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J. WILLEMS, Universit́e de Gand
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Summary

Machine learning approaches
to power system security assessment

In power system planning and operation, security assessment is one of the major,
multifaceted problems. Increasing economic and environmental pressure as well as
higher speeds and stronger action of modern control algorithms and devices make the
conflicting aspects of reliability and economy even more challenging.

Until recently, the security studies carried out in a given context were essentially
limited by the available simulation hardware and software. As computing powers
grow, however, the bottleneck becomes more and more due to the ability of engineers to
extract relevant information from bulky simulations. In particular, present day computer
networks and their foreseeable growth in the near future, together with forthcoming
fast and reliable simulation tools will allow the generation of huge amounts of detailed
studies, by exploiting inherent parallelisms. In order to take due advantage of these
possibilities, it is necessary to develop tools able to assist engineers to appraise and
interpret the obtained results.

The present work describes research moving along the line of developing such informa-
tion synthesis tools, adapted to the specific needs of power system security assessment.
In the proposed approach, random sampling techniques are considered to screen all
relevant situations in a given context, while existing numerical simulation tools are ex-
ploited to derive detailed security information. The heart of the framework is provided
by statististical techniques able to extract and synthesize relevant information and to
reformulate it in a suitable way for decision making.

Our work on this subject matter started about 8 years ago. The primary objective was
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to explore whether and to what extent machine learning techniques were able to tackle
power system transient stability.

The scope of our research has gradually broadened. We thus have been developing and
improving the inductive inference method to make it meet specialities of the physical
problem; at the same time we have been diversifying the practical application to other
types of security assessment, in particular voltage security in both preventive and
emergency fashions.

The work presented in this thesis is the culmination of the above research. Three
themes are scrutinized : machine learning methods, power system security problems
and the application of the former to the latter.

Machine learning methods that we have been developing, improving and adjusting
throughout our research belong to the more general category of computer based learning
methods. Our purpose in this work is twofold. On the one hand, to critically compare
the various families of methods, in order to justify a posteriori our initial choice of the
inductive inference method. On the other hand, to identify interesting specific strengths
of various other techniques and select “good” candidates, i.e. likely to advantageously
complement and enhance our method.

The second theme is power system security. The purpose is to present a comprehensive
account of the phenomena and to point out general as well as specific characteristics
from both the physical side and the practical contexts within which security can be
assessed.

The success of the method resulting from the application of computer based learning
techniques to power system security assessment heavily relies on the in-depth under-
standing of these two matters. It is the aim of the third theme to show that this original
method has by now matured enough and that it is indeed able to bridge the gap between
practical needs not met as yet, despite being urgent, and tools which are beginning to
be available.

The thesis is structured as follows.

The introduction discusses different aspects of security assessment, introduces present
day simulation tools, and outlines the information synthesis paradigm and the available
statistical techniques.

Part 1 provides a unified description of information synthesis techniques, from three
different perspectives. Firstly, a detailed account of machine learning is given; the
emphasis is put on decision tree induction methods, the cornerstone of the proposed
tools. This is followed by a synthetic overview of complementary methods of classical
statistical pattern recognition as well as artificial neural networks. Finally, various
types of machine learning problems are considered, and suitable techniques for solving
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them are identified.

Part 2 focuses on security problems, both from the physical and the operational points
of view. Transient stability, voltage security and to a lesser extent steady state security
problems are compared and feasibility of preventive and emergency control modes
in the context of on-line operation are discussed. The two last chapters of this part
describe an in depth investigation of the data base generation techniques appropriate
for different types of physical problems.

Part 3 provides a synthetic account of the practical experience we gained from several
application studies, carried out at the University of Liège. A rather diverse range of
tests are considered, combining different physical problems and power systems, in
particular three real-life problems, investigated in the context of collaborations with
Electricit́e de France and Hydro-Québec.
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If a man will begin with certainties, he will end with
doubts; but if he will be content with doubts, he shall
end in certainties.

Francis Bacon (1561-1626)

Notre esprit a une irŕesistible tendancèa consid́erer
comme plus claire l’id́ee qui lui sert le plus souvent.

Henri Louis Bergson (1859-1941)

A book should have either intelligibility or correct-
ness; to combine the two is impossible.

Bertrand Russel (1872-1970)
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Notation

The mathematical notation, used at several places in the context of the theoretical
descriptions given in part1, is introduced in chapter 2. Other notations used more
locally are introduced where they are used.

An index of references to frequently used notions as well as a glossary providing a list
of acronyms, symbols and abbreviations are collected at the end of the manual.
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Introduction

This chapter introduces the overall framework of the thesis. The basic notions
and methods elaborated in the following chapters are considered here from a
practical and intuitive point of view.

1.1 MACHINE LEARNING FOR SECURITY ASSESSMENT

Note. Generally, the term “machine learning” denotes a rather restricted subset of
computer based learning methods (seex1.4.2 and chapter 3). Here we use it in a
broader sense, to denote all types of computer based learning methods, including
machine learning per se, as well as statistical pattern recognition and artificial neural
network learning paradigms.

The overall methodology discussed in this work is based on the automatic synthesis of
relevant security information from large sets of pre-analyzed cases generated off-line.1

This is schematically represented in Fig. 1.1.

For a given security problem and a given power system, security cases are first generated

1The meanings of “relevant” and “off-line” depend on the particular security assessment context and
will be discussed later.

Learning
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Figure 1.1 Machine learning framework for security assessment
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via a random sampling approach, in a sufficiently broad and diverse range so as to screen
all situations deemed relevant. Second, each case is pre-analyzed in terms of security
by simulating numerically various possibly harmful contingencies. At this step massive
parallelism may be exploited in order to speed up this off-line simulation phase, which
is by far the most involved one from the computational point of view. The existing
analytically oriented (“system theory”) methods for security assessment, used here as
auxiliary tools, are presented below. An in depth discussion of approaches for the
generation of representative data bases will be given in chapter 11.

The obtained data bases are typically composed of several thousands of cases for
which security information was gathered with respect to several tens of disturbances.
To exploit them properly, statistical learning techniques are used to extract the relevant
information. The statistical techniques must be able to (i) identify the relevant attributes
among those used to describe the system states, and (ii) build a model which explains
the relationship among these attributes and the security status and/or which can be used
to predict the security of new situations, different from those in the data base. Great
flexibility is required for the choice of the interesting input parameters and the type of
output security information.

Thus, the two main practical uses of the resulting information (rules and/or statistical
models, correlation analyses, scatter plots: : : ) are to help engineers obtain a better
understanding of the security problems of their system [PA 85, WE 90a] and to make
fast decisions in the context of real-time operation, for analysis and control [DY 68,
ED 70, PO 72, PA 82, WE 90a] .

Below, we will first discuss the security assessment problem(s) in general, introduc-
ing notation and problem classifications, and providing some indications on poten-
tial applications of the proposed framework in different security assessment contexts.
Subsequently, important classes of learning problems and statistical methods used to
synthesize the security information will be described in an intuitive way and their im-
portant characteristics in the context of security problems will be pointed out. Finally,
the practical application of the approach will be illustrated on the basis of a hypothetical
example.

1.2 AN OVERVIEW OF SECURITY PROBLEMS

In planning and operation of electric power systems, decision making is necessary in
order to maintain a reliable and economic service in spite of a continuously changing
environment. At the planning stage, tradeoffs are evaluated between cost of investment
and security during future operation. Closer to the operation stage, outages for mainte-
nance are planned and generation is allocated in order to achieve a minimum operation
cost while minimizing the probability of service interruption. On-line, the operator has
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to handle unforeseen events by adjusting the controls and topology of the system so as
maintain its capability to cope with further disturbances, while maximizing economy.

Within these contexts, security assessment is concerned with the ability of a power
system to withstand disturbances while preserving an acceptable operating condition. A
disturbance is a planned or unforeseen event corresponding to changes in the parameters
and/or structure of the system, such as an outage of a transmission or a generation
equipment or a significant change in system loading. In this work we will focus on
security problems involvinglarge disturbances (or contingencies) corresponding to
nonlinear system behavior. Although such disturbances are generally very unlikely to
happen, their potential consequences can be extremely important, leading to complete
system blackout.

1.2.1 Classification of operating states

Figure 1.2 shows the different operating modes of a power system as identified by Dy
Liacco [DY 67] in the late sixties.

Preventivesecurity assessment is concerned with the question whether a system in
its normal state is able to withstand every possible (or likely) disturbance, and if not,
preventive control would consist of moving this system state into a secure operating
region, by acting on the system controls or topology. Since predicting future distur-
bances is difficult, preventive security assessment will essentially aim at balancing the
reduction of theprobabilityof losing integrity with the economic cost of operation. In
addition to yes/no type information about the ability of the system to withstand prede-
fined contingencies, it is interesting to define various securitymarginsand to appraise
sensitivity coefficients of such margins with respect to important system parameters.

Emergencystate detection aims at assessing whether the system is in the process of
losing integrity, following an actual disturbance inception. This is a purely deterministic
evolution, which involves very unusual situations and, while response time is critical,
economic considerations become secondary. Thus the objective of emergency (or
corrective) control is to take fast enough last resort actions, so as to avoid partial or
complete service interruption. To achieve fast enough responses, most of the emergency
control actions (e.g. generation rejection, load shedding, corrective switching) are
presently designed in advance, either at the operational planning step or in the context
of normal operation, during preventive mode security assessment. However, with the
increased speed of computers and communication systems, a more important part of
emergency control could be done in real-time, on the basis of real-time information on
the pre-disturbance state and a fast enough disturbance identification (see chapter 9).

Finally, when both preventive and emergency controls have failed to bring system
parameters back within their inequality constraints, automatic local protective devices
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Figure 1.2 Operating states and transitions. Adapted from [FI 78]

will act so as to preserve power system components operating under unacceptable
conditions from undergoing irrevocable damages. This leads to further disturbances,
which may result in system islanding and partial or complete blackouts.

Consequently, the system enters the restorative mode, where the task of the operator
is to minimize the amount of undelivered energy by resynchronizing lost generation
as soon as possible and picking up the disconnected load, in order of priority. In this
context expert system technology as well as simulation software may be valuable tools
to assist the operator [IE 92a] .
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1.2.2 Physical classification of security problems

In this introduction we give a first glimpse at the different kinds of security problems
further considered in chapter 8. Note that various security problems are distinguished
according to the time scale of the corresponding dynamic phenomena and corresponding
characteristic symptoms (low voltage, large angular deviations: : : ) as well as the control
means (reactive power, switching: : : ) to alleviate problems. These aspects will indeed
strongly influence the possible types of emergency control for a given problem, and, in
particular, the best compromise between preventive and emergency control strategies.

Transient (angle) stability

The fastest security related phenomena are transient instabilities, which typically take
of the order of a second to develop irrevocably. At this time scale, only a fully automatic
emergency control strategy could be applicable, if any.

Transientanglestability assessment concerns the ability of the generators of a power
system to recover synchronous operation following the electromechanical oscillations
caused by a large disturbance. In this context, the dynamic performance is mainly
affected by switching operations, by fast mechanical and active power controls (e.g. fast
valving, high voltage direct current converters, flexible alternating current transmission
systems (FACTS)), as well as by voltage controls (automatic voltage regulators of
synchronous generators and static var compensators). Possible emergency control
consists of varying generation by shedding some generators, or by modifying either
their mechanical input power (e.g. by fast valving), or their electrical output power
(e.g. via braking resistors, or - possibly in the future - via superconducting magnetic
energy storage devices).

Although transient angle instability problems sometimes coexist with voltage ones, and
may interact in the same time scale, they are driven by essentially different physical
phenomena and characterized by different symptoms.

Voltage security

Transientvoltageinstabilities are characterized by sudden voltage collapse phenomena
which may develop at the same or even faster speeds than transient angle instabilities.
This is mainly due to an important proportion of fast recovery components in the load,
such as industrial induction motors and DC links, for example.

The classicalmid-termvoltage instability problem corresponds to a typical time frame
of one to five minutes. In this case voltage collapse is mainly driven by automatic
transformer on-load tap changers which try to restore voltage nearby the loads. The
available time for emergency control is still below the limit of operator response time
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and most of the task should rely on automatic devices, such as under voltage tap-
changer blocking schemes, reactive compensation switching (e.g. disconnecting shunt
reactors) or fast generation unit start up.

It is important to mention that, although voltage collapse may result in a wide spread
degradation of the voltage profile [HA 90] , and also in subsequent losses of synchro-
nism, it is initially a local problem, linked to a local deficiency in reactive power. The
main causes of voltage instabilities following a large disturbance are insufficient local
reactive power reserves and/or a reduced reactive power transmission capability. Thus,
the voltage collapse phenomena are typically driven by a very important increase in re-
active transmission losses following an outage, caused by high non-linearities. The risk
of sudden voltage collapse further increases due to low voltage sensitivities of highly
compensated loads and fast dynamic load recovery characteristics, acting together with
machine (over)excitation limits. A recent survey of voltage collapse phenomena is
given in [NO 91] .

There is a third, even slower time frame, corresponding to the so-calledlong-term
voltage instability, which involves the gradual buildup in load demand. This interacts
with classical static security and is well within the scope of operator intervention.

Static security

Under the termstatic security one generally designates classical thermal overload
problems of the generation transmission system components. These phenomena span
over significantly longer periods of time. For example, line overloads may be tolerated
during 30 to 60 minutes under favorable weather conditions. This allows time to rely
on operators’ decision making to correct overloads, provided that appropriate support
is available from energy management system security functions, such as corrective
switching and optimal power flow packages [GL 93] .

1.2.3 Practical application domains

Table 1.1 shows the practical study contexts or environments which may be distin-
guished in security assessment applications. The first column identifies the study
context; the second specifies how long in advance (with respect to real-time) studies
may be carried out; the third column indicates the type of subproblems that are gen-
erally considered in a given environment; the last two columns indicate respectively if
an operator is involved in the decision making procedure and if an expert in the field
of power system security is available.

In the first three types of study contexts we currently rely mostly on the intervention
of human experts and numerical simulation tools. But in the context of real-time
monitoring and emergency control, the very reduced time scales call for more or less
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Table 1.1 Security assessment environments. Adapted from [WE 93i]
Environm. Time scales Problems OperatorExpert

System
planning

1 - 10 years
Generation

Transmission
Protection

No Yes

Operation
planning

1 week - 1 year
Maintenance

Unit commitment
Protection settings

No Yes

On-line
operation

1 hour - 1 day
Preventive mode

Security assessment
Yes Partly

Real-time�

monitoring
sec. - min. - hour

Emergency control
Protective actions

No�� No

Training months - days
Improve

operator skill
Yes No

� Here we distinguish betweenreal-time, which considers dynamic situations
following a disturbance inception, from merelyon-line which considers static
pre-disturbance situations.

�� except for static security corrective control

fully automatic procedures, as already mentioned above. Below we will identify for
each type of study the information synthesis approach, discussed in the following
chapters, which could be useful.

System planning

In the context of system planning studies, multitudinous alternative generation/transmis-
sion system configurations must be screened for several load patterns. For each situation
a large number of contingencies must be analyzed. An order of magnitude of 100,000
different scenarios per study would be realistic for a medium sized system.

Even though time is available in the context of planning studies, and even if security
simulations may be achieved efficiently (e.g. if thermal overloads are considered)
there is clearly room for improved data analysis methods in order to exploit all these
simulation results, so as to identify the structural weaknesses of a system and provide
information on how to improve its reliability.

Operation planning

As indicated in Table 1.1, operation planning studies concern a rather broad range of
problems, such as maintenance scheduling (typically one year to one month ahead in
time) and the design of operating guidelines in order to handle unusual or potentially
weak situations (generation plants operating in radial configuration, primary protections
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out of operation, very low/high loading). In the context of maintenance scheduling
studies, the number of combinations of situations which must be considered is also
generally very large, and data analysis approaches could equally well be used in order
to summarize information and thereby make better use of it, for instance in order to be
able to exploit the system with reduced margins.

Similarly, for studies closer to real-time, e.g. for the determination of operating security
criteria, the machine learning approach seems particularly well adapted. It would allow
us to systematically screen large and representative samples of situations, in order to
identify critical operating parameters and to determine security limit tables needed for
on-line operation. This merely consists of generalizing and automating the manual
approaches presently in use at many utilities to solve this problem [RI 90] .

The main advantage, however, of the automatic approach is that it will enable one to
exploit easily the very rapidly growing computing power. While the manual approach
becomes limited by the number of cases and the number of parameters an engineer
is able to appraise simultaneously, the automatic approach would be able to scale up
to hundreds of variables and thousands of operating states, provided that computing
power is available in proportion.

On-line operation

On-line operation in the context of this framework, would consist of using on-line the
rules or models previously derived in the context of operation planning, where one has
to determine the range of operating situations for which the models should be valid.
E.g. several weeks ahead routine security criteria could be designed for a forecast
range of topologies, load levels and generation schedules. Closer to real-time, maybe
one or two days ahead, these criteria might then be refreshed in order to handle more
exceptional situations (e.g. high number of outages, very low load, protection failures,
high transit wheeling ...).

In this context, it is particularly important for the models to be transparent and inter-
pretable, so as to provide useful information compatible with the operators’ view on
the power system.

Real-time monitoring

For emergency control, machine learning type of approaches have been proposed for
voltage security and transient stability problems [EU 92, RO 93] .

Here, the purpose is to design a criterion in order to apply emergency control ac-
tions such as tap-changer blocking or generation shedding, so as to prevent the post-
contingency system to evolve towards an in extremis situation. As we will discuss in
chapter 11, an important aspect in this case is the use of appropriate models to reflect
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the disturbed power system behavior. On the other hand, the use of readily available
system measurements (e.g. EHV voltage magnitudes and/or phasor measurements) as
input parameters is often an additional requirement, since state-estimation results are
generally unreliable under highly disturbed conditions.

Training

During operator training, the security criteria derived in either of the preceding contexts
might be used as guidelines for the operator, provided they are presented in an intelli-
gible way. In addition, these models might be used internally in the training simulator
program, in order to set up particular scenarios presenting particular insecurity modes.

1.3 ANALYTICAL TOOLS

A rather large set of numerical methods are available for security assessment, which
are based on more or less accurate analytical models of the power system. Some
tools, being based on general purpose power system dynamic simulation packages
[ME 92, DE 92] , have a very broad scope; others are based on simplified models and
approaches aiming at the representation of only those features relevant for the study of
a particular subproblem. The validity of the latter methods may be restricted to some
particular physical phenomena and some particular (classes of) power systems. Below
we give a brief overview of the most well known available tools, for each one of the
security problems discussed above.

1.3.1 Transient stability

In addition to the machine learning approaches, which are within the scope of this thesis,
there are two classes of tools for transient stability assessment : the time-domain or
step-by-step (SBS) approach and the direct methods based on the second Lyapunov
method.

Short-term time-domain simulation

The general power system dynamic model is composed of mixed algebraic and differ-
ential equations strongly non-linear, involving typically a few thousand state variables
for real systems. Some have discrete time behavior while others have continuous
time behavior. Reference [VE 92] gives an in depth mathematical analysis of stability
problems of these kind of systems.
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To assess stability for a given disturbance, the time-domain approach consists of sim-
ulating the during and post-fault behavior of the system and observing its dynamic
performance. The simulation starts with the prefault system state as initial conditions,
and the observation of the electromechanical angular and voltage swings during a few
seconds allows assessment of stability. The practical criteria vary from one utility to
another, but generally an unacceptable performance would imply large angular devia-
tions (pole slips), and/or voltage and frequency variations. To obtain stability margins,
repetitive simulations must be carried out for various prefault operating states and/or
for various assumptions concerning the action of protection devices.

Nowadays, several industrial grade time-domain simulation packages are available
for transient stability studies. Some of them use fixed integration step and explicit-
partitioned solution algorithms, while others use variable step and simultaneous-
implicit methods. The main asset of time-domain simulation tools is their flexibility
w.r.t. models, which allows them to exploit with the same ease simplified and very
detailed power system models. Until recently, they have been the only widely accepted
method in use in the electric industry, for operation and operational planning.

The time-domain approach used to be considered as very CPU time consuming; it is
interesting to observe that within the last three years the time required for a single
simulation with high order models of a typical power system has shrunk from one
hour to some minutes, essentially thanks to increased CPU speeds of high performance
workstations.

Direct Lyapunov type methods

Direct methods aim at identifying when the system leaves its stability domain, with-
out requiring further integration of the system trajectory. They therefore avoid the
simulation of the post-fault trajectory, and require only simulation of the during fault
trajectory. This reduces the simulated time period to a fraction of a second instead of
several seconds used by the standard time-domain methods. In addition, these meth-
ods are expected to provide a stability margin without significant computational cost,
and in some cases also sensitivity coefficients of this margin with respect to operating
parameters. Most of these methods also provide information about themode of insta-
bility, indicating which generators would lose synchronism. Such information may be
exploited for the design of appropriate emergency control actions.

Thus, direct methods are, in principle, able to provide a rather rich stability assessment
within a fraction2 of the time required for a single time-domain simulation.

The major drawback of direct methods is related to difficulties in taking into account
realistic models of generators, voltage and speed controls as well as non-linear and

2For the fastest direct methods the improvement is more than one order of magnitude, with respect
to SBS using an equivalent model [XU 93a, GE 93a] .
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dynamic loads and devices such as SVCs. However, since the first multimachine
direct methods, which were developed in the late sixties for the classical model3, much
progress has been achieved in incorporating more sophisticated models. In particular,
recently developed hybrid approaches are based on the coupling of more or less general
purpose SBS simulations with energy function evaluations [MA 90, PA 89a, RA 91,
XU 93b] . We believe that this kind of approach will eventually succeed in taking into
account the main transient stability related modelling effects, while preserving most of
the attractive features of direct methods.

1.3.2 Voltage stability and security

Tools for voltage security assessment range from simple purely static load-flow type
calculations, to pseudo-dynamic and full short-term/mid-term time domain simulations.
However, due to the rather recent emergence of voltage security problems, modelling
practices have not yet reached maturity comparable to those used in transient stability
studies.

In particular, one intrinsic difficulty of analyzing voltage collapse phenomena is the
well known very strong dependence on load behavior for the modelling of which no
good methodologies exist for the time being. Indeed, most of the load of a power
system is composed of large numbers of rather small domestic and industrial customers
connected to the distribution networks. Modelling the load at this level would however
not be feasible due to computational intractability and the lack of data. On the other
hand, building equivalent models is difficult due to the essentially variable nature (in
time and in space) of the load.

Short-term/mid-term dynamic simulations

As we mentioned earlier, voltage collapse phenomena involve time constants ranging
from a fraction of a second to a few minutes. Thus, for the sake of efficiency variable
integration step methods with stiff system simulation capability are deemed necessary
for time-domain simulations in the context of voltage stability studies [ST 93] .

Although admittedly the time-domain simulation method is also here the reference tool,
its usefulness may be limited due to the difficulty of determining appropriate models,
and prohibitive computing times in the case of large scale systems.

3The classical model is the most simplified transient stability model, where the synchronous machines
are represented by a constant electromotive force behind transient reactance and constant mechanical
power, and all loads are taken as constant impedances.
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Pseudo dynamic mid-term simulations

The fact that many voltage security problems are essentially driven by the automatic
on-load tap changer (OLTC) mechanism rather than by fast interactions among load
and generation dynamics, motivates the development of simplified pseudo-dynamic
simulation tools in order to simulate these discrete OLTC dynamics, while filtering out
the faster continuous short term transients.

In this case dynamic equations corresponding to the faster phenomena are considered
to be at equilibrium during the simulation, and only the slower mechanisms such as
OLTCs, machine excitation limits and secondary controls (voltage, frequency) are
actually simulated [VA 93b] . With the limitation of being unable to highlight problems
caused by the fast dynamics and their interaction with the slower ones, this kind of
approach allows drastic reduction in computing times. It is thus liable to provide fast
simulation tools for on-line operation, including load power margin computations and
sensitivity analyses leading to emergency control applications [VA 93c] .

Static load-flow type calculations

An important set of voltage security tools, based on purely static, load-flow type
calculations, have been developed for security assessment in the context of system
planning, operation planning and operation.

Typically, this kind of software allows us to compute maximal loading limits, based
on successive computations [LE 90a] or direct optimization [VA 91a] . With up to
date technology, this may typically be done in an efficient way, to allow systematic
contingency evaluation4 within response time of some minutes.

In addition to these tools, approximate indices have been proposed for the fast screening
and filtering of large sets of contingencies. For example, a clever application of
fast performance indexcomputation is proposed in [RE 93] , allowing us to compute
within the time required for 1 or 2 alternating current load-flow computations the
post-contingency performance index for all single-outages.

1.3.3 Static security

Static security assessment has been one of the major concerns in many utilities in the
last 20 years. Thus the field has acquired a certain maturity and, not astonishingly,
many interesting tools have been developed, comprising simplified performance indices
based on the direct current load-flow model for contingency ranking, as well as efficient

4Typically, the severity of a contingency is measured by the load power margin in the post-contingency
state.
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bounding techniques and full alternating current post-contingency optimal power flow
and corrective switching programs [MI 81, CA 93a, BR 93] .

These various methods may be combined to provide a satisfactory set of screening
tools for the planning engineer and detailed security assessment modules for on-line
operation to assist operators in taking decisions [ST 92, RE 92] .

1.4 AN OVERVIEW OF LEARNING METHODS

In this section we introduce classes of potentially useful automatic learning methods
for the synthesis of security assessment information, for the various physical problems
and practical application contexts highlighted above. We will first give a definition
of the genericsupervisedlearning problem and introduce three important classes of
algorithms for this problem, and finish with some comments on the use ofunsupervised
learning methods.

1.4.1 Generic problem of supervised learning

The generic problem of learning from examples can be formulated as follows :

Given a learning set of examples of associated input/output pairs, derive a
general model for the underlying input/output relationship, which may be used
to explain the observed pairs and/or predict output values for any new unseen
input.

Input states are described or characterized by a vector ofattributesor featuresassuming
continuous or discrete values. Output is generally a scalar, with values belonging either
to a finite set of mutually exclusive classes, or equal to real number in the case of
regression problems.

