
●

●

●●

●
●
●

●
●●●

●
●

●
●●
●
●
●
●
●●●●●●
●●●
●●●
●
●

●

●
●●

●

●
●

●
●●●●●●●●●●●●●●●●●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●

●
●●●
●●●●●●●●
●●●●
●
●
●●●●

●
●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●

●

●●
●
●●●●●●●●●●●●
●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●
●●●●
●●
●●●●●●●●●●
●
●●
●●●●●●

●

●

●●●
●●●●●●●●●●●●●●●●●

●

●

●
●●●
●●
●●

●●●
●
●●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●●

●●●
●●
●●●●●
●

●●●●●
●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●

●

●
●

●●●●
●●●●●

●

●●
●●
●●●●

●

●
●

●●●●●

●

●●
●●●●●●●

●

●●
●

●●

●●●●

●
●●●
●●

●

●

●

●
●
●●

●●

●

●●

●●●●●●●●●●
●
●
●●
●●●●●●●●●
●●●●
●●●●●●●●
●●
●

●●

●
●●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●

●
●●●●●●
●●
●●
●
●●●
●●
●●●

●●●●●
●●

●

●●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●
●

●●

●
●
●●
●●●●
●●
●●
●●

●●●●●●●●
●
●
●
●●

●

●●●●●●●●●●
●●●●●●
●●●●●●
●●●●
●●
●●●●
●●
●●
●●●●●
●●●●●●●●●●●●
●
●
●
●●●●●●●●●

●

●

●●●●●●●●●
●●
●●●

●
●

●
●

●●●
●●

●

●

●
●

●

●●

●
●

●●

●

●

●●
●●
●●

●

●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●
●●●●●●●●●●●●
●
●●●●●●
●●●
●
●

●
●

●

●
●●

●●●●

●

●●●●●●
●●●●●●
●

●●●●●●

●●
●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●
●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●
●●●
●
●●
●●●●
●●
●●
●●

●●●●●●●●●●●

●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●

●●

●

●●

●
●

●

●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●
●●
●
●●
●●●

●

●●
●
●

●

●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●
●●
●
●
●
●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●
●

●
●
●●
●●

●

●●
●
●
●●●●●●
●●
●●●●●●
●
●●
●●●●
●●●

●●●●●
●
●

●

●
●
●
●●●●●
●

●●
●
●
●●●●●●●
●●

●●
●●

●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●●●●●●●●●●
●●
●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●
●

●

●
●●●●
●●●●●
●●●
●●●
●●●
●●●

●●
●●
●

●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●
●●●●●
●●
●●
●●●●●●●●●●●●●

●
●

●

●●●
●●
●●●●●●
●
●●●●●●●
●●●●●
●
●●●●
●

●●●●

●
●

●
●●●
●●●●
●
●●
●●
●●
●
●
●●
●●
●●●
●

●●
●

●●●●

●
●●
●●●●●●●●
●●●●●
●●
●●●●●●●●●

●

●●

●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●

●●●●●●●
●●
●●●●●●●●●
●
●●●●●

●●●
●●
●●●
●
●

●
●●

●●●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●
●●
●
●●
●●●●●
●●
●●
●●
●
●●●
●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●●
●

●

●
●
●●
●●●●●
●
●●●●
●●
●

●
●
●

●

●

●●

●●

●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●
●●

●

●

●●●●
●●

●

●

●●●●●●●

●

●●
●●
●●
●

●

●
●

●

●
●

●

●
●●●●●

●

●
●
●●●●
●
●
●
●●●
●

●

●●

●

●●●●
●

●

●

●

●
●●●●

●

●●
●●
●

●●●●●●●●
●
●●
●
●

●
●●●
●

●
●
●

●

●●
●

●

●
●●
●

●●
●
●

●

●

●
●
●●●
●
●
●●●●●
●
●

●●●
●

●
●●●

●
●
●●●
●●

●
●●●●
●●
●●●
●
●●

●

●●

●

●

●●●
●
●●
●

●
●●●
●●●●

●

●

●

●●
●●●
●
●●
●●
●

●●

●

●
●●

●

●
●●
●●●

●●

●

●
●
●
●
●
●

●
●
●●

●

●

●

●
●●
●●●●●●
●●●●
●
●●
●●●●●

●●●
●

●●

●
●●
●

●

●●●
●●●
●
●
●●●
●●●●

●●●
●●●●
●
●●

●

●

●
●
●
●

●
●
●
●

●

●

●●●

●●
●
●

●

● ●●

●
●●●
●
●●●●●●●●●●●
●●

●

●●

●

●
●●
●
●●
●
●●●

●●●●

●
●●
●
●
●●
●
●
●●
●

●

●
●●

●

●

●

●

●

●

●
●

●
●
●

●
●●
●

●

●
●

●

●●

●

●●

●
●
●●
●
●

●

●
●●●●●
●

●

●
●
●
●●●
●
●
●
●●●
●

●
●

●●
●
●●●

●

●

●
●●●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●
●●
●●●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●

●

●

●
●
●

●
●

●●

●

●

●
●

●

●

●

●
●
●

●●

●

●●●●
●

●
●
●●

●
●●
●
●
●

●

●

●

●
●●

●●

●●●●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●●

●●

●

●
●
●
●
●●

●
●

●●
●●

●
●

●
●
●

●

●

●
●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●●●
●

●●
●●●●
●

●

●
●

●●●
●

●

●

●

●
●
●
●
●
●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●
●
●

●●

●

●

●
●

●

●
●

●
●
●
●
●

●

●

●

●

●●

●●
●
●●●●
●
●●
●
●
●
●
●
●
●
●●

●

●
●

●

●
●●●
●●●●●●
●●●●

●

●
●●●●●●

●

●

●
●●

●●
●●
●

●

●

●
●

●

●

●

●
●
●●

●

●●●●●●●●●●
●●●●
●●●

●
●
●●●
●●
●
●
●
●

●

●
●
●●●

●

●

●

●

●

●

●●
●
●
●●

●

●●

●
●
●●
●●●●
●
●●●●●●●●●

●●
●

●

●

●

●

●

●
●

●

●

●●●
●●
●

●

●

●

●
●●●

●●
●●

●

●
●
●
●

●●●●●

●
●

●

●●

●

●

●●

●●●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●●●

●
●

●
●
●●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●●●

●●●●●●●●●●●●
●
●

●●

●

●

●

●●

●

●

●
●

●●
●

●

●●●●●●●
●●
●●●●●●

●
●

●
●
●●

●
●

●

●
●

●
●●
●

●●

●

●

●

●

●
●●

●●●

●

●

●

●
●●●
●
●
●

●

●

●

●
●●●●●●●●●●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●●●●●●●●●●●●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●●●●●●●●●●●●

●●
●

●
●

●
●

●

●

●

●

●
●

●●●
●
●●

●
●
●

●

●
●

●●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●●

●
●
●
●

●
●

●

●

●
●
●
●
●
●

●

●
●

●
●

●

●

●●●●●●
●

●

●

●
●
●●●●●●●●●●
●●●●
●●●●●●

●

●
●●
●
●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●
●●●●●●●●
●●
●●●●●

●●
●
●●
●●●●●●●●●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●
●

●

●

●
●

●
●
●

●●
●●
●●

●
●

●
●

●
●
●

●
●

●

●
●
●●

●●

●●●
●●●

●

●
●●●●●
●●

●

●

●

●●

●
●
●
●

●
●●●●●
●●●●
●
●●

●
●●

●

●●●●

●

●

●
●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●●
●

●

●
●
●●

●

●

●

●

●●
●
●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●
●
●
●

●

●
●
●
●●

●

●●●
●

●
●

●●

●●●●●
●●
●

●

●

●●●●●●
●●
●●●●

●
●
●●

●

●

●●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●●
●●●●●●●●●●●●
●
●
●●●●●
●●●
●
●●●●●

●
●●

●

●

●

●

●

●●
●●●●●●●●●●●●●
●●

●
●●●●
●●
●
●●

●●

●●
●●●●●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●
●
●●

●

●

●

●

●
●●

●

●

●
●
●
●

●

●●

●●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

●
●
●
●
●●●●●●●
●
●●

●

●●

●●●●
●●●
●●
●
●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●●
●
●●

●
●●
●●
●

●

●

●●
●●

●

●

●●●●●
●

●
●●
●●

●

●

●

●

●

●
●
●

●

●
●

●
●
●

●

●●

●

●

●

●

●
●●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●●●●●●●●
●●
●
●●
●●●●●

●

●
●
●

●
●●●
●●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●●
●
●

●

●
●

●

●

●

●●●
●●

●

●

●

●

●

●

●
●●●
●●
●

●

●

●
●

●

●

●●

●
●●

●

●

●
●
●

●

●

●

●●●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●
●●
●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●
●●
●●●
●●

●

●●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●
●●
●

●

●
●
●

●

●
●●

●
●

●

●
●
●
●
●
●●●●●●
●
●
●

●●
●●●●●●
●●

●

●●●●
●●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●●●

●

●

●

●●●●
●
●●●●●

●●

●●

●

●●

●●

●
●●●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●●●●●●●●
●●
●
●

●

●●
●●

●●
●●

●●

●

●●
●●●●●●●

●

●

●

●
●●●●●
●
●●
●
●

●

●

●●●●●
●

●●●●

●
●

●●

●

●

●

●
●
●

●

●

●

●
●

●

●●
●

●
●

●
●●
●

●

●●●
●●
●●
●

●

●

●

●
●●

●

●

●
●
●
●

●
●●●●

●

●

●
●

●

●●
●
●●●●
●●
●●

●
●
●

●
●●●●●
●
●

●

●
●

●
●●●●

●●●

●●●●●●
●●●●
●●
●
●
●
●
●●●●●●
●●
●
●●
●●●●
●●

●●
●
●

●●
●
●

●
●

●●●
●

●

●

●

●
●
●

●●

●
●
●

●
●
●
●

●●●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●●
●●●●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●
●

●
●
●
●
●

●

●

●
●●●●

●

●

●●

●

●

●

●●●●●●
●

●

●

●

●●

●

●

●
●

●●●●
●●●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●●●

●

●

●

●

●●●
●
●

●
●

●

●
●

●

●

●●●
●●●
●●
●
●

●●●●
●
●

●
●

●●
●●

●
●
●●
●●
●●
●●●●●●●●●●●●●
●●●●●●●

●
●
●
●●●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●●
●
●
●

●

●●
●
●
●

●

●
●●
●●●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●
●
●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●●●●●●●●●●●●
●●●●●

●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●●
●●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●
●
●●●
●●

●

●

●
●
●
●
●●●
●

●

●

●

●
●●

●●●●
●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●
●
●●
●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●
●●●●

●

●

●●

●
●

●

●

●●●●

●

●

●
●

●

●
●

●●●
●●●
●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●
●
●
●●
●●
●
●
●●
●●
●●
●
●
●

●
●

●

●

●

●

●

●
●●●

●

●

●

●
●

●
●●●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●
●
●
●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●
●●

●

●

●

●

●
●
●
●●

●●

●●●
●

●

●

●

●
●

●
●
●
●
●
●●●
●

●●

●

●

●
●

●
●
●●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●●
●

●
●
●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●●
●
●●●

●
●
●●●●●
●●

●
●

●
●●●

●●
●

●

●

●

●

●
●

●

●

●
●
●

●

●
●
●
●
●●●
●●●●

●●
●●
●

●●●●●●
●
●
●
●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●●●●●
●
●●●●●●●
●●●●●●

●●

●

●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●
●●
●●

●

●

●

●

●

●

●

●
●●●
●●●
●●
●
●●●
●
●●

●●●
●●●●
●●
●
●
●●●●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●
●
●

●
●

●
●
●
●
●●●●●●●
●●
●
●

●●●
●

●●

●

●●●

●
●●
●●

●

●

●
●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●
●
●

●●
●
●●
●●●
●●●●●●●
●

●
●●●●●●●●●

●

●

●

●

●

●●
●

●
●

●

●●

●

●
●
●●●●●●●
●
●
●
●●●

●

●

●

●

●

●

●

●
●●●●●●

●

●

●
●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●
●●●

●●●●●●●
●
●●●●●●
●●●●●
●●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●
●

●●
●

●
●

●
●
●●●
●●
●

●
●

●
●

●
●●

●

●●

●

●

●

●

●

●

●
●●●●●●●

●

●

●
●
●

●

●●

●

●
●
●

●
●

●

●

●

●
●
●●

●

●

●

●
●
●

●

●

●●●●
●
●●
●
●●●●●●●●
●●
●
●
●

●

●
●●

●
●

●

●
●●
●●●●

●

●●
●
●●●●
●
●●
●

●
●

●

●
●●●
●●●
●●
●●●
●●
●●●

●
●●
●
●
●

●●●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●●
●

●
●
●

●

●●
●●
●

●
●

●●

●
●

●
●

●
●

●

●
●●●●●
●●●●●●●●●●●●●●●
●●
●●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●
●●

●

●
●

●
●

●

●

●

●
●
●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●●●

●

●

●
●

●

●

●

●
●●●●●●●

●●

●
●

●●●

●

●●●
●●

●●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●●

●

●

●

●

●●●●●●●
●●●
●
●●
●●
●

●
●●

●●
●●

●

●

●●

●●
●●●

●

●
●

●

●●●●
●●
●
●
●
●●●●●●●●
●●
●

●
●●
●
●●●●

●

●

●
●●

●

●
●

●

●
●

●

●●●

●
●
●

●

●

●●
●●

●●

●●

●
●

●
●

●●●●

●

●
●●●●

●
●

●

●

●●●

●

●

●

●

●●●
●●●●

●
●●

●

●

●●

●

●
●
●●●●

●

●

●

●
●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●●●
●
●
●●
●

●

●

●

●●

●●●

●●
●●●●●●●●
●●
●

●
●
●
●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●●
●
●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●●
●
●●●●
●
●●
●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●●
●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●
●●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●
●
●
●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●●
●●
●
●
●●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●
●●
●

●

●●●●
●
●

●
●
●
●

●

●
●
●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●
●

●●

●●

●●
●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●
●●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●●●●●●●

●

●

●

●

●

●
●●

●
●

●●

●
●
●

●●

●

●

●
●

●

●

●●●●●
●
●
●

●

●●
●

●
●

●
●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●●●
●

●●
●●●

●

●

●
●

●
●
●

●●

●

●

●
●

●

●
●

●

●
●
●

●●

●

●●
●●●●
●
●●

●

●●●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●●●
●●

●●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●
●
●

●

●
●●●●

●●
●
●●
●
●

●

●
●●
●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●●
●●

●
●●

●

●

●

●
●

●

●

●

●

●

●●
●●
●

●
●
●

●
●
●
●
●●●●

●
●●●
●●●●●●●●●

●
●●●●

●

●

●

●
●
●
●●●
●●
●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●●●●
●●
●
●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●
●

●

●●
●●
●●

●

●
●

●
●

●

●

●

●
●
●

●

●
●●

●
●

●
●

●

●
●●●
●●
●●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●●●
●
●

●
●

●●
●●
●
●●

●
●
●

●
●
●●●
●●

●●

●

●

●
●
●

●

●
●●
●●●

●
●●
●●

●
●

●●

●●●●●

●

●

●
●

●●

●

●

●

●

●

●●
●
●●●●●●●●●

●

●
●
●●●●●●●
●

●●●●●●●●●●
●●●●
●●●
●●●
●
●
●
●●
●●●

●
●

●●●
●●
●
●
●
●●●●●●●

●

●

●

●●
●
●●●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●●●

●
●
●●●

●

●
●

●
●●
●
●
●

●

●

●
●
●
●●
●

●

●
●

●●
●

●

●

●

●
●

●

●●

●

●●

●
●●
●●
●●●
●
●
●●●●
●●

●
●
●
●●

●

●

●

●
●

●

●
●●●●
●●●●●●●●●●●
●●
●●
●●●●●●
●●

●

●

●

●

●●●

●

●●
●●●
●●●

●
●

●
●

●
●●
●
●

●

●

●

●●●
●●●

●

●

●

●

●

●

●

●
●●
●●
●
●●

●

●
●●

●●
●●
●●
●●
●

●
●
●
●
●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●
●
●
●

●
●

●
●●
●●●
●

●

●

●

●●●●

●

●●

●

●●
●●●
●●●●
●

●
●●●
●

●

●

●

●
●

●

●

●
●

●
●
●●
●●
●●

●
●

●●
●

●

●
●●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●●●
●
●

●

●
●●●
●
●●

●●
●●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●
●●
●
●

●

●

●
●
●

●

●●
●
●
●

●●●

●
●

●

●

●●
●

●

●●●

●

●

●

●●●

●●
●
●
●
●●●

●

●

●●●

●

●
●
●●●●

●●

●
●

●

●

●

●●●
●●●

●

●
●

●

●

●

●●●●
●●
●

●

●

●●
●
●●●●
●
●
●●●●

●

●

●

●

●●

●

●

●●●

●●

●●●●●●

●●●
●
●
●
●
●●●●

●

●●

●

●
●

●
●

●●●●●

●
●●●

●

●

●

●●
●●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●●
●
●

●

●
●●●●
●●
●
●
●

●●●
●
●
●●

●

●

●

●
●
●
●●

●

●

●

●
●
●

●

●

●●●●
●

●
●

●

●●

●●

●

●

●
●

●

●

●

●●
●
●

●

●

●
●
●

●
●●

●
●
●●
●●

●
●
●

●

●
●

●

●
●●●●●●

●

●
●
●●
●

●

●
●

●
●
●

●
●
●

●

●

●

●

●

●

●

●●

●●●●●
●

●●

●

●

●●

●
●

●

●

●

●●●
●
●●
●

●

●●●

●
●

●
●

●

●

●
●
●

●

●

●
●●●●
●

●●●
●
●●
●
●
●

●●●●

●●
●

●
●

●

●

●

●●

●

●
●

●
●●●●
●

●
●●●

●
●
●
●
●

●●

●

●

●

●

●

●

●
●●
●●

●●
●
●
●
●
●●

●

●

●

●

●●

●
●
●
●
●●●
●
●●
●●●
●

●

●

●

●

●
●

●

●

●
●

●
●
●●●●
●
●
●●●
●

●●
●
●
●●●●

●●

●

●

●

●●●
●●●●
●
●●●●
●●●

●
●●

●
●●
●

●

●
●●

●

●●●●●●

●

●

●●
●
●
●

●

●

●
●●
●
●●
●●●
●

●

●●●●●●●

●
●●●

●
●

●●
●

●
●●
●●

●●●
●●●●●●
●
●
●●●

●

●

●

●

●●●●

●
●

●●●●
●

●
●
●●
●
●
●●●
●

●

●

●
●●
●
●

●
●

●●
●●
●
●

●●●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●●●●●●

●

●
●

●●
●●●
●

●
●●
●●
●

●
●

●
●

●

●●
●

●
●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●●
●
●
●●●

●

●●●
●
●

●●
●

●

●

●

●

●●●●●●●
●●
●●●●
●●
●●●●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●●●
●●

●

●

●

●

●

●
●●

●

●

●●●●●●●●●●

●

●

●

●

●●●
●
●●●●
●●
●
●

●

●

●

●

●

●

●

●
●

●

●
●●●●●●
●

●

●●

●

●

●

●●
●

●●
●●

●
●
●

●●
●
●

●

●
●

●

●●
●●
●

●

●

●
●

●●

●●●●
●●●

●●

●

●
●
●
●●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●
●●

●
●

●●●●

●

●

●

●

●
●●
●●
●

●
●
●●
●●
●●

●

●●●

●

●●
●
●●

●●

●
●

●

●●
●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●
●
●●

●

●
●●●●

●
●
●●●●
●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●●
●●
●●

●

●
●

●●
●●●

●

●

●

●

●

●●

●●●●●●●●●●●

●

●●●
●

●

●
●

●

●
●

●

●

●
●
●
●

●●

●●●

●

●

●●
●

●

●●●
●

●●

●
●

●

●

●●●●●●●
●●
●●●●●●
●●
●
●

●

●●

●

●
●
●●
●●
●●●●●●●●
●●
●
●●●●●●●
●●●

●

●

●
●
●

●
●
●

●
●
●●●
●●
●
●●●●
●●●
●●●●
●●●
●

●●
●●●●
●
●
●●
●●
●

●

●●
●

●

●

●●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●●●
●●
●

●

●

●
●●

●
●
●
●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●
●
●●●●●●●●
●

●●

●
●●

●
●●
●

●
●●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●
●●●

●●●
●●

●
●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●●
●
●●

●

●
●●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●
●
●●
●

●

●●●
●●●●●●●
●
●

●

●
●●●

●●●

●

●

●

●

●●

●

●●●●
●

●

●

●
●●

●

●●●
●●
●
●●●●●
●
●

●

●●
●
●

●●
●
●

●

●

●

●

●●
●

●

●

●

●
●
●

●●
●
●●●●●●
●●
●●●●
●
●
●
●●
●●

●●●●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●●●●●
●
●●
●
●●
●●
●
●●
●●
●●●●●●●
●●●●●●●●●●
●●●●

●
●
●
●

●

●

●

●

●

●●
●
●

●●
●
●●
●

●
●
●
●
●●●●

●●
●●●●●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●●

●●●
●
●
●
●●

●

●●
●●●

●

●

●

●●

●

●

●
●

●

●

●
●
●
●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●

●

●

●●●

●●

●
●

●●

●

●●●
●●●●●●●●●
●

●
●
●●●
●
●
●

●

●

●
●

●

●

●

●

●
●
●
●
●

●●
●
●

●●

●
●
●
●

●
●
●
●
●

●
●●
●
●

●

●

●

●●●●●
●●●
●●
●●●●
●
●

●

●

●

●

●

●

●●
●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●●
●●

●

●●

●●

●
●

●

●

●

●
●●●

●
●

●●

●
●

●

●

●
●
●●●●
●●●

●

●

●

●
●

●
●
●●●

●

●
●
●
●●●●●
●

●●

●●

●
●

●

●

●●

●

●

●●

●
●
●
●

●

●
●

●

●

●●
●

●●

●
●●

●

●

●

●

●

●●

●

●●

●●

●

●●

●
●
●

●

●

●

●

●●
●●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●
●
●●

●

●

●

●
●

●

●

●
●●●
●

●

●

●

●

●●

●

●
●

●

●●● ●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●●●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●
●●

●

●●
●
●
●

●

●●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●
●

●

●●

●

●

●●

●

●

●
●●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●
●

●
●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●●
●
●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●●●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●●

●

●
●

●●
●
●
●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●
●
●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●
●
●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●
●
●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●
●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●
●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●●●
●

●

●

●●

●
●
●

●
●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●
●
●
●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●●●
●
●

●

●

●

●●●●
●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●
●

●

●

●

●●
●●●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●●●●●●

●●

●●

●●

●

●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●

●

●
●●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●

●●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●●
●●●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●●●
●●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●

●●
●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●●

●

●
●

●
●

●
●
●

●

●●●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●
●
●

●●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●
●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●●●●

●

●

●

●●●
●
●

●

●
●●●●●●●

●●

●

●

●

●●
●
●
●

●

●●●

●●

●

●

●

●●

●
●

●

●

●●
●

●●

●●
●
●●
●

●

●

●

●

●

●

●

●

●
●●●●●

●

●
●●●

●●●●
●

●

●
●

●●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●
●●●
●●
●
●

●●

●

●

●●

●●

●●

●

●

●

●
●

●

●
●●
●●●●

●

●

●

●

●

●

●

●

●
●
●●

●

●●
●
●

●

●

●●●●

●

●

●

●●

●

●

●

●●●
●
●
●

●

●

●
●

●●
●

●●●
●●

●●

●

●

●

●

●●●

●

●●●●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●●●●●●●

●

●
●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●

●●●●

●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●●●●●●●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●●
●●

●

●

●
●
●
●

●

●

●●●●●●

●

●

●

●
●

●

●

●

●
●
●
●●●
●

●

●

●

●

●●●●●●●●●

●
●

●

●

●

●

●

●
●●
●

●

●

●●●●●●

●●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●●
●
●
●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●●●
●●●●●●●●