In the context of security assessment, an example would correspond to a snapshot of a
power system in a given operating situation. The input attributes would be (hopefully)
relevant parameters describing its electrical state and topology and the output could be
information concerning its security, in the form of either a discrete classification (e.g.
secure / marginal / insecure) or a numerical value derived from security margins or
indices.

In general, the solution of this overall learning problem is decomposed into several
subtasks.

Representation consists of (i) choosing appropriate input attributes to represent the
power system state, (ii) defining the output security information, and (iii) choosing
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a class of models suitable to represent input/output relations.

Feature selection aims at reducing the dimensionality of the input space by dismissing
attributes which don’t carry useful information to predict the considered security
information. This allows us to exploit the more or less local nature of many security
problems (see chapter 11).

Model selection (or learning per se) will typically identify in the predefined class of
models the one which best fits the learning states. This generally requires choice of
model structure and parameters, using an appropriate search technique.

Interpretation and validation are very important in order to understand the physical
meaning of the synthesized model and to determine its range of validity. It consists
of testing the model on a set of unseen test examples and comparing its information
with prior expertise about the security problem.

Model use consists of applying the model to predict security of new situations on the
basis of the values assumed by the input parameters, and if necessary to “invert” the
model in order to provide information on how to modify input parameters so as to
achieve a security enhancement goal.

Solving therepresentation problemis completely left to the engineer, although there is
a lot of research going on to develop automatic feature construction methods [ME 89] .
In the context of power system security, a compromise has to be found between the
use of very elementary standard operating parameters and more or less sophisticated
compound features, known to show strong correlation with security. Ideally, the
standard operating parameters would be preferable, but, depending on the problem and
class of learning methods, this may lead to unsatisfactory performance, in terms of
reliability. Thus choosing an appropriate set of candidate attributes is often done in
an iterative fashion, during the first trials of applying a learning algorithm to a new
security problem.

The distinction betweenfeature selectionandmodel selectionis somewhat arbitrary, and
some of the methods discussed below actually solve these two problems simultaneously
rather than successively.

From the interpretation and validationpoint of view, as we will see, some of the
methods provide rather black-box information, difficult to interpret, while some others
provide explicit and very transparent models, easy to compare with prior knowledge.

Finally, as far as theuseof the model for fast decision making is concerned, although
speed variations of several orders of magnitude may exist between various techniques,
all methods discussed in this work are sufficiently fast in the context of power system
security analysis, taking into account the computing powers available in the security
assessment environments. However, the methods producing their information in an
explicit fashion are easier to exploit for control applications.
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1.4.2 Classes of supervised learning methods

Below we introduce the three established families of learning algorithms, in the chrono-
logical order of their appearance. A very accessible description of these methods and a
discussion of their practical uses are given in [WE 91f] . A more extensive discussion of
a large number of algorithms and a very systematic comparative study are provided in
[TA 94] . An introduction to a theoretical framework for studying learning algorithms
is given in [AN 92] .

While in the following chapters we will give a more technical unified description
of those methods which we deem attractive in the context of power system security
problems, here we will put the emphasis on relevant differences in the philosophies,
and provide some basic bibliographic references for further discussions.

Statistical pattern recognition

Statistical pattern recognition5 methods are generally characterized by an explicit un-
derlying probability model of the relation between inputs and outputs [DU 73] . The
approach then consists of estimating the probability model from the learning data and
using the probability model for decision making [BE 85] .

Many of the modern methods have been developed in the context of signal processing
applications, such as image and speech processing and letter recognition problems.
Some of the discrimination methods used in pattern recognition have also been applied
by statisticians for data analysis and modelling in economic and social sciences. In-
terestingly, almost all these methods have been applied to medical problems, such as
blood cell counting and medical diagnosis.

Assuming that the joint probability distributionp(i; o) of input/output pairs is known,
we may, for any given input valuei, compute the conditional probability distribution
p(oji) or some relevant characteristics derived from this distribution. For example,
for regression problems one would typically compress its information to one or two
numbers such as the expected value and standard deviation, whereas for decision
problems one could replace it, for a given loss-matrix, by the minimum expected cost
decision.

Statistical methods come in two categories according to the assumptions made on the
probability distributions and the corresponding technique used to estimate conditional
probabilitiesp(oji).

Parametric methods. These assume a simple a priori known functional form of either

5The field of Pattern Recognition traditionally concerns the discrete case of classification or discrim-
ination. Similar techniques, have been derived for regression problems, and will be discussed more in
detail in chapter 4.
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p(ijo) or p(oji), which leads to linear or quadratic decision surfaces, together with
various criteria for estimating their parameters.

Admittedly, these methods are hardly powerful enough to handle the large diversity
of essentially non-linear power system security problems, although in some circum-
stances, when the underlying assumptions are valid, they may perform surprisingly
well (e.g. see the comparative results given in chapter 14).

Non-parametric methods. These aredistribution-freetechniques, including general-
ized histogram methods, kernel estimators,k nearest neighbor (K � NN ), and
various series expansions of the probability density functions.

It is worth mentioning that in order to be effective, the non-parametric methods
impose the use of regularity conditions on the estimated densities such as smoothness
or complexity constraints, so as to prevent overfitting problems (see the discussion
in chapter 4). The non-parametric methods are often rather black-box like, tending
to provide only very limited insight into the problem structure, as compared to the
parametric methods, but in the recent years more powerful techniques have been
proposed, which combine up to a certain degree the non-parametric nature with data
analysis features [FR 81, FR 84, FR 87]

In addition to the distribution estimation techniques, a number of statistical methods
have also been designed for feature selection and extraction and for the estimation
of classification error rates. We ask the interested reader to refer to [DU 73, HA 81,
DE 82] , for further information on this topic.

Machine learning

In the restricted sense,machine learningis the subfield of artificial intelligence which
is concerned with the design of automatic procedures based on logical operators, which
are able to learn a task on the basis of the observation of a learning set of solved
instances of that task.

In the context of classification, the termconcept learning from examplesis used to
denote the process of deriving a logical description (orrule) in some given represen-
tation language, of the - ideally - necessary and sufficient conditions corresponding to
a class of objects. The stress is then often put on the use of powerful representation
languages for the examples and the rules and an important part of the machine learning
research has been devoted to the definition of appropriate search procedures, able to
derive efficiently the appropriate rules.

To avoid overfitting, one of the major concerns of machine learning methods is to
derive adequate compromises between rulecomplexityand data fit. AnOccam’s
razor6 argument is used, to filter statistically unrepresentative variations observed in

6“Entities should not be multiplied unnecessarily” is the famous razor argument William of Occam
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Figure 1.3 Hypothetical decision tree

the learning set. Quite interestingly, this is very similar to the regularization techniques
used in non-parametric statistical procedures and artificial neural networks.

An important asset of machine learning methods lies in the explicit and logical repre-
sentation they use for the induced classification rules, which, together with simplicity,
provide a unique explanatory capability. One of the most successful classes of ma-
chine learning methods is thetop down induction of decision trees(TDIDT) paradigm,
initially popularized by Quinlan [QU 83] . This initially purely deterministic approach
- developed for the classification of chess endgames - has evolved into a probabilistic
approach and is now quite similar to the hierarchical (or sequential) methods devel-
oped by statisticians [MO 63, FR 77, BR 84] . As shown by the recent review given in
[SA 91a] , a very large number of variants of decision tree classification methods have
been published since the early sixties. In chapter 3 we will discuss important aspects
and provide a detailed description of our algorithm.

Figure 1.3 shows a hypothetical binary decision tree (DT). It is composed of two types
of nodes : test nodes, including the top-node, correspond to dichotomous tests on some
input attributes; terminal nodes correspond to a conclusion on the output value, such
as class labels or conditional probability distributions. To infer the output information
corresponding to a given input vector, one traverses the tree, starting at the top-node,
and applying sequentially the dichotomous tests encountered to select the appropriate
successor. When a terminal node is reached, the output information stored there is
retrieved.

originally used against the superfluous elaborations of his Scholastic predecessors, and which was since
then (around 1320) incorporated into the methodology of experimental science in the following form :
given two explanations of the observed data, all other things being equal, the simpler explanation is
preferable.
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Thus decision trees essentially partition the input space into a finite number of hyper-
boxes, to each one of which they attach a model for deriving the output information.
In the very elementary case illustrated in Fig. 1.3, this model simply consists of
class labels, but more complex models have been proposed, e.g. logistic models of
conditional class probabilities (see chapter 6).

As suggested by the acronym, TDIDT methods approach the decision tree learning in
a divide and conquer fashion, whereby a DT is progressively built up, starting with
the top-node and ending up with the terminal nodes. At each step, a tip-node of the
growing tree is considered and the algorithm decides whether it will be a terminal
node or should be further developed. To develop a node, an appropriate attribute is
first identified, together with a dichotomy on its values. The subset of its learning
examples corresponding to the node is then split according ot this dichotomy into
two subsets corresponding to the successors of the current node. The terminal nodes
are “decorated” with appropriate information on the output values derived from their
learning examples, e.g. the majority class label.

To build good decision trees, an algorithm must rely on appropriateoptimal splitting
andstop splittingrules. Optimal splitting has to do with selecting a dichotomy at a test
node so as to provide a maximum amount of information on the output value, whereas
stop splitting has to identify situations where further splitting would either be useless
or lead to performance degradation, due to overfitting. These aspects are discussed in
more detail inxx3.4.3 and 3.4.4.

Artificial neural networks

The field of artificial neural networks (ANNs) started with the work on perceptrons
in the early sixties, and has grown since the mid eighties to a very important and
productive research field, involving quite diverse topics as for example the study of the
biological plausibility of different network topologies and learning rules, the building of
theoretical justifications, as well as practical hardware and software implementations,
and - last but not least - the improvement of the practical learning algorithms.

In this introduction we will restrict our description to multi-layer perceptrons. Later on,
in chapter 5, we will discuss another complementary technique, namely the Kohonen
network [KO 90] . For further information, a widely recommended theoretical intro-
duction to neural networks is given in [HE 91] while [ZU 90] gives a more exhaustive
description of implementation issues of different types of networks and algorithms.

The perceptron, represented in Fig. 1.4, is basically a simple linear threshold unit
together with an error correcting learning algorithm. It is able to represent a linear
boundary in its input space.

Its limited representation capabilities have motivated the consideration of more com-
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plex models composed of multiple interconnected layers of perceptrons, MLPs for
short. Figure 1.5 illustrates the classical feed-forward MLP. The first orinput layer
corresponds to the attribute values, and the last oroutput layer to the desired classi-
fication or regression information. Intermediate layers enable the network, provided
that its topology and its weights are chosen appropriately, to approximate arbitrary
“reasonable” input/output mappings.

The discovery of the back-propagation algorithm (seex5.2), allowing us to compute
efficiently and in a local fashion the gradient of the output error of the network with
respect to weights and thresholds, has been central to the success of MLPs [WE 74,
RU 86] . This may be exploited iteratively in order to adjust the weights so as to reduce
the total (or expected value) of the mean square error (MSE) for learning examples.
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In recent years, much progress has been made in using more efficient optimization
techniques for the learning procedures of MLPs, which have become a very popular
type of neural network and have been used for many applications with quite promising
results, particularly for multi-dimensional function approximation. An interesting
property of the MLP is its ability to achieve feature extraction and learning in a
single step : the weights connecting the input layer with the first hidden layer may be
interpreted as projecting the input vector in some particular directions, realising a linear
transformation of the input space, which is used in subsequent layers to approximate
outputs.

However, one of the difficulties with MLPs comes from the very high number of weights
and thresholds related in a non-linear fashion, which makes it almost impossible to give
any insight on the relationship which has been learned. All in all, one can say that MLPs
offer a flexible, easy to apply, but essentially black-box type of approach to function
approximation. In the sequel we will give some illustration of possible problems with
this type of approach.

1.4.3 Clustering and unsupervised learning

Unsupervised learning or clustering techniques will be discussed in chapters 4 and 5.
In contrast to supervised learning, where the objective is clearly defined in terms of
modelling the underlying correlations between some input variables and some particular
output variables, unsupervised learning methods are not oriented towards a particular
prediction task. Rather, they try to identify existing underlying relationships among a
set of objects characterized by a set of variables.

One of the purposes of clustering7 is to identify homogeneous groups of similar objects,
in order to represent a large set of objects by a small number of representativeprototypes.
Graphical, two-dimensional scatter plots may be used as a tool in order to analyze the
data and identify clusters. It is interesting to note that the same techniques may also
be used in order to identify similarities (and thus redundances) among the different
attributes used to characterize objects. In the context of power system security both
applications may be useful as complementary data analysis and preprocessing tools.

Unsupervised learning algorithms have been proposed under the three umbrellas given
above to classify classification methods. In the statistics literature the term clustering
or cluster analysis is used [DU 73, HA 81, DE 82] , in the machine learning community
the termconceptual clusteringis used to denote methods working with symbolic
representations [MI 84, MI 86] , while in the neural net terminology the term self-
organizing networks or maps is often used [KO 90, ZU 90] .

7In the latin languages the term “classification” is used to denote clustering, whereas “discrimination”
is used to denote supervised learning.
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1.5 A FLAVOR OF THE PROPOSED FRAMEWORK

1.5.1 Which methods should we combine in a tool-box ?

In the preceding sections we gave a first overview of typical security assessment
problems and presented the motivation of providingdata managementanddata analysis
tools in order to exploit the fast growing computing powers. We concluded with a brief
survey of the very numerous existing methods or techniques, able to extract relevant
information from large statistical samples of security simulations.

Our own research work has mainly concentrated on the use of decision tree induction
methods in this context of security assessment. But we believe that the complexity of
security problems and their conflicting requirements - reliability, speed, interpretability
- would prevent any single approach from providing a satisfactory overall solution.
Consequently, our long term goal is to identify interestingcomplementaryclasses of
methods and combine them in atool-boxapproach in order to allow improved security
assessment practices.

However, although keeping in mind that there is no universal panacea, we will argue
that the data analysis and explanatory capabilities of decision tree based methods are
paramount, and let them quite naturally assume a key role in such a framework, in
order to enable cooperation between the engineer and the computer.

The importance of ongoing research in statistics, machine learning and neural net-
works, and in particular the cross-fertilization between these fields will certainly lead
to the discovery of more powerful new techniques and an improved understanding of
existing ones. Thus we should think about the development of a set of a representative
power system security benchmark data bases, for the learning techniques, allowing
researchers to carefully test new methods, as they appear, and compare them in terms
of performanceandfunctionalitywith the existing more mature techniques.

Although progress will certainly continue in the future, we will show that it is possible,
with present day technology, to provide smart environments for security assessment, by
building a tool-box where our learning methods will cooperate, together with numerical
simulation tools and graphical man machine interfaces, with the engineer to derive better
planning and operation strategies.

In the subsequent chapters we will discuss the kind of methods which may be useful
from a technical point of view, and provide experimental evidence to support our
conjectures. But before that, we will conclude our introduction with a hypothetical
illustration of such a tool-box approach.
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1.5.2 A hypothetical illustration of the framework

Note. The actual applications to real or academic security problems of the methods
illustrated below will be discussed in later chapters, where appropriate references will
also be given.

A security problem

Let us consider a hypothetical power system and suppose this system is voltage security
limited in a weak - in terms of reactive power - area. We shall imagine that this security
problem has been identified in previous screening studies, and that a set of possibly
constraining disturbances have already been determined, such as some specific tie line
or generation trippings.

For this system, a practical problem could be to characterize security regions with
respect to combinations of these disturbances, in order to provide an operator with pre-
ventive security assessment criteria. A requirement would be that these criteria should
provide information on the effective preventive control means, in case of insecurity.

Another objective could be the design of emergency state indicators applicable in case
of a disturbance inception. Ideally, these indicators would provide a highly reliable
and anticipative detection of the risk of voltage collapse and provide information on
appropriate emergency control means, such as OLTC blocking and load shedding.

How could we generate a data base ?

In order to provide a representative sample of voltage security scenarios for the above
problems, we would ask for the advice of planning and operation planning engineers and
operators of that system, so as to gather information about known system weaknesses
and operating practices.

From this information, data base building software would then be designed in order to
generate randomized samples representative of normal operating conditions, including
also a sufficient number of unusual situations, deemed relevant for security character-
ization. In particular, with respect to real-life operating statistics, this sample would
typically be biased towards the insecure regions of the state space.

According to that sampling procedure, an initial data base would be generated, typically
comprising two or three thousand states. For each state, the security would be analyzed
with respect to each one of the studied disturbances. For example, a post-contingency
load power margin could be computed with an appropriate simulation tool. As we
will see later, this may be done within some hours response time, for real large-scale
power system models on existing computer networks, by using efficient simulation
software and exploiting trivial parallelism. In addition to this information, appropriate
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preventive or emergency control information could be pre-determined for the insecure
states.

Further, a certain number of attributes would be computed, which would be proposed
as input variables to formulate security criteria. In the preventive mode security assess-
ment problem, these attributes would typically becontingency-independentprefault
operating parameters, such as voltages, reactive power generation and compensation
reserves, power flows, topology indicators. For the emergency state detection problem,
we would rather use raw system measurements (e.g. voltage magnitudes, power flows,
transformer ratios, breaker status) of the intermediatejust after disturbancestate. In
contrast to the preventive mode attributes, the emergency state attributes would de-
pend on the disturbance and on the short-term load models, in addition to the prefault
operating state.

Clustering methods for data pre-processing

In a security problem, many different attributes may actually turn out to provide
almost equivalent information, due to the very strong physical correlations among
geographically close components. Thus, for a class of similar variables, the problem
arises of how to define a small set of representative attributes.

To fix ideas, let us consider the case of voltage magnitudes. One possible approach
could be to compute correlation coefficients among any pair of bus voltages, on the basis
of the data base statistical sample, and use these coefficients as similarity measures,
together with clustering techniques so as identify a small number of voltage coherent
regions. For each group of busbars, a representative equivalent (e.g. mean) voltage
would be used instead of individual voltages. This would be beneficial in terms of
reducing the computational burden of the subsequent building of security criteria, and
simplify the analysis of the results. Notice that similar applications of clustering
techniques have been proposed in the power system literature, e.g. for the selection of
pilot nodes for secondary voltage control [LA 89] and for the identification of coherent
groups of machines in dynamic simulations [ZA 82] .

Another appealing possibility, leading to a similar result, is to use the feature map of
Kohonen, in order to analyze the relationships among these attributes. The comparison
of the resulting feature map with the geographic location of busbars in the power system
could provide interesting information (seex5.3).

In addition to the above “feature extraction” application, clustering techniques have
been proposed, in a more conventional way, to identify groups of similar power sys-
tem operating states. One possible purpose is to partition the overall data base into
subsets for which the security assessment problem could be easier to solve. Another
interesting application would be to “condense” the full data base to a smaller subset
of representative prototypes. This would then reduce the number of required security
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simulations, and shorten significantly the associated computing times.

What can decision trees do ?

Given a data base composed of examples, for which security margins have been deter-
mined for several contingencies and for which a number of candidate attributes have
been computed, decision trees construction would proceed in the following way.

Data base partition. Split the data base into disjoint learning and test subsets.

Data base pre-classification. Define security classes. E.g. a state is considered pre-
ventively voltage secure if the security margin is sufficiently high for every distur-
bance.

Decision tree growing. Build a decision tree on the basis of the learning set. This
includes (i) the automatic identification of the subset of attributes among the candi-
date attributes, relevant for the prediction of the security class, and (ii) the definition
of appropriate threshold values for these attributes.

Decision tree testing. Compare the security classification predicted by the DT and the
real classification for each test example and evaluate the proportion of non-detection
of insecure states and of false alarms.

Iterate. If there are too many non-detections of insecure states, increase the threshold
value used to define the secure class in terms of the security margin. If there are
too many false alarms, propose better attributes or increase the number of learning
states.

The building of the decision trees provides an approximate model of the voltage security
region of the studied area of the power system. In addition to a global DT covering
all disturbances simultaneously, single-contingency DTs may also be constructed to
provide more specific information and additional insight. Further, various DTs may be
constructed for various security margin threshold values, so as to discriminate between
marginally secure and very secure situations.

What can neural networks add ?

In addition to the simplified view on security, provided by the DTs in terms of a discrete
model relating a small number of security classes and thresholds on attribute values,
one is generally interested in providing a continuous security margin, at least in the
neighborhood of the threshold values used to define security classes.

As we have mentioned, one of the strong points of the MLP is its non-linear modelling
capability. On the other hand, the decision tree identifies the attributes in strong
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correlation with the security class. Thus, using the latter attributes as input variables
to a MLP model, we may seek to approximate the security margin.

Once the weights of the MLP have been adapted, on the basis of the security margin
information of the learning states, the MLP may be used for fast prediction of the
margin for any seen or unseen example. Experiments with various security problems
have shown that this leads to richer and more reliable security assessment information.

Further, the back-propagation algorithm may be adapted so as to compute automatically
the sensitivity of the approximate security margin with respect to input attributes.

What do distance based methods offer ?

With the previous two approaches, we have essentially compressed detailed information
about individual simulation results into general, more or less global security charac-
terizations. This allows us to provide the required physical understanding, thanks to
the data analysis component of decision trees and attribute clustering techniques. In
addition, the derived models may be used efficiently for on-line security analysis.

In this latter context, additional information may however be provided in a case by
case fashion, by matching the real-time situation with similar situations found in the
data base. To achieve this matching, generalized distances must be defined so as to
evaluate the similarities among power system situations, together with appropriate fast
data base search algorithms.

Once the closest neighbors have been identified they may be used in multitudinous
ways. For example, their distance to the current state may be used as a measure of
the degree of confidence one may attach to the diagnostic provided by the DT and
MLP models. If the latter distance was too large, it would be concluded that for the
current state no reliable security information may be derived from the data base. If,
on the contrary, the nearest neighbors are sufficiently close to the current state, then
various kinds of detailed and specific security information may be extrapolated from
these states to the current situation, and shown to the operator (see chapter 4.3.1).

1.6 READING GUIDELINES

The main objective of our work is the application of machine learning methods to power
system security assessment problems. These methods have been briefly presented in
the preceding section; they will be more thoroughly expanded below, in chapter 3 of
Part 1. The consideration of other computer based learning methods in Part 1 has
mainly a subsidiary threefold objective : to give an as unified as possible overview of
existing methods, to justify a posteriori our choice of machine learning methods, and to
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open perspectives for the possible combination of these with the other methods, used
as complementary tools.

The reader interested exclusively in our main objective may skip chapters 4 and 5 of
Part 1.
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COMPUTER BASED LEARNING
METHODS
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General definitions and notation

In the following four chapters we provide a theoretical description of learning methods
which we consider to be relevant to power system security assessment problems. We
will mainly concentrate on those methods which are actually used in the applications
discussed in chapters 13 and 14, for which we will also provide a detailed description
of the algorithms used. For the remaining methods, used by other researchers or for
which we have identified some prospective application possibilities, we will merely
describe principles.

As mentioned in the introduction, the three approaches to (computer based) learning
from examples are (i) statistical pattern recognition, regression or clustering, (ii) ma-
chine learning including concept learning from examples and conceptual clustering,
and (iii) artificial neural network based learning. Although many of the theoretical and
practical problems studied in these three fields are similar, and have received similar
solutions, the three research communities have been relatively isolated in the past. For
example, osmosis between the symbolic (and deterministic) oriented machine learning
and statistical pattern recognition has begun only in the late eighties. On the other hand,
statisticians and machine learning researchers have only very recently started looking
at the new algorithms extensively developed in the last ten years within the artificial
neural network paradigm.

Thus, the domains of interest of the three fields tend to overlap quite significantly, while
interesting publications are spread over a large number of conference proceedings and
journals. Moreover, important variations in terminology create an additional difficulty.
We will therefore use a single notation and theoretical framework to describe methods
from the three categories. Our terminology may sometimes seem unusual, since it
is essentially a compromise. One of our aims has been to collect the sole relevant
information, for the proper understanding of the subsequent discussions, while keeping
the complexity of notation to a minimum.

In the present chapter, we introduce first the general definitions and notations used
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throughout the following 4 chapters. In chapter 3, we start with the discussion of
machine learning methods, and in chapters 4 and 5 we proceed with the considera-
tion of complementary methods from the statistical and the neural network viewpoint,
respectively. Finally, in chapter 6 we will comment on some interesting hybrid ap-
proaches, combining various frameworks. We will mainly concentrate on classification
techniques for the prediction of securitystatus, and on regression techniques for the
approximation ofmargins, and to a much lesser extent discuss clustering techniques,
which may be useful for data pre-processing.

An important topic is performance assessment. Thus, we will conclude this theoretical
introduction with a short discussion, in chapter 7, of appropriate evaluation criteria and
practices and give a brief review of some recent comparative studies.

2.1 REPRESENTATION OF OBJECTS BY ATTRIBUTES

Within the context of a learning problem we denote by

U
4
= fall possible objectsog

the universeof possibleobjects. For example, in the context of preventive security
assessment this could be the set of all possible normal prefault operating states of a
power system.

Throughout this text, we will denote by an upper-case boldface letter, e.g.X , any
subset ofU and:X its complement w.r.t.U .

We will use the termattribute to denote functions of objects which are defined onU .
Thus

a(�) denotes an attribute,
a(o) this attribute’s value for objecto, and
a(X) the set of all possible values it assumes inX .

Further, for any subset ofV � a(U) of values ofa(�), we will denote bya�1(V ) the
setfo 2 U ja(o) 2 V g of objects.

Attributes are used to provide physical information on power system states, which is
supposed to be useful for predicting security. We use lower-case boldface letters to
denote vectors of attributes e.g.

a(o)
4
= (a1(o); : : : ; an(o))

T ;

wheren stands for the total number of different attributes, in a given context.

Attributes are in principle very general functions. Most of the time we will use scalar
(numerical or qualitative) attributes, but occasionally more complex non-scalar data
structures can also be considered as attributes.
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In some instances, we will make the distinction betweenattributes, which will denote
any defined function of objects, andcandidate attributewhich are those attributes
which are being used as input variables for learning. We may also use the termtest
attributesor selected attributesto distinguish the subset of candidate attributes actually
used in the learned rule.

2.2 CLASSIFICATION PROBLEMS

In the literatureclassificationis used with two different meanings. In the case of
unsupervised learningone looks at a set of data points and tries to discover classes
or groups of similar points. In the case ofsupervised learningone is given a set of
pre-classified data points and tries to discover a rule allowing us to mimic as closely
as possible the observed classification. In our terminology, when we use the term
classification, we are talking aboutsupervised learning, which is also referred to as
concept learning from examplesor discrimination. We will use the termclustering
rather than classification, to denoteunsupervised learning.

2.2.1 Classes

In the context of classification problems, we will denote by

C
4
= fc1; : : : ; cmg

the set of possible, mutually exclusive classes1 of objects.

The numberm of classes is in principle arbitrary but generally rather small. In the
context of security assessment, classes will represent different levels of security of a
system; they are often defined indirectly via security margins and some thresholds. In
this case, we will denote by�1 < �2 < : : : < �m�1 them � 1 corresponding threshold
values.

Since the classification of an object is unique, the following partition is defined on the
universe

fC1; : : : ;Cmg : Ci
4
= fo 2 U jc(o) = cig; (2:1)

wherec(�) denotes the corresponding classification function defined onU .

1In the machine learning literature, the term concept is also used to denote a class of objects.
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2.2.2 Types of classification problems

Deterministic vs non-deterministic

A classification problem is said to be deterministic if to any objectrepresentation
corresponds a single possible class. Thus, the attributes can inprinciple be used to
determine the correct class of any object without any residual uncertainty.

In practice, there are various sources of uncertainty which will prevent most of the
problems from being deterministic. For example, in large-scale power system security
issues it is generally not desirable to take into account every possible effect on security,
due to simplicity constraints. Another example of non-determinism which is often
neglected, is due to the limited accuracy of a real-time information system which
provides attribute values. In some other circumstances, it is simply not possible to
obtain a good knowledge of the system state in order to predict its future evolution, e.g.
due to modelling uncertainties.

A trivial but fundamental property of non-deterministic problems, is the strong depen-
dence of the theoretical upper bound on reliability of any classification on statistical
distributions of objects. In particular, for anm-class problem this upper bound on
reliability may be as low as1

m
.

Diagnostic vs prediction

In addition to the above distinction, the notion of classification may come with different
meanings, according to the type of physical problems considered.

Diagnostic problems. Classes correspond to different types of populations, which are
clearly defined a priori. For example boys and girls form two mutually exclu-
sive classes of children. In diagnostic problems, the possible values assumed by
attributes are a causal consequence of the class membership. Although in prin-
ciple perfect classification is possible, actual performance is often limited by the
information contained in descriptive attributes.

Prediction problems. Classes correspond to some future outcome of a system, which
is characterized by attributes obtained from its present state. Here, classes are a
causal consequence of attributes, although one may distinguish between the deter-
ministic case, where the class is afunctionof the attributes and situations where
there exists some degree of non-determinism, either intrinsically or due to limited
information contained in attributes.

Notice that there are intermediate situations where some attributes are causally posterior
to the class while others are determined prior to it.
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In the context of power system security, we mainly consider prediction problems, some
being in principle deterministic and some others non-deterministic due to intrinsically
limited information contained in attributes.

2.2.3 Decision or classification rule

Hypothesis space

A decision ruled, or hypothesisis a function assigning a value inC to any possible
attribute vector ina(U ) :

d(a1(o); : : : ; an(o)) or simply d(o) : U 7�! C: (2:2)

In principle there is no loss of generality in assuming an identical decision and classifi-
cation space. In particular, some of the classesCi may be empty, while corresponding
to non-empty decisions regions, and vice versa. This would allow the treatment of
reject options and also to distinguish among sub-categories of classification errors.

A decision rule induces the partitionfD1; : : : ;Dmg onU , defined by

Di
4
= d�1(ci) = fo 2 U j d(o) = cig (i = 1; : : : ;m): (2:3)

The hypothesis spaceD is defined as a predefined set of candidate decision rules.
Examples of hypothesis spaces arethe set of binary decision treesor the set of multi-
layer perceptrons(see chapters 3 and 5).

Rule quality

To learn a decision rule implies a search of the hypothesis space, so as to find a decision
rule maximizing the chosen performance criterion.

To evaluate decision rules, we suppose that a quality measureQ(�) is defined, which
assigns a real numberQ(d) to every decision rule inD :

Q(d) : D 7�!]�1 : : :+1[: (2:4)

The higher the quality of a decision rule, the more appropriate is this rule for solving
the classification problem. Appropriate quality measures will be defined later on, but
in general a quality measure will combine different elementary evaluation criteria,
selected among the following ones.
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Reliability. The reliability (or accuracy) of a decision rule is a measure of the similarity
of the partition it induces onU and the classification. Frequently, reliability is
defined as the expected probability of misclassification, or more generally as the
expected misclassification cost. We will use the notationR(d) for reliability.

Cost of implementation. The complexity of implementing a decision rule may be
another important aspect. This may involve the computational complexity of the
algorithm used to apply the rule; it may also take into account the complexity of
obtaining the attribute values (e.g. measurement cost).

Comprehensibility. If a decision rule has to be validated by an expert or applied by a
human operator, then comprehensibility is often a key feature. The rather vague (and
subjective) notion of comprehensibility is generally replaced in practice by a well
defined (but also subjective) complexity measure. We will use the notationC(d) to
denote the model complexity. Examples of complexity measures are the number of
nodes of a decision tree and the number of independent tunable parameters (weights
and thresholds) of a multi-layer perceptron.

If we look more globally at the process of obtaining a classification or regression
model in order to compare competing approaches, the following two aspects, related
to preparatory work, become equally important.

Cost of data base collection. In our security assessment problems, the time required
to generate data bases and running security simulations might become a practical
limitation.

Complexity of learning. This corresponds to the computational requirements in terms
of CPU time and memory, that must be fulfilled in order to learn a rule. In some
real-time applications this may be a critical aspect and as we will see, there may
exist variations of several orders of magnitude among different methods.

2.2.4 Learning and test examples

An example is a classified vector of attribute values corresponding to an observed or
simulated object. The learning setLS is a sample composed ofN different examples

LS
4
= f(v1; c1); (v2; c2); : : : ; (vN ; cN)g; (2:5)

where the vector
vk = (vk1 ; v

k
2 ; : : : ; v

k
n)

T = a(ok) (2:6)

represents the attribute values of an objectok andck = c(ok) its class.

Similarly, the test setTS is another, ideally independent, sample of sizeM . The test
set is used in order to estimate the expected quality of a decision rule, once it has been
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derived on the basis of the learning set. Generally, although not necessarily, both sets
are drawn from the same sampling distribution.

In the sequel we will always assume that the objects of a learning or test set have
been drawn independently; test and learning set based estimates of probabilities will
be introduced in 2.5.

2.2.5 Learning a classification rule

The apparentquality Q(d;LS) of a decision rule is the evaluation of its quality on
the basis of a learning set. Thus, if the only information available for the choice of
a classification rule is a learning set, learning will “merely” consist of searchingD
for a ruled� of maximum apparent quality. This implies in general the selection of
an appropriate subset of the candidate attributes to be used in the formulation of the
decision rule.

Clearly, this ideal situation is often not reached in practice. For example, one may be
unable to compute the apparent quality, or one may be unable to reach the optimum
rule. And even if the minimum apparent quality rule may be systematically reached,
this may still produce inappropriate results with respect to the classification of unseen
objects, because the quality measure may be inappropriate, or the hypothesis space too
small, or the learning set not representative enough.

Learning algorithms are by definition inductive, since they aim at identifying a general
model on the basis of a sample containing only part of the relevant information.
Thus, the performance of a given algorithm for a given practical problem can only be
determined empirically.

All learning methods are biased towards some particular problems. For example, the
well known overfitting problem is an example where the quality measure is biased.
Indeed, as we will illustrate later in our explorations, choosing a model of maximum
apparentreliability, often (but not necessarily) leads to suboptimaltruereliability. This
has led researchers to use quality measures combining apparent reliability and model
complexity (or prior credibility [BU 90, WE 90a] ) or cross-validation techniques, but
these are also biased [SC 93, WO 93] .

2.3 REGRESSION PROBLEMS

In the context of supervised learning, in addition to classification, we will consider
regressionwhich aims at deriving a model for a continuous numerical value, rather
than a discrete class.
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2.3.1 Regression variables

We will denote byy(�) = (y1(�); : : : ; yr(�)) an r-vector valued regression function,
y(o) its value in the context of a particular observation andy(U ) its range. Examples
of regression variables in the context of security assessment could be various load
power margins for voltage security, and various energy margins for transient stability.

We will use a similar notation for the learning and test samples in the context of regres-
sion, while replacingc(o) byy(o). The above remarks concerning the non-determinism
and the diagnostic or prediction type of problems apply equally to regression problems.

In the context of regression problems it may be interesting to distinguish real valued
attributes from discrete ones, since continuity and differentiability requirements may be
stated with respect to the former kind of attributes, while the latter would be considered
as parameters of the regression model.

2.3.2 Regression models

To talk about learning a relationship betweena(�) and a continuous regression variable
needs to introduce aregression model. Such a model, denoted byr(�), is a function
assigning a value iny(U ) to any possible attribute vector ina(U ) :

r(ai(o); : : : ; an(o)) or simplyr(o) : U 7�! y(U ): (2:7)

We will denote byR the space of candidate regression models.

In this context, learning often consists of a numerical optimization process adjusting
the values of a certain number of weights. As for classification problems, evaluation
criteria will generally take into account the accuracy and the model complexity. The
apparent quality will be evaluated on the learning set and gradient techniques are often
used in order to search for an appropriate regression model, maximizing the apparent
quality.

An important practical difference between classification and regression is that in re-
gression we essentially aim at modelling smooth input/output relationships whereas in
classification we seek for a partition of the universe into a finite number of regions.
Therefore, to avoid overfitting problems in the context of regression, the complexity
term in the quality measure often aims at smoothing (or regularizing) the resulting
model by penalizing high second derivatives.
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2.4 CLUSTERING PROBLEMS

In our terminology we will use the termclusteringto denote any type ofunsupervised
learning. Geometrically, unsupervised learning often aims at identifying clusters of
similar objects or attributes. In the case of vector quantization applications, the purpose
is to replace a large set of samples by a much smaller one, which is ideally chosen
so as to minimize the overall quantization error. In both cases, the definition of
similarity measures plays a central role. Another, modelling oriented way of looking at
unsupervised learning, considers that the data are generated by a mixture of (unknown)
probability distributions and aims at identifying a maximally plausible combination of
such distribution laws chosen from a predefined catalog [DU 73, CH 88a] .

In this work we consider mainly similarity based clustering and vector quantization
approaches. Below, we define the type of distances between objects or attributes, used
in the context of clustering as well as in the context of other nearest neighbor type of
applications.

2.4.1 Distances between objects in an attribute space

Similarity based clustering requires the definition of a similarity measure. Intuitively,
given a distance measure, the similarity of two objects will be inversely proportional
to their distance, and although mathematically dissimilarity measures are slightly more
general than distances (the triangular inequality does not necessarily hold for dissim-
ilarities) in the context of object clustering we will restrict our discussion to distance
based dissimilarity measures, which we define below.

The vector distance between two objects in the attribute space is defined by

�(o1; o2)
4
= (�a1(a1(o1); a1(o2)); : : : ; �an(an(o1); an(o2))); (2:8)

where�ai(a(o1); a(o2)) denotes a predefined scalar distance between the values of an
attribute.

The definition of the distance between two attribute values depends on the attribute type.
In particular, for a numerical attribute the (weighted) difference�a(a(o1); a(o2)) =
wa�(a(o1)�a(o2)) is generally used, whereas for a symbolic attribute a difference table
�a(vi; vj) is defined explicitly for each pair of possible values, such that�a(vi; vj) =
��a(vj; vi) and�(v; v) = 0. Inx3.5.2 we will describe approaches for the definition of
appropriate difference tables, on the basis of a learning set.

Given the definition of a distance between attribute values, for each attribute, thek-
norm of the vector distance defines the scalar distance, or simply distance, between
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two objects

∆(o1; o2)
4
= k

sX
i�n

j�ai(ai(o1); ai(o2))jk; (2:9)

wherek = 1 for the Manhattan(or city-block) distance,k = 2 for the Euclidean
distance andk =1 for themaximum absolute deviationdistance.

Finally, the scalar distance between two sets of objects is accordingly defined by the
lower bound “inf” of the distances between objects of the two sets

∆(X1;X2)
4
= inff∆(o1; o2)jo1 2X1 ^ o2 2X2g: (2:10)

2.4.2 Attribute similarity

Similarity measures may also be defined between attributes, e.g. as generalized corre-
lation coefficients.

Anticipating on the probability notation introduced below, we will define three different
such measures, and their corresponding sample estimates.

Correlation coefficient. Used to measure the similarity between tworeal valued at-
tributes. It is defined by

j�(a1; a2)j
4
=

jE f(a1 �Efa1g)(a2 �Efa2g)g jq
E f(a1 � Efa1g)2gE f(a2 � Efa2g)2g

; (2:11)

and estimated by

j�̂LS(a1; a2)j
4
=

j
P

o2LS f(a1 � ā1)(a2 � ā2)g jqP
o2LS f(a1 � ā1)2g

P
o2LS f(a2 � ā2)2g

: (2:12)

Spearman’s rank correlation. Used to measure the correlation between ordered, non-
quantitative, attributes. Denoting byrnk(a) the integer valued rank of an attribute
value according to its predefined value order, the rank correlation is defined in terms
of the correlation coefficient, by

j�s(a1; a2)j
4
= j�(rnk(a1); rnk(a2))j; (2:13)

and estimated by eqn. (2.12), which reduces to the following formula if the ordering
of the learning set provided by the two attributes is total

j�̂LSs (a1; a2)j
4
=

������1�
6
P

o2LS

n
(rnk(a1)� rnk(a2))

2
o

N3 �N

������ : (2:14)

This correlation coefficient is non-parametric in the sense that it is invariant with
respect to any monotonic transformation of the attribute scaling.
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Normalized mutual information. Different distance based measures may be used to
compare symbolic attributes, in terms of the partitions they induce onU . We will
use a measure derived from information theory, on the basis of a normalization of
the mutual information contained in two attribute values. This similarity measure
is defined by

�I(a1; a2)
4
=

2Ia2
a1
(U )

Ha1(U ) +Ha2(U )
; (2:15)

whereIa2
a1
(U ) denotes the mutual information of the two attributes, andHa1(U )

andHa2(U ) their uncertainty or entropy. These quantities and their estimates are
defined below inx2.5.4. They yield an estimate of�I defined by

�̂LSI (a1; a2)
4
=

2Îa2
a1
(LS)

Ĥa1(LS) + Ĥa2(LS)
: (2:16)

2.5 PROBABILITIES

In this section we introduce some notation and considerations related to a probabilis-
tic interpretation of the learning problems. Although learning may be defined in a
purely deterministic fashion, as was the case with early machine learning and neural
network formulations, it is now recognized that a probabilistic framework is practically
unavoidable as soon as a certain level of generality is required.

From a more “impressionist” point of view, by using the probabilistic framework, we
adopt right from the beginning the idea that the quantitative evaluation ofuncertainties
is one of the first issues in the context of learning problems, which admittedly calls for
an explicit probabilistic treatment. Apart from these remarks, we will not discuss any
other philosophical issues related to the use of probabilities.2

Note. Within the framework of general measure theory, modern probability theory
allows an elegant and unified treatment of continuous, discrete and various mixed
types of probability distributions [BI 79] . Within this theory, basic notions such as
probability measures, random variables and conditional probability receive a precise
although general meaning, allowing a rigorous mathematical treatment. In this work
we don’t aim at this level of rigor, and use probabilities in a naive and intuitive fashion,
mainly as a notational tool.

2.5.1 General probabilities

For anyX � U , we denote byP (X) the prior probability of observing an object
of X , andP (X1jX2) the conditional or posterior probability of an object to belong

2We refer the interested reader to [CH 85, PE 88] for dicussions of the controversial subject of
whether and which “probability theories” are appropriate to manage uncertainty.
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to X1 given the information that it belongs toX2. Assuming thatP (X2) > 0, the
conditional probability is defined by

P (X1jX2)
4
=
P (X1 \X2)

P (X2)
; (2:17)

To denote probability measures, we will use the notationdP or p(a)da, wherep(a) is
the density function corresponding to a continuous probability measure.

2.5.2 Random variables

Roughly speaking, a random variable is a real-valued function defined onU , e.g. an
attribute or a regression variable, which maps probabilities initially defined for subsets
ofU , to probabilities of subsets of the real line.

The random variable may be continuous or not, according to the continuity of the
probability measure induced on the real line.

The expectationEPfY g (or simplyEfY g) of a random variabley is defined by

EPfY g
4
=
Z
U
y(o)dP: (2:18)

Similarly, the conditional expectation given the information thato 2 X is denoted by
EPfY jXg, and defined by

EPfY jXg
4
=

R
X y(o)dP

P (X)
; (2:19)

and the mean conditional expectation ofy given the information about the value assumed
by a functionx(�) defined onU is :

EPfY jxg
4
=
Z
x(U)

Z
o2x�1(x)

y(o)dP: (2:20)

2.5.3 Classification

To simplify, we denote byP i(X) the conditional probability ofX given that the class
c(o) = ci, i.e.

P i(X)
4
= P (X jC i): (2:21)

To further simplify, we will denote byp(X) = (p1(X); : : : ; pm(X)) the vector of
conditional class-probabilities, defined by

pi(X)
4
= P (C ijX); (2:22)

and usep
4
= (p1; : : : ; pm) to denote the vector of prior class probabilities,pi

4
= pi(U).
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2.5.4 Entropies

In the appendix we give a description of generalized entropy functions and related
properties. Here we merely define some frequently used notions, related to the so-
called logarithmic or Shannon entropy, used in information theory and thermodynamics.
Unless specified otherwise, logarithms are computed in base 2.

The entropy associated to a partition offU1; : : : ;U pg of U is defined on any subset
X by

HU1;:::;Up(X)
4
= �

X
i=1;:::;p

P (U ijX) logP (U ijX): (2:23)

The entropy is maximal in the case of uniform probabilities

HU1;:::;Up(X) � �
X

i=1;:::;p

1
p

log
1
p
= logp; (2:24)

and it is minimal in case of complete certainty

HU1;:::;Up(X) � �
X

i=1;:::;p

�ij log�ij = 0; (2:25)

where�ij denotes the Kronecker symbol defined by�ij = 1 if i = j and�ij = 0 if
i 6= j, and the limit value limx 0+ x logx = 0 is assumed.

We will use the notationHC(X) to denote the classification entropy of a subset, defined
by

HC(X)
4
= �

X
i=1;:::;m

P (C ijX) logp(C ijX); (2:26)

andHa(X) to denote the entropy of the partition induced by a (qualitative) attribute
a(�), defined by

Ha(X)
4
= �

X
v2a(U)

P (a(o) = vjX) logP (a(o) = vjX): (2:27)

Given two partitionsfU1
1; : : : ;U

1
p1
g andfU2

1; : : : ;U
2
p2
g, their joint entropy is defined

as the entropy of the intersection partitionfUi;j = U 1
i \U

2
j ji � p1; j � p2g

HU1;1;:::;Up1;p2
(X) = �

X
i;j

P (U i;j jX) logP (U i;jjX): (2:28)

Notice that
HU1;1;:::;Up1;p2

(X) = HU1
1 ;:::;U

1
p1
(X) +HU2

1 ;:::;U
2
p2
(X)

only if the two partitions are independent inX , i.e. if

P (U i;j) = P (U 1
i )P (U

2
j) : 8i � p1; j � p2:
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Otherwise,
HU1;1;:::;Up1;p2

(X) < HU1
1 ;:::;U

1
p1
(X) +HU2

1 ;:::;U
2
p1
(X):

Thus, the mutual information of two partitions, which is defined by

I
U2

1 ;:::;U
2
p2

U1
1 ;:::;U

1
p1
(X)

4
= HU1

1 ;:::;U
1
p1
(X) +HU2

1 ;:::;U
2
p2
(X)�HU1;1;:::;Up1;p2

(X); (2:29)

is symmetric by definition, equal to zero in case of independence, and positive other-
wise. In addition, it verifies the following inequalities

I
U2

1 ;:::;U
2
p2

U1
1 ;:::;U

1
p1
(X) � HU1

1 ;:::;U
1
p1
(X); (2.30)

HU2
1 ;:::;U

2
p2
(X); (2.31)

HU1;1;:::;Up1;p2
(X): (2.32)

Consequently, the normalization of the mutual information, may be done by dividing
by either of the following quantities

HU1
1 ;:::;U

1
p1
(X); (2.33)

HU2
1 ;:::;U

2
p2
(X); (2.34)

minfHU1
1 ;:::;U

1
p1
(X);HU2

1 ;:::;U
2
p2
(X)g; (2.35)

maxfHU1
1 ;:::;U

1
p1
(X);HU2

1 ;:::;u
2
p2
(X)g; (2.36)

HU1
1 ;:::;U

1
p1
(X) +HU2

1 ;:::;U
2
p2
(X)

2
; (2.37)

HU1;1;:::;Up1;p2
(X): (2.38)

To define similarities among partitions, the first two possibilities would be excluded,
since they yield non-symmetric measures. Notice that only the last three measures are
equal to 1, under the strict necessary and sufficient condition of perfect association
between the two partitions.

2.5.5 Reliabilities

Decision rules

Give anm�m loss matrixL, whose elementLij defines the loss (or risk) corresponding
to the decisioncj when the true class isci, the mean expected lossL(d) of a decision
rule is defined by

L(d)
4
=

mX
i=1

pi

2
4 mX
j=1

Lij � P
i(Dj)

3
5 : (2:39)

In the case of uniform misclassification cost,Lij = 1��ij ,L(d) reduces to the expected
probability of misclassificationPe(d), or the complement of thereliability

R(d) = 1� Pe(d): (2:40)



2.5. PROBABILITIES 43

Another evaluation of the reliability of a decision rule is based on the entropy concept,
in terms of the mean information provided by a decision rule on the classification,

IdC
4
= ID1;:::;Dm

C1;:::;Cm
; (2:41)

or one of the above defined normalizations. For example, we will use therelative
informationof a decision rule, defined by

RIdC
4
=

IdC
HC

: (2:42)

Regression models

To evaluate a regression model, we will generally use the least squares criterion,

SE(r) = EPf
X

i=1;:::;r

jRi � Yij
2g: (2:43)

A generalization of this criterion could be to use generalized distance (or similarity)
measures (e.g. divergence, sum of absolute values: : : ) to compare the output vectorr
with y.

Residual uncertainty

For any supervised learning problem, and for a given choice of object representation in
terms of attributes, there exists a theoretical upper bound on performance, which could
be reached if we knew for every possible attribute vector the conditional probability
distribution of the output values.

Indeed, let̀ (y; r) denote a positive loss function. Then, if for every attribute vector
a we can determine the exact conditional probability distributionP (yja) of y and the
conditional expected loss may be computed for any functionr(a). Thus we may define
the optimal functionr�(a), by [CH 91]

r�(a)
4
= arg min

r
Ef`(Y; r)jag: (2:44)

Provided that the above minimum value exists, this is well defined whatever the chosen
loss function, expected loss, error rate, information, least squares error. We will use
the termBayes ruleto denote the corresponding modelr�(a), and we will use the
termresidual uncertaintyto denote its overall expected loss. This residual uncertainty,
which is the inverse of the reliability, is thus defined by

L� = EP (a) fEf`(Y; r�(a))jagg =
Z
U
`(y; r�(a))dP: (2:45)
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2.5.6 Standard sample based estimates

We assume that the learning and test sets are statistical independent samples drawn
from the probability distribution defined onU . We assume also that their classification
is a priori given and correct, as well as their attribute values.

Thus, assuming no prior information on probabilities of events, we may estimate them
by relative frequencies obtained by counting the occurrence of the events in either
sample set. Some other estimates, taking into account information provided by non-
uniform prior probability distributions are described in appendix A.5.

In the sequel, we will use the notationRLS orRTS for the learning and test set estimates
of the reliability. If prior probabilities of a partition ofU are given, we may sample
separately the corresponding subsets, and build up estimates as weighted combinations
of estimates within each subset, by the latter prior probability. For example, if prior
class probabilities are known, we can build up estimates from samples of each class.

It is important to know that as soon as a learning set has been used to derive a decision
rule or a regression model, any related estimates based on the learning set may become
very unreliable. In particular,apparentreliability estimates are generally very strongly
optimistically biased.

Unless other information is to be taken into account, prior probability estimates of
subsets ofU are given by relative frequencies of these subsets in the learning or test
sets. These estimates are substituted within reliability and entropy functions, to obtain
the corresponding test or learning set estimates. We use the “hat” notation to distinguish
the latter estimates from their true values inU .

Expectation operators are replaced by sample means, unless specified otherwise. We
use the “bar” notation to denote the sample mean of a random variable

x̄
4
=

P
o2Sample x(o)

jSamplej
; (2:46)

wherej � j denotes the number of objects in a set.

2.5.7 Various estimates of error rates

Below we define briefly the various types of error estimates used in the context of our
simulation results presented later. We kindly invite the interested reader to refer to
the literature (e.g. [TO 74, DE 82, WE 91f] and the references therein) for a deeper
discussion of the pros and cons of these methods. All these estimation procedures
may be applied to any kind of reliability or cost measure used, with trivial adaptations.
Below we merely describe the case of estimating classification error rates.
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Resubstitution estimate

This consists of assessing a classification rule on the basis of the learning sample used in
order to determine the criterion. Since the learning algorithms generally try to identify a
rule of maximal (or high) apparent reliability, this estimate is generally strongly biased,
and does not provide in most practical situations any valuable information about the
ability of the rule to classify unseen situations.