●

●

●

●

●
●
●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●
●

●●
●

●
●●
●●

●

●●

●●

●

●

●
●
●●
●

●

●

●

●

●●
●
●
●

●
●●

●

●
●

●●

●

●
●
●
●
●
●●
●
●

●
●●
●

●

●
●

●
●●●
●●●
●●
●●●●●●●●●

●

●

●

●●

●
●
●●●●
●●●●

●
●

●●

●
●●●●

●●
●●●●●
●●●
●
●

●

●
●●●●●●

●

●

●

●

●

●●

●
●
●
●

●

●●●●
●
●
●●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●
●●

●

●
●

●
●

●
●
●●●

●

●●

●

●●●●●

●

●

●
●
●●
●●

●●

●

●●●
●

●

●●●
●
●●●●
●

●●●●●

●

●

●

●●●

●

●

●
●●

●

●●●●
●●

●●
●
●

●
●
●

●
●

●

●

●
●
●

●
●
●

●

●
●

●●

●

●

●

●

●

●●
●
●
●

●●
●●●
●●
●●

●

●

●

●

●●●●
●
●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●
●●

●●
●
●●
●

●
●

●

●
●
●

●

●●●●
●
●●●
●●

●
●
●

●
●
●●●

●

●

●●

●

●●
●●

●

●

●●

●

●●●

●

●
●
●

●
●
●● ●

●●●●
●●●●●●●●●●●●
●●●●

●
●

●●●●●

●

●

●
●●

●

●

●●

●
●
●●
●●

●
●
●●
●●
●●●

●

●
●
●

●●
●
●

●

●

●

●

●

●●●
●
●
●●●●●●
●●●●
●
●●●●●●●

●

●
●
●
●●
●
●
●

●●
●●

●
●
●●
●●
●
●
●●
●
●

●●●●

●
●●
●●●

●
●

●●

●●
●

●●●●●●●
●
●●
●●●
●●●●
●●
●
●
●●
●

●●
●
●

●

●●●●●
●

●
●●●
●
●●
●●●●●●
●

●
●●●

●
●

●●●●●●

●

●●●
●

●
●●●
●

●●

●●●●●●●
●
●
●

●

●

●
●●●●
●
●
●●
●●●●●
●
●●●
●
●●
●●

●
●
●
●●●
●
●●
●●
●●●●●
●

●
●●●
●

●●

●●●
●

●

●
●

●
●●

●●●

●
●

●●●

●

●
●
●●
●

●

●

●●
●
●

●

●

●●●●●

●

●●

●

●
●●●●

●

●
●●●●
●●

●●

●●●●●

●

●●●
●
●
●
●
●
●●

●
●●

●●

●

●
●
●
●
●
●

●

●

●●●
●●
●
●
●
●●
●●●

●●●
●●●●●
●

●

●
●●

●●
●●●

●
●

●
●●●
●

●

●
●
●●●●
●
●
●
●

●
●

●

●
●
●

●

●
●●

●
●
●●●

●

●

●●

●
●●

●

●
●●
●

●
●
●
●●●●
●

●
●
●
●
●●
●●
●
●●●●
●

●
●●
●●●

●

●
●
●
●
●●●●

●

●
●

●

●●

●

●●

●●
●●●

●

●
●●

●

●●●●●
●●
●
●

●

●
●●
●
●

●

●

●

●●

●
●
●●●
●

●

●

●

●

●

●

●

●●●

●
●
●
●

●

●●

●

●

●
●●●●●●
●

●

●
●●
●●
●
●●
●
●

●

●

●●

●●●
●
●●●●
●●●●●●

●●

●●●●●
●

●

●●●●●●
●
●●
●
●

●

●●●●●
●●
●
●
●●
●●●

●

●

●
●
●
●

●●

●

●

●●
●●
●

●

●●

●

●●●
●●
●●●
●●●●
●
●
●
●
●
●
●

●
●

●
●
●●

●●

●

●

●●
●●
●
●●●
●
●
●
●●
●●

●
●●
●

●
●

●
●
●
●●
●
●●●●●●
●●
●●
●

●●

●●

●
●●

●

●●●
●

●●●
●

●

●
●●
●●

●

●
●●
●
●●●●
●

●

●

●

●

●
●●

●●

●●●●●
●
●
●
●●
●
●
●
●●●
●●
●

●

●

●
●

●

●
●●
●
●●

●
●●
●●
●●
●
●

●●
●●
●●

●
●

●●
●
●●

●
●●

●
●●
●●●

●
●●●
●
●●●●●
●●●
●●●
●

●
●●

●
●
●
●●●

●●●●

●●●●●●●●●●
●●●
●
●

●

●●●●
●●●
●●
●●●●
●●●●

●
●
●

●●●●
●
●●

●

●

●●
●●●
●●●
●●●●

●
●

●●●
●●
●●●●
●●●

●

●
●

●

●
●

●●
●●●
●●●
●
●
●●●●

●

●●
●
●
●●●
●
●
●●●●●

●

●●●●●●●●●
●

●

●●●

●
●●●
●
●●●●

●

●●●●●
●
●
●●●●
●

●

●

●
●
●●●●

●
●
●
●
●

●

●

●●●
●
●●

●
●
●
●●
●
●
●●●
●●
●
●●
●
●●●●●●
●
●
●

●

●●

●
●●

●

●●●
●
●

●

●●●
●●

●

●●●●●●●●●●
●
●●
●●●●●
●●●●
●

●
●

●●●●
●●
●●●
●●
●

●●●
●
●●●●●●●
●
●

●

●
●
●●

●
●
●●

●

●●

●
●
●
●●●
●●●
●
●
●●
●●●
●●
●

●

●
●●
●

●
●

●●●

●

●●

●●
●●
●●
●

●

●

●

●
●●●
●●
●

●

●●●●

●

●

●

●
●

●
●●●
●
●●●●

●

●●●●

●
●●
●
●
●

●

●●●

●

●●●
●●●●●●
●
●●
●

●●●
●●●
●●●●

●●
●●

●
●●●●
●
●
●●
●

●●
●
●●●●●●●●
●

●

●
●

●
●
●

●

●

●
●●●

●

●●●●

●

●●●
●

●

●●
●
●
●
●

●●●

●
●●●●
●
●●●
●●●
●
●

●

●●
●
●

●

●●●●

●
●

●
●
●
●●●

●

●
●
●
●
●

●
●

●
●

●

●
●
●
●●
●●●●

●
●

●●
●
●
●●

●
●
●●●●●●●
●
●
●
●
●

●

●
●●●

●
●
●

●
●

●●●●

●

●●

●

●

●

●●●
●
●●●
●
●●
●
●●
●
●●●
●●●
●●
●●

●●

●

●
●●●●●●

●

●●●●

●
●●
●●●●

●
●●●●●
●●

●●
●●●
●
●
●●
●
●
●●●●
●

●

●
●

●
●●

●●
●

●●
●●●
●●●●●●●

●

●●
●
●
●
●●●
●

●

●●

●

●
●●●

●

●●
●
●●
●
●●
●

●
●●
●●●●
●

●

●
●●
●

●

●●
●●

●

●●●●●
●●●
●●
●●●●●
●

●●
●

●
●
●

●
●
●●●●

●

●

●
●●

●

●

●

●●
●

●
●
●
●●

●
●

●
●●●
●
●

●

●
●
●
●

●●
●
●●●●
●
●
●●●
●
●●●●●
●
●

●

●●●
●

●

●
●
●●

●●

●

●
●

●
●

●

●
●
●
●

●

●

●

●●
●
●

●
●●●
●

●

●●
●●
●
●
●●
●●
●
●
●●●●●●●

●

●●●●●
●
●●
●

●
●
●
●●●●
●

●

●

●

●●●
●●

●

●
●●●●
●●●●
●
●
●●●
●●
●●●
●
●●●●●
●●
●
●
●●●
●
●●
●●
●●●

●
●
●●
●
●
●●
●●

●

●

●

●●

●●

●

●

●

●●
●

●

●●
●
●
●
●●●●
●●●●

●

●

●●●

●

●

●
●●
●

●

●●

●

●
●●●●●●●
●
●
●

●●

●
●●●●●
●
●●●●●

●

●

●

●
●
●
●
●
●

●●●●●●●
●
●●
●●
●
●●
●
●
●
●
●
●

●
●
●

●
●●
●

●

●●
●●●●●

●
●
●●●
●
●●●
●

●

●

●

●●●

●

●●●●●●

●

●
●

●
●

●

●

●
●
●
●
●
●●●●
●

●

●
●●●
●
●●
●
●●●●●
●●●
●●●

●

●
●

●
●

●●●
●●

●

●
●●
●●●●●
●
●●●●●●
●
●
●
●●●●
●
●●●
●

●
●
●●
●
●●●●●●●
●
●
●

●●
●
●●

●

●

●●●
●

●

●
●
●●●●
●

●
●
●●●●
●●●●●●
●
●●●●●●●
●

●●●
●

●

●●

●

●

●●
●
●●●
●

●●●●●●●●
●
●●●
●●
●●
●

●
●●
●
●●
●

●

●

●
●

●
●●

●
●●
●

●

●

●

●
●

●●●

●

●
●●
●●

●
●●●●●
●●●●●
●●
●●

●
●●

●●●
●●●
●
●●

●
●
●
●●●●
●●●●
●
●
●
●
●
●●

●
●
●
●●
●●●
●
●●
●●
●
●●
●●
●●
●●●

●
●

●

●●●
●
●●●●
●●
●
●
●

●

●

●
●
●●

●

●●●●●●

●

●●●●●
●●
●

●●●
●
●●●

●

●●

●

●●
●●
●●
●●●●●●●●

●

●●

●
●●●●
●

●●●●
●

●●●

●

●

●

●●●●●

●

●●●●
●●
●
●
●
●●
●●
●
●

●

●
●
●●
●
●●●
●
●

●●
●●
●●●●●●●●●●●

●
●●●

●

●●

●

●
●
●
●
●●●

●

●

●●

●

●
●●
●●
●●
●

●
●●
●
●
●
●
●

●

●

●
●●●●●●●●●●
●●
●●●●
●
●

●

●●●●
●●
●●●●●●
●●●●●

●
●
●
●

●●●●●●●●●●●●●●●●●
●
●
●
●

●●

●●

●

●
●●●●●

●
●●

●
●●

●

●●●●●●

●

●●●
●
●●
●●●●●
●
●
●

●

●●
●●

●

●●
●●●
●●
●
●●
●●

●●
●
●
●●

●

●●●●●●
●

●

●

●

●
●
●●●
●
●
●●
●●
●●●
●
●●●●
●
●●

●
●
●●
●
●
●
●●●

●
●

●
●
●●

●

●
●
●●●
●●
●
●

●

●

●
●

●●●●

●●

●

●
●●
●●●●●
●

●
●
●
●●●●

●●

●
●
●

●

●●●●●

●

●
●●●
●
●●
●●●●●
●

●
●
●●
●

●

●●
●
●●●●

●

●●●
●●
●●●●●
●

●

●

●

●

●

●

●

●●
●
●●

●

●
●
●

●●●
●
●●●●●
●●
●●
●●●●

●

●●●●●●●

●

●●

●

●●

●
●●

●

●●
●
●●●●●
●
●
●●
●
●●●
●
●

●

●

●●
●
●
●●●●
●●●●
●
●●

●

●

●

●●●●●
●●

●

●●
●
●
●
●

●

●
●
●●●●●●
●●

●●
●●●●
●●●●●●●●
●
●
●

●

●

●●
●●●

●

●
●●

●

●

●●●●
●●
●

●

●

●
●●

●

●
●
●●●●●●●●●●●

●

●●●

●
●

●
●

●
●

●

●

●
●

●
●●●
●
●●
●
●●●●●
●●●

●

●●●
●
●

●

●
●●
●

●●
●●

A
RR
I5
T_
1

A
RR
I5
T_
2

BL
EN
O
T_
4

BL
EN
O
T_
5

CO
RD
5T
_4

CO
RD
5T
_5

PO
RC
2T
_3

PO
RC
2T
_4

G
RA
V
5T
_2

G
RA
V
5T
_3

SS
EA
2T
_1

SS
EA
2T
_2

CA
TT
ET
_1

CA
TT
ET
_2

FL
A
M
AT
_2

FL
A
M
AT
_3

Re
vi
n

Re
vi
n2

Ro
m
an
ch
e

Ro
m
an
ch
e2 A
in

A
in
2

−400

−300

−200

−100

0

100

M
W

Figure 4.20: Boxplots of the modifications to the predicted adjustments caused
by the post-processing stage.

Draft: September 15, 2010

Figure 4.22: Box plots of the modifications to the predicted adjustments caused
by the post-processing stage.

resents the distribution of the post-processed adjustment minus the predicted
adjustment at any time step. Nearly all boxes shrink to a 0 variation range, and
the large modifications are indeed outliers (there are 500 * 84 = 42000 points
to represent for each unit). The distributions are symmetrical for the thermal
units and the main corrections are indeed made to prevent the generation curve
from containing points in [0, Pmin] except for start-ups or shut-downs. On the
other hand the distributions are asymmetric for the valleys. This stresses the
fact that the predicted demand is sometimes superior to what can actually be
generated.

Satisfaction of the load-generation balance. Similarly to Figure 4.17, Fig-
ure 4.23 illustrates the distribution of the mismatch between generation and
demand for the post-processed adjustments. One can observe that over all the
scenarios the post-processing only slightly increases the energy slack. The me-
dian energy slack is about 2.59 GWh after post-processing (2.43 GWh before
the post-processing).

4.4 Predicting power generation levels 101

94 4 Experiments

to ease the comparison. One can observe that over all the scenarios the post-
processing slightly increases the energy slack. The median energy slack is about
2.59 GWh after post-processing (2.43 GWh before the post-processing).

!

!!!!

!!

!

!!

!!

!
!

!!
!
!

!

!

!!

!
!
!

!!!

!

!

!

!

!!
!
!
!
!
!!!

!

!!!
!
!

!
!

!!
!

!

!

!

!

!

!

!
!
!!

!

!!!!!!

!

!

!!

!!

!

!

!

!

!

!!

!

!!

!

!

!
!

!

!

!

!!

!

!

!
!!!!!!

!

!

!
!!

!!

!

!!

!

!

!!

!

!
!!
!!
!

!

!
!!!

!

!

!

!

!

!

!!!

!

!!!
!
!!!!

!

!!!

!

!!!
!

!

!

!

!

!
!!
!

!

!!

!

!

!

!
!!!
!
!

!

!!!!!!!

!

!!

!

!

!

!

!

!
!!!

!

!

!

!

!

!!!

!

!

!!

!

!

!!!!

!

!

!

!

!!

!

!

!

!

!

!!

!

!!!!

!!!

!

!

!

!

!!
!
!!

!!

!

!!

!

!

!

!!

!

!
!!

!

!
!
!

!

!!
!

!

!!!

!

!

!!!

!

!

!

!
!

!

!!

!

!

!!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!!
!

!

!

!

!!

!!!

!

!

!

!

!

!

!!!!

!

!

!

!!

!
!!

!!

!!

!

!

!!

!

!!!
!!
!

!

!

!

!

!!

!

!

!

!

!

!!!
!!
!
!
!

!

!

!

!

!
!
!
!!

!

!

!

!

!

!!

!!

!

!

!!

!

!

!

!

!

!

!

!!!

!
!
!

!

!

!

!

!

!

!
!

!

!!

!!

!

!

!

!

!!
!

!

!

!!!

!

!!
!
!
!

!

!
!!
!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!!!!
!!!!

!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!

!!

!!
!
!!!!!
!

!

!

!
!!!

!

!
!!
!
!

!

!

!

!!

!

!

!

!

!

!
!

!!
!
!!!

!

!!!!!

!

!
!
!!
!

!

!
!

!

!

!!

!

!!!!!

!
!

!

!
!!!

!

!!!
!

!

!

!

!!

!!

!

!

!

!!!
!

!

!

!

!!
!!

!!

!!!!!

!

!!

!

!

!
!

!!!

!

!
!
!!

!

!

!!

!

!

!

!
!
!

!

!

!
!!!!!!!!

!

!

!

!

!

!

!!!

!
!

!

!

!!

!!

!!

!

!

!

!

!
!
!!!!

!

!

!
!
!!

!
!
!!!!

!

!!
!

!

!
!
!

!

!

!

!!

!

!!

!

!

!

!

!!

!

!

!

!

!!!!

!
!

!

!
!!

!
!

!

!!

!!

!

!

!

!

!!
!

!

!
!

!

!

!

!

!

!

!!

!

!

!!!!!

!

!
!!

!

!

!!!!

!

!!

!

!

!!!!!

!

!

!!!

!

!!!!!!

!!!!

!!!

!

!
!!
!!
!

!

!

!

!
!

!

!

!!
!

!

!

!

!

!
!

!

!!

!!
!
!

!

!

!!

!

!

!

!!

!!!!!

!

!

!

!
!

!

!

!

!!!

!

!
!!!

!

!

!

!

!

!

!
!

!
!
!!

!

!!

!!
!!!!!
!
!

!

!

!

!
!
!

!

!

!

!

!

!

!

!!

!

!

!
!!!

!

!

!

!!

!

!

!!
!

!

!

!!!
!!!

!

!
!

!
!

!!!

!!!
!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!!!!

!
!

!

!

!!
!

!!

!

!!
!

!

!

!

!!

!!

!!!!

!

!!!

!

!!

!!!

!

!

!

!

!

!

!

!

!!!!!

!

!

!

!

!
!!!!

!!

!!

!

!

!

!

!!

!!!!

!

!!!

!

!
!

!

!
!!!!

!

!
!!!!

!

!

!

!!!
!
!

!

12 17 22 27 32 37 42 47

!1
0

1
2

Predicted adjustments

G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
50

10
0

15
0

!

!

!!!

!!

!

!!

!

!
!

!!!
!

!

!

!!

!
!
!

!!!

!

!

!
!!
!!
!
!!
!

!!

!!!!
!

!
!

!!
!

!

!

!

!

!

!

!
!!
!

!

!!
!
!

!

!

!!

!!

!

!
!

!

!

!!

!

!!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!!
!!!!!!

!

!

!

!

!
!!

!

!

!!
!

!

!

!!

!

!

!!
!!
!

!

!
!!!

!

!

!

!

!

!

!!!

!

!!!
!
!!!!

!

!!!

!

!!!
!
!

!

!
!
!!

!

!!

!

!

!!
!!
!
!

!

!!!!

!

!!

!

!

!

!

!

!
!!
!!

!

!

!

!!

!!!!

!

!

!!

!

!

!!!!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!!

!

!!!

!!
!

!

!

!

!

!!!
!
!!

!!

!

!

!

!

!

!!

!

!
!!

!

!!!!

!

!

!

!
!

!

!!!

!

!

!

!!!

!

!

!

!
!

!

!!

!

!

!!!

!!
!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!
!

!!!

!

!

!

!

!

!

!!!!

!

!

!

!!

!
!!

!!

!!

!

!

!

!!

!

!
!!!!

!

!

!!

!

!

!

!

!!!
!!!

!

!

!

!

!
!!!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!
!

!

!!!

!

!

!

!!!

!!!

!

!!
!
!

!

!
!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!!
!!!!

!!

!

!

!

!

!

!

!!!

!

!

!

!!

!

!
!

!
!

!

!

!

!!

!!
!!!
!!
!

!
!

!
!

!

!
!!
!
!

!

!

!

!!

!

!

!

!

!

!!!

!

!!

!

!!!!

!

!
!
!
!

!!!

!

!

!

!!!!

!

!!!!!

!!

!

!
!
!!

!

!!!

!

!

!

!

!!

!!

!

!

!

!!
!

!

!!

!

!

!!!
!!

!!

!!
!
!!!

!

!!

!

!

!
!

!!

!

!
!
!!

!

!

!
!

!

!

!
!
!
!

!

!

!
!!!!!!!

!

!

!

!

!

!

!!!

!
!
!

!

!

!!

!!

!

!

!
!
!!!

!

!

!
!
!!

!
!!
!!!

!

!
!
!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!!!

!

!

!

!

!!!

!!
!

!
!!!

!

!

!

!

!

!

!

!!!

!

!
!

!

!

!
!

!

!

!!
!
!

!

!

!!!!

!

!
!!!

!

!
!!!!
!!

!

!

!!!

!

!

!!

!

!

!

!!!!!!

!!!!

!!

!

!

!

!!
!!

!

!

!

!

!
!!

!

!

!
!
!
!

!

!

!

!

!!

!

!!

!!
!

!

!

!

!!

!

!

!

!!
!!!!
!
!

!

!!!!

!

!

!

!!

!

!

!
!!

!

!

!!
!!!!!
!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!!

!

!

!
!!

!

!

!

!
!

!

!

!
!
!
!

!!!
!

!

!
!

!
!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!!

!

!!
!

!

!

!

!

!!

!
!

!!!!

!

!!!
!!

!!!
!

!

!

!

!

!

!!!!
!
!!

!!
!!!

!!

!!

!

!

!!
!

!!

!

!!!
!

!

!!!

!

!
!!!

!

!

!

!!
!
!

!

12 17 22 27 32 37 42 47

!1
0

1
2

Post!processed adjustments
G
W

GWh

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
50

10
0

15
0

Figure 4.21: Analysis of the demand satisfaction error for three policies. Left
column: time evolution of the distribution of the error as boxplots. Right
column: histogram of the energy slack (breaks are distant of 1 GWh). The red
vertical line represents the median of the distribution.

Illustration on one scenario. Figure 4.22 shows the aggregated generation
curves obtained by summing the contributions of all the generation units for
the three policies as well as the residuals with respect to the updated demand
forecast. In this scenario the updated demand is lower than the demand curve
used to compute the reference schedule, and there is no unit outage. In accor-
dance with Figure 4.15, the residuals of the approximated recourse are much
smaller than those of the reference schedule.

Figure 4.23 shows the adjustment made to the thermal units. Almost no
modification is done to the nuclear units (the lower eight units). On the other
hand there are some interesting phenomena to notice about the classical ther-
mal units. Reading the figure from left to right and top to bottom, the first

Draft: September 15, 2010

Figure 4.23: Analysis of the demand satisfaction error for the post-processed
adjustments. This figure must be compared with the last row of Figure 4.17.

Duration. Figure 4.24 illustrates the time required for post-processing the
predicted adjustments. The median post-processing time is about 22 seconds,
and is, except for two scenarios, always much smaller than the time required
to compute the optimal adjustments whose median time is about 600 seconds.

Post−processing time

F
re

qu
en

cy

0 20 40 60 80 10
0

12
0

0

20

40

60

80

100

120

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

0

20

40

60

80

100

120

Optimization time

P
os

t−
pr

oc
es

si
ng

 ti
m

e

Figure 4.24: Left: Histogram of post-processing time. Right: Scatter plot of the
post-processing time against the time required to compute the quasi-optimal
adjustments. The dotted line has unit slope and intercepts the origin.

102 4 Experiments

Illustration on one scenario. In each of the Figures 4.25, 4.26 and 4.27 the
blue continuous curve is the post-processed version of the dotted blue curve.
The dotted blue curve itself corresponds to the predicted adjustment in Fig-
ures 4.18, 4.19 and 4.20. Figure 4.25 shows the small degradation in terms of
demand satisfaction.

15 20 25 30 35 40 45

9
10

12
14

G
W

15 20 25 30 35 40 45

−
1.

5
−

0.
5

0.
5

1.
5

G
W

Figure 4.25: Top: impact of the post-processing on the satisfaction of the
updated demand forecast. Black: optimally adjusted schedule. Dashed blue:
predicted recourse. Blue: post-processed predicted recourse. Bottom: residuals
with respect to the updated forecast.

Figure 4.26 illustrates the modification made to the predicted adjustments
of the thermal units. Units 1 and 2 are shut off as in the quasi-optimal adjust-
ment, and the shutdown of unit 8 is slightly modified. The other units are not
impacted.

Figure 4.27 illustrates for each valley the achievable generation with respect
to the predicted demand. A discrepancy between generation and demand is ob-
served in the valleys of the first and third rows. In the third row one can observe
that the generated power is too high from time steps 30 to 35, preventing the
peak demand to be satisfied.

4.4 Predicting power generation levels 103

10 20 30 40 50

0
20

40
60

80
10

0

10 20 30 40 50

0
20

40
60

80
10

0

10 20 30 40 50

0
50

10
0

15
0

20
0

10 20 30 40 50

0
50

10
0

15
0

20
0

10 20 30 40 50

0
10

0
20

0
30

0
40

0
50

0

10 20 30 40 50

0
10

0
20

0
30

0
40

0
50

0

10 20 30 40 50

0
10

0
30

0
50

0

10 20 30 40 50

0
10

0
30

0
50

0

10 20 30 40 50

0
20

0
40

0
60

0
80

0

10 20 30 40 50

0
20

0
40

0
60

0
80

0

10 20 30 40 50

0
20

0
40

0
60

0
80

0

10 20 30 40 50

0
20

0
40

0
60

0
80

0

10 20 30 40 50

80
0

12
00

16
00

10 20 30 40 50

80
0

12
00

16
00

10 20 30 40 50

0
20

0
60

0
10

00

10 20 30 40 50

0
20

0
60

0
10

00

Figure 4.26: Illustration of the adjustments of the thermal units. Each graph
shows the optimal adjustment (black), the predicted adjustment (blue) and the
post-processed predicted adjustment (dashed blue) of the corresponding unit.
The units are ordered from left to right and from top to bottom according to
the order of Table 4.1a. The Y-axis is indexed in MW.

104 4 Experiments

10 20 30 40 50

−
40

0
−

20
0

0
20

0
40

0

10 20 30 40 50
−

40
0

−
20

0
0

20
0

40
0

10 20 30 40 50

−
50

0
0

50
0

10
00

15
00

10 20 30 40 50

−
50

0
0

50
0

10
00

15
00

10 20 30 40 50

50
10

0
15

0
20

0

10 20 30 40 50

50
10

0
15

0
20

0

Figure 4.27: Illustration of the adjustments valley by valley. Each graph shows
the optimal adjustment (black), the predicted adjustment (blue) and the post-
processed predicted adjustment (dashed blue) of the corresponding valley. From
top to bottom, each row represents the valleys of type (a), (b) and (c) (cf.
Figure 4.2). The Y-axis is indexed in MW.

4.4 Predicting power generation levels 105

4.4.4 Overall adjustment costs

Finally we have analyzed the optimality in terms of generation costs of the
schedules computed by the recourse strategies approximated with the Extra-
Trees and after the post-processing stage. The previous analysis shows that the
main source of additional cost is the non-satisfaction of the demand or of the
ancillary reserve requirements.