Test set estimate

This consists of using an independent sample to assess a classification rule as was
advocated above. The independent test sample states are supposed to be correctly
classified by a bench-mark method (generally the same method which is used to
classify the learning set). Their class is merely compared with the class predicted
by the classification rule. This estimate is generally unbiased and similarly to the
resubstitution error estimate, its computation is straightforward.

A major advantage of the test set error estimate is that its sampling distribution may
be shown to be binomial, independent of the problem features, and for large sample
sizes as we use in practice this distribution is very well approximated by the Gaussian
distribution. Thus, confidence intervals may be derived from the test set error rates,
and its standard deviation may be estimated by the following formula

�̂P̂e �

s
P̂e(1� P̂e)

M
; (2:47)

whereP̂e denotes the test set error estimate andM the size of the test set.

In particular ifM is sufficiently large a 95% confidence interval may be derived for the
true error rate [DE 82]

Pr
n
P̂e � 1:96�̂P̂e < Pe < P̂e + 1:96�̂P̂e

o
� 0:95: (2:48)

For example, for a test sample size of 2000 and an estimated error rate of 3.0%, this
interval is equal to [2.25%: : :3.75%].

Cross-validation estimate

Cross-validation methods aim at providing an unbiased error estimate when no inde-
pendent test set is available.V -fold cross-validation exploits the learning set used to
build a decision rule in the following fashion. The learning setLS is divided intoV
non-overlapping randomly selected sub-samples which are approximately of sizeN

V
.

Each one of these sub-samples is classified via the classification rule determined on the
basis of theV � 1 remaining sub-samples.
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This providesV unbiased estimates of the error rate of classification rules determined
on the basis of a slightly smaller learning set than the classification rule. Provided
that V is not too small (e.g.V � 10) and provided that each classification rule is
determined with the same technique used to derive the original criterion, the average
error rate of these rules will reflect closely the true error rate of the original rule.

The main disadvantage of this method is its high computational cost since it requires the
repetitive learning ofV different classification rules which may become overwhelming
in the case of computationally intensive learning methods. IfV is equal to the number
N of learning states this method reduces to the well known leave-one-out method.

Choosing between the test set estimate and the cross-validation method is mainly a
question of amount of available data. A rule of thumb is that below say 500 to 1000
available samples, dividing them into a test set and a learning set would either produce a
too small test set, and thus high test set error estimate variances, or a too small learning
set. Thus, we should probably prefer say 10-fold cross-validation and if less than 200
samples are available we could use the leave-one-out method [WE 91f] .



3

Machine learning

3.1 INTRODUCTION

Machine learningis the subfield ofartificial intelligence(AI) which provides essen-
tially a symbolic perspective on learning algorithms. As in most AI research, machine
learning has the twofold objective of modelling and understanding the corresponding
psychological process on the one hand, and developing effective algorithms imple-
menting this process on the other. One of the main motivations of the latter objective
is the knowledge acquisition bottleneck encountered in the design of expert systems.

There are several sub-areas of machine learning, concerning for example learning by
analogy, concept formation, discovery by experimentation, explanation based learning
and finally concept learning from examples.

Concept learning from examples is the sub-area with which we are concerned. It aims
at developing methods to derive a symbolic description of a class of objects, on the
basis of a subset of examples (and counter-examples) of this class [MI 83] .

Interestingly, the early work in concept learning was done by psychologists seeking to
model human learning of structured concepts [HU 66] . This research has generated
a whole family of decision tree induction systems, with the notable work on ID3 by
Quinlan [QU 83] and on ACLS by Kononenko and his colleagues [KO 84, BR 88] .
These methods have evolved towards a set of effective and rather mature techniques,
yielding commercial implementations such as the CART software [BR 84] or the
decision tree induction subroutine in the statistical package S, and the freely distributed
IND package written by Buntine [BU 92] . An early large scale application of the
decision tree methodology is reported in [LO 80] .

In contrast to the decision tree induction techniques, other rule learning approaches have
been much less successful, in particular due to their relative inefficiency in handling

47
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large scale problems [CL 89, WE 91f, TA 94] .

A second, slightly more recent trend within the machine learning research considers so-
called instance based learning(IBL) methods, which aim at developing approximate
matching techniques, in order to retrieve relevant information from similar cases stored
in large data bases of examples. These methods are conceptually identical to the
nearest-neighbor techniques of statistical pattern recognition. They aim, however, at
an increased flexibility and generality, in particular in the context of high level symbolic
and structural example description languages [ST 86, AH 91, SA 91b, CO 91] . Finally,
another direction of investigation, which we will briefly comment in the last section of
this chapter, concerns the work on genetic optimization and learning algorithms.

It should be emphasized that the earlier machine learning methods essentially aimed
at representing deterministic concepts. The algorithms have been largely heuristically
search driven, based on empirical ideas rather than theoretical motivations. Only quite
recently, a certain unification with comparable work done by statisticians has emerged.

Notably, the book onClassification and regression trees, published by Breiman et al.
in the mid eighties [BR 84] , has been an important milestone in providing a theoretical
(probabilistic) framework for the study of decision tree induction methods.

At about the same period, fundamental work has been done within the machine learning
community around Valiant’sprobably approximately correct(PAC) learning theory1

[VA 84] . Simultaneously, several papers were published around the idea ofminimum
description length(MDL) encoding of information and its use as learning criteria
[RI 78, SO 83, RI 83, SE 85, QU 89, GA 89] . Finally, within the last few years the
theoretical unification of these various frameworks has progressed significantly [BL 87,
BU 89, BU 90] and resulting Bayesian frameworks have also been applied successfully
within other learning paradigms, e.g. for artificial neural networks and non-supervised
learning [CH 88a, BU 91] .

Finally, although initially most of the work in AI considered purely binary truth values
(True/False), the recent trend is clearly on incorporating appropriate techniques for
handling uncertainties [CH 85, PE 88, BO 93] . Within the machine learning methods,
this has led to a shift from the logical concept representations to the use of probabilistic
models of attribute/class dependencies.

Nevertheless, in comparison to the statistical and neural network techniques, the ma-
chine learning methods still present the important characteristic of intelligibility, a
consequence of their initial attempt to model human learning. On the other hand, we
will illustrate in the sequel that their heuristic search approach to learning is a rather
flexible framework, which is easily adaptable to various types of information, e.g.
numerical vs symbolic, deterministic vs uncertain.

1The term “probably approximately correct” of course applies to the learning, not to the theory,
which is admittedly “provably absolutely correct”.
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Due to the importance of decision tree induction, as a subfield of machine learning,
and due to their intensive study in the context of power system security problems, we
will devote the first, most important part of this chapter to them, ending with a brief
description of the other techniques which seem practically relevant, but which did not
receive so far comparable attention, within this restricted application domain.

3.2 GENERAL PRINCIPLES OF TREE INDUCTION

Decision tree induction methods have been used for nearly three decades, both in
machine learning [HU 66] and in applied statistics and pattern recognition [MO 63,
HE 69] .

3.2.1 Trees

Below we give some definitions and notation related to different types of trees, before
introducing theTop Down Induction of Decision Trees(TDIDT) family of tree induction
algorithms.

Graph and tree structures

A (finite) graph is a pairG = (N ;A) composed of a (finite) set of nodesN and a
(finite) set of arcsA, which are pairs of nodes. A graph is directed if the arcs are
ordered pairs.

A tree is a connected acyclic finite graph. A tree is directed in the following way : (i)
select a first node, and call it the top-node (or root2, denoted byR); (ii) direct all arcs
containing the top-node outwards; (iii) proceed recursively, by directing arcs leaving
the successor nodes of the root, until all arcs have been directed.

A non-trivial tree is a tree with at least two nodes. A nodeN 0 of a non-trivial tree is
a successor ofN if there is an arc(N ;N 0) fromN to N 0. Except for the root-node
R, every node of a directed tree is the successor of exactly one other node, called its
parent node. Consequently, there is exactly one path from the root towards any other
node of the tree. Graphs, trees and directed trees are illustrated at Fig. 3.1.

Nodes which have no successor nodes are called terminal, and denoted byNt. Non-
terminal nodes are also called internal nodes, and denoted byNi. In the sequel we will
assume that, apart from terminal nodes, the setSUCC(Ni) of successors of an internal
node contains at least two nodes.

2Strangely, in Computer Science trees are structured upside down, maybe in order to differentiate
them from trees in Botanics.
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Figure 3.1 Graphs, trees and directed trees

We will denote byDESC(N ) the set of proper descendants ofN , which is recursively
defined as the union of its successors and of all the descendants of these latter. The tree
composed of the nodesfNg [ DESC(N ) and the arcs joining these nodes is called
the subtree of rootN and denoted byT (N ).

Contracting a non-terminal node in a tree, consists of removing from the tree all the
proper descendants of the node. A treeT 0 is said to be a pruned version ofT if there is
a subsetN of non-terminal nodes ofT such thatT 0 is obtained fromT by contracting
the nodes inN .

Partitioning trees

A partitioning treeT is a directed tree each of which internal nodes has been decorated
with a testtNi(�) 2 ft1; : : : ; tpg, defined on the space of possible attribute values of an
object,a(U ). Such a test has a - generally small - number of mutually exclusive and
exhaustive outcomesti, each one of which is associated with a unique successor, i.e.
corresponds to an arc leaving the test-node.

Thus, a test allows us to direct any object from a node to one of its successors on the
basis of the attribute values of the object. Consequently, starting at the top-node, any
object will traverse a partitioning tree along a unique path reaching a unique terminal
node.

Let us defineU(N ), the subset ofU corresponding to a nodeN of T , as the subset
of objects traversing this node, while walking through the tree. Clearly, starting at
the top-node and progressing towards terminal nodes, the tree defines a hierarchy of
shrinking subsets :

� U(R) = U , since all the paths include the top-node;

� for any internal nodeNi, the subsets ofSUCC(Ni) form a partition ofU(Ni). For
convenience, we will suppose in the sequel that these subsets are all non-empty;
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� the subsets corresponding to the terminal nodes form a partition composed of non-
empty and disjoint subsets coveringU .

Similarly, for any subsetX ofU we will denote byX(N ) the subsetX \U(N ).

Due to this correspondence, we will in many circumstances handle nodes of a partition-
ing tree as if they were subsets ofU . In particular, we will talk about the probabilities
of nodes and about objects belonging to nodes.

Decision, class probability and regression trees

A decision tree(DT ) is obtained from a partitioning tree by attaching classes to its
terminal nodes. The tree is seen as a function, associating to any object the class
attached to the terminal node which contains the object.

Denoting byc(Nt) the class associated with a terminal node,Nti the set of terminal
nodes corresponding to classci, the decision regions defined by aDT are

Di =
[
N2Nti

U(N ): (3:1)

In the deterministic case, these subsets should ideally coincide with the classification
(i.e.Di = C i), and the number of corresponding terminal nodes should be as small as
possible for each class.

A class probability tree(CT ) is similar to a decision tree, but its terminal nodes
are decorated with conditional class probability vectors. Ideally, these (constant)
probability vectors would correspond to the conditional class probabilitiespi(U(Nt)),
in the corresponding subsets ofU . In addition, they should provide a maximum amount
of information about classes, i.e. their residual entropy should be as close as possible
to zero. This means that the tree should be designed so as to create terminal nodes
where the class-probabilities would ideally be independent of the attribute values of an
object.

Class probability trees may easily be transformed into decision trees. For example,
given a loss matrix and a probability vector, we may use the minimum risk strategy to
transform probability vectors into decisions, choosing at a terminal node the classcj�

minimizing the expected loss X
i

Lijpi(Nt): (3:2)

However, in some situations it may be preferable to preserve the detailed information
about conditional class probabilities, in particular when the loss matrix may change in
time.

Finally, for regression trees(RT ) the information stored at the terminal nodes should
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Figure 3.2 Example tree and attribute space representation

describe the conditional distribution of the regression variable, typically in the form of
an estimate of its expected value and (co)variance (matrix).

Notice that class probability trees may be seen as a special kind of regression trees,
where the regression variabley is the class indicator variable, defined by

yi(o) = �c(o);ci; 8 i = 1; : : : ;m: (3:3)

The expected valueEfyjXg is then equal to the conditional class probability vector
p(X).

However, real regression problems are generally characterized by smooth input/output
relationships, whereas class probabilities may vary in a quite discontinuous fashion, in
particular in the context of deterministic problems. Further, in the case of regression
problems the value ofy (not only its conditional expectation) may generally vary
continuously, while the class indicator variable may assume only a finite number (m)
of discrete values.

In addition to the above types of trees, more sophisticated hierarchical models may be
obtained by using more complicated test and terminal node decorations. For example,
one may use fuzzy propagation functions at test nodes and more elaborate models to
derive information from the attribute values of objects at terminal nodes. In particular,
in the context of regression problems this could allow us to smooth the otherwise
discontinuous information given by the trees. Such possibilities are further discussed
in [WE 94b] .

In the sequel we will simply use the termtree (T ) to denote any kind ofdecision,
class-probability, or regressiontree. Figure 3.2 illustrates in its left part a simple
two-class probability tree, and in its right part the corresponding sub-regions in the
two-dimensional attribute space. The relative size of the white and grey parts of each
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Table 3.1 Rules corresponding to the tree of Fig. 3.2

Rule N3 : if
�
a�(o) � v��

�
then

�
P
�
c(o) = c1

�
= 1

�
Rule N4 : if

�
a�(o) < v��

�
and

�
a0�(o) < v0��

�
then

�
P
�
c(o) = c2

�
= 1

�
Rule N5 : if

�
a�(o) < v��

�
and

�
a0�(o) � v0��

�
then

�
P
�
c(o) = c1

�
= 1� �

�

node represent the conditional class probabilities estimated at this node. The relative
size of a box gives an indication of the probability of belonging to the corresponding
region of the attribute space. The grey shaded area in the right part of Fig. 3.2 shows
the actual region in the attribute space corresponding to classc2. Anticipating on a
later discussion, we note that that Region N3 is not perfectly class pure although the
terminal node N3 estimatesp2 = 0; this illustrates the possible biased character of
probability estimates of trees.

Such a tree may be used to infer information about the class of an object, by directing it
towards the appropriate terminal node. Starting at the top-node (N1), the attribute test
a� < v��? corresponding to this node is applied to the object, which is directed towards
the successor node corresponding to the outcome. At each test node a particular attribute
value is tested and the walk through the tree stops as soon as a terminal node is reached.
This will correspond to the elementary subset in the attribute-space comprising the
object and the information stored there (e.g. class probabilities, expected value of the
regression variable, majority class) is extrapolated to the current object.

A tree may be translated into a complete set of non-overlapping (mutually exclusive
and exhaustive) rules corresponding to its terminal nodes. For example, the translation
of the tree of Fig. 3.2 is given in Table 3.1.

3.2.2 Tree hypothesis space

In the context of classification or regression problems, we may define a hypothesis
space of trees by defining a space of candidate test functions to be applied at the
interior nodes, and a class of “models” (probability, classification, regression) to be
attached to the terminal nodes.

Although most of the implementations of TDIDT methods use - on purpose - simple,
rather restrictive hypothesis spaces, it is important to note that these methods may
be easily generalized to more powerful hypothesis spaces. Anyway, the limitations
of TDIDT approaches are probably more due to the weaknesses in search algorithms
than to restrictions in representation languages. This is further discussed below and in
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reference [WE 94b] which gives some suggestions for extending the current approach.

The first restriction generally put on the test functions is that they use only a single
candidate attribute at one time, the reasons for this being efficiency of search (see
below) and comprehensibility of the resulting tree. Thus, the definition of test functions
reduces to the definition, for each candidate attribute, of a set of candidate partitions of
its possible values. This is done in a generic fashion, defining types of attributes, and,
for each type, a set of candidate splits.

Symbolic, purely qualitative attributes

A purely qualitative attribute represents information which is unstructured, i.e. the
values of which may not be further compared among themselves.

If
a(U) = fv1; : : : ; vpg

is the set of possible values of the attribute, then, in principle, for anyk 2 [2; : : : ; p] all
possible partitions intok non-empty subsets may be used as test functions. In practice
only the two extreme cases,k = 2 andk = p, have been explored in the literature.

The binary option is preferable, since it is found to produce simpler, and more easily
interpretable trees. This leads to(2p�1 � 1) different tests of the type

a(o) 2 V ? (3:4)

whereV is a non-empty subset ofa(U).

Unfortunately, the exponential growth of the number of candidate splits withp makes
the traditional approach, consisting of enumerating and testing each candidate partition,
questionable for values ofp larger than say, 10 or 20. To handle qualitative attributes
with a larger number of possible values, suboptimal heuristic search must be used in
the optimal splitting procedure (see the discussion by Breiman et. al [BR 84] and Chou
[CH 91] ).

Symbolic, hierarchically structured attributes

More commonly, symbolic information concerns attributes such as shape or texture,
the values of which are hierarchically structured. As is illustrated in Fig. 3.3, at each
node of the hierarchy a small number of subclasses of possible values are defined.

Thus, candidate partitions may be defined at a given node of a tree by identifying the
most specific subset in the hierarchy containing all values assumed by the attribute at this
node. Only the direct subclasses of this subset will be used to define candidate partitions,
which consist of adapting the “grain” of the attribute partitions to the considered subset
of objects.
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Figure 3.3 Partitioning of qualitative vs hierarchical attributes.

Let us for example consider the case of the shape attribute illustrated in Fig. 3.3. At
a tree node containing all kind of objects we would use only the top-level partition
distinguishing between “round” and “angular” shapes. On the other hand, at a node
containing only “round” objects, we could use the distinction “circle” vs “oval” in order
to split.

Ordered (integer, real valued or symbolic) attributes

Finally, a frequent kind of structure in attribute values concerns valueordering as it
is for example the case for numerical attributes, used in most of the power system
problems.

In this case, a set of threshold valuesvthi is defined corresponding to dichotomous tests
of the form

a(o) < vthi ? (3:5)

Some authors propose to use a small number of a priori fixed candidate thresholds
[LI 89] ; this may however lead to high quantization errors and potential loss of dis-
criminatory information. To overcome this difficulty, a better strategy consists of
adapting the candidate thresholds to the distribution of values observed in the learning
set (e.g. seex3.4.3).

3.2.3 Top down induction of trees

Quite a large number of variants of tree induction algorithms have been proposed in
the past, not all of which fit perfectly to the generic TDIDT procedure which we will
describe below. In the next section, we will give some bibliographical information on
the variants which seem most relevant to us.

The basic TDIDT procedure is a greedy algorithm, building a tree in a successive
refinement approach. The implicit goal of this iterative search is to produce an as simple
as possible tree, providing a maximum amount of information about the classification or
the regression variable of the learning examples. For instance, the objective of the initial
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version of ID3 method was to build the most simple tree of minimum classification
error rate in the learning set [QU 83] .

In the more recent approaches, the tree building decomposes generally into two sub-
tasks : tree growing which aims at deriving the tree structure and tests, and tree pruning
which aims at determining the appropriate complexity of a tree.

Tree growing

During this stage the test nodes of the tree are progressively developed, by choosing
appropriate test functions, so as to provide a maximum amount of information about
the output variable. The objective is to produce a simple tree of maximalapparent
reliability.

The basic idea is to develop one test-node after another, in an irrevocable top down
fashion. The algorithm starts with the complete learning set at the top-node of the tree.
At each step a test function is selected in order to split the current set of examples into
subsets, corresponding to the current node’s successors. This process stops when no
further nodes need to be developed.

This is a locally rather than globally optimal hill-climbing search, which leads to a
rather efficient algorithm the computational complexity of which is at most of order
N logN in terms of the number of learning states and of ordern in terms of the number
of candidate attributes.

The basic ingredients of this algorithm are illustrated in Table 3.2.

Optimal splitting. This rule defines the criterion and search procedure in order to
choose the best candidate test to split the current node. Essentially the preference
criterion evaluates the capacity of a candidate split to reduce the impurity of the
output variable within the subset of learning states of a node.

Stop splitting. This rule allows us to decide whether one should further develop a
node, depending on the information provided in the current learning subset. For
example if the local learning set is sufficiently pure in terms of the objective function
values there is no point in splitting further. Another, less obvious reason for stopping
a split is related to the so-called “overfitting” problem, which may occur when the
learning set of a terminal node becomes too small to allow a reliable choice of a
good split. This is further discussed below.

Tree pruning

The first tree induction methods reduce to the above growing procedure, essentially
aiming at producing a maximum amount of information about thelearningstates. For
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Table 3.2 Hill-climbing tree growing algorithm

Given :

� a learning objective function : a classificationc(�) or a regression
variabley(�);

� a set of candidate attributes defined on objectsai(�);

� a learning set of examples, of known attribute values and known value
of the objective function;

� an optimal splitting rule;

� a stop splitting rule.

Build : a tree with objective function statistics at its terminal nodes : class
counts ofc(�) or mean and standard deviation ofy(�).

Procedure :

1. create a node, attach the current learning subset to this node, and
compute the objective function statistics in this learning subset;

2. if the stop splitting rule applies, leave this node as a terminal node;

3. otherwise :

(a) apply the optimal splitting rule to find out the best test for splitting
the current node, on the basis of the current learning subset;

(b) using the above test, decompose the current learning subset into
subsets, corresponding to thep mutually exclusive outcomes;

(c) apply the same procedure to the newly created subsets.

example, in the context of classification it would try to split the training set into class
pure subsets; in the context of regression it would try to define regions where the
regression variable is constant.

Unfortunately this simple strategy is appropriate only in the context of deterministic
problems with sufficiently large learning samples, which was the case in the chess
endgame experiments of Quinlan [QU 83] . In the context of high residual uncertainty,
or when the tree representation does not fit correctly to problem specifics, it produces
overly complex, insufficiently reliable trees. In fact, for significant classification
overlap in the attribute space the probability that the learning set is classified correctly
by the optimal rule becomes very small as soon as the learning set size starts increasing.

This is the so-calledoverfittingphenomenon which may be explained intuitively. Dur-
ing the tree growing, the learning samples are split into subsets of decreasing size; if the
method is unable to find splits which would allow us to reduce quickly the uncertainty
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Figure 3.4 Illustration of overfitting

about the objective function, these sets may become extremely small and eventually
shrink to one or two examples. Indeed, provided that there exist no learning examples
of different classes with identical attribute values, even a random tree growing strategy
will eventually “purify” completely the learning set. Unfortunately, if the learning
subsets become too small, the statistical information which may be collected from
these subsets becomes unreliable. Or, stated in another way, to be able to extrapolate
the statistical information collected at the terminal nodes to unseen states, these subsets
must be sufficiently representative.

The overfitting problem is well known from statistics and curve-fitting. For example,
if we use a too large number of parameters in spline approximation, we may be able
to fit to the small details or to the noise in the data, but overall the interpolation and
extrapolation may become very poor. This is depicted graphically at Fig. 3.4 in the
one-dimensional case. One can see that reducing the order of the approximation will
actually allow us to reduce the overfitting.

In terms of decision trees, there exists a tradeoff between the two following sources of
error :biaswhich results from insufficient splitting andvariancewhich is a consequence
of too much splitting. Too large trees will overfit the data, whereas too small ones will
underexploit the information contained in the learning set. Thus, it is clear that some
strategy is required so as to control the complexity of the tree and ensure that the
learning samples at its terminal nodes remain sufficiently representative.

The first family of such “smoothing” strategies were actually proposed quite early in
the tree induction history. Henrichon and Fu [HE 69] , as well as Friedman [FR 77]
proposed to put a lower boundK(N) on the size of the terminal nodes learning set,
increasing slowly with the learning set sizeN , i.e. such that

lim
N�!1

K(N) = 1 and (3.6)

lim
N�!1

K(N)

N
= 0: (3.7)

The main weakness of this “naive” approach is that it takes into account only the sample
size related reason for stopping development of a terminal node, and will generally lead



3.2. GENERAL PRINCIPLES OF TREE INDUCTION 59

Table 3.3 Hypothesis testing approach to pruning

� Given a statisticS(�; �) measuring the correlation of two variables.

� Letf (S) be the sampling distribution of the statisticS under the hypothesis
of statistical independence of the two variables.

� Given an a priori fixed risk� of not detecting the independence hypothesis,
determine the corresponding thresholdScr(�), such that

Z +1

Scr
f(S)dS = �:

� Estimate the value of statistiĉSLS(t�N ; y) applied to the objective function
and the best candidate splitt�N on the basis of the current node’s learning
subset.

� If ŜLS(t�N ; y) > Scr(�) reject the independence hypothesis, and split the
node.

� Otherwise, accept the independence hypothesis and stop splitting.

either to overly simple or to too complex trees.

Another possible reason for stopping to split a node is related to the discrimination
capabilities of attributes. For example, in the extreme case where the attributes are
“pure” noise, the “right” tree would be composed of a single top-node, whatever the
size of the learning set. In most problems, of course, both sources of uncertainty may
coexist up to a certain level, and a composite pruning criterion is required.

This consideration has yielded a second generation of pruning criteria, generally
based on an hypothesis testing approach summarized in Table 3.3. Probably the
first such method was proposed by Rounds, in terms of a non-parametric approach
testing the significance of the Kolmogorov-Smirnov distance between the class con-
ditional attribute value distributions [RO 80] . Later on, several conceptually similar
but more flexible techniques have been proposed using various�-square like statistics
[KO 84, QU 86a, WE 89b] .

Finally, the most recent generation of pruning approaches consider the complexity or
overfitting control problem in a post-processing stage. In these methods, a tree is
first grown completely and then simplified in a bottom up fashion, by removing its
overspecified parts. The main reason for this new development was the difficulty with
some of the above first and second generation stop splitting rules to adapt the thresholds
(K, �, : : : ) to problem specifics [BR 84] . However, we will see later on that there is a
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Table 3.4 Tree post-pruning algorithm

1. Define a reliability measureR(T ) (e.g. amount of information, percentage
of correct classification) and a complexity measureC(T ) of trees (e.g.
number of nodes).

2. Define the global quality measure of a tree by

Q�(T )
4
= R(T )� � � C(T ); (3:8)

which expresses a compromise between the apparentreliability R(T ) and
complexityC(T ), the latter being more strongly penalized for large values
of �.