Figure 4.28 shows the results obtained on the 500 scenarios. Each point
refers to a scenario of deviations combining the loss of a generation unit before
6 AM and a deviation of the load curve from its forecast. Over the horizon-
tal axis these scenarios are sorted according to the total cost associated to
them if perfect (full) knowledge of the scenario is exploited to re-optimize the
generation plan; over the vertical axis they are sorted according to the actual
incurred cost depending on the adjustment strategy. The dotted vertical line
which reflects the cost of the reference schedule (about 4.1×106) partitions the
horizontal axis in the scenarios whose realized and updated demand are on av-
erage lower than the reference demand (left) and scenarios whose realized and
updated demand are on average higher than the reference demand (right). For
each scenario, three different adjustments have been evaluated, corresponding
to three different points at the same horizontal coordinate:

• the first strategy consists in applying no recourse action at all (the cor-
responding points are depicted using red + symbols). In this case the

2.0e+06 4.0e+06 6.0e+06 8.0e+06 1.0e+07 1.2e+07 1.4e+07 1.6e+07

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

Cost of the quasi−optimal adjustment

C
os

t

●

Adjustment strategy

Reference schedule

Quasi−optimal adjustment

Figure 4.28: Scatter plots of the schedule cost during the recourse period vs.
the cost of the planning quasi-optimally adjusted. Symbol size is an increasing
affine function of the lost capacity consecutive to a unit outage.

106 4 Experiments

loss of the generation unit and the deviation of the load are compen-
sated by purchasing rather expensive reserves. Their price is modeled by
a piecewise linear and convex function, hence the ’V’ shape centered on
the cost of the reference schedule and spanning from 2× 106 to 6× 106.
The right hand slope decrease from 6× 106 results from the fact that the
corresponding cost of the optimal strategy increases accordingly since it
is unable to satisfy the demand (cf. the outliers of the ’Demand’ box in
Figure 4.10). This strategy constitutes the worst case behavior;

• the second strategy (represented by black • symbols) corresponds to the
perfect information case. In this case the points are located on the line
y = x; their cost on the vertical axis represent a lower bound for all
possible recourse strategies;

• the last strategy is the one built using the proposed procedure described
in Table 3.1 (it is represented by blue × symbols).

We note that our approximated schedules yield costs which are often much
lower than the day-ahead schedule applied without modification and quite close
to those assuming perfect knowledge. Furthermore when considering the range
spanned by the cost of the quasi-optimal adjustment, one can observe that the
difference of cost with respect to the quasi optimal adjustment is almost con-
stant. Thus although the dataset contains a few extreme scenarios, they do not
seem to impact the overall performance. Figure 4.29 is another representation
of the information contained in the Figure 4.28. It is a cumulative histogram
of the additional cost induced by the strategies compared to the cost of the
schedules deterministically optimized knowing a perfect forecast of the system
conditions, i.e. the black points of the top subfigure. The red curve corresponds
to the red + symbols, while the blue curve corresponds to the blue × symbols.

0.0e+00 5.0e+06 1.0e+07 1.5e+07

0
10

0
20

0
30

0
40

0
50

0

Additional cost w.r.t. quasi−optimal adjustment

N
um

be
r

of
 s

ce
na

rio
s

Adjustment strategy
Reference schedule

Figure 4.29: Cumulative histogram of the additional cost compared to the quasi-
optimally adjusted schedules.

4.4 Predicting power generation levels 107

Reduction of the learning set size. We repeat the same experiment (learn-
ing, post-processing, evaluation) assuming less scenarios are available to learn
the recourse strategy, in order to have some insight on the sensitivity of the
overall performance of the proposed approach in this respect. We still have
500 scenarios, but when performing the five-fold cross-validation we randomly
sub-sample the four folds devoted to learning to keep only 50% or 10% of the
available data (LS). Using 50% of the dataset shifts the full learning set curve
to the right of an amount of 105, while with 10% of the data set only the bot-
tom part of the curve is shifted of 7 × 105 to the right, and the top part (the
last 200 scenarios) is even more flattened.

0.0e+00 5.0e+06 1.0e+07 1.5e+07

0
10

0
20

0
30

0
40

0
50

0

Additional cost w.r.t. quasi−optimal adjustment

N
um

be
r

of
 s

ce
na

rio
s

Adjustment strategy, 100 % of LS
Adjustment strategy, 50 % of LS
Adjustment strategy, 10 % of LS
Reference schedule

Figure 4.30: Cumulative histogram of the additional cost compared to the quasi-
optimally adjusted schedules. Effect of the reduction of the learning set size.

No updated demand curve. As mentioned in Section 3.3, the re-optimization
of the perturbed scenarios yields a dataset of generation adjustments which are
optimistically biased because they assume perfect information about the be-
havior of the system at subsequent time steps. To decrease the over-fitting of
the sample of perturbed scenarios, we propose to suppose that the updated
demand forecast is unavailable when the recourse opportunity occurs, and thus
to discard this information from the inputs of the supervised learning formula-
tion. Doing so, we can enforce the projection of the over-fitted schedules on a
set of non-anticipative decision strategies which are only function of the infor-
mation available at time tr. We thus end up this section by repeating the same
experiment using all the available dataset for learning, but suppose that the
updated demand forecast is unavailable when the recourse opportunity occurs.

This formulation yields the dotted blue curve of Figure 4.31, which is shifted
to the right of about 9 × 105 with respect to the continuous curve. This gap
reflects the value of knowing the updated forecast in the present setting, since
we suppose that the realization will be exactly equal to the updated forecast.
Contrary to the experiment above where we use only 10% of the dataset for

108 4 Experiments

learning, the top part of the curve is closer to the continuous one. This can be
explained by the fact that scenarios leading to a high additional adjustment
cost with respect to the quasi-optimal recourse correspond to the scenarios
containing a unit outage. Clearly when reducing the dataset to 10% of its
content one loses a lot of information about the adjustment consecutive to
a unit outage, while when reducing the information about the demand this
information is obviously still available.

0.0e+00 5.0e+06 1.0e+07 1.5e+07

0
10

0
20

0
30

0
40

0
50

0

Additional cost w.r.t. quasi−optimal adjustment

N
um

be
r

of
 s

ce
na

rio
s

Adjustment strategy with updated demand forecast
Adjustment strategy without updated demand forecast
Reference schedule

Figure 4.31: Cumulative histogram of the additional cost compared to the quasi-
optimally adjusted schedules. Effect of the knowledge or of the ignorance of an
updated demand forecast.

4.5 Predicting the subset of thermal generation units to
adjust

In this section we analyze an alternative formulation of the adjustment strat-
egy learning problem. In particular we analyze the formulation exposed in
Section 3.4.2.1 that allows to instantiate a simpler version of the generation
rescheduling problem faced in the intra-day context.

We use the simulations of Section 4.3.2 where a limit on the number of
adjustments per recourse was imposed. Our aim is to decide which units must
be adjusted using the same input information than in Section 4.4. Instead of a
multivariate real valued time-series, the output of the learning problem is thus
a vector of binary values containing at most K non-zeros. From the prediction
of these values we instantiate and solve a downsized instance of Formulation 5
to obtain the adjusted scheduling decisions.

As we solve explicitly an instance of Formulation 5, an updated demand
forecast is mandatory to specify the problem properly. The goal of this section
is to analyze how the resulting schedule satisfies the updated demand and how
it compares in terms of computation time with respect to the simulation phase.

4.5 Predicting the subset of thermal generation units to adjust 109

As illustrated in Section 4.3.2, the proven optimality gap of the schedules
that we will use for learning are far from the tolerated gap because the allowed
computation time was exhausted for many scenarios. Thus, in opposition to
the experiment of Section 4.4, the dataset now contains samples which cannot
be qualified as “quasi-optimal”. We will analyze how the learned adjustment
strategy is impacted.

Figure 4.32 illustrates how the selected subset of K units fluctuates among
the scenarios. A black dot indicates the adjustment of the corresponding unit.
An explicit analysis shows that on 900 scenarios there are 213 different patterns.
The most common pattern, which occurs for about 150 scenarios, consists in
adjusting only the hydroelectric units, which are in a sense the most flexible.
As there are more than 150 scenarios containing no unit outage, the demand
fluctuation is however sufficient to cause the adjustment of the thermal units
instead of the valleys. We can identify some interesting behaviors. For example,
when PORC2T3 fails, the unit PORC2T4, which is identical but a bit more
expensive, is started up to compensate. Note that units ARRI5T1, ARRI5T2
and PORC2T4 are shut off in the reference schedule shown on Figure 4.4, thus
the adjustment of any of these units involves a start-up.

4.5.1 Solving the learning problem

We again face a learning problem where the output has some known structural
properties that are not explicitly taken into account by the learning algorithm.
However this time they are much easier to characterize, since the only constraint
is that there may be no more than K non-zero values in each output.

We opted for a regression setting where we consider the 900 scenarios-
adjustment pairs of Section 4.3.2, the input-features are the same than in the
experiment of Section 4.4 (cf. Table 4.1), and the outputs are the vectors of 22
adjustment indicators. The problem is thus much smaller than in Section 4.4
since we do not consider the time dimension. The learned adjustment strategy
will predict vectors having components lying in the [0, 1] interval. We retain the
K highest values of the predicted vector as indicators of the units to adjust. We
can thus use the same regression tree induction algorithm than in Section 4.4.

Indeed since the number of possible outputs is finite we could handle this
problem as a classification problem with as many classes as there are combina-
tions of K = 6 units among 22, i.e. 74613 classes. However only 213 patterns
are represented in the dataset. But 213 classes is still a large number since we
have only 900 objects in the dataset and that some classes are much more repre-
sented than others. A solution could be to use a clustering algorithm to identify
a subset of the most representative output patterns, and then use these latter
clusters as classes. But we do not know how to select the number of clusters a
priori. To simplify, we may construct a classifier for each generation unit and
decompose this problem into 22 binary classification sub-problems. Doing so
we lose the coupling information and need to post-process the model in order to
enforce the limitation to K adjustments. However there is no clear way how to
perform this post-processing in a classification setting, except by counting the
number of positive votes for each unit and retaining the adjustment of the K

110 4 Experiments

● ● ● ● ● ●0

200

400

600

800

S
ce

na
rio

s

A
R

R
I5

T
_1

A
R

R
I5

T
_2

B
LE

N
O

T
_4

B
LE

N
O

T
_5

C
O

R
D

5T
_4

C
O

R
D

5T
_5

P
O

R
C

2T
_3

P
O

R
C

2T
_4

G
R

AV
5T

_2
G

R
AV

5T
_3

S
S

E
A

2T
_1

S
S

E
A

2T
_2

C
AT

T
E

T
_1

C
AT

T
E

T
_2

F
LA

M
AT

_2
F

LA
M

AT
_3

R
ev

in
R

ev
in

2
R

om
an

ch
e

R
om

an
ch

e2
A

in
A

in
2

● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●

Figure 4.32: Illustration of the units which were adjusted in the simulations:
one can verify that there are at most K = 6 black dot in each row. With
this value for K, there is a trade-off between adjusting hydroelectric or ther-
mal units. Nuclear units (from GRAV 5T2 to FLAMAT3) are almost never
adjusted. Among groups of units with the same operating characteristics, the
cheapest ones are the most adjusted.

4.5 Predicting the subset of thermal generation units to adjust 111

units having the highest number of positive votes. In this case it is equivalent
to work in a regression setting, where the predictions lie in the [0, 1] interval,
and to adjust the units having the K highest values. Note that in the case of a
vector of ones and zeros, minimizing the square loss is equivalent to minimizing
the number of binary errors.

The experiment is structured as in Section 4.4, i.e. we use 5-fold cross-
validation, and the parameters of the ensemble of trees are tuned by grid search
performed using an inner two-fold cross-validation procedure. We build an en-
semble of 100 trees. The best values of K and nmin are respectively 340 and
5, i.e. the same value as in the experiment of Section 4.4. We obtain the re-
sults illustrated on Figure 4.33. The intersection of the prediction with the
adjustments of Figure 4.32 is shown on Figure 4.34, and the prediction error is
illustrated on Figure 4.35. Figure 4.36 gives further insight on the repartition
of the prediction error. The number of permutations (0 if the model makes no
error, 6 if the model predicts incorrectly all the adjustments), is distributed
according to the histogram of Figure 4.36a. The median number of permuta-
tions is equal to one and there are up to four permutations in a few cases.
From Figure 4.36b, we can observe that the negative correlation coefficients
correspond to the part of the correlation matrix relating valleys to thermal
units. Permutations occur thus more often between thermal units and valleys
than between thermal units (or between valleys) of similar characteristics.

4.5.2 Solving the simplified intra-day scheduling problem

Using the predictions of the adjustment indicators obtained in Section 4.5.1,
we can now compute the precise adjustments by enforcing the selected sub-
set of generation units which are allowed to be adjusted in order to satisfy
the updated demand. The details of the post-processing step are provided in
Appendix B.3.2. The computation time limit is set to 600 seconds and the
tolerated optimality gap is set to 0.5 %.

112 4 Experiments

● ● ● ● ● ●0

200

400

600

800

S
ce

na
rio

s

A
R

R
I5

T
_1

A
R

R
I5

T
_2

B
LE

N
O

T
_4

B
LE

N
O

T
_5

C
O

R
D

5T
_4

C
O

R
D

5T
_5

P
O

R
C

2T
_3

P
O

R
C

2T
_4

G
R

AV
5T

_2
G

R
AV

5T
_3

S
S

E
A

2T
_1

S
S

E
A

2T
_2

C
AT

T
E

T
_1

C
AT

T
E

T
_2

F
LA

M
AT

_2
F

LA
M

AT
_3

R
ev

in
R

ev
in

2
R

om
an

ch
e

R
om

an
ch

e2
A

in
A

in
2

● ● ● ● ● ●

Figure 4.33: Prediction corresponding to Figure 4.32

4.5 Predicting the subset of thermal generation units to adjust 113

● ● ●0

200

400

600

800

S
ce

na
rio

s

A
R

R
I5

T
_1

A
R

R
I5

T
_2

B
LE

N
O

T
_4

B
LE

N
O

T
_5

C
O

R
D

5T
_4

C
O

R
D

5T
_5

P
O

R
C

2T
_3

P
O

R
C

2T
_4

G
R

AV
5T

_2
G

R
AV

5T
_3

S
S

E
A

2T
_1

S
S

E
A

2T
_2

C
AT

T
E

T
_1

C
AT

T
E

T
_2

F
LA

M
AT

_2
F

LA
M

AT
_3

R
ev

in
R

ev
in

2
R

om
an

ch
e

R
om

an
ch

e2
A

in
A

in
2

● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ●● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ●● ●● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ●● ● ●● ● ● ●● ●● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ●● ● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●

Figure 4.34: Intersection of the adjustments of Figure 4.32 and Figure 4.33.

114 4 Experiments

0

200

400

600

800

S
ce

na
rio

s

A
R

R
I5

T
_1

A
R

R
I5

T
_2

B
LE

N
O

T
_4

B
LE

N
O

T
_5

C
O

R
D

5T
_4

C
O

R
D

5T
_5

P
O

R
C

2T
_3

P
O

R
C

2T
_4

G
R

AV
5T

_2
G

R
AV

5T
_3

S
S

E
A

2T
_1

S
S

E
A

2T
_2

C
AT

T
E

T
_1

C
AT

T
E

T
_2

F
LA

M
AT

_2
F

LA
M

AT
_3

R
ev

in
R

ev
in

2
R

om
an

ch
e

R
om

an
ch

e2
A

in
A

in
2

Figure 4.35: Difference of the adjustments of Figure 4.32 and Figure 4.33.
Black + symbols correspond to adjustment predicted in Figure 4.32 and not
in Figure 4.33, while blue × symbols correspond to the opposite.

4.5 Predicting the subset of thermal generation units to adjust 115

F
re

qu
en

cy

0 1 2 3 4 5 6

0
100
200
300
400

(a) Histogram of the number of permutations.

−0.4

1

A
R

R
I5

T
_1

A
R

R
I5

T
_2

B
LE

N
O

T
_4

B
LE

N
O

T
_5

C
O

R
D

5T
_4

C
O

R
D

5T
_5

P
O

R
C

2T
_3

P
O

R
C

2T
_4

G
R

AV
5T

_2
G

R
AV

5T
_3

S
S

E
A

2T
_1

S
S

E
A

2T
_2

C
AT

T
E

T
_1

C
AT

T
E

T
_2

F
LA

M
AT

_2
F

LA
M

AT
_3

R
ev

in
R

ev
in

2
R

om
an

ch
e

R
om

an
ch

e2
A

in
A

in
2

Ain2
Ain

Romanche2
Romanche

Revin2
Revin

FLAMAT_3
FLAMAT_2
CATTET_2
CATTET_1
SSEA2T_2
SSEA2T_1
GRAV5T_3
GRAV5T_2
PORC2T_4
PORC2T_3
CORD5T_5
CORD5T_4
BLENOT_5
BLENOT_4
ARRI5T_2
ARRI5T_1

(b) Correlation matrix of the errors between the generation units. Blue
corresponds to positive correlation and red to negative correlation.

Figure 4.36: Analysis of the prediction error.

116 4 Experiments

Optimization time and achieved optimality gap. In Figure 4.37 we compare
the post-processing time to the time required for computing the optimal re-
courses and in Figure 4.38 the achieved optimality gap of these two alternatives.
We can observe that both characteristics are dramatically decreased when us-
ing the adjustments predicted using our approach. The median re-optimization
time drops form 600 seconds to 200 seconds and the tolerated gap of 0.5 % is
achieved for more than 850 scenarios. However the gap does not say anything

0

10
00

20
00

30
00

0

200

400

600

800

Time

N
um

be
r

of
 S

ce
na

rio
s

0

10
00

20
00

30
00

0

100

200

300

400

500

600

Optimization time

P
os

t−
pr

oc
es

si
ng

 ti
m

e

Figure 4.37: Processing time (in seconds) of our approach vs. time to reach
the quasi-optimal solution, when using our approach to predict the units that
need adjustments and re-optimizing these units only (blue) or computing the
optimal schedule with the cardinality constraint (black).

about the cost of the adjusted schedule. This is analyzed in the next para-
graph. Note that in Figure 4.37 the large increase of the black curve around
600 seconds is due to our arbitrary decision to constrain the allowed computa-
tion time to 600 seconds in the first run of the simulations. If this constraint
were released, the black curve would most probably increase more smoothly,
and the black curve of figure 4.38 would be closer to the blue curve.

Comparison of the costs. The repartition of the total costs between the dif-
ferent sources is distributed according to Figure 4.39. Compared to Figure 4.15
we see that the costs related to the non-satisfaction of the coupling constraints
are much smaller. Thus the generation now satisfies the demand in most cases.
Figure 4.40 shows the impact in term of total costs. On the top part of the
figure we can observe that, with respect to the cost of the recourses optimized
with the cardinality constraints (black dots), the cost of the post-processed
schedules (blue × symbols) are sometimes almost equal, sometimes a bit more
expensive, but more importantly also sometimes lower. This results from the

4.5 Predicting the subset of thermal generation units to adjust 117

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

300

400

500

600

700

800

900

Achieved Gap

N
um

be
r

of
 s

ce
na

rio
s

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.00

0.01

0.02

0.03

0.04

0.05

Optimization gap

P
os

t−
pr

oc
es

si
ng

 g
ap

Figure 4.38: Gap of our approach vs. Gap of the optimal solution (in %),
when using our approach to predict the units that need adjustments and re-
optimizing these units only (blue) or computing the optimal schedule with the
cardinality constraint (black).

●

●●●●●●●●●

●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●● ●● ●●● ●● ●● ●●●● ●●●●●●●●● ●●●●●●● ● ●●● ●●● ● ●●● ●●●● ● ●●●●●●● ●● ●● ●● ●● ● ●●●●

●●

●●

Thermal

Hydro

Demand

Primary

Secondary

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

Figure 4.39: Repartition of the costs of the adjusted schedules when a limitation
on the number of adjustments is imposed.

118 4 Experiments

fact that the adjusted units are properly selected and that the optimization
algorithm achieves a smaller integrality gap since the cardinality constraint is
dropped. We can evaluate the proportions of scenarios falling in these three
categories of relative cost thanks to the bottom part of Figure 4.40. Indeed
there are about 750 schedules which are less or equally costly than the adjust-
ments computed with the cardinality constraint, and only about 150 schedules
which are slightly more expensive. Finally the green curve corresponds to the
strategy consisting in adjusting exclusively the 6 hydroelectric valleys, since
they are the most frequently adjusted units according to Figure 4.32. The left
part of the latter curve is almost equivalent to the curve corresponding to the
learned strategy. However there are many scenarios for which this strategy
leads to a significant additional adjustment cost.

4.6 Summary

In this chapter we have applied the approach presented in Chapter 3 to learn a
first recourse strategy to predict the power generation levels of all the thermal
units and of all the valleys, and a second recourse strategy to predict some
adjustment indicators. We described the generation system used for both ex-
periments, the scenario generation procedure, and provided some insight on the
results of two formulations of the rescheduling problem, differing by the pres-
ence or the absence of a constraint limiting the number of adjusted units. The
inclusion of this constraint resulted in a high increase of the achieved optimally
gap and of the computation time.

For the first recourse strategy, we analyzed the prediction error unit by unit
then globally, the effect of the post-processing stage necessary to ensure the
feasibility of the adjustments, and finally the impact in terms of adjustment
costs. We also analyzed the effect of a variation of the number of scenarios
available for learning, and the effect of the unavailability of an updated demand
forecast. In terms of costs, the learned strategy is much closer to the strategy
that computes quasi-optimal adjustments of the reference schedule to satisfy
the updated forecast than from the strategy that applies the day-ahead schedule
without modification and pays the penalties due to load-generation imbalances.
In addition the learned strategy is far more efficient from a computation time
point of view than the strategy that computes quasi-optimal adjustments of
the reference schedule.

For the second recourse strategy, we used the adjustments rescheduled ac-
cording to the formulation including the constraint on the limitation on the
number of adjusted units. We analyzed the prediction error and compared the
achieved optimality gap, computation time and costs to the quasi-optimal ad-
justments. We observed a significant improvement of these three aspects using
the learned strategy.

4.6 Summary 119

5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

Cost of the quasi−optimal adjustment

C
os

t

●

Adjustment strategy

Reference schedule

Quasi−optimal adjustment

Figure 4.40: Scatter plots of the schedule cost during the recourse period vs. the
cost of the planning quasi-optimally adjusted. The conventions for the color,
the type and the size of the symbols are the same than in Figure 4.28.

−5e+06 0e+00 5e+06 1e+07

0
20

0
40

0
60

0
80

0

Additional cost w.r.t. quasi−optimal adjustment

N
um

be
r

of
 s

ce
na

rio
s

Adjustment strategy
Adjustment on hydroelectric units
Reference schedule

Figure 4.41: Cumulative histogram of the additional cost compared to the quasi-
optimally adjusted schedules. The conventions for the color of the curves are the
same than in Figure 4.29. The green curve corresponds to a strategy adjusting
exclusively the hydroelectric part of the system.

Chapter 5

Conclusion of Part I

In this chapter we draw a first set of conclusions and discuss lines of further
research related to Part I of this thesis. After a first section summarizing our
work reported in chapters 2, 3, and 4, we discuss our findings along different
topics, each time by making a critical analysis of our related results followed by
a discussion of possible directions of further research. Notice that the general
conclusions of our work are given in the last chapter of this manuscript, after
having also presented our work of Part II.

5.1 Summary

The objective of Part I of this thesis was to propose, explain, motivate and
validate an approach for supporting decision making under uncertainty in order
to manage large electric power generation systems composed of a mixture of
thermal and hydroelectric power plants of various types. Our approach uses

• Monte-Carlo simulations to generate scenarios of exogenous conditions
under which the considered power generation system should be able to
operate,

• state-of-the-art formulations of optimal control problems and their asso-
ciated solution algorithms to pre-compute optimal open-loop generation
schedules for each scenario,

• state-of-the-art machine learning methods to extract from the datasets
so generated synthetic information which may be used to enhance the
decision making process.

We have worked this out in the context of day-ahead and intra-day decision
making, by proposing a method for pre-computing recourse strategies, from the
situation anticipated during the previous day, that may be used by operators
to manage demand variations or plant outages during the next day.

In chapter 2 we have precisely stated the problem that we want to tackle and
discussed the limitations of problem solving strategies used in practice or pro-
posed in the literature in this context, either based on “deterministic”, “robust”,
or “stochastic” paradigms. From this analysis we have concluded that, although

121

122 5 Conclusion of Part I

built on solid theoretical foundations, classical optimization tools such as mixed
integer linear programming solvers still suffer from their complexity when one
wants to quickly infer solutions in real-time (e.g. for similar instances of a prob-
lem for which one has already solved one or a few instances) or when one wants
to incorporate explicitly uncertainty on problem parameters for computing ro-
bust day-ahead decisions. On the other hand, scenario-tree based multistage
stochastic programming problem instances of practical size are so complex that
they are hardly solvable in the day-ahead time frame of generation scheduling,
and even if this could be overcome, there would still remain the problem of
computing in real-time the decisions of the second (and subsequent) stage(s).
In addition, the scenario-tree based approach is so complex that it does not
lend itself easily to a non-biased evaluation on independent scenarios (cf. Sec-
tion 2.3.4).

In chapter 3 we have presented the main elements of the machine learn-
ing based approach that we propose to overcome these problems. Specifically,
we have explained how to generate exogenous disturbance scenarios, how to
compute scenario-wise adjusted generation schedules, how to apply supervised
learning to obtain an approximate recourse strategy, how to restore feasibility
of the decisions predicted by this recourse strategy in real-time, and how to
evaluate a recourse strategy and its associated feasibility restoration mecha-
nism on a set of independent scenarios. The proposed approach is intrinsically
scalable to large-scale generation management problems, and may in principle
handle many kinds of uncertainties and practical constraints beyond those that
we have considered in our work. We believe that it could also be adapted to
other contexts, such as medium-term and long-term generation management
problems.