3. For � fixed, extract the optimally pruned treePr�(T; �) of T , such that
Q�(Pr

�(T; �)) is maximal, whereQ�(T ) is determined on the basis of the
learning sample estimate of reliability. We will denote this as the�-optimal
pruned tree ofT .

4. Provided that the quality measure is additive in terms of decompositions
of a tree into subtrees, a simple recursive bottom up algorithm will do the
�-optimal pruning.

5. Moreover, for increasing� the trees form a nested sequence of pruned
trees.

6. In particular, for� = 0 the pruned tree is the full tree; for� �! 1, the
pruned tree shrinks to a single node.

strong analogy between the stop-splitting and post-pruning approaches.

In the post-pruning approach a sequence of shrinking trees is derived from an initial
fully grown one. One of these trees is then selected on the ground of its true reliability
estimated honestly. Various methods have been suggested [BR 84, QU 87b, MI 89a,
WE 93h] , corresponding more or less closely to the pattern illustrated in Table 3.4.

Figure 3.5 illustrates a typical behavior of the complexity and the reliability (estimated
on an independent test set) of the optimally pruned trees, as the value of� increases
from 0 to1. There exists an optimal value�� of the complexity vs apparent reliability
tradeoff, which leads to an optimally pruned tree of minimal estimated error rate. This
overall tree selection procedure is summarized in a slightly more general version in
Table 3.5, the last item of which is known as the1 standard error rule.

In the sequel we will use the termpruning setPS, to denote the set of classified
objects which is used to evaluate and select pruned trees. It is indeed necessary to
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Table 3.5 Pruned tree selection algorithm

1. Define a tree quality measureQ�(T ).

2. Let� increase from 0 to1, and generate the corresponding sequence of
�-pruned trees,Q�(T ) being estimated on the learning set.

3. Compute an unbiased estimate of the latter trees’ reliabilities (e.g. on
the basis of an independent set of pre-classified examples); letP�e be the
corresponding minimal error rate estimate, and let� denote an estimate
of its standard error.

4. Select the final treeTs in the sequence as the tree of minimal complexity,
and such thatPe(Ts) � P �e + �.

distinguish this set from the truetest setTS which is supposed to be trulyindependent
of a tree, and may be used to provide unbiased estimates. Although in many practical
situations the error rates obtained on the pruning set are found to be unbiased, there is
no guarantee and the bias of this estimate may well depend on the pruning algorithm
or on the selection rule. Clearly, the “1 standard error rule” prevents the selected tree
from fitting too perfectly thePS and thus is in favor of a low bias.
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3.2.4 Conclusions

We have discussed above the three major subproblems within the general framework
of tree induction, concerning (i) the choice of candidate splits in order to develop the
test nodes of a tree, (ii) the hill-climbing tree growing algorithm, and its optimal and
stop splitting rules, and finally (iii) the various pruning strategies proposed to cope with
difficulties related to overfitting.

The list of variants to which we have referred gives only a limited - and far from
exhaustive - account of all the research work done in this field for almost three decades.
In the last few years several comparative studies have been published, looking at various
aspects of the methodology, from theoretical and practical viewpoints. Quinlan’s
synthesis of the work done until 1986 is very informative [QU 86b] and may be
usefully complemented by the rather extensive review of tree methodologies given by
Safavian and Landgrebe [SA 91a] . Finally, in his Ph.D. thesis, Buntine has made some
very incisive theoretical contributions from the Bayesian point of view [BU 90] .

From the practical side, Mingers has made an extensive comparison of splitting criteria
in [MI 89b] and pruning approaches in [MI 89a] . Within the recently completed
ESPRIT project Statlog, extensive simulation studies have been carried out on 23
different practical problems, including two of our power system security data sets,
comparing as many as 22 classification methods, including 5 decision tree induction
algorithms. Let us quote some of their conclusions concerning decision trees [TA 94] .

There is a confusing diversity of Decision Tree algorithms, but they all seem
to perform at about the same level. There are no indications that this or that
splitting criterion are best, but the case for using some kind (!) of pruning is
overwhelming, although, again, our results are too limited to say exactly how
much pruning to use: : :

Similar impressions are reported in several other publications [BR 84, MI 89a, MI 89b] .

Our experience in the context of power system security problems is that pruning allows
us to significantly reduce tree complexity (frequently by factors of 3 or more) while
preserving near optimal reliability. Further, considering that one of the main objectives
of tree induction is to provide easily interpretable information, for the purposes of data
exploration and analysis, the simplicity becomes an even more important feature of the
trees.
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3.3 MAIN VARIANTS

Before proceeding with the description of the decision tree algorithm which we have
developed for our experiments in the context of power system problems, we will briefly
discuss some other interesting questions about possible variants or enhancements of
the standard TDIDT method.

3.3.1 Variable combinations

The computational efficiency of the TDIDT algorithm is due to the fact that it searches
in a reduced space of candidate trees, developing one node at a time and looking at a
single attribute at a time. While this works nicely in many problems, in some situations
it may be inappropriate and tend to produce very complex trees of low reliability.

In this case, one possible enhancement of the method may be to combine several
attributes in a single test while splitting a node. For example, numerical attributes may
be combined in a linear combination and binary attributes in a logical combination. The
appropriate combinations might be chosen a priori, either manually or by using standard
statistical feature extraction techniques [DU 73, FR 77] . They may also be determined
automatically at the time of developing a node, taking advantage of the tree growing
approach to adapt the optimal combination at each tree node. Various, more or less
complex strategies may be thought of in order to define an appropriate set of variables
to be combined and to choose the parameters defining their combination. For example
Breiman et al. propose to use a sequential forward selection procedure [BR 84] . Utgoff
[UT 88] has proposed to build decision trees with perceptrons implementing linear
combinations used to predict classes at the terminal nodes; similar techniques used to
define linear combinations at the test nodes are also discussed in [MU 93, WE 94b] .

Another, complementary possibility would be to use look ahead techniques, so as to
search for high order correlations amongseveralattributes and the objective function,
while keeping the “single attribute per test node” representation. The latter approach
would be appropriate if symbolic attributes are important.

To fix ideas, Figure 3.6 illustrates two examples where these strategies could be useful.

In the left part of Fig. 3.6, a two step look ahead technique would allow us to
identify the optimal decision tree, comprising four terminal nodes. The regions shown
on the diagram correspond to the partition obtained by the standard (one step look
ahead) TDIDT method described above. The first split at the root of the tree actually
depends strongly on random variations in the learning set. Nevertheless, the resulting
approximation, although overly complex, remains perfectly accurate. For example,
in a simulation the tree obtained from the 1000 learning states shown on the diagram
yields indeed a 100% correct classification on an independently generated test set.
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Figure 3.6 Difficult examples for the standard TDIDT approach

For the problem illustrated in the right part of Fig. 3.6, the difficulty of the TDIDT
approach is not related to its suboptimal search procedure but rather to fundamental
limitations in the representation capabilities of standard trees. As shown by the stair
case approximation, the resulting standard TDIDT tree is likely to be quite inaccurate.
In a simulation similar to the above one, such a tree was obtained and resulted in
97-98% reliability in the test set. On the other hand extending the basic tree procedure
so as to search for linear combination splits allowed us again to reach 100% accuracy.

Notice that several limitations exist in the above possibilities of enhancing trees. The
first, rather obvious one is related to computational costs. Clearly, look ahead search
time will increase exponentially with the number of combined attributes; similarly the
time required to determine the linear combinations rapidly increases with the number
of combined attributes.

Another, and at least as important drawback, is related to the fact that the interpretability
of the trees will rapidly decrease if too complex tests or search criteria are used. A
final limitation is due to the overfitting problem which may become worse when too
powerful - almost exhaustive - search techniques are used. In particular current pruning
counter measures may require adaptations so as to remain effective [WE 94b] .

3.3.2 Batch vs incremental learning procedure

In the above description we have assumed thebatch learning approach, where the
complete learning set is required when the tree building starts, and is used at each step
to take the splitting, stop splitting and pruning decisions.

This is appropriate when all the learning states are available at the same time. How-
ever, if the learning states become available in a sequential fashion, then an incremental
scheme is more appropriate. This allows the tree building to start as soon as the first
observations are obtained, beginning with a very simple approximate model. Subse-
quently, the tree structure is enhanced with more details when additional information
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Table 3.6 Weighted object propagation

1. Leto be an object, andw(N ; o) its weight in a tree nodeN .

2. The weight at a successor node ofN is obtained byw(N 0; o) =
w(N 0;N ; o) � w(N ; o), wherew(N 0;N ; o) denotes the arc strength.

3. Initial weights at the top-node would be usually equal to one. However,
available prior information may also be used to bias initial weights.

4. Arcs strengths are 1 for arcs corresponding to a test outcome which is
known to be true for the objecto, 0 for an outcome which is known to be
false, and proportional to the arc probabilities otherwise.

5. Arc probabilities are estimated as conditional probabilities of their outcome
being true, on the basis of the available examples for which the attribute
value is known.

becomes available. Further, the statistical distributions of data would be monitored and
the tree parameters would beadaptedas soon as significant changes are observed.

Such an incremental TDIDT method has been proposed and is discussed in [UT 89] .
While this may be a key feature in some problems, we don’t think that it would be very
useful in the context of power system security assessment applications, since trees may
be easily reconstructed from scratch as soon as a new data base becomes available.

3.3.3 Missing attribute values

Another, often quoted practical problem occurs when attribute values are unknown
for some learning states. For example, in many medical problems, attribute values
determined by lengthy or potentially harmful analyses would typically be obtained
only if the practitioner has good reasons to believe it will indeed provide interesting
information. In these problems a high percentage of attribute values are generally
unknown.

A number of methods have been proposed in order to adapt the TDIDT procedure for
the treatment of unknown values. Actually there are two different situations where
this problem arises. The first is when during the tree induction process some of the
examples are incompletely specified. The other is when we actually use the tree to
predict output information.

In both situations, a good strategy turns out to be the weighted propagation algorithm
illustrated in Table 3.6. At a tree node, if the test attribute value is unknown, we
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Figure 3.7 Example of trellis structure resulting from node merging

estimate the probability of each outcome and we propagate the object down to every
successor, along with its corresponding weight [QU 86b] .

At the tree induction step, the various object countings used to evaluate probabilities or
impurities are replaced by (non-integer) sums of weights. If the tree is used to predict
some information for an unseen object, the latter weight is propagated through the tree
and the information is collected and averaged over all relevant terminal nodes. The
same technique may also be extended to the case of partial information on the attribute
values.

A similar technique was proposed in [CA 87] , where within a limited interval around the
thresholds used to test continuous attributes, objects are propagated to both successors
proportionally to the difference in their attribute value and the test threshold. This
actually results in a kind of afuzzificationof the tree tests, and allows the obtained class
probabilities to vary continuously, rather than in a stepwise fashion, when the attribute
vector moves from one terminal node to another in the attribute space.

3.3.4 Generalized “tree” structures

A final possible enhancement of the TDIDT approach would be to allow more general
structures than simple trees. The two possibilities which have mainly been studied
concern the use of “trellis” structures allowing a node to have more than one parent
node, and option trees which allow information to be averaged over several possible
trees.

Trellises

Extension of the tree structure to trellises has been proposed in [ZI 92] and [CH 88b] .

While the tree structure allows us only to decompose a set of objects into subsets of
objects, the trellis structure illustrated in Fig. 3.7 allows us also to merge similar subsets
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Table 3.7 SIPINA algorithm. Adapted from [ZI 92]

1. Starting with a single node trellis, iterate;

2. (a) find the best possible merge of two terminal nodes; if this improves the
information provided by the trellis, then merge, and proceed at step 2
(a);

(b) find the best combination of merge and split, defined by any merging of
two nodes followed by splitting the resulting node into successors; if
this is successful in improving the information provided by the trellis,
then merge and split, and proceed at step 2 (a);

(c) find the best split of a terminal node; if this is successful in improving
the information provided by the trellis, then split, and proceed at step
2 (a).

3. The obtained structure has reached a local optimum of information and is
returned as result.

during the tree construction process. This aims at keeping the sample size sufficiently
large, and also at avoiding replications of similar structures in a tree.

In order to be able to balance the reduction in tree complexity resulting from merging
some nodes with the incumbent increase in impurity, appropriate non-convex qual-
ity measures have to be used. For example, the method described in [ZI 92] uses
“�-centered” estimates of class-probabilities discussed in appendix A.5. With these
estimates, information quantity no longer decreases necessarily when merging nodes,
and the SIPINA algorithm proposed in this reference proceeds in the fashion described
in Table 3.7.

Option trees

Buntine has proposed an approach which basically consists of inducing a set of class
probability trees instead of a single “optimal” tree, and further uses probability averag-
ing over these trees.

In principle, using a Bayesian framework, a posteriori probabilities may be computed
from given prior tree probabilities (depending on the number of nodes and values of
probabilities attached at terminal nodes) and from the learning set information [BU 92] .

Thus, the approach proposed by Buntine consists of identifying a small number of
dominant trees : those of nearly maximal posterior probability, i.e. all trees which
seem to provide a reasonable explanation of the learning data. Further, the method
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computes, for an unseen objecto, an average class probability over the dominant trees,
using the following type of formula :

P (cijo;LS) �

P
T P (cijT; o;LS)P (T jo;LS)P

T P (T jLS)
; (3:9)

where
P (cijT; o;LS) is the class probability predicted according to treeT , and
P (T jLS) = P (T jo;LS) the posterior probability of this tree, given theLS
information and the current object, which is supposed to be independent ofo.

Option trees are a compact representation of a set of trees which share common parts.
Thus, the technique proposed in [BU 92] consists of considering several “dominant”
possibilities to develop a tree node, rather than investigating only the most promising
one. This includes in particular the trivial subtree, which consists of pruning the current
subtree.

Thus, at each internal node of such an option tree several splits and corresponding
subtrees are stored together with the corresponding posterior probability updates. Dur-
ing classification, an object is propagated down to each option subtree and the class
probabilities inferred by the latter are averaged via a simple recursive scheme.

3.4 THE ULg METHOD

In this section we will describe in detail the tree construction algorithm that we have
developed for and applied to various power system problems [WE 86, WE 89b, WE 91a,
WE 93b, WE 93h] .

To fix ideas, we will use throughout many numerical and graphical illustrations taken
from an illustrative real life transient stability problem, introduced below. Further, we
will consider only the case where the learning objective is to define decision regions
or class probabilities. Note that the method could be generalized to general regression
problems, but we believe that other techniques, such as the hybrid DT-ANN approach
introduced in chapter 6, would be more appropriate in this context.

3.4.1 Description of a real illustrative problem

We consider the practical problem of preventive transient stability assessment of the
735kV system of Hydro-Qúebec, depicted in Fig. 3.8. A normal operating condition
of this power system is considered as secure from the transient stability viewpoint, if
it is able to withstand any permanent single-phase to ground fault, followed by line
tripping, fast reclosure and final permanent tripping. It is interesting to recognize that
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Figure 3.8 One-line diagram of 735kV Hydro-Québec system

this system, due to the very large power flows and long transmission lines, is mainly
constrained by its transient stability limits.

For the sake of simplicity, we have looked at a subproblem of the overall system stability
problem, considering only faults occurring within the James’ Bay transmission corridor
in the left part of the one-line diagram. With respect to these faults, the stability is
mainly influenced by the power flows and topology within the same corridor.

For this system, a set of transient stability limits have previously been developed, in a
manual approach, where operation planning engineers have determined off-line on the
basis of carefully chosen simulation scenarios, a set of approximate limit tables relating
the system topology and power flows to a Stable/Unstable classification. These limit
tables have been implemented on the real-time computer of Hydro-Québec, via an ad
hoc data base tool called LIMSEL, which is presently in use for operation [VI 86] .

A data base, composed of 12497 normal operating states was generated via random
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sampling; it comprises more than 300 different combinations of up to 6 line outages, and
about 700 different combinations of reactive voltage support equipment in operation,
and a wide variety of power flow distributions. A precise description of the random
sampling tool developed for this purpose will be given inx13.4.

For each state, the corresponding classification Stable/Unstable was obtained from
LIMSEL running on the backup on-line computer. This yielded 3938 stable states and
8559 unstable states, among which 393 are marginally unstable and 8166 are fairly
unstable.

To describe the operating states, and in order to characterize their stability, the following
types of candidate attributes were computed for each state.

Power flows. The active power flow through important lines and cutsets in the James’
Bay corridor.

Power generations. Total active power generated in the 4 LaGrande (LG) power plants
and various combinations.

Voltage support. The number of SVCs or synchronous compensators in operation
within the six substations in the James’ Bay corridor.

Topological information. Logical variables indicating for each line whether or not it
is in operation in the prefault situation.

This set, composed of 67 candidate attributes was determined with the help of an expert
in charge of transient stability studies at Hydro-Québec. From previous studies it was
already known that the total power flow through the corridor would be an important
attribute, together with the topological information and the total number of SVCs and
synchronous compensators.

The diagram of Fig. 3.9 shows the statistical distribution in the data base of the total
power flow in the James’ Bay corridor, and the corresponding stability distribution.
The height of each vertical bar represents the number of states among the 12497, for
which the power flow belongs to the interval corresponding to the basis of the bar.
Each bar, is further subdivided into regions of different grey shade, in proportion to
the corresponding number of stable, marginal and fairly unstable states. We observe
that all states which have a power flow larger than 8700 MW are unstable states, while
there exist unstable states in the full range of power flows, down to 4500 MW.
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Figure 3.9 Empirical distribution of TRBJ : total James’ Bay power flow

Table 3.8 Deriving classification from class probabilities

� Let ndi denote the non-detection cost of classci, i.e. the cost assigned to
deciding classcj 6= ci for an object of classci.

� Letp̂i(Ntj)denote the conditional class probabilities attached to a terminal
nodeNtj .

� Then, associate the decisionci(Ntj) such that the product̂pi(Ntj) � ndi is
maximal.

3.4.2 Quality evaluation

The optimal splitting rule, as well as the stop splitting rule and the pruning criteria used
in our method are derived from the entropy concept from information theory, defined
in x2.5.4.

Decision trees were obtained indirectly via the construction of class probability trees
and the specification of a non-detection cost vector, via the rule given in Table 3.8.

Intuitively, the objective of building a class probability tree is to provide a maximum
amount of information about the classes. This is measured by the reduction in classifi-
cation entropy provided by a tree.
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Let us consider a classification problem and a class probability treeT . HC(X) denotes
the initial or prior classification entropy of any subset ofU , defined in eqn. 2.26, and
letfU(Nt1); : : : ;U(Ntq)g denote the partition induced onU byT , assuming that there
areq terminal nodes inT .

Let us define the residual entropy of a tree, in a subsetX of U , as the expected
classification entropy at its leaves

HCjT (X)
4
=

X
i=1;:::;q

P (NtijX) �HC(Nti \X): (3:10)

Then the mean information quantity provided by the tree inX is defined as the mutual
information of these two partitions inX

ITC (X)
4
= HC(X)�HCjT (X): (3:11)

In particular the overall mean information of a tree is defined by

ITC (U)
4
= HC(U)�HCjT (U ); (3:12)

and simply denoted byITC .

Ideally, the information provided by a tree would be total, i.e. equal to the prior
entropy. In practice this is not necessarily possible. In particular for many problems,
characterized by residual uncertainty, the upper bound of information is significantly
lower thanHC .

Given a learning set, we will estimate theapparentinformation of a tree, by replacing
probabilities by relative frequencies estimated in the learning set

ITC (LS)
4
= HC(LS)�HCjT (LS); (3:13)

and thetotal apparent information quantity is obtained by multiplying the latter by the
sizeN of the learning set.

The apparent information of a tree tends to overestimate systematically its actual
information. In particular, in many circumstances it is possible to build trees with
total apparent information, even if there is some residual uncertainty. Intuitively, large
complex trees tend to overfit the data more strongly and their apparent information thus
tends be more optimistic than for smaller trees. Thus, in a quality measure it would be
appropriate to compensate for this effect by penalizing in some fashion proportional to
the tree complexity.

On the other hand, for a given tree complexity, it seems reasonable to assume that
the bias of apparent information will decrease with the size of the learning set, or
equivalently the quality should increase in proportion to the total amount of apparent
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information and it should decrease in proportion to the tree complexity. This suggests
the following form for an empirical quality measure

Q(T;LS)
4
= N � ITC (LS)� � � C(T ); (3:14)

whereC(T ) denotes the tree complexity, which is by definition equal to one less than
the number of terminal nodes of the tree3.

Thus, the quality of a tree is a compromise between its complexity and its total apparent
information quantity. The quality of the initial, trivial tree composed of a single root
node is equal to zero, whatever the learning set, since both its complexity and its
apparent information are equal to zero.

This quality measure, which we have justified heuristically, may be derived from a
theoreticalmaximum a posteriori probability(MAP) computation or equivalently from
a minimum encoding length(MEL) computation, assuming either that a priori tree
probabilities will decrease exponentially with its complexity or (equivalently) that its
encoding will require a number of bits increasing linearly with complexity. This
and other more theoretical considerations are discussed in detail in the references
[WE 90a, WE 93h, WE 94b] . An interesting property of the quality measure is its
additivity, which is a consequence of the additivity of the total information quantity
and of the complexity measures. For any decomposition of a tree into subtrees, the
quality of the total tree is equal to the sum of the qualities of its subtrees.

Exploiting the quality measure, for a given choice of�, the various subtasks considered
in the tree induction process may be reformulated in the following way.

Growing. At each step, develop a node in such a way as to maximize the improvement
of quality.

Stop splitting. Stop splitting as soon as a (local) maximum of quality is reached.

Pruning. Extract the pruned subtree of maximal quality.

In the following sections we will further discuss the variants of this approach which
have been implemented.

3.4.3 Optimal splitting

The optimal splitting rule consists of a search for a locally optimal test maximizing a
given score function. This implies finding for each candidate attribute its own optimal
split and identifying the attribute which is overall optimal. This calls for the definition

3For binary trees, the total number of nodes is related to the complexity by the formula #N =

2 � C(T ) + 1.
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of a score measure and the design of appropriate search algorithms allowing us to
handle each type of candidate attributes.

We will not speak about the optimal search of binary partitions of qualitative attributes,
since for power system problems the discrete attributes are generally binary topological
indicators, which allow only a single partition.

However, before we define the score measure used in our algorithm, we will discuss in
detail the case of numerical, essentially real valued attributes which are most important
in the case of security assessment problems, as well as linear combinations of two
numerical attributes which may yield an important improvement in reliability, as we
will illustrate.

Optimal thresholds for ordered attributes

For a numerical attribute we proceed at each node according to the optimal threshold
identification procedure described in Table 3.9 to generate the corresponding optimal
partition.

This search requires, in addition to the sorting of the learning subset, aboutN com-
putations of the score function. Although it may seem bulky at first sight, it may be
done rather efficiently with available computing hardware. For instance, to sort the
12497 states of our example data base ofx3.4.1 with respect to the values of the TRBJ
attribute, it would take about 2 seconds4, and the overall time required to identify the
optimal score within this very large subset would take about 6 additional seconds. At
a tree node corresponding to “only” 1000 learning states, these times would shrink to
respectively a fraction of a second and 1 second.

It is important to realize that this search procedure is applied repeatedly, for each
numerical attribute and at each tree node. It will identify systematically the optimal
threshold, whatever the definition of the score measure. Typically, on a 28 MIPS
computer the method will not spend more, on average, than a minute at each internal
node of the growing tree, even for very large learning sets and a high number of
candidate attributes.

Linear combinations of attributes

It is frequently found, in the context of power system security problems that there are
two important complementary attributes which share most of the information provided
by a tree. In such situations, one could manually define a composite attribute as a
function, or try to identify a linear combination attribute on the basis of the learning

4Within this work, illustrative CPU times are determined on a 28 MIPS SUN Sparc2 work station.
Our research grade TDIDT software was implemented in Lucid CommonLisp.
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Table 3.9 Optimal threshold identification

1. For an attributea and thresholdv, let us denote as the left subset at a node
as the set of its learning states such thata < v holds, and the right subset
its complement.

2. Sort the learning subset at the current node, by increasing order of the
candidate attribute considered.

3. Start with an empty left subset and a right subset equal to the complete
learning subset of the node.

4. Sweep through the sorted list of states, removing at each step a state from
the right subset and adding it to the left subset.

5. At each step, update the number of states of each class in the left and right
subsets.

6. Let us denote byvi the attribute value of the last object moved in the left
subset; thus the left subset states are such thata � vi.

7. Similarly, let us denote byvi+1 the attribute value of the next object to be
moved, but still in the right subset; thus the right subset states are such
thata � vi+1 andvi � vi+1.

8. Only if vi < vi+1, we define a new candidate threshold byvth = vi+vi+1

2 ,
and compute the score of the candidate testa(o) < vth on the basis of the
class counts in the left and right subsets.

9. If the score of the newly evaluated test is better than the previous optimum,
we updatevth along with its score, as the current best test.

set. This amounts to identifying at a tree node a test of the form

a1(o) + � � a2(o) < vth: (3:15)

In our software this is done by a simple nested optimization procedure, which is
indicated in Table 3.10. The computational cost of this procedure is equivalent to the
treatment of about 10 to 20 real valued attributes.

An interesting generalization of the procedure would be to allow handling a higher
number of attributes combined in a linear combination involving the identification of
several parameters. With the above algorithm, this would, however, imply a very
rapid increase in computational complexity; a more efficient numerical optimization
technique should be used. In the following two chapters we will illustrate and compare
various methods able to determine hyperplanes in the context of supervised learning,
and in chapter 6 we will mention a hybrid technique which could allow us to combine



76 3. MACHINE LEARNING

Table 3.10 Linear combination search

1. Compute the optimal thresholdvth1 corresponding to�1 and vth2 to �2;
�1 and�2 are specified by the user as the lower and upper bound for the
search of�; by default[�1 : : :1[ is used.

2. For each candidate value of�, the corresponding thresholdvth(�) is de-
termined by applying the optimal threshold search described previously to
the values of the functiona1(o) + � � a2(o); the corresponding optimal
score is thus determined as a function of�.