In chapter 4, we have proposed an implementation of the proposed approach
and we have evaluated it on a realistically sized hydrothermal electric power
generation system under two different settings.

• The first setting consists in learning intra-day recourse strategies predict-
ing the detailed adjustment of all the generation units over the subsequent
time-horizon. This learning problem is rather complex since its output
space is very high-dimensional; on the other hand, it may be used for on-
line decision making by combining it with a rather direct post-processing
stage which merely aims at restoring, unit by unit, some feasibility con-
straints that would be violated by the predicted schedules.

• The second setting consists in using supervised learning in order to iden-
tify among the set of ngen available generating units the best subset - of a
priori given size K < ngen - of units to adjust. This leads to a much easier
machine learning problem, but calls for a more complex post-processing
stage, which has to compute the adjustment of the schedules of the K
best units over the remaining time horizon.

Both approaches have been compared carefully on a realistic set of simulations.
We found that both lead to promising results in terms of their ability in coping
with uncertainties in intra-day operation. In addition, we have also illustrated in

5.2 Machine learning problem formulations 123

Chapter 4 the versatility of machine learning approaches to extract information
from datasets, by studying different combinations of input and output variables,
showing its scalability to very high dimensional problems, and illustrating its
capacity to identify problem parameters that have significant impact on the
decision strategies computed (“important” features of the problem).

In the subsequent sections we discuss more in detail our conclusions and
provide directions of further research that seem the most promising at this
stage.

5.2 Machine learning problem formulations

Practically, a supervised learning problem is formulated by choosing its input
variables (features) and the target output variable that one wants to predict. In
the context of generation scheduling, the choice of the input variables concerns
only the way we want to encode the information at hand when a decision has
to be taken; on the other hand, the choice of the output variables determines
more fundamentally the kind of information predicted and hence the kind of
analysis and post-processing that is implied.

Below, we first compare the two machine learning formulations that we
have investigated and then we discuss some further work about alternative
formulations that could be interesting to investigate.

5.2.1 Comparison of the two evaluated formulations

Let us first summarize the results obtained with the formulations of Sections 4.4
and 4.5, which respectively aim at predicting the full generation re-schedule and
at identifying a subset of size K of units to adjust.

5.2.1.1 Machine learning problem complexity

Clearly the learning problem of Section 4.4 is much more complex than the one
of Section 4.5. On the same computer and using the same learning algorithm it
takes about one hour to run the 5-fold CV in the first case and about 5 minutes
in the second case. However as stated previously this is not really a limiting
factor since the Extra-trees computation may easily be parallelized.

5.2.1.2 Predictive accuracy and optimality

In terms of predictive accuracy, the error seems large with the two formulations,
since the output variables predicted by machine learning in the two formula-
tions are quite often away from the optimal adjustments that would be taken
in the case where full information would be available at the moment of recourse
decision making.

However we should rather analyze how the learned recourse strategies (com-
bined with their post-processing stage) actually influence the adjustment costs,
in other words on the incurred cost over the horizon following the recourse de-
cision step. From this point of view, we found that with the formulation of

124 5 Conclusion of Part I

Section 4.4 the decision making strategies obtained by machine learning are
indeed significantly better than the passive adjustment strategy consisting of
using the primary and secondary reserves and slack penalization only. We also
found, in the context of the formulation of Section 4.5, that the decisions pre-
dicted by machine learning where actually often better than those that could
be computed by direct optimization (assuming perfect knowledge) with a re-
stricted computing time budget.

0.0e+00 5.0e+06 1.0e+07 1.5e+07

0
10

0
20

0
30

0
40

0
50

0

Additional cost w.r.t. quasi−optimal adjustment

N
um

be
r

of
 s

ce
na

rio
s

Figure 5.1: Comparison of the adjustment costs of the two formulations.

The adjustment costs of these two machine learning formulations are com-
pared on Figure 5.1 for the common subsample of 500 scenarios used in Sec-
tion 4.4. The red curve shows, for the sake of comparison, the cost increment
with respect to a quasi-optimal adjustment without cardinality constraint when
no recourses are computed (passive strategy). The dotted blue curve shows the
cost increment incurred with the procedure of Section 4.4 while the blue dashed
one shows this information for the procedure of Section 4.5. We see that the
latter approach is significantly better in terms of optimality than the former.
In addition, we observe that on a few scenarios the procedure of Section 4.5
with cardinality constraint provides actually better schedules than the full re-
optimization without cardinality constraint.

5.2.1.3 Post-processing computing requirements

While the computing time for the dataset generation and the machine learning
application are incurred offline (say, on the day before), the inference of a pre-
diction and the post-processing needed to enforce constraints and/or determine
precise schedules has to be carried out in real-time, just before the opportunity
of recourse during the next day.

For this real-time aspect we can conclude that the approach of Section 4.4
clearly outperforms the approach of Section 4.5, since the post-processing com-

5.2 Machine learning problem formulations 125

puting time of the former is about 10 times smaller than that of the latter.
Furthermore, for the approach of Section 4.4 the post-processing lends itself to
easy parallel computation and hence can be kept constant even if the system
size is scaled up, while in the approach of Section 4.5 the complexity of post-
processing will be superlinear with the limit K on the number of adjustable
units, which shall inevitably grow with the size of the generation system (K=6
in our experiment, and typically K = 30 in the full system containing 150
generation units).

5.2.1.4 Interpretability and gaining of problem knowledge

From this point of view both approaches are essentially complementary, since
the first approach allows to find out important factors influencing the precise
generation schedules at different instants during the recourse period, while
the second one allows to find out which factors have a strong influence on the
ranking of each unit in terms of its efficiency to help during the recourse period.

5.2.2 Related work

Our experiments of Section 4.5 can be compared to experiments performed in
Ben-Abbes et al. (2010). The authors of that paper draw similar conclusions
to ours regarding speed and cost-related performance. The main differences
with our work are as follows.

• The generation system of Ben-Abbes et al. (2010) contains 27 genera-
tion units (vs. 22 in our test system), but the constraint on the maximal
number of allowed adjustments (K) is expressed using the same formu-
lation as in our experiment.

• In Ben-Abbes et al. (2010), the authors impose that the rescheduling
problem is solved to optimality when the learning samples are gener-
ated (which necessitates an average computing time of one hour for each
sample). In our experiments we used “less-optimal” learning examples,
and we observe that learned strategies are able to enhance some of the
suboptimal schedules of the training set after post-processing.

• In the work of Ben-Abbes et al. (2010), scenarios are made of historical
demand perturbations and they do not account for unit outages.

• In Ben-Abbes et al. (2010) individual classifiers are learned using a
boosting algorithm (AdaBoost, cf. Freund and Schapire (1996)) and
the paper compares the use of several types of weak learners. An inter-
esting aspect is that they also analyze the use of some so called “règles
métiers” representative of the rules that are nowadays used by human
operators to solve the intra-day rescheduling problem.

• In Ben-Abbes et al. (2010), the cardinality constraint on the maxi-
mal number of adjusted units is kept in the post-processing stage when
the number of predicted adjustments exceeds the value of K, while our

126 5 Conclusion of Part I

approach always fully identifies the K units to adjust, thus leading to a
simpler optimization problem at the post-processing stage.

5.2.3 Further work

As mentioned in Section 3.4.2 there may be interesting learning formulations
lying between the two formulations that we have considered in Sections 4.4 and
4.5. In addition there are also many ways to define the post-processing problem
solved to obtain feasible adjustments.

5.2.3.1 Alternative post-processing problem formulations

In the experiments of Section 4.4 we have applied a post-processing that does
not try to improve the demand versus generation satisfaction. We may imagine
other post-processing formulations that dispatch the slack demand between the
adjusted generation units, or which keep a coupling between the generation
units and a term penalizing the demand discrepancy in the objective function.
One could also keep only the integer part out of the post-processed adjustment
obtained according to Section 3.4.2.3, and solve a linear programming version
of Formulation 5 to satisfy the demand more accurately.

Again in the context of the experiment of Section 4.4, one could make a
different use of the predicted adjustments.

1. Instead of implementing adjustments as obtained in Section 3.4.2.3, which
necessitate anyway a post-processing stage, one can also think of gener-
ating a simplified instance of Formulation 5 by comparing the output of
the recourse strategy to the reference schedule, identifying the regions
where significant adjustment may occur, and authorize the modification
of the decision variables only in these regions. This would thus result in
an instance of Formulation 5 containing less variables and constraints.

2. One may also use the distribution of the predictions among the leaves of
the trees in addition to their precise values, and penalize differently the
modifications to the predicted schedule in the post-processing stage so as
to allow more important modifications when for example the prediction
has a higher residual variance.

5.2.3.2 Alternative machine learning problem formulations

In addition to the two formulations that we have investigated, one can imagine
many other supervised learning formulations in order to extract useful infor-
mation from the kind of datasets that we have generated. Such formulations
would be obtained by choosing appropriate input features and target output
variables. In particular, the following two alternatives seem promising.

1. Rather than learning recourse decisions for each generator, one could tar-
get the machine learning problem towards the prediction of the marginal
cost curve at the optimum (cf. Appendix C.1.1). In the spirit of La-
grangian relaxation approach, these predicted marginal costs could then

5.3 Relation with two-stage stochastic programming 127

be exploited to decouple the computations of the generation schedules
during the post-processing stage. Notice that this idea could be exploited
in either of the two formulations that we have studied in this thesis.

2. Another interesting possibility would be to use supervised learning to
predict the overall adjustment cost for any scenario, based on features
describing the scenario. A learned model which would be sufficiently ac-
curate in this respect could then be exploited in various ways in order to
speed-up Monte-Carlo simulations used in order to compare alternative
reference schedules, or to compute simply a good estimate of the expected
adjustment costs for the next day.

Anticipating on Part II of this thesis, let us already mention here that it
is possible to extend the supervised learning framework in order to exploit
so-called censored datasets where rather than having the exact value of the
optimal cost for each scenario, one is given only (upper and/or lower) bounds
on these costs. In our context, this would thus allow one to exploit datasets
generated by using problem relaxations (lower bounds), or by halting the op-
timization procedure as soon as a given computing time budget is exhausted
(upper bounds). This possibility clearly opens the way towards many different
possible tradeoffs for combining machine learning and optimization.

5.3 Relation with two-stage stochastic programming

As exposed in Chapter 2, the two-stage scenario-based stochastic program-
ming approach consists in optimizing jointly the first stage decision and the
recourses, which leads to the statement of a huge optimization problem com-
prising decision variables and constraints for a set of scenarios and where the
objective is to minimize the average cost over this set of scenarios. Moreover,
non-anticipativity constraints need to be imposed in this framework in order
to enforce a single first stage decision and to enforce recourse decisions which
depend only on the information in ξ[0:tr−1].

There are similarities and differences between the two-stage stochastic pro-
gramming paradigm and our learning based approach.

• The aim of stochastic programming is mainly to optimize the first stage
decision by hedging it against possible futures. However the number of
scenarios that one is able to consider in practical formulations is strongly
limited by computational complexity, and hence even if the first stage
decisions computed by this approach are useful, the second stage decisions
that are computed by it generally do not cover sufficiently well the range
of possible future outcomes so that they are not usable in practice to
actually take decisions at the second stage without having an additional
mechanism to extrapolate them to unseen scenarios.

• On the other hand, the approach that we have exposed considers that the
first stage, or reference schedule, is computed beforehand as it is actually
the case in the practical context that we have considered (e.g. based

128 5 Conclusion of Part I

on a single scenario), and rather puts the emphasis on the computation
of a practically applicable strategy for the second stage to adjust the
reference schedule to the evolving system conditions in an optimal way.
In other words, the computations of the first and second stage decisions
are decoupled in our approach.

We believe that these two approaches are thus complementary rather than
in competition. For example, to obtain a reference schedule allowing inexpen-
sive and feasible adjustments to uncertainties, nothing prevents the use of a
stochastic or a robust programming approach for computing the first stage
and then to use it as the reference schedule of our approach. Also, the adjust-
ment problems formulated to build datasets exploited by machine learning may
themselves be replaced by an optimization over several scenarios in order to
improve the robustness of the resulting adjustment decisions. Furthermore, the
learned second stage strategies could be exploited in order to help computing
the reference schedule.

5.3.1 Related work

Some work has already been done in order to approximate the solutions of a
scenario tree based stochastic program in Defourny and Wehenkel (2007)
and Defourny et al. (2009), who propose to use supervised learning to gen-
eralize the information contained in the solutions associated to a scenario tree.
This work differs however from our work since we learn the recourse strategy
from a set of single scenario-schedules, not a “schedule tree” corresponding
to a scenario tree. Also, while in our work we have focused on the practical
context of two-stage intra-day electric power re-scheduling, the work presented
in Defourny (2010) focuses rather on the exploitation of supervised learn-
ing in order to leverage scenario-tree based multistage stochastic programming
methods.

5.3.2 Further work

One could imagine to set up an iterative scheme in order to optimize jointly
the first and second stages:

1. start with a given reference schedule (first stage) and a set of scenarios
ξ ∈ Ξ, and compute a recourse strategy (second stage) by combining
optimization with supervised learning (as in this work),

2. evaluate the combination of the current first and second stage decision
making procedures, and stop if the evaluation is sufficiently good accord-
ing to a criterion C1, else

3. modify the reference schedule to improve its hedging, given the already
computed second stage strategy,

4. compute adjustments of recourse decisions to the new reference schedule
for the scenarios ξ ∈ Ξ, and learn a new recourse strategy; go to step 2.

5.4 Robustness to outliers 129

Of course, the difficult parts are

1. to define a criterion C1 to evaluate the necessity to further improve the
first stage and adjust the second stage: we may for example define a
threshold on the maximal admissible additional cost between predicted
adjustments and quasi-optimal adjustments;

2. to modify in a productive and efficient way the reference schedule: we
could for example search in the solution pool provided by the algorithm
used to compute the original reference schedule (e.g. Branch-and-Cut);

3. and to assess the quality of the resulting policies at convergence of the
overall approach given a particular way to implement steps 1 and 2.

5.4 Robustness to outliers

In the simulation phase we have paid attention to the design of scenarios reflect-
ing as accurately as possible the disturbances impacting the system, since it
may be unnecessary to compute adjustments for implausible scenarios, or even
counterproductive depending on their influence on the learned policy. This is
particularly true in a stochastic programming setting where the first stage must
be ‘good on average’ for all scenarios. This is to be balanced by the fact that
the average is weighted and that we may devote less importance to extreme
scenarios by assigning them smaller weights. However it is hard to measure a
priori which scenarios are actually extreme and how the weights assignment
will impact the resulting decision policy.

5.4.1 Further work

Although we do not expect the learned strategy to generalize well to scenarios
completely different from those used for training, our feeling is that our learning
based approach is able to filter and/or specialize to outlying scenarios without
degrading too much the whole adjustment strategy. For example in Figure 4.28,
the adjustment cost for the rightmost scenarios remains close to the quasi-
optimal adjustments but it does not seem to decrease the performance for
scenarios closer to the reference scenario. Note that tree-based methods are
well-known for their robustness to outliers (Breiman et al., 1984). However
it would be of high interest to study in more details the robustness of our
approach in this respect, e.g. by adding or removing several extreme scenarios
and analyzing how the distribution of the adjustment costs evolve, so as to
gain better insight on the role of the parameters of the learning algorithm in
this respect.

5.5 Actively selecting the scenarios to simulate

In our approach we sequentially

1. generate a set of scenarios,

130 5 Conclusion of Part I

2. optimize the adjustments of the reference schedule for these scenarios,

3. compute a recourse strategy by combining offline determination of de-
cision rules by supervised learning and online post-processing of their
predictions by optimization.

We have analyzed the sensitivity of our method with respect to the size of
the learning set in Section 4.4 and observed that decreasing the size of the
learning set (400 scenarios) by a factor 2 does not degrade a lot the recourse
strategy, while decreasing it by a factor 10 has a great influence although the
resulting strategy is still better than applying the day ahead strategy without
adjustment. This information may give some insight on the number of scenarios
that one must generate for this problem, e.g. more than 200. But we have
no clue to decide a priori of the number of scenarios to generate, and if we
generate an insufficient number of scenarios, of the way to select new scenarios
to improve the current strategy.

5.5.1 Further work

We may think about using the quasi-optimally adjusted schedule or the learned
recourse strategy to guide the generation of new scenarios, thus to interleave
the learning and the dataset generation procedures. As the dataset generation
procedure is very costly in our problem (especially the optimization step), this
could allow to achieve a better generalization error for a fixed size of the dataset
(cf. Cohn et al. (1994)).

If we assume that optimally adjusting the generation schedule to an updated
forecast is the best strategy, then one could iteratively

1. evaluate our learned adjustment strategy on the first sample by using
cross-validation,

2. sample new points around the areas of the input space where the gener-
alization errors are found to be the highest,

3. compute the optimal adjustments to the reference schedule for these new
scenarios,

4. and restart the learning procedure by using the original sample completed
by the new scenarios, until the coverage of the input space is satisfactory.

This topic is also related to Section 5.4 since an active learning approach may
as well be able to identify scenarios that would degrade the overall performance
of the learned recourse strategy. Hence, in addition to generating new scenarios,
the approach could help us to throw out such “outliers”.

5.6 Evaluating a strategy in the face of uncertainty

As we do not explicitly take into account the costs of the adjusted schedules
during the learning phase of our approach, but instead learn from schedules

5.6 Evaluating a strategy in the face of uncertainty 131

having the lowest cost regarding the objective function of the optimization
problem, it is hard to provide a bound on the performance for our learned
strategy, although it is easy to evaluate empirically the range of costs incurred
by our strategies (cf. Figure 4.29) and to compare them to another strategy.
Remark that this is also true for stochastic programming based approaches re-
viewed in Section 2.3.4 which provide an idea of the performance of the hedged
decisions for given scenario weights but nevertheless require a simulation phase
to assess the value of the method, like in Carpentier et al. (1996).

In the experiments reported in Chapter 4 we have assessed several ad-
justment strategies assuming that the future behavior of the environment is
perfectly predicted by the updated forecasts made at the recourse moment. We
have compared under this assumption our recourses computed by the machine
learning based procedure to the strategy consisting in re-optimizing the gen-
eration schedule deterministically given this forecast, thus putting the later in
a situation of a priori being the best possible strategy (modulo the limitations
of the optimization procedure).

In practice, however, forecasts re-estimated at the recourse moment are
not perfect guesses of the subsequent environment evolution. Hence, the per-
formance assessment of any strategy should take into account this residual
uncertainty. Assuming that the further evolution of the system over the re-
course interval is perfectly known at the moment of committing the recourse
decisions leads indeed to optimistically biased performance assessments. Using
our approach to obtain a recourse strategy, whether or not we consider the
updated demand forecast as inputs of the problem, our aim is to minimize
a generalization error, not the error on a particular scenario assumed to be
known perfectly at the moment of taking the recourse decision.

We notice however that the evaluation bias introduced by the assumption of
perfect prediction of environment behavior at the recourse moment was present
in our evaluations of both the golden standard (quasi-optimal adjustment) and
the strategies inferred by machine learning.

5.6.1 Further work

Ideally we should thus evaluate the expected performance on the set of possible
futures ξ[tr:T−1] given the observation of ξ[0:tr−1]. To this end, we may either

1. simulate the set of possible futures and evaluate the average cost of the
different strategies on this set;

2. make use of historical data: if we dispose of the day ahead forecast, of
the forecast updated at time tr and of the realization, for several days
we may be able to evaluate the value of different adjustment strategies
by averaging the results of the strategies on the realization over the set
of days considered.

Also, as we do not know the type of risk measure induced by the variance
based criterion used to develop the regression trees of our models, i.e. which
kind of objective function we do optimize by using this criterion, we believe

132 5 Conclusion of Part I

that some theoretical analyses of the relation between this criterion and ac-
tual performance would be of interest, possibly in order to develop better loss
functions to be used at the learning stage.

5.7 Multiple recourse opportunities

Up to now we have considered a single intra-day recourse opportunity, while
in practice there are several opportunities of recourse.

At the first opportunity of recourse the state of the system approximately
corresponds to the state planned in the schedule computed one day ahead,
modulo some non optimized primary and secondary control actions. This is
no more true for the next recourse opportunities, since when a recourse op-
portunity at a later stage occurs some modifications have already (possibly)
been made to the day ahead schedule via previous recourse stages and have
(possibly) driven the system along a path very different from the path that the
day ahead schedule would have yielded without recourse actions. This creates
some uncertainty on the state of the system at the recourse opportunities of
later stages.

In this setting, a recourse strategy π[t+1:T−1](ξ[0:t]) allowing to adjust the
generation schedule to the realized scenario up to time t must thus also take
into account the effect on the state of the system at the recourse instant that
could be implied by recourse decisions at previous stages (tr < t).

Thus, a line of further research will be to investigate approaches allowing
to exploit the supervised learning approach in a context where more than a
single opportunity of recourse has to be prepared the day ahead. On the other
hand, taking recourse actions at earlier time steps, should in this “multistage”
context also take into account the effect of future recourses. This leads us to the
classical, forward-backward types of approaches, where decisions are iteratively
coordinated over the temporal horizon by temporal relaxation procedures, and
iterations over the recourse opportunities.

How to appropriately adapt these “forward-backward” approaches in our
machine learning based setting is an important line of future research.

5.8 Broader application contexts

Up to now we have considered that recourse decision strategies would be learned
everyday for the next day, while in practice it seems also reasonable to consider
problems where strategies would be learned in such a way that they are useful
for more than a single day.

In order to obtain recourse strategies applicable several days, e.g. for all
days of the same cluster as defined in Section 4.2.1, we could modify the dataset
generation procedure (Section 4.2) by considering the set Ξ as a set of reference
scenarios, thus compute a reference schedule for each of them, and generate
adjustments between reference scenarios. The inputs of the learning problem
should then be extended with a description of the reference scenarios and of
the reference schedule.

Part II

Prior knowledge in supervised learning
algorithms

133

Chapter 6

Preliminary remarks

The optimization formulations presented in Part I, that we use to generate our
learning samples, are very complex because of the presence of many operating
constraints requiring integer variables, and because the generation units are
coupled. We have shown that a learning algorithm which is unaware of the
constraints the data is subject to may indeed successfully capture the sensitivity
of the solution to the model parameters. Nevertheless this raised our attention
on one particular aspect of the relation between machine learning algorithms
and optimization algorithms. When we apply a SL algorithm to search in a
hypothesis space based on data that satisfies a known set of constraints, can we
guarantee that the hypothesis that we select will make predictions that satisfy
the constraints? Can we at least benefit of our knowledge of the constraints
to eliminate some hypotheses while learning and thus hope that the selected
hypothesis has a better generalization error?

We found the paper of Lauer and Bloch (2008b) while surveying the
literature on these topics. This paper deals with the incorporation of prior
knowledge in SVR. As we opted for tree-based methods in our experiments of
Part I, we started working on the adaptation of the work of Lauer and Bloch
(2008b) to tree-based models. We propose an optimization formulation to do so
in Part II (Part II is to a large extent similar to Cornélusse et al. (2009a)).
However we do not study the above questions in the setting of Part I, but
from a more general perspective, and then experiment on problems of general
interest in the machine learning community. In particular, we show how our
formulation may be used to handle censored data and how we can transpose
tree-based methods in a semi-supervised learning setting. We reconcile the two
parts of this thesis in the concluding chapter when we discuss about future
work.

135

Chapter 7

Regularizing tree-based supervised learning
models using non-standard information

Tree-based ensemble methods can be seen as a way to learn a kernel from a
sample of input-output pairs. This chapter proposes a regularization framework
to incorporate non-standard information in the kernel learning algorithm. In
particular, we want to take advantage of additional information, not presented
in the form of input-output pairs, but for example as constraints on the value of
the outputs at different places of the input space. To this end a generic convex
optimization problem is formulated. In Chapter 8 it is then customized into
a manifold regularization approach for semi-supervised learning, or as a way
to exploit censored output values, or finally as a generic way to exploit prior
information about the problem.

7.1 Motivation

In the standard setting, supervised learning aims at inferring a predictive model
mapping an input space X to an output space Y given a completely labeled
sample of input-output pairs. However, in many applications the available out-
put information for a set of input points is incomplete. For example, in the
setting of semi-supervised learning the output is simply unknown for a subset
of the provided inputs, but under some assumptions taking into account these
unlabeled inputs allows the induction of better predictive models. Between
these extreme settings, in the context of censored data some outputs are only
partially specified for a subset of the given inputs in the form of a range of
possible values (e.g. typically a lower bound on the life-time, in the context of
survival data). In other contexts, additional prior knowledge about the target
problem is given in the form of hard or soft constraints. In all these cases, one
would like to exploit all the available information together with the labeled
sample of input-output pairs so as to infer better predictive models.

We propose a general framework for the regularization of tree based en-
semble models. It exploits a kernel formulation of tree-based predictors and
is formulated as a convex optimization problem where the incomplete data
and/or prior knowledge is used as extra information to regularize the model.

137

138 7 Regularizing tree-based SL models using non-standard information

Semi-supervised learning and learning from censored data fit naturally into
this general framework. However, other kinds of information can be used, like
prior information on the measurement accuracy on the outputs or specific con-
straints on output values which must be represented in the model. Relations
between input-output pairs can also be imposed as well as some other kinds of
structural properties about the problem.