3. The “optimal” value of� is searched by using a dichotomous search in the
interval [�1 : : : �2[, with a number of iterations generally fixed a priori to
less than 20.

these methods with the TDIDT approach, so as to determine linear combination trees.

Remark. The above two simplistic search procedures may seem to be rather naive and
inefficient. However, they are easy to implement and are not tied to any particular
score evaluation function properties, such as continuity and differentiability. They may
therefore exploit any kind of appropriate score measure.

Evaluation of candidate splits

In addition to the above described search algorithms, we need to specify the evaluation
function or scoreused to select the best split. In the tree induction literature, an
apparently very diverse set of measures have been proposed to select an appropriate
candidate split. In appendices A.1 to A.5 we discuss carefully these different measures
and the purity (or uncertainty) measures from which they are generally derived. As we
see, many of these apparently very different possibilities turn out to be not so different
and perform rather equivalently in practice.

A convenient way to measure the impurity is to use theentropyfunction well known
from thermodynamics and information theory. Among other nice properties let us
mention the fact that the entropy function is the only uncertainty measure which is
additive [DA 70] : the entropy of a system composed of independent subsystems is
equal to the sum of the subsystems’ entropies; similarly, the uncertainty of the outcome
of independent events is equal to the sum of the uncertainties of each event taken
alone. The other interesting thing about entropy is its probabilistic interpretation,
which suggests that reducing entropy amounts to increasing posterior probabilities
[WE 90a, WE 92b, WE 93h] .
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Thus, a simple and in practice appropriate solution consists of using the total amount
of apparent information provided by a candidate partition at a node, as the criterion for
selecting the most appropriate partition. This is evaluated for each testt, according to
the formulas given inx2.5.4, by

ItC(LS(N )) = HC(LS(N )) �HCjt(LS(N )); (3:16)

HereHC(LS(N )) denotes the prior classification entropy estimated in the learning
subset at the node, which is obtained by

HC(LS(N )) = �
X
i=1;m

ni:
n::

log
ni:
n::
; (3:17)

whereni: denotes the number of learning states of classci at the current node andn::
its total number of learning states.

On the other hand,HCjt(LS(N )) denotes the posterior classification entropy estimated
in the learning subset at the node, given the information provided by the test, which is
evaluated by

HCjt(LS(N )) = �
X
j=1;p

n:j
n::

X
i=1;m

nij
n:j

log
nij
n:j

; (3:18)

wherenij corresponds to the learning states of classci which correspond to the outcome
tj , andn:j correspond to all the states corresponding to outcometj.

In practice, rather than using the information quantity directly, we prefer to normalize,
in order to obtain values belonging to the unit interval[0 : : :1], independently of the
prior entropyHC(LS(N )). The normalized values may be interpreted as an “absolute”
measure of thecorrelationbetween the test outcome and the classification, a value of
1 corresponding to total correlation and a value of 0 to statistical independence. In
particular, information quantities obtained at different nodes of a tree, or with various
classifications, may still be compared thanks to the normalization property.

In appendix A.3 we compare several possibilities mentioned inx2.5.4 to normalize
the information quantity. It turns out that the resulting tree performance, in terms
of complexity and reliability, is not very sensitive to the particular choice of score
measure. Even in a much larger class of purity measures, not necessarily derived from
the logarithmic entropy concept, the resulting tree performances remain very stable. In
our method we have chosen to use the normalizationItC by the mean value ofHC and
Ht indicated inx2.5.4, which was suggested by Kvålseth [KV 87] .

Thus our score measure is defined by

SCORE(t;LS(N ))
4
= C t

C(LS(N ))
4
=

2 � ItC(LS(N ))

HC(LS(N )) +Ht(LS(N ))
; (3:19)

whereHt is the uncertainty or entropy related to the outcome of the test, and is estimated
by

Ht(LS(N ))
4
= �

X
j=1;p

n:j
n::

log
n:j
n::

: (3:20)
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Table 3.11 Splitting of the data base by a test

TRBJ Stable Unstable Total

< 7308:5 3234 2408 5642

> 7308:5 704 6151 6855

Total 3938 8559 12497

Illustration. Let us consider our example problem, and let us compute the score
obtained by the testTRBJ < 7308:5MW , used to partition the complete data base
composed of the 12497 states. This test splits the data base into two subsets composed
respectively of 3234 stable and 2408 unstable states for which the condition is true,
and 704 stable and 6151 unstable states. This is graphically represented in Table 3.11.

Using logarithms in base two, the prior classification entropy of the complete learning
set is computed by

HC(LS(R)) = �[
3938
12497

log2
3938
12497

+
8559
12497

log2
8559
12497

]

= 0:899bit;

and the posterior entropy is computed by

HCjt(LS(N )) = �[
5642
12497

�3234
5642

log2

3234
5642

+
2408
5642

log2

2408
5642

�

+
6855
12497

(
704
6855

log2

704
6855

+
6151
6855

log2

6151
6855

)
]

= 0:706bit:

Thus, the apparent information provided by this split is obtained byItC = 0:899�
0:706= 0:193bit.

Finally, the entropy related to the test outcome is obtained by

Ht(LS(R)) = �[
5642
12497

log2
5642
12497

+
6855
12497

log2
6855
12497

]

= 0:993bit;

and thus the score associated to the above test is obtained by

SCORE(t;LS(N )) =
2 � 0:193

0:993+ 0:899
= 0:204:
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Figure 3.10 Variation of the score of the testTRBJ < THRESHOLD

Curves representing the score as a function of the test threshold are indicated in Fig.
3.10. The dotted line curve is obtained for a random sample composed of 1000 learning
states drawn in the data base. The plain curve corresponds to the scores obtained when
using the complete date base, as in the above derivation. We observe that the shape
of the latter curve is much smoother than of the former. We can also check that the
value of 7308.5 MW, used in our example computation, actually corresponds to the
maximum score, and thus represents the optimal threshold. On the other hand, for the
dotted curve a maximum score of 0.196 is obtained for a threshold of 6767.5 MW.

The comparison of the two curves of Fig. 3.10 provides an idea of the dependence of
the optimal threshold as well as the corresponding optimal score value on the random
nature of a learning sample.

Therefore, it is interesting to provide information about the sampling distribution of
the score measureCt

C(LS(N )). This is shown to be asymptotically Gaussian and its
standard deviation is estimated by [KV 87]

�Ct
C

=

vuuut
 
Ct
C

n::ItC

!2 X
i=1;m

X
j=1;p

nij

"
lognij +

 
Ct
C

2
� 1

!
log(ni:n:j)

+ (1� Ct
C) logn::

3
5

2

: (3.21)

For example, applying this formula to the test of Table 3.11 yields a standard deviation
of �Score = 0:006, whenN = 12497. In the case of the optimal test obtained in the
smaller random sample ofN = 1000 of Fig. 3.10 we get a larger value�Score = 0:024.

To further illustrate this random behavior, we have generated 500 random samples
composed of 1000 states drawn from the above 12497. On each sample, we have
computed the optimal threshold, its score and its standard deviation, according to the
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Figure 3.11 Random variations of optimal thresholds and scores

above theoretical formulas. The results are summarized in Fig. 3.11, which shows the
empirical distributions obtained for these three parameters.

The leftmost diagram shows the distribution of the optimal threshold, which is dis-
tributed with a standard deviation of 243 MW, around the mean value of 7382 MW,
close to the value of 7308.5 MW obtained in the complete data base. The central curve
shows the corresponding distribution of scores and the rightmost curve the distribution
of its standard deviation, computed by the above formula. We can observe that the
mean value,� = 0:0224 of the latter diagram, is in good agreement with the sampling
standard deviation,� = 0:0195 observed on the central diagram.

Comparison of candidate splits and selection

At a given test node, in order to select a test so as to develop this node, the algorithm
proceeds in the following fashion.

First, for each candidate attribute it identifies the best partition for this attribute, using
the appropriate search algorithm, according to the type of the attribute : discrete,
ordered or linear combination of two ordered attributes.

Second, the attributes along with their optimal partitions are sorted by decreasing order
of optimal score. LetScore� denote the optimal score of the best attribute, and��

the corresponding standard deviation computed by eqn. (3.21). The list of candidate
attributes is supposed to be sorted by the user, in decreasing order of attribute preference.

Then the finally selected attribute is the first one found in the candidate attribute list,
obtaining a score at least equal toScore� � �0��, where�0 is a parameter chosen by
the user. For example, using�0 = 0 will always lead to selecting an attribute obtaining
the highest score.

Illustration. To fix ideas, let us consider our example problem, and look at the selection
of an optimal split within the complete data base and the following list of 28 candidate
attributes, in the given order of preference

Power generations. PLG, PLG34, PLG2C, PLG23, PLG3, PLG4.
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Global power flows. TRBJ, TRBJO, TRBJE, TRCHI, TRCHA, TRNEM, TRALB,
TRABICHI, TRQMT, TRMIC, TRMAN,TRCHU.

Topological information. L7057, L7060, L7079, L7090.

Individual power flows. TR7060, TR7057, TR7079, TR7090.

Voltage support devices. NB COMP, N CHA.

Assuming that a value of�0 = 1:0 was chosen, we obtain the information shown in
Table 3.12, concerning the attribute scores in the complete data base5. Only the three
first attributes belong to the interval of scores considered to be equivalent. Accordingly,
among these the one with the highest priority in the list of candidate attributes is chosen.
This is PLG, the total active power generation of the 4 LaGrande power plants (see Fig.
3.8).

Notice that the score of the two other attributes is very close. Actually, a closer look
at these attributes shows that they are very strongly correlated with PLG, thus they
provide similar information on the stability. TRBJ is the total power flow in the James’
Bay corridor, measured nearby the generation plants and TRABICHI denotes the total
power through a cross-section in the middle of the corridor. They are clearly strongly
correlated with PLG.

This is confirmed by the values given in the last column of Table 3.12 which indicate the
correlation of each attributes’ optimal test with the optimal test of the selected attribute
PLG. The correlation coefficient used here to evaluate the similarity of two testst1 and
t2 is defined, similarly to the the score measure, by the following formula

Correl(t1; t2)
4
=

2 � It2t1 (LS(N ))

Ht1(LS(N )) +Ht2(LS(N ))
: (3:22)

Let us illustrate the use of a linear combination attribute. Although in the above table the
attribute NBCOMP, denoting the total number of compensation devices in operation
in the James’ Bay corridor, obtains a rather low score, it is known from prior expertise
that this attribute influences very strongly the stability limits of the corridor. Thus, it is
presumed that a linear combination of this attribute together with the total power flow
attribute TRBJ would provide increased discrimination power. Indeed, proposing this
linear combination attribute to the algorithm, results in the following optimal linear
combination

TRBJ � 227�NB COMP < 5560MW (3:23)

corresponding to a score of 0.3646, which is significantly higher than the above optimal
score without linear combination attribute.

5Among the candidate attributes, L7090, L7060, TRMIC, NCHA, TR7090, TR7079, TRMAN,
TRQMT, L7057, TRCHU which obtain a score smaller than 10% of the best score are not shown in the
table.
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Table 3.12 Detailed information about attribute scores and correlations

Expanding TOP-NODE : N=12497, UNSTABLE=8559, STABLE=3938,
Total Prior Entropy N*Hc : 11234.7

............................
--> A test node : TOP-NODE
=============================================================
CANDIDATE ATTR. EVALUATION: SCORE SIGMA N*INFO cor PLG

=============================================================
* TRBJ < 7307.5 0.2037 0.006 2408.8 1.00
** PLG < 7376.5 0.2037 0.006 2408.5 0.99
* TRABICHI < 6698.5 0.2035 0.006 2401.7 0.89
-------------------------------------------------------------

TRBJO < 4193.0 0.1437 0.006 1586.6 0.22
TRNEM < 4257.5 0.1349 0.006 1483.6 0.22
PLG23 < 6029.5 0.1238 0.005 1436.9 0.31
PLG34 < 3265.5 0.0913 0.005 1082.7 0.14
PLG4 < 1592.5 0.0727 0.004 817.6 0.11
PLG2C < 4394.5 0.0673 0.004 787.8 0.18
PLG3 < 1418.5 0.0653 0.004 764.4 0.09
TRCHI < 1338.5 0.0582 0.004 475.9 0.11
TR7060 < 956.5 0.0581 0.004 623.3 0.01
TRCHA < 1331.5 0.0578 0.004 472.0 0.11
TRALB < 1717.5 0.0563 0.004 495.7 0.16
L7079 < 1.0 0.0388 0.003 346.3 0.00
TRBJE < 2232.5 0.0376 0.003 412.9 0.10
NB_COMP < 4.0 0.0299 0.003 277.6 0.01
TR7057 < 1888.5 0.0235 0.002 163.8 0.05

=============================================================
CHOSEN TEST : PLG < 7376.5 (Outcomes : YES NO)
=============================================================

The parameters of the linear combination test, which may be rewritten asTRBJ <

5560+ 227� NB COMP , translate the beneficial effect of the number of compen-
sation devices on the threshold of the total power flow attribute. The line in the
(TRBJ;NB COMP ) plane corresponding to the above threshold is represented in
Fig. 3.12, along with a random sample of 500 operating states. One can observe that
on the right side of the line there are almost only unstable states, whereas on the left
side there is a mixture of stable and unstable states.

3.4.4 Stop splitting and pruning

In our initial investigations with the tree growing algorithms, in the context of transient
stability assessment, we have experimented with various stop splitting criteria, using
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Figure 3.12 Illustration of linear combination attribute

for example lower bounds on the number of learning states and/or on the residual
entropy at a terminal node [WE 86, WE 87b] .

These experiments led us to the conclusion that in order to obtain good reliability it
was necessary to develop the trees almost completely. This strategy unfortunately gave
overly complex trees, mostly composed of random splits and which were very difficult
to interpret. Thus, a strong need was felt for an approach able to distinguish among
random splits and splits significantly correlated with the stability classification. We
therefore proposed the hypothesis testing approach, in order to identify the situations
where the apparent reduction in entropy due to a split was indeed significant [WE 89b] .
The observation that the hypothesis testing approach was equivalent to detecting a local
maximum of quality became clear later, and allowed a more elegant formulation of the
pruning criterion.

Stop splitting via hypothesis testing

It is important to notice that the hypothesis testing was proposed by many researchers,
not the least of which is Quinlan [QU 86a] , in order to handle the case of noisy attributes
and noisy classifications.

Our problems however were formulated as deterministic problems, without any noise
and our difficulties were related to the necessity of providing a simple approximation
of a very complex problem, due to the limited amount of information provided by any
learning set of reasonable size. Indeed, although we knew that a correct decision tree
for most transient stability problems would be infinitely complex, we were trying to
find a good compromise allowing us to represent this in a simplified fashion as far as
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is confirmed by the learning data.

In order to remain as coherent as possible with the strategy we used to identify the
most interesting test, we decided to use the so-calledG�statistic proposed by [KV 87] .
Indeed, one can show that under the hypothesis of statistical independence of the test
issue and goal classification, the sampling distribution of the following quantity

G2 4= 2n:: � ln 2 � ItC(LS(N )); (3:24)

which is directly proportional to the total apparent information provided by a test,
follows a��square distribution with(m � 1) � (p� 1) degrees of freedom.

Thus, conforming to the general scheme of Table 3.3, the stop-splitting rule amounts
to fixing a priori a value of the nondetection risk� of the independence hypothesis and
to comparing the value of 2n:: � ln 2 � ItC(LS(N )) obtained for the optimal test, with
the threshold value obtained from the� � square table. A value of� = 1:0 would
amount to systematically rejecting the independence hypothesis, and to considering
even the smallest increase in apparent information as significant. This would lead to
fully growing the trees, so as to separate completely their learning states of different
classes. On the other extreme, using a too small value of� would lead to develop only
nodes with a very large increase in apparent information, and would produce overly
simple trees.

A very large number of simulations, for a very diverse range of problems, mainly from
power system transient stability and voltage security, have shown that optimal values
of � are in the range of 10�3 : : :10�4, which in terms of total apparent information
N � ItC leads to a threshold value in the interval of 7: : :15. These simulations have
also shown that the resulting trees are generally close to optimal in terms of reliability,
sometimes slightly suboptimal, but always significantly less complex than fully grown
trees. To fix ideas, the ratio of the number of nodes of the full tree to the number of
nodes of a pruned one with� = 10�4 lies generally between 2 and 10 [WE 90a] .

Thus, we conclude that the hypothesis testing approach successfully prevents trees
from overfitting their learning set, and leads to much simpler and less random trees.
In terms of practical outcomes, these in general are more reliable and much easier to
interpret than the trees obtained without using the hypothesis test.

Stop splitting via quality criterion

As we mentioned above, another approach to define a stop splitting criterion is based
on the quality measure.

Since the objective of the hill-climbing tree growing algorithm is to maximize the
tree quality, a good criterion of stop splitting would be to detect a local maximum of
quality. For a given value of�, the quality variation of a treeT resulting from splitting
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a terminal nodeN with a testt, is computed by

∆Q(T;LS)t;N
4
= n::I

t
C(LS(N )) � � � (p � 1); (3:25)

where(p� 1) represents the variation of the number of terminal nodes due to the node
development. This is always equal to 1 in the case of binary trees. Thus, the detection
of a local maximum of quality at a terminal node of a tree amounts to comparing the
value of the total apparent increase in information provided by the optimal testt�,
n::I

t�

C (LS(N )), with the value of the threshold�.

Similarly to the risk� of the hypothesis testing approach,� is a user defined parameter
and should be tuned according to problem specifics. A value of� = 0 would consist of
not taking into account the tree complexity in the quality measure; this is equivalent to
assuming� = 1:0 in the hypothesis testing approach and produces fully grown trees.
On the other hand, using very large values of� would lead to oversimplified trees. In
particular, for� > N �HC(LS) the tree will shrink to its root node, since no test will
be able to provide enough information to yield an overall positive variation ofQ.

Pruning and pruning sequences

There are two possible difficulties with the above described stop-splitting approaches.

The first is related to the fact that the stop-splitting criterion is only able to detect alocal
maximum of quality. As soon as a node development is not sufficiently promising,
one irrevocably stops splitting this node. There are however situations were it would
be possible to improve the tree, provided that at least two or more successive node
developments are considered. In order words, we have reached a local maximum
which is not the global maximum.

The second difficulty, which is probably more often encountered in practice, is due
to the fact that the stop-splitting approaches require the user to predefine the pruning
parameter,� or �, the optimal value of which may depend on problem specifics, and
on the complexity vs reliability compromise which is desired.

Each time a new learning problem is considered, the value of this parameter should
be tuned to the problem characteristics. This may be done during some initial tree
growing trials for various values of the parameter. Each one of the obtained trees may
be evaluated on the basis of an independent test set, and the value of the parameter
corresponding to the most appropriate tree would be retained for further tree building.

One of the questions of such a strategy is how often one must adapt the pruning
parameter. For example, should it change as soon as the learning set size changes,
or when candidate attributes are modified or only when considering a completely new
learning problem. Actually, as we have already mentioned, it has been observed in
practice that the optimal value of� (and thus of�) is not very sensitive to problem
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Figure 3.13 Quality variation : growing and pruning (adapted from [WE 93h] )

specifics, at least within the limited area of power system security problems, which
we have studied extensively. Nevertheless, it is interesting to define a more systematic
approach to identify the optimal pruning degree of a tree.

Figure 3.13 intuitively suggests the behavior of tree quality curves for variable values
of �. Each one of the plain curves shows the variation of tree quality as terminal
nodes are progressively developed6. The left hand dotted line suggests that the stop
splitting approach provides a local maximum along these curves, whereas the right hand
dotted line, which represents the optimally pruned trees, by definition corresponds to
the global maximum along the curve. While both curves indicate that for increasing
value of� the resulting tree complexity decreases, the optimally pruned tree is always
of slightly higher quality and complexity than the tree obtained by the stop splitting
approach.

Both of the above problems may thus be tackled by replacing the stop splitting complex-
ity control by the tree pruning approach. This amounts to growing a tree completely,
i.e. along the curve in Fig. 3.13 corresponding to� = 0 (or � = 1:0), and then
simplifying this tree by contracting its test nodes, so as to extract its pruned subtree of
maximal quality, for� increasing from 0 to1.

This yields the nested sequence of shrinking trees represented by the right hand dashed
line in Fig. 3.13. Using an independent pruning set to estimate the test set error rates for
each one of these pruned trees will allow us to appraise their generalization capability
to unseen objects. This is illustrated in Fig. 3.14, which shows the variation of the test
set error rate and of the complexity of the optimally pruned trees for increasing values
of �. On the basis of these latter curves, one may then select an appropriate pruning
level��, for example by using the “1 standard error rule” as is suggested in Fig. 3.14.
This consists of selecting the pruned tree as the most simple tree for which the test set

6We suppose that at each step the node whose optimal test leads to the maximal increase in information
is chosen to be developed.
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Figure 3.14 Test set error of pruned tres and “1 standard error rule”

error rate is not larger than the minimal test set error rate along the pruning curves plus
its standard deviation.

The above algorithm may be implemented quite efficiently, allowing us to generate the
complete pruning sequence with a reasonable overhead of computing time with respect
to the stop splitting approach.

Illustration. Considering again our example transient stability problem, we have built
a completely grown tree on the basis of the first 8000 states of the data base and 87
candidate attributes, including in addition to the 67 attributes proposed by the utility
engineer, four linear combination attributes and some other combined attributes.

This yields a very large initial treeT0 composed of 435 nodes, corresponding to a
complexity ofC(T0) = 217. This tree was evaluated on the basis of aPS composed
of 2000 other states of the data base, yielding an error rate of 4.35%. Starting with this
initial tree, its pruning sequence was computed and an optimal tree selected using the
“1 standard error rule”7. The resulting treeT�� corresponds to�� 2 [12:235: : :12:654[
and is composed of 115 nodes (i.e.C(T��) = 57) and has an error rate in the above
test set of 3.95%.

Figure 3.15 shows the curves of the tree complexity and test set error rate along the
sequence of shrinking trees for increasing values of�. For the sake of clarity the graphs
are zoomed on the interesting range of� values. The vertical line shows the location of
the optimal tree, on the left side of which it is possible to observe the slight overfitting
of the more complex trees, which translates into an increased error rate. On the right
side of this line one can observe that pruning the tree further would lead to removing
some significant tests, resulting in a rapid increase in error rate.

Since the pruned tree was selected on the basis of the pruning set error rate, it is

7The standard deviation of the error rate is computed by the formula
q

Pe(100�Pe)
M

; in most of our

simulations it is approximately equal to 0.5%



88 3. MACHINE LEARNING

Complexity

0 β∗ 25 50 75 100

β
0

25

50

75

100

125

150

175

200

C(T)

Test set error rate

0 β∗ 25 50 75 100

β2.5

5.0

7.5

10.0

Pe(T)

Figure 3.15 Pruning sequences for a transient stability assessment tree

legitimate to suspect the latter to be optimistically biased. Thus, we have re-tested the
pruned tree, as well as the initial one, on the basis of an independent test set, composed
of the 2497 remaining states of the data base. This yielded respective error rates of
4.21% for the pruned tree and 4.17% for the initial tree, which are not significantly
different from the above two error rates. This is in good agreement with our overall
experience, suggesting that using the “1 standard error rule” indeed produces in general
quite simple trees, which are close to optimal and for which the pruning set error rate is
not strongly biased. Thus in practice, it is not necessary to reserve an extra independent
test set, for estimating the reliability of the pruned tree.

In terms of computational cost, the pruning approach presents an overhead with respect
to the stop splitting approach, mainly due to the increase in CPU time required to grow
the initial tree fully. In the present example, the total computing time required to grow
this tree was of 3hrs 31min CPU time. Then it took about 187 seconds to generate
the complete pruning sequence and to select the optimally pruned tree, and some 20
additional seconds to test the latter tree’s reliability on the basis of the 2497 independent
states.

In comparison, using the hypothesis testing stop splitting rule, together with a value of
� = 5�10�5 (corresponding to the above optimal value of�) yields in this case exactly
the same tree, but requires only 2hrs 16min CPU time, i.e. a reduction of about 35%
with respect to the above figure.

Thus, if the optimal level of pruning is known a priori, it is of course more efficient to
use the stop splitting approach. However, in order to determine this optimal value, for
example during initial trials, it is much more systematic and efficient to use the pruning
approach than repetitive tree building with different settings of�.

Figure 3.16 provides a partial view of the above pruned tree, showing its most important
parts nearby the top-node. The notation used for a typical node is also represented at
the top left hand side of the tree; one can see that each tree node is represented by
a box, the upper part of which corresponds to the proportions of stable and unstable
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Top-node

Learning set classification (w.r.t. CLASSE-BJ)
Unstable: 5502
Stable: 2498

Test set classification.
Non detection costs :     Unst.:  1.0     St.: 0.9999

Reference Decision   Tree   Class
Classe-Test Unstable Stable Total
Unstable 1592 30 1622
Marginal 48 23 71

Stable 52 752 804
Total 1692 805 2497

T2: 4520 Y

T3: 3902 Y

L1: 3125 Y
St4: 777

N

Trbj-269*Nb_Comp>5533MW

T13: 618
N

D5: 202
Y

St14: 416
N

Nb_Li_Se<2

Trbj-215*Nb_Comp>5656MW

T23: 3480N

T24: 338
Y

D11: 281
Y

T25: 57
N

L13: 10
Y

T26: 47
N

D12: 18
Y

D13: 29
N

Nb_Comp-Cha<9

Trse>1709MW

Plg4>1749MW

T27: 3142N

T28: 380
Y

D14: 257
Y

T29: 123
N

L14: 24
Y

T30: 99
N

T31: 75
Y

D15: 60
Y

L15: 15
N

Nb_Comp-Cha<10MW

L16: 24
N

Trbjo-0.7Trbje>1832MW

Nb_Li_No<3

Tr7069>1485MW

St32: 2762N

L7079<1

Tr7069>2256MW

Trbj-120*Nb_Comp>6271MW

Name : size(LS)

LS

TS

errors

Figure 3.16 Decision tree :N = 8000,M = 2497, � = 5 � 10�5, Pe = 4:2%

learning states relative to this node. In addition to the label indicating the type of a
node, the number of learning states of the node is indicated next to it. Test nodes are
identified by the label “Ti” or “STi”, the latter corresponding to subtrees which have
not been drawn on the picture. Terminal nodes are identified by a label “Li” for leafs
and “Di” for deadends. A leaf is a terminal node with a sufficiently class pure learning
subset, i.e. a learning subset of mean entropy lower than a predefined threshold (Hm)
value taken here equal to 0.01bit, whereas a deadend is a node which corresponds to a
pruned subtree.