Our convex optimization formulation is presented in Section 7.2, as well
as the consequences in terms of problem complexity. Section 7.3 exposes the
related work.

7.2 Regularizing an ensemble of regression trees

After an intuitive description of the nature of the problems addressed, the
principles of the induction of ensembles of regression trees are recalled and
their regularization is formulated as a convex optimization problem which is
discussed in terms of modeling capacity and solution complexity.

7.2.1 Nature of the problem

We consider the supervised learning framework, where we typically seek to
infer a function f(·) : X → Y from a completely labeled training sample of
input-output observations

{(xi, yi)}ni=1.

For convenience, we consider the context of regression, where Y ⊆ Rq, with
q = 1 unless stated otherwise.

In many cases, additional information can be useful in this inference pro-
cess. E.g., if for some points {(xi, yi)}n+c

i=n+1 the output is censored, for ex-
ample right censored, we would wish to regularize f such that f(xi) ≥ yi,
∀i ∈ {n+ 1, ..., n+ c}. In semi-supervised learning, we have a (typically large)
number of input points {xi}n+u

i=n+1 without their associated outputs. We then
would like to exploit regularity assumptions about the input-output relation
to bias the learning of the mapping f from the labeled data. But it might also
happen that the output targeted by the learning process is a priori known to
satisfy constraints for some particular inputs, or even over some given regions
of the input space1 (e.g. “f(x) ≥ Ax+ b, whenever Bx ≤ c”, cf. Mangasar-
ian et al. (2004)). More generally, the additional information at hand might
also entail more complex relations involving input-output pairs at several places
(e.g. “f(xk) ≥ f(x′k),∀k = 1, . . . ,K”). Another example is in multiple or struc-
tured output prediction if individual models f j(·) are fitted for each individual
output yj . E.g., if Y ⊆ R2 then we may wish to couple the individual models
to better respect the known structure of their output relations, so as to satisfy
constraints such as “f1(x) ≥ f2(x)”.

1In what follows, (in)equality relations are to be understood as component-wise when
they apply to vectors.

7.2 Regularizing an ensemble of regression trees 139

7.2.2 Tree-based ensemble methods

In this paper, we consider the incorporation of prior knowledge and incom-
pletely labeled samples in the forms suggested in Section 7.2.1 into tree-based
supervised learning methods2.

The general idea of regression trees is to recursively split the training sample
with tests based on the input space description x, trying at each split to reduce
as much as possible the variation of the output y in the left and right subsamples
of learning cases corresponding to that split. The splitting of a node is stopped
when the output y is constant in the subsample of this node or when some
other stopping criterion is met (e.g., the size of the local subsample is smaller
than nmin ∈ N). To each leaf a label is attached so as to minimize the empirical
error, which in least squares regression trees is the local subsample average of
outputs. Figure 7.1 illustrates a simple regression tree.

While useful for their interpretability, single trees are usually not competi-
tive with other methods in terms of accuracy, essentially because of their high
variance. Thus, ensemble methods have been proposed to reduce variance and
thereby improve accuracy. In general, these methods induce an ensemble of M
diverse trees and then combine their predictions to yield a final prediction as
a weighted average of the predictions of the individual trees.

In the following, trees are indexed by the letter t, lt is the number of leaves
in tree t, lt,i(x) is the leaf indicator function3 and nt,i is the number of training
samples reaching leaf i. Denoting by

lt(x) =
(
lt,1(x)/√nt,1, . . . , lt,lt(x)/√nt,lt

)>
,

the vector of leaf indicator functions of the tree t, the prediction of the output
of this tree for an input x may be written as

ft(x) =
n∑
i=1

yil
>
t (xi)lt(x).

This formula is indeed equivalent to computing the average label of the sample
corresponding to the leaf reached by an input x. Considering an ensemble of
M trees, its weighted average prediction

f(x) =
M∑
t=1

wtft(x), wt ≥ 0 ∀t ∈ {1, . . . ,M},
M∑
t=1

wt = 1

may hence also be represented as a scalar product based average. Namely,
denoting by

l(x) =
(
w1l
>
1 (x), . . . , wM l>M (x)

)> ∈ Rp, p =
M∑
t=1

lt

we have that
f(x) =

n∑
i=1

yil
>(xi)l(x).

2See Appendix A for an overview of tree-based SL methods.
3lt,i(x) = 1 if x reaches leaf i of tree t, lt,i(x) = 0 otherwise.

140 7 Regularizing tree-based SL models using non-standard information

Equivalently, if we define the kernel K(x, x′) = l>(x)l(x′), thus determined by
the structures of the M trees of the ensemble,

f(x) =
n∑
i=1

yiK(xi, x).

x1 ≤ 0.5

x2 ≤ 0.6

z1 = 0.2

yes

z2 = 0

no

yes
x1 ≤ 0.7

z3 = 0.5

yes

x2 ≤ 0.7

z4 = 0.8

yes

z5 = 1

no

no

no

(a) A graphical model.

x2 x1

0.7
0.50.6

0.7

y

0.8

0.2

0.5

0

(b) The 3D corresponding representation.

Figure 7.1: A single tree example with X ∈ R2 and Y ∈ R.

7.2 Regularizing an ensemble of regression trees 141

7.2.3 Regularization of a tree ensemble model

To incorporate the information contained in the incomplete data and/or prior
knowledge, we must modify the model described in Section 7.2.2. In order to
remain as generic as possible, we choose not to modify the tree induction algo-
rithm and the way the kernel function K is computed (e.g. bagging (Breiman,
1996), random forests (Breiman, 2001), Extra-Trees (Geurts et al., 2006a),
boosting (Freund and Schapire, 1996), etc). Thus we choose not to mod-
ify the structure of the trees, i.e. the way splits are selected at their internal
nodes, but rather to modify the labels assigned to their leaves. This can be
interpreted as a regularization of the model generated by the tree induction
algorithm which assigns constant values to regions of the input space, by the
correction of these assignments through the resolution of an optimization prob-
lem. To this end we consider two possibilities: to modify the vector y of training
sample outputs and/or to add a bias to the labels attached to the leaves of the
trees (cf. Figure 7.2). The first way allows to correct the yi values when they are
corrupted by noise and the second way arises when we do not want to modify
these values.

To formulate the corresponding regularization problem, we introduce a vec-
tor of decision variables to denote the leaf biases ∆z ∈ Rp, a vector of mod-
ifications to the training sample outputs ∆y ∈ Rn and a vector of auxiliary
variables ν ∈ Rn+, and we denote by K ∈ Rn×n the gram matrix of the training
sample, i.e. Kij = K(xi, xj), and by L the sample partitioning matrix of the
ensemble:4

L =
(
l>(x1) . . . l>(xn)

)> ∈ Rn×p.

We also denote by Ω(·, ·, ·) : Rn × Rp × Rn → R a convex function used to
express generically various compromises in terms of regularization, and by C ⊆
Rn+p+n a convex set used to express hard constraints. Given these notations,
we formulate the optimization problem of Formulation 7.

Formulation 7: Tree-based ensemble model regularization.

min Ω(∆y,∆z, ν) (7.1)
s.t. −ν ≤ Ky +K∆y + L∆z − y ≤ ν (7.2)

(∆y,∆z, ν) ∈ C. (7.3)

The inequality constraints (7.2) aim at keeping the prediction error on the
training sample low through the definition of the vector ν, which may be pe-
nalized in (7.1) and/or constrained in (7.3). The information of the incomplete
data or prior knowledge may be expressed in the constraints (7.3) and in the
objective (7.1).

4Up to some normalization, the line i of matrix L essentially indicates the leaves reached
by the sample i.

142 7 Regularizing tree-based SL models using non-standard information

In Formulation 7, we express the fact that we want to regularize the model
by incorporating the information from the labeled training sample, the incom-
plete data and the prior knowledge, by assuming that these may be expressed
by a finite number of constraints on the vectors ∆y,∆z and ν and/or by an
appropriate choice of the objective function. In general, a trade-off must how-
ever be defined between the regularization induced by the prior knowledge and
the incomplete data and the error on the labeled training sample. Notice also
that without prior knowledge or incomplete data, this formulation allows to
globally (re)optimize the leaf labels so as to minimize the error on the training
sample without affecting too much the original model, in a way depending on
the definition of Ω. In Chapter 8 we use this formulation to handle various
problems and evaluate its interest.

7.2.4 Problem dimensions and computational complexity

Formulation 7 contains p + 2n variables, and 2n linear constraints, without
taking into account the constraints defining C. For a balanced tree t built from
a finite sample size n, the number of leaves lt is on the order of n/nmin, thus
p ≈ Mn/nmin. High dimensional problems formulated as LP can be solved in
polynomial time. Anyway if the problem is nonlinear but convex it might still
be solved in polynomial time. Depending on the complexity of the ensemble of
trees on which the optimization problem is formulated, and on the parameter
choices, the problem might not be feasible, or might be feasible only at the price
of a significant increase of the error on the training sample. This would be the
case if there were not enough degrees of freedom in the model to incorporate
the incomplete data. A solution would be to penalize constraint (7.3) violations
in (7.1).

7.3 Related work

Many developments in supervised learning can be considered as the incorpo-
ration of (more or less explicit) constraints on the learned input-output map.
Model regularization imposes global constraints on the smoothness of input-
output maps and semi-supervised learning (Chapelle et al., 2006) imposes
local constraints among the predictions at nearby samples derived from simi-
larity measures.

We have focused on the regularization of tree-based models by the incorpo-
ration of incomplete data (and possibly other sources of additional prior knowl-
edge about the problem) into predictive models. To the best of our knowledge,
there is no related work using tree-based learning algorithms. In support vec-
tor machines, the explicit incorporation of constraints has already received a
lot of attention (see Lauer and Bloch (2008a,b) and the references therein).
The definition of the model derived from these methods as the solution of a
convex (quadratic or linear) optimization problem indeed makes the incorpo-
ration of regularization terms and additional constraints natural. At first sight,
one main advantage of these approaches with respect to tree-based ones is the
simultaneous handling of both fitting the training data and satisfying the con-

7.3 Related work 143

∆zk

x2 x1

0.7
0.50.6

0.7

y

0.8

0.2

0.5

0

(a) Adding a bias to the leaves.

yj

∆yj

yi

∆yi

x2 x1

0.7
0.50.6

0.7

y

0.8

0.2

0.5

0

(b) Modifying the output of learning samples.

Figure 7.2: Illustration of Formulation 7.

144 7 Regularizing tree-based SL models using non-standard information

straints, whereas, in our case, the optimization only acts as a corrector for the
tree-based learning algorithm. However, our Formulation 7 incorporates the
quality of the fitting of the training data, meaning that it could be able to
learn a useful model even if the initial tree model is not determined from the
training data (but for example randomly built). Furthermore, the tree-based
ensemble methods allow to learn a kernel over the input-space from the data in
a supervised way, contrary to many approaches which assume that this kernel
is given. Additionally, exploiting a learned tree model may take benefit of the
main advantages of tree-based methods, such as for example their embedded
feature selection mechanism.

Chapter 8

Applications and experimental results

In this chapter we show how the generic reformulation proposed in Chapter 7
may be applied to various problems, namely problems with censored data,
semi-supervised learning problems, the problem of predicting the output of a
system when we know some of its equilibrium points and a learning problem
with an order relation between the outputs.

8.1 Censored data

Censored data arise frequently, e.g. in survival analysis where one is interested
in the survival time of patients after the inception of a treatment. In this
context, it often arises that people leave the study at a given instant t0 for
reasons independent of the disease, i.e. their survival time is only known to
be larger than t0. Censored data may also appear when a suboptimal solution
algorithm is used to compute optimal output labels. For example, in relation
with Part I, if we want to predict the cost of an adjusted schedule, we may
account for the fact that the optimization algorithm provides us only an upper
bound on the cost. Here we try to use this partial information, as Shivaswamy
et al. (2007) did using support vector regression for censored data (SVCR). To
this end, we learn a tree-based kernel function (using the Extra-Trees algorithm
(cf. Appendix A.2) and denoted by ET in the sequel) K on the subset of
uncensored data {(xi, yi)}ni=1 and then impose the information contained in
the censored data {(xi, yi)}n+c

i=n+1 thanks to Formulation 8, a particular case
of Formulation 7, where yc denotes the vector of censored outputs, νc ∈ Rc+

Formulation 8: Regularization of a model built from censored data.

min C1‖∆y‖+ C2‖∆z‖+ C3‖ν‖+ C4‖νc‖ (8.1)
s.t. −ν ≤ Ky +K∆y + L∆z − y ≤ ν (8.2)

−νc ≤ Kcy +Kc∆y + Lc∆z − yc, (8.3)

145

146 8 Applications and experimental results

is a vector of auxiliary variables, Kc ∈ Rc×n with Kc
ij = K(xi, xj), ∀i ∈

{n+ 1, . . . , n+ c} and ∀j ∈ {1, . . . , n}, and

Lc =
(
l(xn+1) . . . l(xn+c)

)> ∈ Rc×p.

Constraints (8.3) with the term C4‖νc‖ of Ω imply that for censored objects
an excessive prediction is not penalized. We did not use hard constraints here
for the censored data for feasibility reasons. Since in survival data the sample
outputs are in principle measured with high accuracy, we penalized ‖∆y‖ very
strongly, but we could as well have removed these variables from the formula-
tion.

We compared this approach (Table 8.1) to unregularized tree-based ensem-
ble methods (denoted by ET and ET∗) and to the SVCR algorithm presented
in Shivaswamy et al. (2007). We analyzed the four real life data sets from
the R package “survival” on which SVCR is tested in Shivaswamy et al.
(2007), and evaluated the error measure

MAE = 1
n+ c

(
n∑
i=1
|yi − f(xi)|+

n+c∑
i=n+1

max(0, yi − f(xi))
)

by 5-fold cross-validation. ET was used to compute the gram matrix K of for-
mulation 8. In ET∗ the censored points are included in the training sample
and handled as uncensored points. For SVCR we used a Gaussian kernel. The
parameters of these methods are tuned by grid search while using only the
training samples. We observe that exploiting the censored data via Formula-
tion 8 may indeed improve significantly the quality of the predictors. This is
especially remarkable in the “nwtco” data set where the proportion of censored
outputs is very high. We also notice that using regularized tree-based predictors
actually outperforms, sometimes quite strongly, the SVCR approach to these
problems.

Table 8.1: Comparison of unregularized/regularized tree-based predictors with
SVCR (first row gives the percentage of censored data in each data set). The
values reported are the average MAE over the 5 folds ± one unit standard
deviation; † indicates that SVCR scores are reproduced from Shivaswamy
et al. (2007).

lung (28%) veteran (7%) heart (56%) nwtco (86%)
ET 144 ± 11 85 ± 22 146 ± 57 1888 ± 72
ET? 117 ± 17 84 ± 19 78 ± 13 224 ± 38
ET + Form. 8 113 ± 13 81 ± 34 68 ± 23 98 ± 13
SVCR 144 ± 14 80 ± 28 138 ± 48 476†

8.2 Manifold regularization for semi supervised learning

In this section we show how the method presented in Belkin et al. (2006)
may be casted in our formulation to yield semi-supervised and/or transductive

8.2 Manifold regularization for semi supervised learning 147

tree learning algorithms. We denote by {xi}n+m
i=1 the inputs of the data sample,

and suppose that we have access to the output labels {yi}ni=1 only for the first
n of them. In Belkin et al. (2006) a similarity graph G is inferred from the
inputs {xi}n+m

i=1 (see Luxburg (2007) for a tutorial on this topic):

• inputs {xi}n+m
i=1 are vertices of the graph,

• the graph G connects inputs pairs (xi, xj) which are similar according
to a similarity measure s(xi, xj) (e.g. a Gaussian kernel, exp(−‖xi −
xj‖2/2σ2)) or close according to a distance measure d(xi, xj) (e.g. the
euclidian distance).

For instance one can connect the inputs using a k nearest neighbors criterion.
The adjacency matrix W of G is a matrix of dimension (n + m) × (n + m)
having elements wij defined as follows:

wij =
{

1 if inputs xi and xj are connected,
0 otherwise.

Weights may also take non-negative real values (e.g. if the Gaussian kernel is
used as similarity measure). We denote by L a Laplacian matrix of G over the
whole sample. For instance, we may consider the unnormalized graph Laplacian
matrix defined as L = D−W , where D is the degree matrix of G, i.e. the matrix
having as components dii =

∑
j wij and dij = 0 if i 6= j.

In essence, one of the methods presented in Belkin et al. (2006) can
be described as a SVR formulation (cf. Appendix A.3) in which the objective
function includes an additional regularization term based on the graph Lapla-
cian matrix. This additional term penalizes the hypotheses which assign very
different outputs to some pairs of inputs although these inputs are very similar
according to the similarity graph.

To adapt Formulation 7 to this setting, we suppose that we have an ensemble
ofM tree structures and the Laplacian matrix L of a similarity graph computed
over the input samples. Our objective is to compute ensemble predictions over
the complete (labeled and unlabeled) sample that are “regular” with respect
to the similarity graph. To this end we exploit the full set of inputs {xi}n+m

i=1
in each tree t ∈ {1, . . . ,M} to compute the values nt,i, ∀i = 1, . . . , lt so as to
define the ensemble kernel K ′(·, ·), from which we compute the gram matrix
K ′ ∈ R(n+m)×(n+m) over {xi}n+m

i=1 :

K ′ =
(
K ′`` K ′`u
K ′u` K ′uu

)
,

where K ′`` K ′`u and K ′uu are submatrices corresponding respectively to the ker-
nel evaluations between labeled, between labeled and unlabeled, and between
unlabeled cases. We use Formulation 9 to compute predictions regularized along
the similarity graph. In this formulation y = (y>` , y>u)> ∈ Rn+m denotes a vec-
tor of output labels obtained by completing the n given labels with m labels
equal to zero (yu = 0), and ∆y = (∆y>` ,∆y>u)>.

Note that, in this formulation, we do not allow adjusting the given output
labels (8.6) nor use leaf biases ∆z, but in (8.5) the outputs ∆yu contribute to
the predictions for the labeled sample {xi}ni=1.

148 8 Applications and experimental results

Formulation 9: Manifold regularization for semi-supervised learning.

min ‖ν‖22 + C(y + ∆y)>K ′LK ′(y + ∆y) (8.4)
s.t. −ν ≤ (K ′``|K ′`u) (y + ∆y)− y` ≤ ν (8.5)

∆y` = 0, (8.6)

8.3 Other types of prior knowledge and objectives

Obviously, the formulations 8 and 9 could be merged to handle both types of
data in a common formulation. However, Formulation 7 is not limited to the
incorporation of incomplete data.

Imposing the equilibrium points of a system. For example, to approximate
the dynamics of a nonlinear system with known equilibrium points (x?j , y?j) ∀j ∈
J , it is possible to force the value f(x) for these points by expressing (7.3) as

n∑
i=1

K(xi, x?j)(yi + ∆yi) + l(x?j)>∆z = y?j , ∀j ∈ J . (8.7)

We have observed experimentally that adding such constraints may signifi-
cantly enhance the accuracy of the inferred model.

Imposing constraints between outputs. We have also used our framework
to incorporate other types of prior knowledge, such as relations between dif-
ferent output space dimensions. We consider the problem of simultaneously
approximating two scalar functions while knowing that one is greater than
the other. As in Lauer and Bloch (2008b), the functions f1(x) = sin(x) and
f2(x) = sin(x)+0.1 are approximated from noisy data: they are measured inde-
pendently with an additive measurement error ω ∼ N (0, 0.04), for 70 random
samples uniformly distributed in the interval [0, 2π]. We obtain the datasets
{(xi, y(1)

i)}70
i=1 and {(xi, y(2)

i)}70
i=1 for functions f1 and f2 respectively.

We first learn one model for each function, with 50 trees and nmin = 10, to
obtain the two tree kernels K(1) and K(2) (Figure 8.1(a)).

Then we couple the models using formulation 10 to impose f2(xi) ≥ f1(xi),
∀i ∈ {1, . . . , n}. In that setting we decide to modify only the leaf labels of
the datasets. We obtain the results depicted on Figure 8.1(b) when C = 1,
p1 = 2 and p2 = 1. Note that using the `1-norm for the training set outputs
modification leads to sparse modifications localized near the crossings of the
two functions in Figure 8.1(a), in order to satisfy the constraints, as illustrated
on the Figure 8.1(b).

Figure 8.1(c) illustrates the use of the additional knowledge f2(xi) = f1(xi)+
δ, ∀i ∈ {1, . . . , n} and δ ≥ 0 in replacement of (8.11), with p1 = p2 = 2. Ta-
ble 8.2 reports the mean square error of the three experiments evaluated with

8.3 Other types of prior knowledge and objectives 149

Formulation 10: Multi-outputs.

min
(
‖ν(1)‖p1 + ‖ν(2)‖p1

)
+ C

(
‖∆y(1)‖p2 + ‖∆y(2)‖p2

)
(8.8)

s.t. −ν(1) ≤ K(1)y(1) +K(1)∆y(1) − y(1) ≤ ν(1) (8.9)
−ν(2) ≤ K(2)y(2) +K(2)∆y(2) − y(2) ≤ ν(2) (8.10)
K(1)y(1) +K(1)∆y(1) ≤ K(2)y(2) +K(2)∆y(2) (8.11)

respect to the noiseless functions on a test set of 800 points uniformly dis-
tributed in [0, 2π].

Table 8.2: Mean square error evaluated with respect to the noiseless functions
for the multi-outputs problem.

Figure 8.1(a) Figure 8.1(b) Figure 8.1(c)
f̂1(x) 0.020 0.021 0.013
f̂2(x) 0.015 0.012 0.012

Accounting for measurement error. Also, ε-insensitive formulations may be
handled by the incorporation of appropriate constraints in the set C. These may
be used to inject prior knowledge about the accuracy of the sensors used to
measure the output values or to trade-off empirical accuracy with generalization
performance.

150 8 Applications and experimental results

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

(a) No prior knowledge.

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

●

● ●
●

●
●

●

●

●

(b) Imposing f̂2(xi) ≥ f̂1(xi), ∀i ∈ {1, . . . , n}, highlighting using circles the modi-
fications operated on the sample outputs.

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

(c) Imposing f̂2(xi) = f̂1(xi) + δ, δ ≥ 0, ∀i ∈ {1, . . . , n}. Nearly all the sample
outputs are modified, and at the optimum δ = 0.133.

Figure 8.1: The learned functions f̂1(x) (blue curve) and f̂2(x) (red curve). The
training samples are indicated by blue • (sin(x)+ω) and red + (sin(x)+0.1+ω)
symbols. The true functions are plotted in gray.

Chapter 9

Conclusion of Part II

We have proposed a generic extension of tree-based ensemble methods which
allows to incorporate incomplete data but also prior knowledge about the prob-
lem. The framework is based on a convex optimization problem allowing to
regularize a tree based ensemble model by adjusting either (or both) the labels
attached to the leaves of an ensemble of regression trees or the outputs of the
observations of a training sample. It allows to incorporate weak additional infor-
mation in the form of partial information about output labels (like in censored
data or semi-supervised learning) or – more generally – to cope with observa-
tions of varying degree of precision, or strong priors in the form of structural
knowledge about the sought model. In addition to enhancing the precision by
exploiting additional information, the proposed approach may be used to pro-
duce models which naturally comply with feasibility constraints which need to
be satisfied in many practical decision making problems, especially in contexts
where the output space is of high-dimension and/or structured by invariances,
symmetries and other kinds of constraints.

Further work will aim at validating these ideas on practical problems and
incorporating them within the algorithms used to grow ensembles of trees.

151

Chapter 10

General conclusion

We first summarize the content of the two parts of this thesis. Then we discuss
some lines of further research that may benefit of the contributions of both
parts.

10.1 Summary

In this thesis we were interested in the problem of (re)scheduling large electric
power generation systems composed of a mixture of thermal and hydroelectric
power plants of various types over a short-term horizon.

In Part I, we proposed a way to decouple the day-ahead and intra-day
problems and to compute a practically usable recourse strategy for the intra-
day rescheduling problem based on (1) the simulation of disturbance scenarios
under which the power generation system should be able to operate, (2) the
computation of quasi-optimal adjustment of the day-ahead schedule to these
scenarios and (3) the application of SL algorithms to these scenario-adjustment
pairs. Although it has some practical and conceptual advantages over classical
techniques (mixed integer programming algorithms, stochastic programming)
as exposed in Chapter 5, a recourse strategy so obtained does not necessarily
output feasible decisions (in terms of operating constraints of the generation
units) for each possible disturbance scenario. Depending on the type of output
we have chosen to predict, we proposed to restore the feasibility of the predic-
tions thanks to a post-processing stage which either projects the predictions
on their associated feasibility region or consists in solving a downsized (and
slightly different) instance of the original scheduling problem. Indeed the re-
course strategies obtained in our experiments were only slightly modified by the
post-processing procedure, and look promising in terms of rescheduling costs
and response time. We have proposed several lines of further research for this
approach in Chapter 5. In particular,

• our approach offers many alternatives for the choice of the output space
of the recourse strategy and also for the post-processing stage, and we
believe that exploring those alternatives may yield interesting solutions
in-between the two that we studied,

153

154 10 General conclusion

• although we considered the day-ahead schedule as given and fixed, we
may use the learned strategy to evaluate the expected adjustment cost
of any day-ahead strategy, and thus also modify the day-ahead schedule,

• it would be interesting to set up a procedure for evaluating the expected
cost of the recourse strategy when a residual uncertainty exists over the
recourse horizon (i.e. when the updated forecast is not perfect),

• it would be interesting to extend and analyze the proposed approach to
multiple recourse possibilities and/or broaden its applicability to several
similar days.