The test results obtained when classifying the 2497 test states are shown in the table
next to the tree. The non-detection costs used to assign a classification to the terminal
nodes of the tree are almost identical, and the majority class is used. When there is a tie,
the slightly lower non-detection cost of the stable class ensures that the unstable class
is systematically chosen. The table indicates the number of stable, marginally unstable
and fairly unstable states, as they are classified by the tree. The 23 marginally unstable
states classified stable correspond to the so-called “normal” (i.e. unavoidable) non-
detections whereas the 30 fairly unstable states classified stable are the “dangerous”
non-detections. The false alarms are the 52 stable states which are classified unstable
by the tree. Notice that only 30 out of 1622 fairly unstable states are not detected,
which yields a rather low non-detection rate of the dangerous situations of 1.85%.
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Table 3.13 Percentage ofN � ITC provided by each test attribute

TRBJ+B*NB_CO: 51.8 TR7069 : 9.7 L7079 : 6.2
TRSE : 5.8 NB_COMP : 4.6 TR7062 : 4.3
NB_LI_SE : 3.4 NB_LI_NE : 1.9 PLG4 : 1.9
L7090 : 1.8 NB_COMP-CHA : 1.6 TRSO : 1.2
CLASSE-BASE : 1.0 TR7094 : 1.0 PLG+B*TRBJ : 0.8
TRNEM : 0.6 NB_LI_NO : 0.5 TR7025 : 0.4
TRNO : 0.3 TRABI : 0.3 TRBJO+B*TRBJ: 0.3
TR7044 : 0.2 PLG3 : 0.2 TR7016 : 0.2

In addition, at each node of the tree the proportion of erroneous classifications of
test states are indicated for the corresponding subtree. At the terminal nodes this
corresponds to the proportion of its test states of the minority class. At intermediate
nodes, it corresponds to the mean error rate of the complete subtree, and at the top-node
it corresponds to the overall error rate of the tree (i.e. 4.2%).

Finally, although this is hardly apparent from the above picture, we mention that the
decision tree building has identified among the 87 candidate attributes 24 relevant
ones. The tree allows us to reduce the initial total entropy of the learning set from
N �HC = 7166bit to a residual entropy valueN �HCjT = 965bit. This amounts to a
total information quantity provided by the tree of 86.53%.

Table 3.13 provides detailed information of the way this information is shared among
the different test attributes. The attributes are sorted by decreasing values of their
information quantity which is defined as the sum of the total information quantities
N(N ) � I tC(N ) of the test nodes corresponding to a given attribute, expressed as
a percentage of the total information of treeN � ITC . One may observe that more
than 50% of the tree information is provided by the linear combination attribute used
at the top-node, and another 40% by the following eight attributes which involve
the topology (L7079, NBCOMP, NB LI SE, NB LI NE) and power flows (TR7069,
TRSE, TR7062) in the James’ Bay corridor as well as the active power generated in
one of the LaGrande power plants (PLG4). This gives a first impression on the way
various pieces of interesting information may be provided by a tree.

Remark. The information obtained via the tree portrayed and described above was
obtained with the basic TDIDT approach. A more in depth investigation and adaptation
allows us to improve the latter information from various viewpoints, as we will show
in x13.4. In particular, it is possible to decompose the overall stability problem into
subproblems yielding simpler and more accurate trees, which are also easier to analyze
from the physical point of view. Further, the tree building process may be biased so as
to reduce further the number of non-detections of unstable situations.
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3.5 OTHER CLASSES OF MACHINE LEARNING METHODS

While most of the real world applications of machine learning use one of the TDIDT
methods, there exists also a large variety of other machine learning approaches.

Among them we may distinguish between methods which stick to the same simple
attribute based representation of objects and rules as the TDIDT methods, and those
which aim at exploiting more complex higher level, relational representation languages.

For the latter kind of methods, the objective is to tackle situations where interesting
information is provided by the structure of objects and the relations among their
components. Many real-life problems may involve the representation of such complex
information. Among the methods trying to operate with the high level representation
languages required for these problems, let us quote the recent work of Quinlan, using
first order predicate calculus to represent objects and rules [QU 90, QU 91] .

This is certainly a promising long term research area, but for the time being the resulting
methods are still at the experimental stage, able to handle only rather small problems,
and lacking many features required for real world applications, such as for example
the ability to cope with numeric as well as incomplete or contradictory information.
On the other hand, in the context of our power system security problems it is not sure
whether they have a true potential of outranking the presently available methods, since
the simple attribute based representation presently used fits nicely into these problems.

Among the former category of machine learning methods (i.e. those which use the
attribute based representation), we will briefly describe two complementary approaches
concerning respectivelyinstance based learningandrule induction. As we will see
below, the rule induction techniques might be able to improve the interpretability of
the information provided by decision trees. On the other hand, instance based learning
techniques allow one to identify in a large data base the reference cases relevant for
drawing conclusions about the current situation, providing thereby potentially useful
guidelines for an operator.

In addition to these two learning methods, we will give a brief overview of the genetic
algorithms, which have recently received increased interest. These could be applied
as an auxiliary tool, for solving some of the difficult combinatorial search problems
arising within any of the above machine learning methods.
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3.5.1 Rule induction

Practical motivation

A decision tree decomposes its attribute space into a set of exhaustive and mutually
exclusive regions, corresponding to its terminal nodes. It may be translated into a
corresponding set of decision or production rules. Each rule corresponds to a terminal
node and associates aconjunctionof attribute tests, encountered on the path from the
top-node of the tree to the terminal node, with the majority class (or class probabilities)
attached at the terminal node. Thereby a class is represented as adisjunctionof the
mutually exclusive rules corresponding to the terminal nodes of this class.

It is a straightforward task to translate a decision tree into a corresponding set of
production rules. In general it is also possible to further simplify the resulting set of
rules without loss of accuracy [QU 87a] , by relaxing the condition of mutual exclu-
siveness and exhaustiveness. This may greatly improve the human intelligibility of the
information carried by a decision tree while maintaining an optimal level of accuracy.

Another approach to machine learning consists of building the rules directly on the
basis of the learning set without requiring the intermediate building of a decision tree.
Probably the most well known such rule induction methods correspond to the AQ family
of algorithms [MI 83] . This method was initially developed for the deterministic case
and was later adapted to allow the consideration of uncertain, unreliable or incomplete
information. From this evolution some new - essentially probabilistic - rule induction
methods have emerged which are now able to compete with the decision tree induction
techniques in terms of their simplicity vs. accuracy compromise. At the same time,
these methods are of sufficient computational efficiency to handle real-world problems
[WE 90c, CL 89] .

We briefly describe below the CN2 algorithm [CL 89] , which is quite representative of
the rule induction methods, and which has obtained promising results in the context of
the Statlog project with two different power system security data sets [TA 94] .

In practice we hope to be able to further improve the interpretability with respect to
decision trees. On the one hand, with the rule induction methods it could be easier to
generate simpler and more selective rules to detect insecurity. On the other hand, it
may be possible to restrict their scope to those regions of the attribute space which are
sufficiently well represented in the learning set, in particular so as to avoid an optimistic
classification in the regions which have not been sampled. Further, the rule induction
methods use a more general search strategy allowing them to trade computational
efficiency and rule quality in a more flexible way than the TDIDT procedures.
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Table 3.14 The CN2 induction algorithm. Adapted from [CL 89]

CN2(LS)

1. Start with an empty list of rules and let initiallyE = LS.

2. Let RULE�(E) denote the best rule found for E, i.e. the most informa-
tive and significant conjunctive rule.

3. If RULE� = ; then stop and return the current rule list as solution.

4. Otherwise, add RULE� to the current list of rules, and remove from E
the objects covered by RULE�, and continue at step 2.

RULE�(E)

1. Let initially STAR be the set containing only the empty rule,S be the
set of all possible selectors, and RULE� be the empty rule.

2. If STAR orE are empty then return RULE�.

3. Let NEWSTAR denote the set obtained by specializing all rules in
STAR, in all possible ways by adding a single selector ofS, and
remove all the rules of NEWSTAR which either are in STAR (i.e. they
are not a proper specialization of the previously considered rules), or
are null (they are an overspecialization).

4. For every ruleCi in NEWSTAR, ifCi is statistically significative and
better than RULE� when tested onE, then replace RULE� byCi.

5. Set STAR to theK best rules of NEWSTAR for the next iteration.

The CN2 algorithm [CL 89]

CN2 is a direct descendant of the AQ family of rule induction algorithms, which
constructs a set of conjunctive rules in a sequential fashion. The dependence of AQ on
particular instances has been removed in CN2 and the conditions of perfect consistency
and coherency with the learning set have also been relaxed. This enables CN2 to
properly cope with noise and uncertainties.

The algorithm is described in Table 3.14. It is composed of an outer loopCN2(LS),
which grows a list of rules and an inner loopRULE�(E) which improves gradually
the rules by specializing them, i.e. by adding some conditions on attribute value so
as to restrict the set of objects covered by a rule in order to improve its information.
An attribute condition is built from the set of possible values of an attribute by using
the following relationsf=;�; >; 6=g. A rule is a conjunction of such tests, which
are selected sequentially by the beam search procedureRULE�(E). The set of rules
covering the learning set is constructed sequentially, whereby each rule is evaluated
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only on the learning states not yet covered by the preceding rules. Thus the resulting
set of rules should be applied in the same order as they have been generated.

The notable fact about the CN2 algorithm is that it is a result of combining interesting
features of both AQ and ID3. In particular, it uses an information theoretic criterion,
similar to ID3, to assess the quality of a rule and a�-square like hypothesis test, similar
to our stop-splitting rule, to test the significance of rules so as to avoid overfitting.
On the other hand, the main advantage of the method drawn from AQ is its improved
beam search strategy, which allows us to search along a set of most promising search
directions, rather than a single one, as in the hill-climbing approach. The computational
complexity of the algorithm is directly proportional to the numberK of search directions
investigated in parallel, which allows to trade computing times and expected rule quality.

In the Statlog project this method, compared to the tree induction algorithms, has
obtained quite similar accuracy results although it was significantly slower.

3.5.2 Instance based learning (IBL)

Practical motivation

In the decision tree or rule learning approaches the aim is to derive via an appropriate
inductive inference technique a general rule from a set of specific learning examples.
This is a model driven approach, where learning consists of searching in a space of
possible rules in order to replace the information of a learning set by a set of general
rules, which are then used later for predicting classes of new objects. The objective
is mainly to find an explicit model which is based only implicitly on the relevant
similarities and differences among objects.

In contrast, the instance or object driven approach to learning consists of storing the
individual learning objects and modelling explicitly their relevant similarity relation-
ships, so as to allow generalization to unseen objects. In this framework, learning
will essentially consist of deriving distance functions appropriate for generalization
[ST 86, CO 91, AH 91, SA 91b] . Objects and distances are then used to find the best
reference case matching a new object, and the information stored together with the
reference case is extrapolated, taking into account the differences between the two
objects and possibly exploiting prior knowledge about the problem.

This is clearly also one of the mechanisms by which human experts - in particular
in the context of security analysis - use their experience to solve difficult problems.
One of the interesting possibilities of instance based learning is that if an operator
wants to check the security information derived for the current state, the system may
simply present the relevant instances of the data base and their main differences with
the current situation. The operator may then focus his analysis on these differences so
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as to determine the confidence he can have in the extrapolated security information.
Further, at this step it would be relatively easy to exploit domain specific knowledge in
order to bound the possible influence of attribute differences on the security margin.

The model-driven and object-driven approaches to learning are certainly in general
complementary and could be used together so as to make a better use of the information
available in a data base. This is discussed further in the context of hybrid approaches
in chapter 6. Below we will merely provide a hint on the so-called PEBLSinstance
based learningparadigm [CO 91] .

PEBLS [CO 91]

PEBLS (standing maybe forPractical Exemplar Based Learning System) extends
the nearest neighbor methods of statistical pattern recognition discussed inx4.3.1 to
symbolic attributes. The main problem when applying the nearest neighbor idea is to
define an appropriate similarity measure which is used to compare different objects.
This involves the definition of attribute differences and their weighted combination in
a distance measure. In the context of statistical pattern recognition, techniques have
mainly been developed to handle real valued attributes. Thus the basic purpose of
PEBLS is to extend these techniques to the case of symbolic information.

This results in the definition, on the basis of a learning set, ofvalue differencetables
[ST 86] , producing a non-Euclidean metric and the idea ofexception spaceswhich
attach weights to individual objects in a data base, allowing one to control the size of
the region around an object where its information may be reliably used for extrapolation.

The value difference metric [ST 86]

The idea of the value difference metric is to take into account the overall similarity of
the classification information of the different values of an attribute, in order to define the
relative importance of differences of an attribute’s values. To set up the value difference
tables, the attributes are analyzed one by one, which implicitly consists of neglecting,
when defining the differences among attributes values, the cross-correlations among
severalattributes and classes.

The distance between two valuesv1; v2 of aqualitativeattributea is defined in [ST 86]
by

�a(v1; v2)
4
= wa �

X
i=1;:::;m

����ni1n:1
�
ni2
n:2

����r ; (3:26)

where
nij denotes the number of learning stateso such thatc(o) = ci anda(o) = vj
n:j denotes the total number of learning states such thata(o) = vj,
r is a constant, usually set to 1, and
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wa is a weight controlling the importance of an attribute in the overall distance.

Notice that in [CO 91] the weightwa is always set to 1, which consists of weighting
the attribute differences proportionally to ther-norm of the corresponding difference
in conditional class probability vectors. Thus, if two attributes are highly correlated
the corresponding information will be taken into account twice in the overall distance.

For anorderedattribute, we could define a similar distance

�a(v1; v2)
4
= wa �

X
i=1;:::;m

�����ni;v1

n:;v1

�
ni;v2

n:;v2

�����
r

; (3:27)

where
ni;vj denotes the number of learning states such thatc(o) = ci anda(o) � vj, and
n:;vj denotes the total number of learning states such thata(o) � vj.

Notice that eqns. (3.26) and (3.27) measure the difference among attribute values by
the distance of conditional class probability distributions; thus other such measures
comparing probability distributions, e.g. based on the entropy concept, could as well
be used to derive alternative attribute value distances.

Another possibility would consist of defining the value distance by

�a(v1; v2)
4
= wa �

X
i=1;:::;m

����ni1ni: �
ni2
ni:

����r ; (3:28)

whereni: denotes the total number of states of classci.

Then the corresponding distance for an ordered attribute would be defined by

�a(v1; v2)
4
= wa �

X
i=1;:::;m

����ni;v1

ni:
�
ni;v2

ni:

����r ; (3:29)

which takes into account the requirement that

v1� v2� v3 =) �(v1; v2) � �(v1; v3):

Finally the total distance between two objects is defined by

∆(o1; o2)
4
= w(o1) � w(o2) k

s X
i=1;:::;n

�ai
�
ai(o1); ai(o2)

�k; (3:30)

where
k denotes the order of the distance, and
w(o) is a weight controlling the importance of an object in the data base.

While the value difference tables are directly computed from the learning set classifi-
cation applying either eqn. (3.26) or (3.27) as appropriate, the remaining weights used
in the distance measure must be adapted in an iterative fashion.
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Table 3.15 Iterative adaptation of object weights

1. Compute the value distance tables for each attribute from the complete
learning set, according to eqns. (3.26) and (3.27).

2. Start with an initial data base composed of a small number of objects
picked at random from the learning set, and set their initial values of

n(o); correct(o); w(o)(
4
= n(o)

correct(o)
) to 1.

3. Consider the learning objects sequentially and insert them one by one in
the data base.

4. Let o denote the next object to insert, ando0 its nearest neigh-
bor in the current data base, i.e. minimizing the distance

w(o0) k

qP
i=1;:::;n �ai

�
ai(o); ai(o0)

�k.
5. Incrementn(o0) by one; ifc(o) = c(o0) increment alsocorrect(o0) .

6. Initializen(o) to n(o0) andcorrect(o) to correct(o0).

7. Continue at step 4, until the learning set is empty.

In the algorithm described in references [CO 91] and [SA 91b] the weightswa of
individual attributes are kept constant and equal to one while the individual weights of
objects are updated in a sequential fashion, as indicated in Table 3.15. The weight of
an object is proportional to the ratio of the number of timesn(o) it has been used as
a nearest neighbor, to the number of times it has been used while leading to a correct
decision,correct(o). This allows the influence of exceptional states to be restricted to
a small neighborhood.

Equalwa weights of the attributes corresponds to the assumption that the different
attributes provide independent and complementary information on the classification,
which may not be valid in practice. In this case a more elaborate technique would
consist of determining optimal relative weights of attributes on the basis of the learning
set. One of the possible techniques to help choosing the optimal set of weights is
discussed in the next section.

3.5.3 Genetic algorithms

Genetic algorithms have been proposed some twenty years ago, as a general model
of adaptive behavior for artificial systems, and are loosely based on an analogy with
population genetics derived from the Darwinian principle of natural selection [HO 75] .
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This has led to a general optimization technique which combines ideas from random
sampling and hill-climbing methods with the notion of competition. These heuristic
methods have shown to be able to provide high quality solutions for many difficult
combinatorial optimization problems and are seen as a promising alternative to knowl-
edge directed heuristic search when the prior knowledge is not sufficiently strong to
effectively guide the search [GO 89a] . For such problems, the genetic algorithms
offer a possibility of collecting and exploiting global problem specific knowledge on-
line, during the search process, which is exploited to orient the search into interesting
directions.

In addition to the general optimization methods, an important part of the research on
genetic algorithms has concentrated on its application to machine learning, yielding a
class of genetic algorithm based machine learning techniques [DE 90] . Although these
methods are of interest, below we will merely describe the basic idea of the genetic
algorithm basedoptimizationtechnique, and then provide some examples of potential
applications in the context of the machine learning methods described earlier in this
chapter.

Genetic algorithms for general purpose optimization

Our description of Genetic Algorithms (GA) is a summary of a more detailed discussion
given in [DE 90] . The interested reader should refer to this reference or to the book by
Goldberg [GO 89a] for additional technical details.

Generally speaking, an optimization problem is defined as the search for a solutionx�

in some predefined spaceX , so as to maximize the value of an optimality criterionf(�)
defined inX . Particularly interesting such problems arise in practice when either the
functionf(�) is not differentiable or not convex, or whenX is not convex, and there
are many local maxima off (�) of highly variable quality.

In the context of a GA, the elements ofX are represented as strings of characters,
and the algorithm manipulates successive generations ofpopulationsof such strings
of characters, trying to find values of maximalf (�). An initial generation population,
sayP (0), is chosen by sampling strings inX at random, and the value off (�) is
computed for each such element. At stepk, a new generationP (k) is derived from
the generationP (k � 1) by altering selected states viagenetic operators(crossover
and mutation). Further, mutation operators are chosen at random according to a priori
defined parameters, and states are selected according to a random scheme, where the
probability of selection is higher for states with higher values off(�).

The crossover operator consists of selecting two individuals from the current population
and combining their string representations to produce a new element. This operator will
preserve the similarities among elements and it is necessary to use a mutation operator
to generate elements which are significantly different from the current population.
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CROSSOVER

Prob. 1� �

x1 = ABCDEFGH

x2 = abcdefgh

Selection :

x01 = ABCdefGH

Prob. �

(Prob. / f (x1))

(Prob. / f (x1))

P(k� 1)

(Prob. / f (x1))

P(k)

Selection :

x1 = ABCDEFGH

x01 = ABCdEFGH

MUTATION

Figure 3.17 Illustration of crossover and mutation operators

These two operators are illustrated in Fig. 3.17. At each step of the basic algorithm
a statex1 is replaced by the resultx01 obtained by applying the selected operator. The
probability � of the mutation operator is generally rather small, for example� = 0:1.
The points within the strings where the crossover or mutation operators are applied are
chosen at random and the number of different elements in the population is generally
kept between 100 and 200.

Of course, many variants of the basic GA have been proposed in the literature, depend-
ing on the precise definition of operators, the way operator probabilities are chosen,
and the method used to generate a new population at each step, deciding how many and
which states are replaced at each step. However, the most important task in applying
either variant to a practical problem consists of choosing an appropriate representation
of elements inX in terms of strings and the determination of selection probabilities in
terms of the values of the functionf(�).

Application to machine learning

As we have indicated in the preceding sections, the machine learning problem is
basically an optimization problem, where the objective is to maximize the quality of
a rule set or of a decision or class-probability tree. To avoid combinatorial explosion
most practical machine learning algorithms use a hill-climbing - at best beam search -
strategy and are able only to provide a local optimum of quality with respect to a set of
predefined rule modification operators. Since they search only a rather sparse subset
of the complete set of possible models, they may be unable to find high quality rules in
some practical situations.
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Thus, one possible way of applying the GA would “merely” consist of replacing the
hill-climbing search strategy by a genetic algorithm operating on an appropriate string
encoding of all possible rules or decision trees. This leads to the family of genetic
algorithm based machine learning methods discussed in [DE 90] .

Another approach consists of using an existing machine learning method to construct
a first guess rule, and then to apply the genetic algorithm so as to modify only the
parametersof the rule.

For example, in the context of the decision trees, a rather straightforward application
of this idea would allow us to adapt the attribute thresholds defined at the test nodes
of an existing tree in order to improve the tree quality (e.g. defined by eqn. (3.14)) or
any other kind of optimality criterion. One could use the same kind of technique as is
proposed in [MO 90] , where a genetic algorithm is applied to refine the rules defined
by experts. The thresholds of the latter rules are adapted on the basis of a sample
of pre-classified states so as yield a pre-specified “false alarms vs non detection”
compromise.

The main advantage of this latter approach is that the attribute selection and structure
of the rules would be determined once and for all, on the basis of algorithms which are
by now well validated in practice. The threshold values could then be adapted via the
genetic algorithm for example so as to produce biased versions of the rules, e.g. with
reduced non-detection probability of certain classes, or minimizing the expected cost.

A second class of problems, which have not yet received a completely satisfactory
solution, concerns the choice of a distance or similarity function, to be used in the
context of the instance based learning algorithms. We have seen in the preceding
section that this problem may be solved by choosing a set of weights and difference
tableswa; w(o); �a(vi; vj) so as to optimize the generalization capabilities of the nearest
neighbor rule.

3.6 CONCLUDING REMARKS

Tree induction methods are by now mature techniques, able to handle very large
machine learning problems with very good efficiency. Tree quality evaluation, optimal
and stop splitting and pruning have been explored in depth by many researchers and
satisfactory solutions exist. Possible ways to improve decision trees are still under
research : they concern mainly the relaxation of representation constraints (e.g. using
several different attributes in a compound test at an interior node of a tree; generalized
tree structures) and the use of more powerful optimization techniques able to get closer
to the global optima. One of the potential limitations with these techniques is due to the
fact that a decision tree provides by construction a complete model of the full attribute
space and is unable to restrict its own domain of validity to the regions which are well
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enough represented in the learning set.

Complementary to the “general model” philosophy of tree induction methods, are the
instance based learning approaches which offer the possibility of using domain knowl-
edge so as to enable local reasoning about differences between the closest matching
reference cases in a data base and the current situation. Further, the distance of the
current object to its nearest neighbor in a data base may provide information on the
degree of confidence one may have in extrapolated information. In the context of
security assessment applications this could be applied in order to define indicators to
detect situations where it is necessary to use another, more detailed model to assess the
security. These possibilities offer admittedly a very promising research avenue.

The rule learning paradigms provide a kind of intermediate compromise between these
two extremes. They synthesize the information of a data base up to a certain level,
while allowing for the proper handling of exceptions, and should also be able to avoid
the construction of overly general rules, not validated in a data base. Thus, together
with the instance based learning methods they show promise in further improving the
quality of information drawn from the data bases.

On the other hand, while the research on exploiting high level structural and relational
descriptions in the context of inductive learning is progressing, the application of such
techniques to real-world problems has still a long way to go.
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4

Statistical methods

In this chapter we will give a description of some of the classification, regression
and clustering techniques grouped under the banner of statistical methods, while the
following chapter is devoted to the so-called neural network approaches. One of the
common characteristics of these methods is that they handle input information in the
form of numerical attributes. Thus all non-numerical information must be translated
into numbers via an appropriate coding scheme. In the case of power system problems,
this concerns mainly the topological information, which is assumed to be coded by
binary 0/1 indicators.

Before starting with the description of the statistical methods, we would like to stress
the fact that the distinction between statistical and neural network approaches becomes
nowadays quite irrelevant. This will become more obvious in the course of this and the
next chapter; it will be further discussed at the end of chapter 5.

Our second remark concerns the choice of methods we have decided to describe and
the level of technical details provided for each one. Our choice has been mainly
driven by the needs of power system security applications, and our own perception
of which methods show promise to fit these needs. This perception is based on the
experimentation of the methods on real and synthetic power system security data sets,
and in addition, on valuable practical feedback gained from the comparative study
made in the STATLOG project with two of our data sets. However, while this is clearly
a subjective choice, we believe we have included in our description a representative
sample of the methods which show some true potential.

Although our discussion is clearly biased by the specifics of security assessment, we
will leave most of the practical considerations to later chapters. Our aim is to provide
a mere overview of capabilities of approaches, and not to give a highly technical
description. Implementation details have been included only as far as this may clarify
some of the ideas and help understand the basic principles.

103
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4.1 INTRODUCTION

Statistical learning techniques have been developed for more than sixty years, for
classification, regression and clustering. Since the pioneering work of the late sixties
[DY 68] , there have also been repetitive attempts to apply these methods to power
system security assessment, mainly for fast transient stability analysis [HA 92] .