In Part II, we proposed a generic extension of tree-based ensemble meth-
ods which allows to incorporate incomplete data and prior knowledge about
the problem. The framework is based on a convex optimization formulation to
regularize the learned model, and the prior knowledge is incorporated as a set
of constraints. We applied it to problems containing censored data, formulated
a way to extend tree-based methods to semi-supervised learning, etc. However
this research originated from the observation that, in the recourse strategy
learning problem of Part I, classical learning algorithms are unable to use the
information contained in the constraints of the generation (re)scheduling prob-
lem. Thus, when we apply a SL algorithm to search in a hypothesis space based
on data that satisfies a known set of constraints, can we guarantee that the
hypothesis that we select will make predictions that satisfy the constraints? Or
can we benefit of our knowledge of the constraints while learning and improve
the generalization accuracy of the selected hypothesis?

10.2 Further work

Regularizing the learned recourse strategy. Given the way we formulated
the recourse strategy learning problem, incorporating all the operating con-
straints of the generation units to regularize the learned recourse strategy and
obtain predictions that satisfy all these constraints seems hard to achieve in
practice. Even if we impose these constraints for a few scenarios of the learning
set, because of the nature of the generation scheduling problem (MILP) and
the time decomposition that we operated, we are not ensured of the feasibility
of the regularization problem. Furthermore the size of the regularization prob-
lem may quickly become excessive when the number of scenarios considered is
increased. However, by using other learning formulation decompositions (e.g.
unit by unit) and imposing some restrictions on the learned model a priori (e.g.
on the outputs participating in the average value assigned to the leaves if we
consider a single tree model), it may be possible to incorporate some of the
constraints of the generation (re)scheduling problem (e.g. the constraints that
are the most often violated in the experiments that we performed, such as the
non-convexity of the generation range of thermal units).

But ensuring the satisfaction of the operating constraints of the predicted
recourse may not be the most important concern, since we observed experi-
mentally that, when predicting the generation levels of all the units, the effect

10.2 Further work 155

of the post-processing stage is marginal. Although it should be experimentally
validated, it would maybe be more valuable to improve the demand-generation
balance with respect to the updated demand forecast. As in the generation
(re)scheduling problem, demand-generation balance may be incorporated as a
soft constraint (e.g. in replacement of the penalization of the prediction error)
in the regularization problem. This type of constraint is more likely to lead to
a beneficial, feasible and tractable regularization problem.

Estimation of the adjustment cost. Another interesting possibility would be
to use supervised learning to predict the overall adjustment cost for any sce-
nario, based on features describing the scenario. A learned model which would
be sufficiently accurate in this respect could then be exploited in various ways
in order to speed-up Monte-Carlo simulations used in order to compare alterna-
tive reference schedules, or to compute simply a good estimate of the expected
adjustment costs for the next day. In line with the application of Part II of
this thesis to exploit censored datasets, we could set up a formulation of the
learning problem where rather than having the exact value of the optimal cost
for each scenario, one is given only (upper and/or lower) bounds on these costs.
In our context, this would thus allow one to exploit datasets generated by using
problem relaxations (lower bounds), or by halting the optimization procedure
as soon as a given computing time budget is exhausted (upper bounds). This
possibility clearly opens the way towards many different possible tradeoffs for
combining machine learning and optimization.

Other application domains. Finally, we believe that the ideas investigated in
this thesis could be adapted to other problems of electricity generation plan-
ning, such as

• stochastic problems arising in a medium-term horizon:

– the management of nuclear outages for refueling when accounting for
uncertainty on demand, generation cost and generation unavailabili-
ties (this problem was proposed by EDF as the ROADEF Challenge
in 20101),

– the valuation of hydroelectric reserves in a hydrothermal generation
system (note that this has already received some attention in Aïd
et al. (2004) from a RL perspective, and Barty et al. (2010)
make use of statistical tools to model the dynamics of the dual vari-
ables associated to a demand balance constraint);

– the handling of CO2 emissions (Avellà Fluvià et al., 2005),

• or the problem of stochastic capacity expansion planning over long-term
horizon, which is defined in Birge and Louveaux (1997, Chapter 1) as
the problem of finding optimal levels of investment in various types of
power plants to meet future electricity demand, and is sensible to fuel
prices and demand variations but also to technological evolutions,

1http://www.roadef.org/content/index.htm

http://www.roadef.org/content/index.htm

156 10 General conclusion

and thus indeed more generally to optimization problems where one wants to
approximate the solution of an optimization algorithm Azo(p) assuming some
uncertainty on the value of a parameter vector p, as discussed in Chapter 1.1.

Appendices

157

Appendix A

Supervised learning algorithms

In this appendix we describe the supervised learning algorithms that we have
used throughout our research.

A.1 Top-down induction of a regression tree

Tree-based supervised learning is well known for its computational efficiency, in-
terpretability, robustness to outliers, its capability to cope with high-dimensional
problems with a large number of input features, and its robustness with respect
to irrelevant features and noise. The idea followed by this approach is to re-
cursively split the training set D, thanks to tests on the value of the input
features, in several subsets in order to decrease a measure of impurity about
the output variable until the subsets are composed of object sufficiently similar
in the output space. A classical top-down regression tree induction algorithm
works as indicated on Figure A.1.

If we use the mean square error criterion to estimate the accuracy of the tree
predictor, defining li (step 4) as the mean value of the outputs of the objects
constituting a leaf i is optimal with respect to empirical prediction error.

To split a node i (step 5), a test is defined by a feature xk (k ∈ {1, . . . , |X |})
and a cut-off value (vk). All the objects satisfying the test xk > vk are assigned
to the right successor node and the remaining ones are assigned to the left
successor node. To find the best test, a score is computed for every input
feature and for every possible cut-off value. For regression trees, a typical score
measure is the relative decrease of output variance in the two successor nodes
with respect to the output variance of the current node,

score(Di, x
k, vk) =

var{y|Di} − |Dl||Di|var{y|Dl} − |Dr||Di| var{y|Dr}
var{y|Di}

. (A.1)

The test with the highest variance reduction is chosen. Notice that, if the
mean square error is chosen as error criterion, the split with the highest output
variance reduction turns out to be the split that is optimal in terms of the
reduction of the empirical prediction error.

It is more complicated to assess if a node should be split (step 3), i.e. to
mitigate the complexity of the model. A classical way is to stop splitting when

159

160 A Supervised learning algorithms

1. Initialization.

• Set N = {(N0, D0)}, N0 is the node number, D0 the
dataset.

• Set L = ∅, I = ∅.

2. Termination if N = ∅. Return the tree made of

• the internal nodes and splits I,

• the leaves and associated values L.

3. Node Selection.

• Pop a node (Ni, Di) out of N .

• Evaluate if the node must be split.

4. Leaf assignment.

• Compute the value li to assign to the leaf.

• Append (Ni, li) to L.

5. Node splitting.

• Select the input feature xk and the associated cut-point vk
that maximize score(Di, x

k, vk).

• Compute
{
Dl = {(xj , yj) ∈ Di | xkj ≤ vk},
Dr = {(xj , yj) ∈ Di | xkj > vk}.

• Append the left child (Nl, Dl) and the right child (Nr, Dr)
of (Ni, Di) to N (Nl and Nr are new node numbers).

• Append (Ni, xk, vk, Nl, Nr) to I.

No

Yes

Figure A.1: Top-down induction of a regression tree.

A.2 The Extra-Trees supervised learning method 161

the number of objects in a node is below a threshold value nmin, but many
other techniques have been developed to identify the tree of optimal com-
plexity (pruning methods). For a more complete description of these pruning
algorithms see for example Breiman et al. (1984).

A.2 The Extra-Trees supervised learning method

While the learning of single regression trees is computationally very efficient
and often leads to highly interpretable decision rules, it has however been shown
that single tree-based methods have a high learning variance (Geurts, 2002),
which implies that they are often suboptimal in terms of accuracy, specially
on problems where the information is spread among a large number of equally
relevant features.

Therefore, tree-based ensemble methods have been introduced to decrease
variance and to allow them to cope with very complex tasks such as image,
text and time-series classification. The general idea behind these methods is
to avoid giving a single tree the capability of modeling the whole training set.
This can be achieved either by perturbing the training set, as for example in
Tree Bagging (Breiman, 1996) which uses a standard tree induction algorithm
to derive the trees from a bootstrap sample, or by perturbing the construction
algorithm (e.g. Extra-Trees, random forests (Breiman, 2001)), in order to
build from a training set an ensemble of M different trees, and by deriving the
hypothesis h by aggregating in some fashion (e.g. by voting or by averaging)
the predictions derived from each tree in the ensemble.

A major cause of learning variance of regression trees is the sensitivity of
the cut-point value of test nodes to the content of the training set. The main
aim of the Extra-Trees method (Geurts et al., 2006a) is to mitigate this
behavior by randomly perturbing the structure of the trees, thus decreasing
their dependence on the training set. In the Extra-Trees method, each tree is
built from the complete original training set. The search for the best test at a
node (step 5 in Figure A.1 for the classical tree induction algorithm) is partially
randomized; as explained in Table A.1, this algorithm selects K input-features
at random and for each input feature, a cut-point at random. It then computes
a score for each of the K tests and chooses among these K tests the one that
maximizes the score. The algorithm stops splitting a node when the number
of elements in this node is less than a parameter nmin. The prediction of the
ensemble is obtained by averaging the prediction of the M trees.

To summarize, the ensemble construction is guided by the parameters M ,
K and nmin, which have the following effects:

• M (number of trees) determines the strength of the variance reduction
of the ensemble model aggregation,

• K (number of candidate tests at each node) determines the strength of
the attribute selection process,

• nmin (maximal leaf size) determines the strength of averaging output
noise.

162 A Supervised learning algorithms

Table A.1: Procedure to find a test at a node in the Extra-Trees algorithm.

Input: a dataset D.
Output: a test defined by an input variable xik and a cut-point vik .

1. Select K input-features indices, {i1, ..., iK}, at random, without replace-
ment, among all (non constant) input variables.

2. For all k′ ∈ {1, . . . ,K}:

a) compute the maximal and minimal value of xik′ in D, denoted
respectively by vik′max and vik′min,

b) draw a cut-point vik′ uniformly in [vik′min, v
ik′
max],

c) compute the score Sk′ = score(D,xik′ , vik′) according to (A.1).

3. Return a test xik ≤ vik such that k = arg maxk′∈{1,...,K} Sk′ .

With respect to classical single trees, the accuracy of this method is in gen-
eral dramatically increased. Because all the trees are built independently and
because the induction procedure is simplified, this algorithm is computationally
very efficient. In addition, the Extra-Trees method produces as a byproduct a
scoring of the input features in terms of their usefulness to predict the output
information. These so-called variable importances may be used in practice to
analyze the impact of the different features and hence to better understand
the problem under consideration. We use these importance measures in our
case study to analyze the impact of different features on the recourse deci-
sions. We refer the interested reader to Huynh-Thu et al. (2008) for further
information about the computation and nature of these variable importances.

A.3 Support Vector Regression

We provide a brief description of the ε-Support Vector regression algorithm.
More details on the solution algorithms and a deeper interpretation of the
model and its parameters can be found in Smola and Schölkopf (2003). The
idea of this method is to approximate the output value by a linear function of
its input features:

f(x) = wTx+ b, w ∈ X , b ∈ R.

The convex optimization problem of Formulation 11 is solved to compute the
values of the unknowns w and b. Prediction errors smaller than the parameter
ε ≥ 0 are hence discarded. As it is typically not possible to find a solution
for any value of ε, some non-negative slack variables ξi and ξ?i are added to
loosen the first two constraints. The second term of the objective function
simply penalizes these slack variables, while the first one is a regularization
term preventing too large weight vectors and hence limiting the capacity of

A.3 Support Vector Regression 163

Formulation 11: Primal formulation of the ε-SVR problem.

min
w,b,ξ,ξ?

1
2‖w‖

2 + C

N∑
i=1

(ξi + ξ?i) (A.2)

s.t. yi − w>xi − b ≤ ε+ ξi, i = 1, . . . , N (A.3)
w>xi + b− yi ≤ ε+ ξ?i , i = 1, . . . , N (A.4)
ξi, ξ

?
i ≥ 0, i = 1, . . . , N. (A.5)

the function f , or in other words over-fitting of the training data. A trade-off
between these two terms is formed through the parameter C ≥ 0. For a given
ε, a too large value of C induces a complex f which may not generalize well
to unseen objects, and a too small value might cause a biased approximation
function.

To solve this problem for instances where the number of optimization vari-
ables – hence the number of features – is large compared to the number of
constraints – hence to the number of training objects – it is a good idea to
switch to the Lagrangian dual formulation (cf. Formulation 12). The dual vari-
ables αi and α?i are the Lagrange multipliers of the constraints (A.3) and (A.4).
The Lagrange multipliers associated to the constraint sets (A.5) can be elimi-
nated during the dualization process. From one of the saddle point conditions
used during the dualization, namely w−

∑N
i=1(αi − α?i)xi = 0, we can express

f(x) using only the features of the objects of the learning set, the variable b
and the dual variables:

f(x) =
N∑
i=1

(αi − α?i)xTi x+ b. (A.6)

Exploring the complementary slackness conditions, one can gain some in-
sight in the role of the parameter ε. At the optimal solution, the conditions

αi(ε+ ξi − yi + wTxi + b) = 0, i = 1, . . . , N, (A.10)
α?i (ε+ ξ?i + yi − wTxi + b) = 0, i = 1, . . . , N, (A.11)

(C − αi)ξi = 0, i = 1, . . . , N, (A.12)
(C − α?i)ξ?i = 0, i = 1, . . . , N. (A.13)

hold. From (A.10) and (A.11), for the objects (xi, yi) such that |f(xi)−yi| < ε,
and thus ξi, ξ?i = 0, we can conclude that the dual variables αi and α?i are equal
to 0. The parameter ε thus modulates the sparsity of the solution, and the term
“Support Vector” qualifies the features vectors xi corresponding to positive αi
or α?i . We can also see that αiα?i = 0, thus either αi or α?i may be nonzero,
if |f(xi) − yi| ≥ ε. From (A.12) and (A.13), we conclude that αi = C (resp.
α?i = C) if and only if ξi > 0 (resp. ξ?i > 0). One can obtain the value of b in
(A.6) by further exploiting these complementary slackness conditions.

164 A Supervised learning algorithms

Formulation 12: Dual formulation of the ε-SVR problem.

max
α,α?

−1
2

N∑
i,j=1

(αi − α?i) (αj − α?j)x>i xj

−ε
N∑
i=1

(αi + α?i) +
N∑
i=1

yi(αi − α?i)
}

(A.7)

s.t.
N∑
i=1

(αi − α?i) = 0, (A.8)

αi, α
?
i ∈ [0, C], i = 1, . . . , N. (A.9)

Finally, as Formulation 12 and the function f can be formulated in terms
of dot products of feature vectors, one can embed the input features in another
feature space using a kernel function

k(·, ·) : X × X → R.

The kernel replaces the dot product in the destination feature space. This
permits more combinations than a simple dot product in the original input
feature space, at a reduced cost compared to the cost of computing explicitly
the dot product if the destination feature space has many dimensions. The
conditions under which a kernel corresponds to a dot product in some feature
space are covered in details in Schölkopf and Smola (2001, Chapter 2).

Appendix B

Detailed optimization formulations for the
problems of Part I

We detail the formulation of the optimization problems used and discussed
in Part I. Specifically, Section B.1 covers the day-ahead generation scheduling
problem, Section B.2 points out the modifications that are made to the day-
ahead problem in order to compute optimal adjustments to a reference schedule
for a fixed recourse instant, and Section B.3 details the post-processing used
either to ensure the feasibility of some predicted adjustments or to obtain a
detailed generation schedule from the prediction of some adjustment indicators.

In this chapter, superscripts must always be understood as clarifying ex-
pressions, not as exponents. In particular, t refers to thermal generation units,
h to hydroelectric generation plants and p to pumping plants. On the other
hand, subscripts t indexes the time, i either a thermal generation unit or a
hydroelectric valley and j a sub-entity of a valley, i.e. a reservoir, a generation
plant or a pumping plant. The meaning of other subscripts should be clear
from the context.

B.1 Generation scheduling problem

This section first describes the model of the components of the generation
system: the thermal generation units in section B.1.1 and the hydroelectric
valleys in section B.1.2. Then it explains how these components are coupled
in section B.1.3 and finally states the objective of the global model – which is
to satisfy the requirements as well as possible at the lowest possible costs – in
section B.1.4.

B.1.1 Model of the thermal generation units

The following decision variables are defined for each generation unit
i ∈ {0, ..., Nt − 1} and each time step t ∈ {0, ..., T − 1}:

• sti,t ∈ {0, 1} is the On/Off status,

• pti,t ∈ R+ is the power really generated by the unit,

165

166 B Detailed optimization formulations for the problems of Part I

• m1,t
i,t ∈ [0,M1,max] is the power margin reserved for primary control,

• m2,t
i,t ∈ [0,M2,max] is the power margin reserved for secondary control,

• st,upi,t ∈ {0, 1} indicates whether or not a start-up occurred between time
t− 1 and t.

• st,downi,t ∈ {0, 1} indicates whether or not a shut-down occurred between
time steps t− 1 and t.

• cti,t ∈ R+ is an auxiliary variable representing the cost of a start-up.

When the unit i is started, its generation level must stay above a non-zero
minimal level Pmini and below a maximal level Pmaxi . Binary variables sti,t
indicating the On/Off state of the unit are thus necessary:

∀i ∈ {0 . . . Nt − 1},∀t ∈ {0 . . . T − 1},
sti,tP

min
i ≤ pti,t ≤ sti,tP

max
i . (B.1)

Some power margins must be reserved for the automatic load-frequency reg-
ulation of the synchronous network (cf. Section 2.2.1), i.e. for primary control
and for secondary control. Both margins are equal to zero when the unit is shut-
down, and their sum is smaller than min{Pmaxi − pti,t, pti,t − Pmini } otherwise,
as expressed by constraints (B.2) and (B.3).

∀i ∈ {0 . . . Nt − 1},∀t ∈ {0, T − 1},
m1,t
i,t +m2,t

i,t ≤ sti,t P
max
i − pti,t (B.2)

m1,t
i,t +m2,t

i,t ≤ pti,t − sti,t Pmini (B.3)

Constraints (B.4) limit the variation of the actual generation level between two
successive time steps.

∀i ∈ {0 . . . Nt − 1},∀t ∈ {0, T − 1},
−∆P t,downi ≤ pti,t − pti,t−1 ≤ ∆P t,upi , (B.4)

pti,−1
.= P initi (B.5)

The constraints (B.6) and (B.7) define the value of the start-up (st,upi,t) and
shut-down (st,downi,t) indicators.

∀i ∈ {0 . . . Nt − 1},∀t ∈ {0 . . . T − 1},
st,upi,t − s

t,down
i,t = sti,t − sti,t−1 (B.6)

st,upi,t + st,downi,t ≤ 1 (B.7)

These indicators are necessary for stating the minimum up and down times
constraints. Technical limitations impose a unit to stay in the same On/Off
state for a minimum duration. The following formulation of minimum up and
down times was inspired by Carrion and Arroyo (2006).

B.1 Generation scheduling problem 167

Constraints (B.8), (B.9) and (B.10) impose a minimum duration Dmin,up
i

in state sti,t = 1 after a start-up. Let the time step

T init,upi = min
{

max
{

0, Dmin,up
i −Dinit

i U initi

}
, T − 1

}
be the minimum between the optimization time horizon and the remainder of
Dmin,up
i if the unit was started before time 0,

∀i ∈ {0 . . . Nt − 1},
T init,up
i

−1∑
t=0

sti,t = T init,upi , (B.8)

∀k ∈
{
T init,upi . . . T −Dmin,up

i − 1
}

k+Dmin,up
i

−1∑
t=k

(
sti,t − s

t,up
i,k

)
≥ 0, (B.9)

∀k ∈
{

max
{
T −Dmin,up

i , T init,upi

}
. . . T − 1

}
,

T−1∑
t=k

(
sti,t − s

t,up
i,k

)
≥ 0. (B.10)

Constraints (B.8) impose that from time 0 to time T init,upi −1 the unit i cannot
be stopped. From time T init,upi −1 on, constraints (B.9) ensure that if the unit
has started operating at time k, i.e. st,upi,k = 1, then it remains started for
Dmin,up
i time steps, and constraints (B.10) does the same for the end of the

optimization period.
Similarly, constraints (B.11), (B.12) and (B.13)) impose a minimum dura-

tion Ddown,min in state sti,t = 0 after a shut-down. Let the time step

T init,downi = min
{

max
{

0, Dmin,down
i −Dinit

i (1− U initi)
}
, T − 1

}
be the minimum between the optimization time horizon and the remainder of
Dmin,down
i if the unit was stopped before time 0.

∀i ∈ {0 . . . Nt − 1},
T init,down
i

−1∑
t=0

sti,t = 0, (B.11)

∀k ∈
{
T init,downi . . . T −Dmin,down

i − 1
}

k+Dmin,down
i

−1∑
t=k

(
1− sti,t − s

t,down
i,k

)
≥ 0, (B.12)

∀k ∈
{

max
{
T −Dmin,down

i , T init,downi

}
. . . T − 1

}
T−1∑
t=k

(
1− sti,t − s

t,down
i,k

)
≥ 0. (B.13)

168 B Detailed optimization formulations for the problems of Part I

Constraints (B.11) impose that from time 0 to time T init,downi − 1 the unit i
cannot be started. From time T init,downi − 1 on, constraints (B.12) ensure that
if the unit has stopped operating at time k, i.e. st,downi,k = 1, then it remains
stopped for Dmin,down

i time steps, and constraints (B.13) does the same for the
end of the optimization period.

Finally, start-up costs are function of the time the unit has been stopped
before being started up. If this time is greater or equal to Dcool

i , than a max-
imum cost is incurred. Otherwise the start-up cost follows the curve whose
samples are gathered in the vector Cstarti . The constraints (B.14) provide an
upper bound on the cost, but as variables ci,t appear with a positive sign in
the objective function and that the problem is a minimization, ci,t reflects the
true start-up costs at the optimum.

∀i ∈ {0 . . . Nt − 1}, ∀t ∈ {0 . . . T − 1}, ∀k ∈ {0 . . . Dcool
i − 1},

cti,t ≥ Cstarti,k

(
sti,t −

k+1∑
t′=1

sti,t−t′

)
, (B.14)

sti,−1
.= U initi . (B.15)

The parameters appearing in this section are summarized in table B.1.

Table B.1: Parameters related to a thermal unit i.

Dmin,up
i Minimum up time.

Dmin,down
i Minimum down time.

Dcool
i Cool down time.

Cstarti A vector containing Dcool samples of the start-up cost curve.
Cfixedi Fixed cost (appearing in the objective function).
Cpropi Proportional cost (appearing in the objective function).
∆P t,downi Maximum decrease of pti,t between time steps t and t− 1.
∆P t,upi Maximum increase of pti,t between time steps t and t− 1.
U initi 0 if the unit is down at time -1, 1 otherwise.
Dinit
i Time for which the unit is in state U initi , time step -1 included.

P initi Generation level during period −1.

B.1 Generation scheduling problem 169

B.1.2 Model of the hydroelectric valleys

Each hydroelectric valley is composed of reservoirs linked by hydroelectric gen-
eration and pumping plants (cf. Figure 2.2). Each valley i ∈ {0, Nv−1} contains
Ni,r reservoirs, Ni,h generation plants, and Ni,p pumping plants. Each genera-
tion (pumping) plant contains G turbines (pumps). The following variables are
defined for each valley i and each time step t ∈ {0 . . . T − 1}:

• vi,j,t ∈
[
V mini,j,t , V

max
i,j,t

]
is the volume of the reservoir j at the end of the

period t,

• wsi,j,t ∈ R+ is the water flow corresponding to the water spilled out of the
reservoir j [m3/s],

• ssi,j,t ∈ {0, 1} indicates whether or not the spillage of water out of the
reservoir j is allowed,

• whi,j,t is the water flow traversing the hydroelectric generation plant j
[m3/s],

• phi,j,t ∈ R+ is the power generated by the hydroelectric generation plant
j,

• m1,h
i,j,t ∈ R+ is the power margin reserved for primary control of the

hydroelectric generation plant j,

• m2,h
i,j,t ∈ R+ is the power margin reserved for secondary control of the

hydroelectric generation plant j,

• spi,j,t,g ∈ {0, 1} indicates the pumping level g of the pumping plant j,

• ppi,j,t ∈ R− is the power generated by the pumping plant j.

In a hydroelectric power plant, turbines or pumps must be started in a fixed
order. The water flowing through a generation plant j can take any value in the
set [0,Wh

i,j], but in a pumping plant each pump can operate only at one rate.
This results in a piecewise linear power versus water flow curve for generation
plants, and in discrete operation levels for pumping plants. Let

ΘX,Y (·) : R→ R,
x 7→ y,

be the function parameterized by two vectors X and Y ∈ RG+ and defined on
[0, XG−1] which associates to a point x the value of the piecewise linear approx-
imation of points {(X0, Y0) . . . (XG−1, YG−1)} at the abscissa x (cf. Figure B.1).
Then the generation curve of a generation plant can be expressed as,

∀t ∈ {0 . . . T − 1},
phi,j,t = ΘWh

i,j
,Ph
i,j

(
whi,j,t

)
. (B.16)

170 B Detailed optimization formulations for the problems of Part I

ΘX,Y (x)

x
X0 X1 X20

Y0

Y1

Y2

Figure B.1: Representation of ΘX,Y (x) if X and Y are in R3
+.

which can be translated in linear expressions using additional binary variables
and special ordered sets of type 2 (cf. Appendix C.1.2.4). The margin of power
reserved for primary control is a fraction of phi,j,t,

∀t ∈ {0 . . . T − 1},
m1,h
i,j,t = phi,j,tM

1,h
i,j . (B.17)

The margin of power reserved for secondary control is also defined as a piecewise
linear function of the water flowing through the turbine.

∀t ∈ {0 . . . T − 1},
m2,h
i,j,t = ΘWh

i,j
,M2,h

i,j

(
whi,j,t

)
. (B.18)

The discrete operation levels of pumping plants can be modeled by stating
that the sets of variables

{
spi,j,t,0, . . . , s

p
i,j,t,G−1

}
,∀t ∈ {0 . . . T − 1} are special

ordered sets of type 1, where the rated operation flowsW p of the plant are used
to weight the elements of the set. The power generated by a pumping plant is

∀t ∈ {0 . . . T − 1},

ppi,j,t =
G−1∑
g=0

spi,j,t,gP
p
i,j,g. (B.19)

Pumping plants do not participate in primary and secondary control. The
volume of a reservoir at the end of the period t is equal to its volume at
the end of the period t − 1, plus the integral of the natural inflows and the
flows coming from the surrounding plants over one period, minus the integral
of the flows taken from the reservoir by the surrounding plants over one period

B.1 Generation scheduling problem 171

and the water spilled out.

∀j ∈ {0 . . . Ni,r − 1}, ∀t ∈ {0 . . . T − 1},

vi,j,t = vi,j,t−1 +Dt

(
Wnat
i,j,t − wsi,j,t

+
∑

{k∈{0...Ni,h−1}|j∈Rdown(k)}

wh
i,k,t−T flow

k

+
∑

{k∈{0...Ni,p−1}|j∈Rup
k
}

G−1∑
g=0

sp
k,t−T flow

k
,g
W p
k,g

+
∑

{k∈{0...Ni,h−1}|j∈Rdown
k

}

∑
{l∈Rup

k
}

ws
i,l,t−T flow

k

−
∑

{k∈{0...Ni,h−1}|j∈Rup
k
}

whi,k,t

−
∑

{k∈{0...Ni,p−1}|j∈Rdown
k

}

G−1∑
g=0

spk,t,gW
p
k,g

)
, (B.20)

where Dt is the duration in seconds of the time period t.
The last two constraints relate to the spillage limits and authorizations.

∀j ∈ {0 . . . Ni,r − 1}, ∀t ∈ {0 . . . T − 1},
vi,j,t ≥ V maxi,j,t s

s
i,j,t, (B.21)

wsi,j,t ≤ ssi,j,t(Wnat
i,j,t

+
∑

{k∈{0...Ni,h−1}|Rdown
k

=j}

Wnat
i,Rup

k
,t). (B.22)

The spillage authorization indicator ssi,j,t is thus equal to 1 if only if the volume
of the reservoir j equals its maximum allowed level (B.21). The constraint
(B.22) expresses that one cannot spill more than the natural inflows coming
directly in reservoir j plus the natural water flows of the upstream reservoirs.

The parameters of all these entities are summarized in table B.2.

B.1.3 Coupling constraints

The coupling of all the generation and pumping plants is achieved through
the constraints balancing the load and the generation, and the constraints
balancing the ancillary services reserves requirements and the margins actually
provided. One slack variable is introduced at each time step t ∈ {0 . . . T −1} to
soften each of these constraints as they are sometimes hard to satisfy tightly
in practice.

Variables pslackt ∈ R+ represent the absolute value of the mismatch between
the demand P reqt ∀t ∈ {0 . . . T − 1} and the total generation because a lack as
well an excess of generation is penalized (by a coefficient Cload). They are
defined by constraints (B.23) and (B.24)

172 B Detailed optimization formulations for the problems of Part I

Table B.2: Parameters related to hydroelectric valley i.

Reservoirs
V maxi,j,t Maximal volume during time step t.
V mini,j,t Minimal volume during time step t.
V initi,j Volume at time step -1.
Wnat
i,j,t Natural incoming water flows during time step t.

Cwateri,j Value of the water stored in the reservoir.

Hydroelectric plants
Rupi,j Set of reservoirs situated directly upstream of the plant.
Rdowni,j Set of reservoirs situated directly downstream of the plant.
T flowi,j Time needed by the harnessed water to arrive at the next reservoir.
Wh
i,j,g The values of the water flows delimiting the G operation ranges of

the generation plant.
Phi,j The generation levels corresponding to the values of Wh

i,j .
M2,h
i,j The amounts of secondary reserve corresponding to the values of Wh

i,j .
M1,h
i,j Coefficient of participation to the primary reserve of the generation plant.

W p
i,j,g The G admissible set points of the water flows of the pumping plant.

P pi,j,g Power associated to the values of W p
i,j .

∀t ∈ {0 . . . T − 1},

pslack
t ≥

(
Nt−1∑
i=0

pt
i,t +

Nv−1∑
i=0

(
Ni,h−1∑

j=0

ph
i,j,t +

Ni,p−1∑
j=0

pp
i,j,t

))
− P req

t , (B.23)

pslack
t ≥ P req

t

−

(
Nt−1∑
i=0

pt
i,t +

Nv−1∑
i=0

(
Ni,h−1∑

j=0

ph
i,j,t +

Ni,p−1∑
j=0

pp
i,j,t

))
, (B.24)

Variables m1,slack
t ∈ R+ and m2,slack

t ∈ R+ represent the lack of margin
reserved respectively to primary and secondary control (constraints (B.25) and
(B.26)), whose requirement are M1,req

t and M2,req
t , and are penalized with

coefficients Cm,1 and Cm,2,

∀t ∈ {0 . . . T − 1},

m1,slack
t ≥ M1,req

t −

Nt−1∑
i=0

m1,t
i,t +

Nv−1∑
i=0

Ni,h−1∑
j=0

m1,h
i,j,t

 , (B.25)

m2,slack
t ≥ M2,req

t −

Nt−1∑
i=0

m2,t
i,t +

Nv−1∑
i=0

Ni,h−1∑
j=0

m2,h
i,j,t

 . (B.26)

An excess of primary and secondary control margins is not penalized explicitly.

B.2 Generation rescheduling problem 173

B.1.4 Objective function

The objective function decomposes in the costs related to thermal generation,
the costs related to the usage of water and the penalization of the slack variables
of the coupling constraints.

min
T−1∑
t=0

(Nt−1∑
i=0

(
DtC

fixed
i sti,t +DtC

prop
i pti,t + cti,t

)
+DtC

loadpslackt +DtC
m,1m1,slack

t +DtC
m,2m2,slack

t

)

+
Nv−1∑
i=0

Ni,r−1∑
j=0

Cwateri,j (vi,j,T−1 − V initi,j)

 .

(B.27)

B.2 Generation rescheduling problem

Suppose that one starts from the reference schedule solution of Appendix B.1
computed one day ahead ∀t ∈ {0 . . . T − 1}. In this section we will denote the
solution of the day-ahead problem by capital letters. For example, we have

P ti,t
.= pti,t,∀i ∈ {0, ..., Nt − 1} (thermal generation),

M1,t
i,t

.= m1,t
i,t i ∈ {0, ..., Nt − 1} (thermal primary control reserve),

M2,t
i,t

.= m2,t
i,t i ∈ {0, ..., Nt − 1} (thermal secondary control reserve).

and similarly for the variables related to hydroelectric valleys, turbines and
pumps, as well as for the slack variables of the coupling constraints. We assume
that the recourse opportunity occurs at time tr.

B.2.1 Before the recourse period

From time 0 to time tr−1, we must use the reference schedule and simulate the
action of the ancillary services. To do so, we propose to allow the modification
of the schedule on {0 . . . tr − 1} but only around the generation level of the
reference schedule, and inside a range defined by the margins devoted to an-
cillary services in the reference schedule. For simplicity we make no distinction
between the use of primary and secondary reserves, and add up both margins.
In the new problem, with respect to the problem of Appendix B.1, we consider
some additional bounds for the thermal units:

∀i ∈ {0 . . . Nt − 1},∀t ∈ {0 . . . tr − 1},
pti,t ∈ [P ti,t −M

1,t
i,t −M

2,t
i,t , P

t
i,t +M1,t

i,t +M2,t
i,t]. (B.28)

Similarly, in each valley i, we consider some additional bounds on the allowed
power generation range of the hydroelectric turbines:

∀j ∈ {0 . . . Ni,h − 1},∀t ∈ {0 . . . tr − 1},
phi,j,t ∈ [Phi,j,t −M

1,h
i,j,t −M

2,h
i,j,t, P

t
i,j,t +M1,h

i,j,t +M2,h
i,j,t]. (B.29)

174 B Detailed optimization formulations for the problems of Part I

Although they do not participate to ancillary services, pumping plants must
be freely adjustable to ensure the satisfiability of the constraints on the volume
of reservoirs.

In the rescheduling problem the reserves of the day-ahead schedule are
used during {0 . . . tr − 1} and the recourse aims at adjusting the generation
levels so as to satisfy an updated demand curve and to restore the ancillary
services reserves. Consequently the objective (B.27) is adapted to penalize the
ancillary services requirements only during {tr . . . T−1}. In real-time operation,
ancillary services regulators act as non-anticipative devices. Here the use of
ancillary services is optimized anticipatively since we assume the knowledge of
the realized scenario when rescheduling. Indeed, the use of ancillary services
could even be optimized to improve the adjustment on {tr . . . T −1}. However,
note that as the vectors gathering the slack variables representing the load-
generation imbalance pslackt on {0 . . . T − 1} are penalized with the `1−norm,
no distinction is made between small and large slacks. In addition we add
some constraints to state that slack variables representing the load-generation
imbalance can only decrease or stay constant with respect to their value in the
reference schedule during {0 . . . tr − 1}:

∀t ∈ {0 . . . tr − 1}, pslackt ∈ [0, P slackt]. (B.30)

This way the ancillary services reserves are used for their intended purpose.

B.2.2 During the recourse period

If no additional requirement applies during the recourse period, the reschedul-
ing problem is similar to the day-ahead scheduling problem provided that we
have correctly modeled the behavior of the system before the recourse time.
From time tr to time T − 1, the schedule can thus be freely modified to satisfy
an updated demand curve and restore the ancillary services reserves.

B.2.2.1 Cardinality constraint

However, as exposed in Section 2.3, the number of thermal units and hydro-
electric valleys on which we can act for all the recourse period is limited to an
integer K smaller than the total number of units allowed to be adjusted. The
problem is thus to select the best subset of units and then to re-optimize their
generation schedule to cover the updated demand forecast. This section ana-
lyzes how this subset selection problem can be incorporated in the optimization
procedure by modifying the original scheduling problem.

One binary variable ati is introduced for each thermal unit i ∈ {0 . . . Nt−1}
and one binary variable ahi is introduced for each valley i ∈ {0 . . . Nv − 1}.
These adjustment indicators are used to authorize (ai = 1) or prevent (ai =
0) the adjustment of the corresponding generation units. Two formulations
are presented in Appendix B.2.2.2 for modeling these variables. Although a
valley is composed of several generation or pumping plants and reservoirs, it is
considered as a single entity.

B.2 Generation rescheduling problem 175

To impose the limitation on the number of adjustments as a strong re-
quirement, one can add the cardinality constraint (B.31) to the generation
rescheduling problem.

Nt−1∑
i=0

ati +
Nv−1∑
i=0

ahi ≤ K. (B.31)

This is the solution that we have used in Section 4.5.

B.2.2.2 Computing adjustment indicators

First formulation. To model the adjustment indicators of the generation units,
the variables δpti,t ∈ R+ and δsti,t ∈ {0, 1}, ∀t ∈ {tr + 1, ..., T}, are intro-
duced for each thermal generation unit, as well as the variables δphi,t ∈ R+,
∀t ∈ {tr+1, ..., T}, for each valley. Let Hmin

i and Hmax
i be respectively a lower

and an upper bound on the power that can be generated in valley i.
With the addition of constraints (B.32) to (B.37) to the problem of Ap-

pendix B.1, the adjustment of thermal unit i (resp. valley i) is allowed if ati = 1
(resp. ahi = 1), otherwise the precomputed schedule is imposed:

∀t ∈ {tr + 1, ..., T}, ∀i ∈ {1, ..., Nt},
Pmini δsti,t ≤ δpti,t ≤ Pmaxi δsti,t, (B.32)

δsti,t ≤ ati, (B.33)
pti,t = P ti,t(1− ati) + δpti,t, (B.34)

∀i ∈ {1, ..., Nv},
aiH

min
i ≤ δphi,t ≤ aiH

max
i , (B.35)

phi,t = Phi,t(1− ahi) + δphi,t, (B.36)

phi,t =
Ni,h−1∑
j=0

phi,j,t +
Ni,p−1∑
j=0

ppi,j,t (B.37)

For the thermal generation part, this set of constraints can be understood
as follows:

ati = 1 ⇒
{
δpti,t ∈ {0} ∪ [Pmini , Pmaxi]
pti,t = δpi,t

(free adjustment),

ati = 0 ⇒
{
δpti,t = 0
pti,t = P ti,t

(no adjustment),

and similarly for the hydroelectric generation part:

ahi = 1 ⇒
{
δphi,t ∈ [Hmin

i , Hmax
i]

phi,t = δphi,t
(free adjustment),

ahi = 0 ⇒
{
δphi,t = 0
phi,t = Phi,t

(no adjustment),

The duplication of the on/off status variables of the thermal unit i at time
t (sti,t) into δsti,t may seem unnecessary since when ati = 1 then δsti,t = sti,t.

176 B Detailed optimization formulations for the problems of Part I

However all the other operating constraints of the original model must be
satisfied, and δsti,t = 0 when ati = 0 even if P ti,t > 0. Thus δsti,t cannot be
used in replacement of sti,t, e.g., in the minimum up time constraints. Note
that the operating constraints of unit i may be dropped when ati = 0, since the
precomputed schedule is feasible. Thus if an efficient technique for dropping
these constraints dynamically when ati = 0 were available, then variables δsti,t
would be redundant.

Not adjusting (ahi = 0) a hydroelectric valley thus means that the global
power generation of the valley phi,t is not modified with respect to the reference
schedule (cf. (B.36)). In this case, the individual generation of the turbines
and pumps of this valley may nevertheless be modified (B.37), but this is not
an issue since their reference schedule is still feasible and can thus still be
implemented.

Second formulation. Another way to model the problem is to replace con-
straints (B.32) to (B.36) by constraints (B.38) to (B.41).

∀i ∈ {1, ..., Nt},

ati ≥
pti,t − P ti,t
Pmaxi

(B.38)

ati ≥
P ti,t − pti,t
Pmaxi

(B.39)

∀i ∈ {1, ..., Nv},

ahi ≥
phi,t − Phi,t

Hmax
i −Hmin

i

(B.40)

ahi ≥
Phi,t − phi,t

Hmax
i −Hmin

i

(B.41)

Compared to the first formulation, this formulation does not require the addi-
tion of variables other than ai. However, ai is equal to 1 when an adjustment is
really performed but is potentially also equal to 1 otherwise. ai being equal to 1
when no adjustment is actually performed is not an issue since we require that
at most K units are adjusted, and the optimal solution may use all of these
K possibilities to perform adjustments that actually minimize the objective
function.

Note that some special branching and cuts generation techniques (cf. Ap-
pendix C.1.2) are introduced in de Farias et al. (2001) to take into account
cardinality constraints (among other types of constraints) without the need to
introduce auxiliary variables such as the variables ai. This is maybe an inter-
esting line to follow to speed up the resolution of the problem. However they
are currently not implemented in the commercial solver that we have used.

B.3 Post-processing 177

B.3 Post-processing

B.3.1 From predicted generation levels to feasible adjustments

The post-processing consists in projecting the predicted adjustments of the
thermal units (P̂ ti,t) onto their feasible domain and to compute the detailed
schedule of all the plants of each valley based on the predicted demands for
these valleys (P̂hi,t). To this end we instantiate one optimization problem for
each unit.

Problems for the valleys. The problem formulated for each valley contains
all the constraints of Appendix B.1.2 for the valley under consideration. The
ancillary services requirement constraints are discarded and the demand is set
to the output of the recourse strategy for that valley. In valley i, a slack variable
ph,slacki,t is introduced for each time step to prevent infeasibility:

∀i ∈ {0 . . . Nv − 1}, ∀t ∈ {tr . . . T − 1},

ph,slack
i,t ≥

(
Ni,h−1∑

j=0

ph
i,j,t +

Ni,p−1∑
j=0

pp
i,j,t

)
− P̂h

i,t, (B.42)

ph,slack
i,t ≥ P̂h

i,t −

(
Ni,h−1∑

j=0

ph
i,j,t +

Ni,p−1∑
j=0

pp
i,j,t

)
. (B.43)

Problems for the thermal generation units. The problems related to the
thermal generation units are formulated in a similar way. We minimize the
`1-norm of the difference between the targeted feasible adjustment and the
predicted adjustment, which can be seen as a demand requirement for that
unit, and discard the ancillary services requirements.

∀i ∈ {0 . . . Nt − 1}, ∀t ∈ {tr . . . T − 1},
pt,slack

i,t ≥ pt
i,t − P̂h

i,t, (B.44)

pt,slack
i,t ≥ P̂h

i,t − pt
i,t. (B.45)

All the other constraints of Appendix B.1.1 are applied.

Objective functions. For both problem types, the generation costs are also
removed of the objective function. Indeed the arbitrage between the different
generation units is performed by the learned recourse strategy based on the ex-
amples that were used to learn it. Once the problem is decomposed and that a
demand is defined for each generation unit, we do not account for the generation
costs anymore. This is in a sense comparable to the minimization phase when
applying Lagrangian relaxation to solve the problem (cf. Appendix C.1.1), but
instead of a demand to satisfy, the Lagrangian multipliers provide the infor-
mation about the marginal price of the electricity power and generation units
having a marginal generation cost higher than this price are not used. Thus

178 B Detailed optimization formulations for the problems of Part I

the objective of the problem for valley i is simply

min
T−1∑
t=tr

ph,slacki,t ,

and similarly for the thermal problems.
Each problem is thus a MILP, but is much smaller than the global schedul-

ing problem. Once all the problems are solved, the reserves of ancillary services
are straightforwardly deduced from the generation levels. The global cost of the
adjusted schedule is computed by summing the generation costs, the penaliza-
tion of the discrepancies between generation and demand and the penalization
of the discrepancies between the required and provided reserves for the ancillary
services.

B.3.2 From adjustment indicators to feasible adjustments

From the learned recourse strategy we obtain the predictions âti of ati for all
i ∈ {0 . . . Nt − 1} and âhi of ahi for all i ∈ {0 . . . Nv − 1}.

Assuming we predict these values with a regression algorithm, we do not
necessarily obtain binary values. A first step is thus to rank the predictions,
set the K first ones to 1 and the remaining ones to 0. Then the cardinality
constraint (B.31) is dropped since it is satisfied a priori, we formulate a prob-
lem according to Appendix B.1 where only K generation units can be freely
adjusted on the recourse horizon, and we impose the reference schedule for the
remaining generation units.

Appendix C

Related optimization algorithms

C.1 Mixed Integer Linear Programming

The presence of discrete decision variables in the problems described in Chap-
ter 2 and detailed in Appendix B, even though these problems are linear, greatly
complicates the resolution process. Solving a continuous relaxation generally
results in a solution which violates the integrality constraints, and obtaining a
near optimal and feasible solution from this point is far from trivial. There ex-
ists an abundant literature about the generation scheduling problem, referred
to as the unit commitment problem, and about the associated solution tech-
niques (see for example Padhy (2004)). We recall in Sections C.1.1 and C.1.2
the ideas underlying the most widespread algorithms for the type of generation
system we consider.

C.1.1 Lagrangian relaxation

One of the most widespread techniques to solve real instances – i.e. containing a
large number of generation units and a large number of time steps – or stochas-
tic instances – i.e. resorting to multiple scenarios – of the problem is based
on Lagrangian relaxation (Carpentier et al., 1996; Dubost et al., 2005;
Merlin and Sandrin, 1983). More complete introductions to Lagrangian re-
laxation and in particular in the context of integer programming may be found
in Lemaréchal (2001); Minoux (2008). One possible usage of Lagrangian
relaxation to solve Formulation 5 is to decompose the problem spatially, i.e.
unit by unit, by relaxing the coupling constraints (2.2). The latter are included
in the objective function (2.1) through the Lagrange multipliers λt ∈ R3. One
thus assumes that the problem of finding a feasible schedule for one generation

179

180 C Related optimization algorithms

unit is relatively easy but the coupling constraints are complicating.

L(xi, ui, vi, xslack;λ) =
T∑
t=0

(
L(xslack,t) (C.1)

+
∑
i∈I

Ri(xi,t, ui,t)

−λ>t
(
xslack,t −

∑
i∈I

Cixi,t + Yreq,t
))

For fixed values of the Lagrange multipliers, solving the resulting problem

g(λ) = min
x,u,xslack

L(x, u, xslack;λ) (C.2)

s.t. (2.4) and (2.5).

amounts to solving the problems of scheduling each unit independently, the
Lagrangian multipliers playing the role of coordinators. One can thus apply
specialized and efficient algorithms to solve the sub-problems (dynamic pro-
gramming, interior point methods, ...), and solve them in parallel.

The dual function g(λ) is piecewise affine and concave since it is a minimum
of a finite set of affine functions of λ obtained by fixing the primal variables in
(C.1). Its value is always lower or equal to the optimal value of the problem
of Formulation 5 since its feasibility domain is larger and the multipliers are
freely adjustable (weak duality). The problem

max
λ

g(λ)

is thus a concave but not necessarily differentiable maximization problem, re-
quiring a carefully designed subgradient algorithm (e.g. the bundle algorithm
described in Pellegrino et al. (1996)).

If the optimal solution of the dual corresponds to a primal feasible solution,
then this primal solution is optimal. But it is generally not the case in a mixed
integer context (no strong duality). In particular in the generation schedul-
ing context, the solution of the relaxed problem associated with the optimal
solution of its dual does not satisfy sufficiently well the coupling constraints.
Hence the use of a heuristic or a second optimization phase is needed to get a
solution satisfying better the relaxed constraints. For example the Augmented
Lagrangian (cf. Pellegrino et al. (1996)) technique converges to a primal
solution which leads to a lower discrepancy between generation and demand.
It consists in adding a second penalization term containing the squared relaxed
constraint to (C.1).

C.1.2 Branch-and-cut

As the problem can be stated as a MILP, it is also possible to use general
purpose software applicable to this kind of problem. The most widely used al-
gorithm to solve MILP instances in practice is branch-and-cut, which combines

C.1 Mixed Integer Linear Programming 181

the branch-and-bound and cutting-planes algorithms. Both techniques rely on
the continuous relaxation of the MILP that provides a lower bound on the op-
timal value of the problem. We give a brief introduction to these topics below;
see Wolsey (1998) for a deeper introduction.

C.1.2.1 Branch-and-bound

Assume that we want to solve the mixed integer linear problem P defined as

max
{
c>x|Ax = b, x ∈ RK+ × ZL+

}
.

Branch-and-bound (Figure C.1) relies on LP relaxations of the problem (see
Bertsimas and Tsitsiklis (1997) for a good introduction to linear program-
ming) and on an enumeration procedure on the values of the integer variables.
The relaxation

max
{
c>x|Ax = b, x ∈ RK+L

+
}
,

is solved at the root node of a tree and provides a first upper bound zU on the
solution of the problem. If the solution of the relaxation satisfies the integrality
requirement of the original problem P , then it is also an optimal solution for
P . Otherwise, an enumeration of the possible values of the integer variables
starts: two new problems containing a restriction on the admissible range of
one decision variable xi are created (e.g either xi ≤ 2, or xi ≥ 3). Typically
one chooses a variable xi that is fractional in the solution of the relaxation
although it is required to be integer in P . One new node is created for each
problem and is linked to the root node. We then repeat the same procedure
for these nodes (solve the LP-relaxation, analyze the solution, branch), until
we have enumerated all the possibilities (all the restrictions on the range of
the integer variables). However, each time an integral solution is found we can
stop developing the current node because we will not find any better solution if
we continue developing the tree under this node, and update the current lower
bound zL if the value of the current solution is greater (initially zL = −∞).
We can also stop developing the current node if the problem is infeasible or if
the value of the LP relaxation is not greater than zL. In the latter case, the
value of any integral solution of a successor of the current node will be worse
than the current best integral solution. The update of the bound zU in step 4
is more complicated and depends on the way the nodes of the tree are visited
(i.e. depth-first search, breadth-first search or another strategy). Nevertheless
the information gathered when solving the intermediate problems allows to
compute the integrality gap

(zU − zL)/zU ,

i.e. the maximal relative distance of the current best integer solution to the
optimal solution. In practice we can stop the development of the branch-and-
bound tree when the integrality gap becomes smaller than a tolerated threshold,
or impose a time limitation.

182 C Related optimization algorithms

1. Initialization. Set the lower and upper bound on the objective
function to respectively zL = −∞ and zU = +∞, since no
feasible solution has yet been found. Let P contain the original
problem.

2. Termination if P = ∅. The integer solution corresponding to
the best lower bound zL is optimal.

3. Node Selection. Pop a problem P out of P, solve its LP relax-
ation of optimal value is zLP (P) and solution x?(P).

3.1 If zLP (P) = −∞ (prune by infeasibility) or zLP (P) ≤
zL (prune by bound).

4. Bounding. If possible, update zU to

zU = min{zU , zLP (P)}.

Update the integrality gap if zU changed.

4.1 If the integrality requirements are satisfied, set zL :=
max{zL, zLP (P)} (prune by optimality). Update the inte-
grality gap if zL changed.

4.2 (Optional) Try a heuristic to find an integer solution.
Update zL and the integrality gap if the solution found is
feasible and improves the best bound.

5. Branching. Select an variable xi out of x and add two new
problems to P containing respectively the constraints xi ≤
x?i (P) and xi ≥ x?i (P) (xi ≤ bx?i (P)c and xi ≥ dx?i (P)e) if
xi is integer).

No

No

Yes

Yes

Figure C.1: The branch-and-bound algorithm.

C.1 Mixed Integer Linear Programming 183

Example 8.
Consider the following problem:

max 5x1 + 11x2 (C.3)
s.t. x1 ≤ 6 (C.4)

x1 − 3x2 ≥ 1 (C.5)
3x1 + 2x2 ≤ 19 (C.6)
x1, x2 ∈ Z+ (C.7)

Figure C.2 shows a branch-and-bound tree for this problem.

1

0

2 3

4
x2 ≤ 1 x2 ≥ 2

x1 ≤ 5 x1 ≥ 6

Figure C.2: Branch and bound tree.

The node numbers correspond to the exploration order. Figure C.3a depicts the
root LP relaxation, which provides a fractional solution and a first upper bound
zU = 42.82. If one chooses to branch on x1 ≤ 5 (Figure C.3b) one gets a better upper
bound but still no integer solution, since x?,1 = (5, 4/3). At node 2 the LP relaxation
provides an integer solution and a lower bound zL of 36 (prune by optimality), while

x2

x1
0

(C.5)

(C.6)

(C.4)

(a) Node 0: z?,0 ≈ 42.82 and x?,0 ≈
(5.36, 1.45).

x2

x1
0
(b) Node 1: z?,1 ≈ 39.67 and x?,1 = (5, 4/3).

x2

x1
0
(c) Node 2: z?,2 = 36 and x?,2 = (5, 1).

x2

x1
0
(d) Node 4: z?,4 = 35.5 and x?,4 = (6, 1/2).

Figure C.3: Illustration of branch-and-bound. Subfigures (a) to (d) illustrate
the linear relaxations at some nodes of the tree. Integer points inside the feasible
region are highlighted by • symbols.

184 C Related optimization algorithms

the problem of node 3 has no solution (prune by infeasibility). Coming back to the
first branching option on x1 at node 4, one gets a fractional solution whose value
is 35.5. The exploration of the sub-tree attached to this node can thus be stopped
(prune by bound) since 35.5 is an upper bound on the best integer solution that may
be found in that sub-tree and that an integer solution with a value of 36 was found
at another node.

C.1.2.2 The cutting plane algorithm

The cutting plane algorithm iteratively modifies the problem in order to tighten
the feasibility region of its LP relaxation towards the convex hull (Figure C.4)
of the integer feasible points.

To illustrate why this is a good idea, consider for example the simplex
algorithm, which always finds a solution of the LP relaxation1 lying on one
vertex of the polyhedron defined by the constraints. If the polyhedron is the
convex hull of the integer feasible points, its vertices are thus integral, and the
simplex algorithm finds an integral solution.

The modification of the feasibility region of the LP relaxation is achieved
by adding valid inequalities (or cuts). A valid inequality is a constraint in-
ferred from the MILP formulation that cuts off a part of the LP relaxation’s
feasibility region containing no integer points. The main concern is to identify
automatically and efficiently some cuts that define facets of the convex hull, or
at least that cut off a “significant” part of the LP relaxation’s feasibility region
containing no integer points. Many classes of cuts exist (MIR cuts, flow cuts,
...) and can be automatically generated using state of the art solvers.

There is no guarantee of termination of the cutting plane algorithm.

Example 9.
For problem (C.3)–(C.7), it is easy to see from constraints (C.5), (C.4) and the
integrality requirement that

x2 ≤ 1. (C.8)
Then any point of Z2

+ satisfying (C.6) and (C.8) also satisfies

x1 + x2 ≤ 6. (C.9)

Adding (C.6) to (C.8) yields 3x1 + 3x2 ≤ 20 and thus x1 + x2 ≤ 20/3. The right
hand side of this constraint may be set to b20/3c = 6 since x1 +x2 ∈ Z+. Taking into
account the cuts (C.8) and (C.9), one gets the solution x? = (5, 1) directly instead of
the solution x?

LP ≈ (5.36, 1.45) of the original LP relaxation.

C.1.2.3 Combining branch-and-bound and cutting planes

Branch-and-cut is a branch-and-bound algorithm which adds cuts before and
during the exploration of the tree to obtain better bounds and thus limit the
exploration of the tree. The dual simplex can be advantageously used in both
the branch-and-bound and cutting planes algorithms, and thus in branch-and-
cut, since adding a constraint to the primal problem (a bound or a cut) is

1That we suppose feasible and bounded.

C.1 Mixed Integer Linear Programming 185

x2

x10

x1 + x2 ≤ 6

x2 ≤ 1
x?LP

x?

Figure C.4: Illustration of the convex hull (filled in gray) of the feasible integer
points of problem (C.3)–(C.7) and of the two cuts (C.8) and (C.9) (dotted
lines).

equivalent to adding a new variable to the dual problem. Doing so the optimal
solution and basis of the dual problem (without the additional primal con-
straint) remain feasible, but not necessarily optimal. One can thus start from
the solution of the previous problem and find the new solution typically in a
few iterations.

Branch-and-Cut is more and more used in the short-term generation plan-
ning context because it yields feasible near optimal planning without heuris-
tics, and thanks to the availability of efficient computer implementations such
as CPLEX (ILOG, 2007). Note however that some specially structured MILP
problems resist to state-of-the art branch-and-cut implementations, meaning
that they impose a complete exploration of the tree to guarantee optimality,
which is not achievable for moderately large MILP instances. More informa-
tion about this and other MILP solution algorithms can be found in Louveaux
(2004).

C.1.2.4 Special Ordered Sets and specialized branching techniques

Sometimes sets of variables have special properties which can be used to en-
hance the branch-and-cut algorithm (de Farias et al., 2001). Special Or-
dered Sets of type 1 (SOS1) arise if among several variables at most one can
be nonzero, and are particularly useful if these variables correspond to a given
order (e.g. to generation levels). Cardinality constraints are a generalization of
SOS1 where at most k (1 ≤ k ≤ n) can be nonzero. Special Ordered Sets of
type 2 (SOS2) arise if among several variables at most two adjacent variables
can be nonzero and can be used to model piecewise linear functions.

A classical way to express the SOS1 property is to use binary variables xi,
i = 1, . . . , n and to impose

∑n
i=1 xi ≤ 1. However, if a relaxed solution yields

two nonzero components xl and xm with 1 ≤ l ≤ m ≤ n, one can divide the
problem in two by choosing an index s such that l ≤ s ≤ m and creating to
nodes, by imposing in the first x1 = x2 = ... = xs = 0 and in the second
xs+1 = xs+2 = ... = xn = 0 instead of branching either on xl = 0 or xl = 1, or

186 C Related optimization algorithms

on xm = 0 or xm = 1. Cuts can also be derived to tighten the LP formulation.
Both SOS1 and SOS2 are used in the formulation of Appendix B.1.2. Car-

dinality constraints arise when we want to limit the number of modifications
one can make to a schedule to adjust it to a new scenario.

References

M. Avellà Fluvià, K. Boukir and P. Martinetto. Handling a CO2
reservoir in mid term generation scheduling. In Proceedings of Power Systems
Computation Conference, Liège. 2005. (155).

R. Aïd, V. Grellier, A. Renaud and O. Teytaud. Application de
l’apprentissage par renforcement a la gestion du risque. Journal Electronique
d’Intelligence Artificielle, 6:1–23, 2004. (40, 155).

G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar and
S. Vishwanathan, editors. Predicting Structured Data. The MIT Press,
2007. (27).

K. Barty, P. Carpentier and P. Girardeau. Decomposition of large-scale
stochastic optimal control problems. RAIRO Operations Research, 44:167–
183, 2010. (155).

M. Belkin, P. Niyogi and V. Sindhwani. Manifold regularization: A geo-
metric framework for learning from labeled and unlabeled examples. JMLR,
7:2399–2434, 2006. (146, 147).

A. Ben-Abbes, E. Rachelson and S. Diemer. L’apprentissage au secours de
la réduction de dimension pour des problèmes d’optimisation. In Conférence
Francophone sur l’Apprentissage Automatique. 2010. (125).

D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1997. (181).

J. R. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer, 1997. (155).

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
(141, 161).

———. Random forests. Machine Learning, 45(1):5–32, 2001. (141, 161).

L. Breiman, J. Friedman, R. Olshen and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, 1984. (129, 161).

P. J. Brockwell and R. A. Davis. Introduction to Time Series and Fore-
casting. Springer, 1996. (82).

187

188 References

L. Busoniu, R. Babuska, B. D. Schutter and D. Ernst. Reinforcement
Learning and Dynamic Programming Using Function Approximators. CRC
Press, 2010. (29).

P. Carpentier, G. Cohen, J. Culioli and A. Renaud. Stochastic opti-
mization of unit commitment: a new decomposition framework. IEEE Trans-
actions on Power Systems, 11(2):1067–1073, 1996. (43, 54, 55, 131, 179).

M. Carrion and J. Arroyo. A computationally efficient mixed-integer linear
formulation for the thermal unit commitment problem. IEEE Transactions
on Power Systems, 21(3):1371–1378, 2006. (166).

C. Carøe and R. Schultz. Dual decomposition in stochastic integer pro-
gramming. Operations Research Letters, 24(1-2):37 – 45, 1999. (15, 53, 54,
55).

O. Chapelle, B. Schölkopf and A. Zien, editors. Semi-Supervised Learn-
ing. MIT Press, 2006. (142).

D. Cohn, L. Atlas and R. Ladner. Improving generalization with active
learning. Machine Learning, 15:201–221, 1994. (130).

B. Cornélusse, C. Wera and L. Wehenkel. Automatic learning for the
classification of primary frequency control behaviour. In Proc. IEEE Power
Tech Conference, Lausanne, pages 273–278. 2007. (34).

B. Cornélusse. Application of Supervised Learning to very short term de-
cision making for electric power generation. Master’s thesis, Université de
Liège, 2008. (70, 92).

B. Cornélusse, P. Geurts and L. Wehenkel. Tree based ensemble models
regularization by convex optimization. In International NIPS Workshop on
Optimization for Machine Learning, Canada. 2009a. (35, 135).

B. Cornélusse, G. Vignal, B. Defourny and L. Wehenkel. Supervised
learning of intra-daily recourse strategies for generation management under
uncertainties. In Proc. IEEE Power Tech Conference, Bucharest. 2009b. (34,
49, 75).

I. de Farias, E. Johnson and G. Nemhauser. Branch-and-cut for com-
binatorial optimization problems without auxiliary binary variables. The
Knowledge Engineering Review, 16(01):25–39, 2001. (176, 185).

B. Defourny. Machine Learning Solution Methods for Multistage Stochastic
progamming problems. Ph.D. thesis, Université de Liège, 2010. (128).

B. Defourny, D. Ernst and L.Wehenkel. Bounds for multistage stochastic
programs using supervised learning strategies. Lecture Notes in Computer
Science, 5792:61–73, 2009. (128).

B. Defourny and L. Wehenkel. Projecting decisions induced by a stochastic
program on a family of supply curve functions. In Proc. of Third Carnegie
Mellon Conference in Electric Power Systems. 2007. (128).

References 189

D. Dentcheva and W. Römisch. Optimal power generation under uncer-
tainty via stochastic programming. Lecture Notes in Economics and Math-
ematical Systems, 458:22–56, 1998. (55).

L. Dubost, R. Gonzalez and C. Lemaréchal. A primal-proximal heuris-
tic applied to the french unit-commitment problem. Mathematical Program-
ming, 104:129–151, 2005. (179).

J. Dupacova, G. Consigli and S. W. Wallace. Scenarios for multistage
stochastic programs. Annals of Operations Research, 100(1 - 4):25–53, 2000.
(15).

D. Ernst, P. Geurts and L. Wehenkel. Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6:503–556, 2005.
(29).

D. Ernst, M. Glavic, F. Capitanescu and L. Wehenkel. Reinforcement
learning versus model predictive control: a comparison on a power system
problem. IEEE Transactions on Systems, Man, and Cybernetics - Part B:
Cybernetics, 39:517 – 529, 2009. (30).

Y. Freund and R. E. Schapire. Experiments with a new boosting algo-
rithm. In Proceedings of the Thirteenth International Conference on Machine
Learning, pages 148–156. 1996. (125, 141).

P. Geurts. Contributions to decision tree induction: bias/variance tradeoff
and time series classification. Ph.D. thesis, University of Liège, Belgium,
2002. (26, 161).

P. Geurts, D. Ernst and L. Wehenkel. Extremely randomized trees.
Machine Learning, 36(1):3–42, 2006a. (141, 161).

P. Geurts, L. Wehenkel and F. d’Alché-Buc. Kernelizing the output of
tree-based methods. In Proceedings of ICML, pages 345–352. 2006b. (27).

R. Gollmer, M. Nowak, W. Römisch and R. Schultz. Unit commit-
ment in power generation - a basic model and some extensions. Annals of
Operations Research, 96:167–189, 2000. (54).

N. Gröwe-Kuska, K. Kiwiel, M. Nowak, W. Römisch and I. Wegner.
Power management under uncertainty by lagrangian relaxation. In Proceed-
ings of the International Conference Probabilistic Methods Applied to Power
Systems, volume 2. 2000. (55).

———. Decision Making under Uncertainty: Energy and Power, chapter Power
management in a hydro-thermal system under uncertainty by Lagrangian
relaxation. Springer-Verlag, 2002. (55).

N. Gröwe-Kuska and W. Römisch. Applications of Stochastic Program-
ming, chapter Stochastic unit commitment in hydro-thermal power produc-
tion planning. SIAM, 2005. (80).

190 References

T. Hastie, R. Tibshirani and J. Friedman. The Elements of Statistical
Learning. Data Mining, Inference and Prediction. Springer, 2009. (16, 23).

H. Heitsch and W. Römisch. Generation of multivariate scenario trees to
model stochasticity in power management. In Proceedings of IEEE Power
Tech, St. Petersburg. 2005. (55).

V. Huynh-Thu, L. Wehenkel and P. Geurts. Exploiting tree-based vari-
able importances to selectively identify relevant variables. JMLR: Workshop
and Conference Proceedings, 4:60–73, 2008. (162).

ILOG. ILOG CPLEX 11.0 User’s manual, 2007. (76, 185).

L. Kaufman and P. Rousseeuw. Finding Groups on Data: an Introduction
to Cluster Analysis. John Wiley & Sons, 2005. (18, 81).

F. Lauer and G. Bloch. Incorporating prior knowledge in support vector
machines for classification: A review. Neurocomputing, 71(7-9):1578 – 1594,
2008a. (142).

———. Incorporating prior knowledge in support vector regression. Machine
Learning, 70:89–118, 2008b. (135, 142, 148).

C. Le Goazigo and J. Collet. Générateur de scénarii d’erreurs sur le modèle
de prévision moyen-terme. Technical report, EDF, 2006. (82).

C. Lemaréchal. Computational Combinatorial Optimization, volume
2241/2001 of Lecture Notes in Computer Science, chapter Lagrangian Re-
laxation. Springer, 2001. (179).

Q. Louveaux. Exploring Structure and Reformulations in Different Integer
Programming Algorithms. Ph.D. thesis, Université Catholique de Louvain,
2004. (185).

U. Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007. (147).

J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conference. Taipei, Taiwan, 2004. (36).

J. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.
(9).

F. Maes. Learning in Markov Decision Processes for Structured Prediction.
Ph.D. thesis, Université de Paris VI, Pierre-et-Marie-Curie, 2009. (27).

O. Mangasarian, J. Shavlik and E. Wild. Knowledge-based kernel ap-
proximation. Journal of Machine Learning Research, 5:1127–1141, 2004.
(138).

A. Merlin and P. Sandrin. A new method for Unit Commitment at Electicité
de France. IEEE transactions on power apparatus and systems, 102(5):1218–
1225, 1983. (179).

References 191

M. Minoux. Programmation mathématique. Lavoisier – Tec & Doc, 2008.
(179).

A. Märkert and R. Schultz. On deviation measures in stochastic integer
programming. Operations Research Letters, 33(5):441 – 449, 2005. (11).

M. Nowak and W. Römisch. Stochastic lagrangian relaxation applied to
power scheduling in a hydro-thermal system under uncertainty. Annals of
Operations Research, 100(1-4):251–272, 2000. (55).

M. Nowak, R. Schultz and M. Westphalen. A stochastic integer program-
ming model for incorporating day-ahead trading of electricity into hydro-
thermal unit commitment. Optimization and Engineering, 6:163–176, 2005.
(55).

R. Nürnberg and W. Römisch. A two-stage planning model for power
scheduling in a hydro-thermal system under uncertainty. Optimization and
Engineering, 3(4):355–378, 2002. (55).

N. Padhy. Unit commitment — a bibliographical survey. IEEE Transactions
on Power Systems, 19(2):1196–1205, 2004. (179).

F. Pellegrino, A. Renaud and T. Socroun. Bundle and Augmented La-
grangian Methods for Short-Term Unit Commitment. In Proceedings of
Power Systems Computation Conference, volume 2, pages 730–739. 1996.
(180).

T. Poggio, R. Rifkin, S. Mukherjee and P. Niyogi. General conditions
for predictivity in learning theory. Nature, 428, 2004. (24).

M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., 1994. (28).

A. Renaud. Daily generation management at electricite de france: from plan-
ning towards real time. IEEE transactions on Automatic control, 38:1080–
1093, 1993. (54, 56).

R. Rockafellar and R.-B. Wets. Scenarios and policy aggregation in
optimization under uncertainty. Mathematics of operations research, 16:119–
147, 1991. (15, 53).

RTE. Mémento de la sûreté du système électrique. RTE, 2004. (43).

P. Ruiz, C. Philbrick, E. Zak, K. Cheung and P. Sauer. Applying
stochastic programming to the unit commitment problem. In Proceedings
of the International Conference Probabilistic Methods Applied to Power Sys-
tems. 2008. (55).

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, 2001. (164).

192 References

R. Schultz and C. Carøe. A two-stage stochastic program for unit com-
mitment under uncertainty in a hydro-thermal power system. In Preprint
SC 98-11, Konrad-Zuse-Zentrum fur Informationstechnik, pages 98–13. 1998.
(54, 55).

A. Shapiro, D. Dentcheva and A. Ruszczynski. Lectures on Stochastic
Programming: Modeling and Theory. SIAM, 2009. (11).

P. Shivaswamy, W. Chu and M. Jansche. A support vector approach to
censored targets. In Proceedings of the IEEE International Conference on
Data Mining, pages 655–660. 2007. (145, 146).

A. Smola and B. Schölkopf. A tutorial on support vector regression. Tech-
nical report, NeuroCOLT2 Technical Report Series, 2003. (162).

J. F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over
symmetric cones. 1998. (36).

S. Takriti, J. R. Birge and E. Long. A stochastic model for the unit
commitment problem. IEEE Transactions on Power Systems, 11:1497–1508,
1996. (53, 54, 55).

UCTE. Load-frequency control and performance (appendix 1). UCTE Oper-
ation Handbook, 2004. (43).

———. Load-frequency control and performance (policy 1). UCTE Operation
Handbook, 2009. (43).

V. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998. (22).

L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998. (181).

A. Wood and B. Wollenberg. Power generation, operation and control.
Wiley-Interscience, 1996. (40).

	Résumé
	Abstract
	Acknowledgements
	Foreword
	1 General introduction
	1.1 Abstract view of the proposed approach
	1.1.1 Families of similar optimization problems
	1.1.2 Generalizing solutions by supervised learning
	1.1.3 Combining simulation, optimization, and learning
	1.1.4 Overall motivations of the research theme
	1.1.5 Methodological approach

	1.2 Background in dynamic optimization under uncertainty
	1.2.1 Adopting a deterministic view of the environment
	1.2.2 Taking into account environment uncertainty
	1.2.3 State-of-the-art in solution methods
	1.2.4 Summary

	1.3 Background in machine learning
	1.3.1 Supervised learning
	1.3.2 Reinforcement learning

	1.4 Illustrative example: optimally driving a car
	1.4.1 Problem setting
	1.4.2 Learning and optimizing the driver's strategy

	1.5 Thesis content and contributions
	1.5.1 Part I – Short-term electricity generation scheduling and recourse policies computation
	1.5.2 Part II – Prior knowledge in supervised learning algorithms

	I Short-term electricity generation scheduling and recourse policies computation
	2 Day-ahead and intra-day electricity generation scheduling
	2.1 Partition of the generation scheduling problem
	2.2 Day-ahead electric power generation scheduling
	2.2.1 Automatic balancing of the load
	2.2.2 Thermal generation units
	2.2.3 Hydroelectric valleys
	2.2.4 Targeted performance
	2.2.5 Deterministic optimization model

	2.3 Intra-day adjustment of the generation schedule
	2.3.1 Real time exploitation
	2.3.2 Deterministic receding horizon optimization
	2.3.3 Example of scenario-based stochastic programming formulation
	2.3.4 Literature survey on the incorporation of uncertainty in the generation scheduling problem

	2.4 Motivation of a simulation based supervised learning approach

	3 SL of recourse policies for intra-day generation rescheduling
	3.1 Overview of the proposed approach
	3.2 Generation of perturbed scenarios
	3.3 Computation of the adjustments to the perturbed scenarios
	3.3.1 Simulation of the ancillary services
	3.3.2 Re-optimization of the day-ahead schedule
	3.3.3 Limitation on the number of adjustments per recourse
	3.3.4 Remarks

	3.4 Supervised learning application
	3.4.1 Choice of the input space X
	3.4.2 Choice of the output space Y and induced post-processing
	3.4.3 Decomposition or reformulation of the learning problem

	3.5 Exploitation and validation
	3.5.1 Online exploitation
	3.5.2 Offline validation of a recourse strategy

	4 Experiments
	4.1 Test system
	4.1.1 Composition of the generation system
	4.1.2 Example of generation schedule

	4.2 Generation of training and validation scenarios
	4.2.1 Generation of perturbed demand curves
	4.2.2 Generation of the reference scenario, a sample of perturbations, and their adjusted generation schedule
	4.2.3 Discussion

	4.3 Computation of the adjustments to the reference schedule
	4.3.1 No limitation on the number of adjustments
	4.3.2 Limitation on the number of adjustments

	4.4 Predicting power generation levels
	4.4.1 Learning the recourse policy
	4.4.2 Importance of variables
	4.4.3 Obtaining feasible adjustments
	4.4.4 Overall adjustment costs

	4.5 Predicting the subset of thermal generation units to adjust
	4.5.1 Solving the learning problem
	4.5.2 Solving the simplified intra-day scheduling problem

	4.6 Summary

	5 Conclusion of Part I
	5.1 Summary
	5.2 Machine learning problem formulations
	5.2.1 Comparison of the two evaluated formulations
	5.2.2 Related work
	5.2.3 Further work

	5.3 Relation with two-stage stochastic programming
	5.3.1 Related work
	5.3.2 Further work

	5.4 Robustness to outliers
	5.4.1 Further work

	5.5 Actively selecting the scenarios to simulate
	5.5.1 Further work

	5.6 Evaluating a strategy in the face of uncertainty
	5.6.1 Further work

	5.7 Multiple recourse opportunities
	5.8 Broader application contexts

	II Prior knowledge in SL algorithms
	6 Preliminary remarks
	7 Regularizing tree-based SL models using non-standard information
	7.1 Motivation
	7.2 Regularizing an ensemble of regression trees
	7.2.1 Nature of the problem
	7.2.2 Tree-based ensemble methods
	7.2.3 Regularization of a tree ensemble model
	7.2.4 Problem dimensions and computational complexity

	7.3 Related work

	8 Applications and experimental results
	8.1 Censored data
	8.2 Manifold regularization for semi supervised learning
	8.3 Other types of prior knowledge and objectives

	9 Conclusion of Part II
	10 General conclusion
	10.1 Summary
	10.2 Further work

	A Supervised learning algorithms
	A.1 Top-down induction of a regression tree
	A.2 The Extra-Trees supervised learning method
	A.3 Support Vector Regression

	B Detailed optimization formulations for the problems of Part I
	B.1 Generation scheduling problem
	B.1.1 Model of the thermal generation units
	B.1.2 Model of the hydroelectric valleys
	B.1.3 Coupling constraints
	B.1.4 Objective function

	B.2 Generation rescheduling problem
	B.2.1 Before the recourse period
	B.2.2 During the recourse period

	B.3 Post-processing
	B.3.1 From predicted generation levels to feasible adjustments
	B.3.2 From adjustment indicators to feasible adjustments

	C Related optimization algorithms
	C.1 Mixed Integer Linear Programming
	C.1.1 Lagrangian relaxation
	C.1.2 Branch-and-cut

	References