Overall, the statistical approach to learning (or statistical inference) consists of three
conceptual steps : (i) probabilistic description of the regression or classification prob-
lem by a set of joint probability distributionsp(a;y) or p(a; c), as appropriate, and
formulation of simplifying assumptions, if any, about the structure of the underly-
ing probabilistic process; (ii) estimation of the conditional probability distributions
p(yjLS;a) (resp.p(cjLS;a)) of the output variablesy (resp.c) given the learning set
information and the value of the attribute vector of a new observation; (iii) use of the
latter model for decision making. An in depth discussion of the various approaches
and techniques to the estimation problem is given in [DU 73] .

In our description we have chosen to classify the statistical methods into parametric
and nonparametric ones. The former category concerns methods based on strong
hypotheses about a problem and which exploit them in order to define a simplified
model in terms of a fixed number of parameters. The latter category concerns methods
which make only very non-restrictive assumptions in order to be as general as possible.

Most of the statistical methods require some pre-processing of the data so as to optimize
their performance; we will therefore briefly comment the feature pre-whitening, selec-
tion and extraction methods which go together with the statistical pattern recognition
techniques. They may of course also be useful in the context of the neural network
approaches discussed in the next chapter.

4.2 PARAMETRIC METHODS

We will stick to the tradition, according to which the so-called parametric methods
concern only the linear and the quadratic models, although other approaches could as
well be termed parametric. We consider first the case of linear classification boundaries
and discuss two different ways of obtaining this type of classifier. Then we will derive
the quadratic discriminant functions from the standard normality assumption and show
how this degenerates into a linear discriminant under the hypothesis of identical class-
conditional covariance matrices.
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4.2.1 Linear discriminant functions

In order to simplify our discussion, we will only consider the case of classification
problems with two classesc(o) 2 fc1; c2g, and will assume we are searching for a
linear classification rule of the form,

g(a(o))
4
=
X
i=1;n

ai(o) � wi + w0; (4:1)

which assigns classc1 if g(a(o)) � 0 and classc2 otherwise.

Then the practical learning problem amounts to defining the coefficientsw0; : : : wn, on
the basis of the learning set, so as to maximize the quality of the decision rule.

Although the two methods which we will describe will provide the same criterion under
the restricted hypothesis of normal class conditional distributions with an identical
covariance matrix, they are characterized by different learning criteria and thus result
in different classification boundaries when the latter hypothesis is not verified, which
is most often the case in practice.

Let us also notice that there are plenty of other approaches to the design of linear or
generalized linear models, as for example the various perceptron models discussed
in chapter 5, within the context of neural networks. The interested reader may also
consider the references [DU 73, HA 81, DE 82] , and the references therein for a more
extensive account of such methods.

Fisher’s linear discriminant

The basic idea behind the Fisher’s linear discriminant is to replace the multi-dimensional
attribute vectors by a single feature resulting from a linear transformation of the at-
tributes. Thus the objective is to define a linear transformation maximizing the separa-
tion of objects of different classes, on the new feature axis.

Let us define the class conditional means of the attribute vector by

ai
4
=

X
o2LS;c(o)=ci

a(o); (4:2)

and the class conditional scatter of the linear projection on vectorw = (w1; : : : ; wn)
T

of the samples, by

s̃2
i
4
=

X
o2LS;c(o)=ci

(wTa(o)�wTai)
2: (4:3)

ThenFisher’s linear discriminantis defined by the weight vectorw� maximizing the
following criterion function

J(w)
4
=

(wTa1 �wTa2)
2

p1s̃2
1 + p2s̃2

2
; (4:4)
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which is the ratio of the distance of the projected mean vectors to the mean class-
conditional standard deviation of projected feature values. (In the pure Fisher’s linear
discriminant, the classes are supposed to be equiprobable.)

Let us also define the mean class-conditional sample covariance matrixΣ̂W by

Σ̂W
4
= p1Σ̂1 + p2Σ̂2; (4:5)

where the matriceŝΣi are the sample estimates of the class conditional covariance
matrices, obtained by

Σ̂i
4
=

1
ni:

X
o2LS;c(o)=ci

[a(o)� ai] � [a(o)� ai]
T : (4:6)

Then, it may easily be shown that an explicit form is obtained forw� by the following
formula,

w� = Σ̂�1
W (a1 � a2); (4:7)

provided that the matrix̂ΣW is non-singular. Otherwise, the optimal direction may be
determined by an iterative gradient descent least squares technique [DU 73] .

To obtain a decision rule, in addition to choosingw it is required to define an appropriate
thresholdw0. In the standard Fisher’s linear discriminant method, this threshold is
chosen directly on the basis of the distribution parameters, in the following way

w0
4
= �

1
2
(a1 + a2)

T Σ̂�1
W (a1� a2) + log

p1
p2
: (4:8)

However, once the vectorw� has been fixed, it is a simple scalar optimization problem
to choose the appropriate value ofw0. Therefore, it may be done easily by an optimal
threshold search similar to the one described in Table 3.9 for the tree induction methods
in chapter 3. The advantage of this method is that it is appropriate for every possible
practical optimization criterion.

Illustration. Let us apply Fisher’s linear discriminant to the transient stability example
of x3.4. We consider the problem of determining an optimal linear classification bound-
ary in the two-dimensional attribute space(TRBJ;NB COMP ). Let us determine
the optimal linear combination according to Fisher’s criterion, and compare it to the
optimal linear combination found by the tree algorithm.

The class-conditional means and covariance matrices have been determined in the
complete data base composed of 12497 states, and are given by

aStable =

 
6533
8:977

!
Σ̂Stable =

 
739166:0 1733:8
1733:8 8:483

!

aUnst =

 
7845
7:542

!
Σ̂Unst =

 
1009284:0 1475:3

1475:3 13:775

!
:
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On the other hand the prior class probabilities are respectively

p̂Stable =
3938
12497 = 0:315; p̂Unst =

8559
12497 = 0:685

and thus the mean class conditional covariance matrix is obtained by

Σ̂W = 0:315� Σ̂Stable + 0:685� Σ̂Unst =
 

924165:7 1556:8
1556:8 12:1077

!

and the optimal projection direction is obtained by

Σ̂�1
W (aStable � aUnst) =

 
�0:00206617
0:38413971

!
:

Thus the optimal linear combination direction of the attributes is given by

TRBJ +
0:38413971
�0:00206617

�NB COMP = TRBJ � 186�NB COMP:

To determine the corresponding threshold providing the highestscorein the complete
data base, we have used the optimal threshold search for this linear combination
attribute. This yielded a threshold of 5903MW corresponding to a test of

TRBJ � 186�NB COMP < 5903MW;

and a score of 0.344. We can compare this with the optimal test of

TRBJ � 227�NB COMP < 5560MW;

found by the linear combination search algorithm of Table 3.10, which obtained a
slightly higher score of 0.3646. Notice also that using eqn. (4.8) to compute the
threshold results in a value of 5465 MW, corresponding to a score of 0.3291.

Thus in this particular case, Fisher’s linear discriminant is only slightly suboptimal
provided that the threshold is determined optimally so as to maximize the score value.
The slight difference between the two linear combinations is illustrated graphically in
Fig. 4.1, showing both boundaries together with a sample of 500 random states drawn
from the data base.

While the linear combination attribute is by construction optimal for any used score
measure, up to the effectiveness of our iterative search method, the Fisher linear
discriminant is not in general optimal with respect to usual score measures. However,
its main advantage lies in its direct, non-iterative computation, since, in addition to the
mean attribute vectors in each class, it requires only the computation of the inverse of
the mean class-conditional covariance matrix. This is actually quite straightforward,
provided that the number of attributes is not too large. On the other hand, the iterative
linear combination search of Table 3.10 is not applicable to more than two dimensions.

A justification of Fisher’s linear discriminant is obtained for the case of Gaussian class-
conditional attribute densities with identical covariance matrices. Below, inx4.2.2, we
show that in this case Fisher’s linear discriminant coincides (asymptotically) with the
optimal Bayes decision boundary.
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Figure 4.1 Difference between Fisher and optimal linear discriminant

Logistic discriminant

Similarly to the above technique, logistic discrimination determines a hyperplane in
order to separate classes as well as possible. The main difference comes from the
optimality criterion, which is here to maximize the conditional likelihood rather than
the quadratic cost function of Fisher’s linear discriminant. For convenience, we will
again describe the method in the simple two class case.

The working hypothesis behind the logistic discriminant is that the “log odds” of the
two classes may be approximated by a linear function

log
P (c1ja)

P (c2ja)
4
= wTa+ w0: (4:9)

This, together with the constraintP (c1ja) + P (c2ja) = 1, leads to the following
parametric expression for the conditional class probabilities

P (c1ja) =
exp

�
wTa+ w0

�
1+ exp

�
wTa+ w0

� ; (4.10)

P (c2ja) =
1

1+ exp
�
wTa+ w0

� : (4.11)

Given a learning set of preclassified examples, the optimality criterion used for esti-
mating the parametersw0 andw is to maximize the conditional likelihood

L(LSjw0;w) =
Y

o2LS;c(o)=c1

P (c1ja(o))
Y

o2LS;c(o)=c2

P (c2ja(o)); (4:12)
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Table 4.1 Fisher vs logistic linear discriminant. Adapted from [TA 94]
Problem Fisher Logistic

Pe (test) Train CPU Pe (test) Train CPU
Transient stability 4.1% 107.5 sec 2.8% 336.0 sec
Voltage security 2.5% 73.8 sec 0.7% 130.4 sec

or equivalently its logarithm, which is equal to the residual entropy in the learning set

logL(LSjw0;w) =
X

o2LS;c(o)=c1

logP (c1ja(o)) +
X

o2LS;c(o)=c2

logP (c2ja(o)): (4:13)

The logistic discriminant is determined, using an iterative gradient descent or Newton
approach to search for the optimal values ofw0 andw.

Again, in the case of Gaussian class-conditional attribute distributionsp(ajci) with
equal covariance matrices, it may be shown that this method will produce the same
optimal, linear discriminant as the preceding technique. However, the logistic discrim-
inant covers also the case of class-conditionally independent binomial (0/1) attributes.

The logistic discriminant may be seen as a particular case of a generalized linear
regression model, where the regression variable is the class indicator variable [MC 52] .

Difference between logistic and linear discriminants

It is interesting to notice that in practice there may be important differences in per-
formance between the above two approaches. To illustrate this, we give in Table 4.1
the results obtained in the context of two power system security problems, where the
normality or independence assumptions are clearly violated. They have been obtained
within the Statlog project, using the two power system security data sets described re-
spectively inx13.3 andx14.2. As it was put by the statistician in charge of the project,
“the difference in performance is undoubtedly due to the non-Gaussian nature of some
of the variables”.

4.2.2 Quadratic and generalized linear discriminants

Quadratic discriminants are optimal in the case of Gaussian class conditional attribute
distributions. Otherwise, they present a generalization of linear discriminants, by
allowing us to take into account correlations among attributes by second order terms.
However, not all second order terms need to be incorporated in the discriminant function
and thus the number of parameters may be controlled.
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Gaussian class conditional attribute distributions

Let us consider the case where the class conditional attribute distributions are Gaussian,
defined by

p(ajci)
4
=

1

(2�)
n
2 jΣij

1
2

exp
�
�

1
2

�
a(o)� Efajcig

�T Σ�1
i

�
a(o)� Efajcig

��
: (4:14)

Then the Bayes decision rule, yielding minimum error rate is obtained by choosing the
classcj such that the value of its posterior probability

P (cj ja) =
p(ajcj) � pj

p(a)
; (4:15)

is maximal, or equivalently such that

gj(a) = logp(ajcj) + logpj; (4:16)

is maximal, sincep(a) is independent of the classcj. This is equivalent to maximizing

gj(a(o))
4
= �

1
2

�
a(o)�Efajcjg

�T Σ�1
j

�
a(o)�Efajcjg

�
�

1
2

log jΣjj+ logpj;

(4:17)
where we have dropped the termn2 log 2� which is independent of the class.

Thus, to each classci corresponds a quadratic functiongi(a(o)), and the equalities
gi = gj, lead to quadratic decision boundaries in the general case.

However, these quadratic hypersurfaces degenerate into linear hyperplanes when the
class-conditional covariance matrices are identical. Indeed, let us consider the two-
class case, whenΣ1 = Σ2 = Σ. Then the Bayes optimal decision rule is to decide class
c1, wheneverg1(a)� g2(a) > 0, namely when

aT (o)Σ�1(Efajc1g � Efajc2g) >
1
2(Efajc1g+Efajc2g)TΣ�1(Efajc1g � Efajc2g) + log p2

p1
: (4.18)

In particular, the direction of the optimal hyperplane is identical to Fisher’s linear
discriminant direction.

In practice, the quadratic discriminant may in principle be directly determined by
estimating the class-conditional mean vectors and covariance matrices and substituting
in the above formula. However, it is often preferable to use an iterative gradient descent
least squares technique, which appears to be more robust than the direct approach, and
allows for some interesting generalizations, such as the classical sequential forward or
backward iterative least squares techniques.
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Generalized linear discriminants

It is a well known fact that in the context of high dimensional attribute spaces, the
quadratic discriminant may fail due to its very high number of parameters. In particular,
obtaining a reasonable estimate of the covariance matrices would often require too many
data points. Classical approaches to solve this “curse of dimensionality” problem are
the feature selection and extraction techniques briefly discussed below inx4.5.

Other approaches consist of simplifying the quadratic model, either in a backward or
in a forward approach. The former starts with the full quadratic model and removes
iteratively the terms in the discriminant functionsgi(a) which do not significantly
improve the accuracy. The latter approach complicates the linear model sequentially,
by introducing the quadratic terms progressively in the discriminant function and
stopping as soon as the performance stops improving. A further generalization of these
approaches uses arbitrary (e.g. orthonormal) polynomials at each step which leads to
the general family of sequential or stepwise least squares techniques.

Although these - actually nonparametric - methods certainly have much potential, they
have become less popular in the recent years, in particular due to the recent emergence
of the neural network approaches, which are similarly general.

Below, within the class of nonparametric methods, we will describe theprojection
pursuit technique, which is a very powerful and attractive approach to generalized
linear discrimination or regression.

4.2.3 Conclusion

The high non-linearity, variability and dimensionality of power systems, which we
have to face in the context of our security problems would certainly prevent the above
discussed parametric methods from being very general useful tools. In addition, as
we have illustrated, since different learning criteria may lead to completely different
results in terms of performances, it could be difficult to select an appropriate criterion
for each new power system and each new security problem.

In other words, some of these methods may work quite well in some particular situations,
but we don’t expect them to be robust enough to become a general stand alone tool.
However, since they are standard and easy to apply techniques, a reasonable approach
could be to include them in a tool-box, and when a new problem is encountered try them
out in a preliminary study. If they don’t work properly, a more powerful nonparametric
approach must be used instead, otherwise they may be used as an auxiliary tool, for
instance to determine interesting linear combinations of attributes.

The results corresponding to the voltage security problem indicated in Table 4.1 above,
show that the logistic discriminant may occasionally be very accurate. Indeed, the test
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set error rate of 0:7% outperforms 20 of the 21 other tested methods in the Statlog
project. The only method which could reach the performance of the logistic discrimi-
nant in this problem was the projection pursuit method SMART, which obtained a test
set error rate of 0:6%.

4.3 NONPARAMETRIC METHODS

We will mainly describe two popular approaches to nonparametric classification or
regression.

On the one hand, the nearest neighbor methods are very simple to implement, but also
very sensitive to the choice of attribute representation. Their main attractive feature is
that they provide information about the distance of an object to the nearest neighbor
in the data base, and this distance may provide some information about the confidence
with which information may be extrapolated.

On the other hand, the projection pursuit technique is an iterative, and computationally
intensive procedure to derive a non-linear model to represent the data. This method, as
we will see, offers also some data exploration features. While its principle is closely
connected to the neural network approaches discussed in the next chapter, it seems more
powerful in terms of accuracy and able to provide easier interpretable information, in
a fashion similar to the machine learning approaches.

Finally, we will briefly indicate the principle of some other frequently used nonpara-
metric techniques, such as the kernel density estimators and the naive Bayes approach.

4.3.1 The nearest neighbor class of methods

Nearest neighbor (NN ) methods have been applied both for density estimation, clas-
sification and regression. We discuss only the latter two applications.

Classification

Given a learning setLS and a distance∆ defined in the attribute space, the nearest
neighbor classifier consists of classifying an objecto in the classc(o0) of the learning
stateo0 of minimal distance, i.e.

o0 = arg min
LS

∆a(o; o
0): (4:19)

Asymptotically, when theLS sizeN �!1, the nearest neighboro0 converges towards
the objecto. Thus its classc(o0) has an expected asymptotic probability of being the
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correct classc(o) equal to X
i=1;m

pi(a(o)) � pi(a(o)): (4:20)

From this, it may be derived that in anm class problem the asymptotic error rate of the
nearest neighbor rule is upper bounded by [DE 82]

PNN
e � PBayes

e (2�
m

m� 1
PBayes
e ): (4:21)

This suboptimality of the nearest neighbor is a kind of overfitting problem. It is indeed
related to the fact that theNN rule extrapolates the classification of the sample without
any smoothing. It is interesting to observe that this overfitting suboptimality remains a
problem even for very large samples.

The first approach to solving this problem consists of reducing the locality of theNN

information by using more than one nearest neighbor. This leads to the so-called
K �NN or (K;L) �NN rules [DE 82] .

The basicK�NN rule consists of searching for theK nearest neighbors of an attribute
vector and estimates the class probabilities by

p̂i(a(o))
4
=
n(K; o; ci)

K
; (4:22)

wheren(K; o; ci) denotes the number of learning states of classci among theK nearest
neighbors ofo.

Asymptotically, theK � NN is Bayes optimal, strictly speaking if the numberK
increases withN , such that

lim
N�!1

K(N) = 1 and (4.23)

lim
N�!1

K(N)

N
= 0: (4.24)

Indeed, limN�!1
K(N)
N

= 0 guarantees that theK nearest neighbors still converge
towards the objecto in the attribute space, while limN�!1K(N) = 1 guarantees
that the class-probability estimates converge towards the true values. In practice, in
the finite sample case there exists generally an optimal value ofK, above which the
smoothing effect becomes too strong and leads to a decrease in performance.

The second approach to improve theNN rule consists of editing the learning set by
removing those learning states which are surrounded by states of a different class. This
consists of increasing the probability of the nearest neighbor to belong to the majority
class, and thus leads to nearly optimal decision rules.

In addition to these editing techniques, condensing algorithms may be used to dramat-
ically reduce the size of the required data base, by removing the states which do not
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Initial LS Edited LS Condensed LS

Figure 4.2 Nearest neighbor, editing and condensing

contribute to defining the decision boundary. Figure 4.2 illustrates graphically the edit-
ing and condensing techniques, which are discussed in full detail in [DE 82] . It should
be noted that while these techniques improve error rates and particularly dramatically
reduce the CPU times, they unfortunately strongly reduce the locality of the nearest
neighbor classifier, which is however a desirable practical feature of theNN method,
as we discuss below.

Regression

Another possible use of the nearest neighbor approach is for regression problems. In
this case the following type of regression function may, for example, be used

r(o)
4
=

P
o02K�NN(LS;o) y(o

0)∆�1(o; o0)P
o02K�NN(LS;o) ∆�1(o; o0)

(4:25)

where we have denoted byK �NN(LS; o) the set of theK nearest neighbors ofo.

Discussion

The nearest neighbor rule is a very simple and easy to implement approach. It has the
main disadvantage of requiring a very large number of learning states to become robust
with respect to the definition of distances. In particular, in the case of high dimensional
attribute spaces the method may rapidly require prohibitively large samples. Thus, to be
effective it must in general rely on prior feature selection and/or extraction techniques,
so as to reduce the attribute space dimensionality.

At the same time, while the learning of the basic nearest neighbor rule merely consists of
storing the data base, the complexity of using this information for new classifications
is directly proportional to the product of the numberN of learning states and the
dimensionn of the attribute space. This may be several orders of magnitude higher
than the time required by competing techniques and only rather sophisticated search
algorithms can allow us to reduce the CPU time. Nevertheless, in the context of power
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D : distance rejection

A : ambiguity rejection

C : con�dent extrapolation
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Figure 4.3 Nearest neighbor ambiguity and distance rejection

Table 4.2 Error rates (%) ofK �NN classifiers
K 1 3 5 7 9

28 attributes 5.92 5.20 4.80 4.06 4.48
3 attributes 4.24 3.12 3.04 2.80 2.96

system security assessment this would not be a very strong limitation, thanks to the
increased CPU speeds and the relatively limited size of data bases to several thousand
states. However, in applications like image or printed character recognition, where
data bases of several millions of objects are frequent, this becomes one of the main
concerns of this method.

As we have already mentioned for the instance based learning approaches discussed
in the preceding chapter, the main practical attractiveness of this approach is related
to the local identification of the reference cases of a data base, on the basis of which
a diagnostic is made. In a practical security assessment environment, these nearest
reference cases may be supplied to the operator as an explanation or justification of
the security characterization made for the current system state. In particular, the main
differences with the current situation may be analyzed so as to decide whether and how
their information may be extrapolated. This could, for example, allow us to use local
linear approximation techniques, so as to infer security margins, and provide rejection
options for states either too close to the classification boundary (ambiguity rejection)
or too far away from any reference case (distance rejection) as illustrated in Fig. 4.3.

As an illustration of the typical behavior of theK � NN method, let us look at
the voltage security assessment example ofx10.2 considered in Table 4.1. Table 4.2
shows the influence ofK on the test set error rates obtained for two different sets of
attributes. In each case the standard Euclidean distance was used, and the attributes
were normalized by dividing their value by their standard deviation, as is described in
x4.5.1.

These results illustrate how increasing the value ofK allows us to reduce the error
rate. They suggest that for both sets of attributes the optimal value ofK is equal to
7. It is also interesting to note that reducing the number of attributes has allowed us
to significantly improve the performance, both in terms of reliability and efficiency.
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In this particular example, we have used the TDIDT method to build a tree so as to
identify among the 28 attributes the 3 most significant ones.

4.3.2 Projection pursuit

The projection pursuit regression technique models a regression functionr(�) as a
linear combination of smooth functions of linear combinations (or projections) of the
attribute values. Thus the model assumes the following formulation

r(a)
4
= y +

X
i=1;k

vifi(w
T
i a); (4:26)

where the orderk, ther-vectorsvi, then-vectorswi and the scalar functionsfi(�) are
determined on the basis of the learning set, in an iterative attempt to minimize the mean
square error

MSE(r)
4
=
X
o2LS

jjy(o)� r(a(o))jj2: (4:27)

For classification problems, the standard class-indicator encoding is used, which is
defined by

yi(o) = �c(o);ci; 8 i = 1; : : : ;m: (4:28)

In the basic approach the functionsfi are special scatter-plot smoothers, which are
normalized in the following way

X
o2LS

fi(w
T
i a(o)) = 0 and

X
o2LS

f 2
i (w

T
i a(o)) = 1; (4:29)

and the projection vectorswi are normed

X
j=1;n

w2
ij = 1: (4:30)

The striking similarity of this model with a single hidden layer feed-forward neural
network is shown in Fig. 4.4. However, the originality of the projection pursuit
regression technique is that both model complexity (the orderk) and the smooth
activation functionsfi(�) are determined on the basis of the learning set data, while in
the basic multi-layer perceptron they are chosen a priori by the user, which leads in
general to overly complex structures with many redundant parameters.

Forward growing of projection pursuit

At each stepj of the procedure, the order of the model is increased by one unity, by
adding an additional projection directionwj and smooth functionfj and determining
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Figure 4.4 Graphical representation of the projection pursuit model

the vectorvj . During this first step, the parameters of the preceding directions are kept
constant.

The second step consists of adjusting in a backfitting approach all the parameters of all
directionsk � j in a cyclic fashion, so as to minimize theMSE (4.27).

Finally, the model growing procedure stops when theMSE is sufficiently low or when
it does not improve sufficiently anymore.

A complementary approach to the above growing consists of generating the models in
decreasing order of their complexityk, by starting with a sufficiently high value ofk and
pruning at each step the least active part of the model, corresponding to the projection
direction which influences the least strongly the output values. This is defined as the
directioni which minimizes the sum

Ii
4
=
X
j=1;r

jvij j: (4:31)

Backfitting

The heart of the algorithm consists of backfitting a group of parameters,wi, fi, and
vi, corresponding to one of the current projection directionsi � j. This is done in an
iterative fashion.

1. Adjustingvi is done directly by setting the derivatives of theMSE to zero with
respect to each component ofvi. This yields a linear equation, since theMSE is
quadratic invi.

2. To adjust the smooth functionsfi(�), we proceed in two steps. First, non-smooth
function valuesfi(wT

i a(o)) are determined for each objecto 2 LS. Again, since
theMSE is quadratic infi, this can be done in a direct linear computation, setting
the partial derivatives of theMSE w.r.t. fi(wT

i a(o)) (8 o 2 LS) to zero. Second,
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the resulting “optimal” values

�
wT

i a(o); f
�
i (w

T
i a(o))

�
; 8 o 2 LS; (4:32)

are used as target values to determine the smooth interpolation function. We refer
the interested reader to [HW 93] for a further discussion of various alternative
schemes for this unidimensional smoothing.

3. Finally, to adjust the projection directionwi, an iterative gradient descent or Newton
method should be used, since theMSE is not a quadratic function ofwi.

Discussion

One of the advantages of theprojection pursuitregression method with respect to
standard feed-forward neural network techniques lies in the greater simplicity of the
resulting structure. This is due to the automatic determination of the neuron activation
function together with the adaptation of the model complexity to the data. While
similar neural network growing techniques have been proposed in the literature, the
projection pursuit approach has been found to be superior in performance to the cascade
correlation techniques proposed by Fahlman and Lebière for neural networks [FA 90] .
Actually the main motivation of cascade correlation is to increase the speed of learning
convergence and not so much to improve the model accuracy.

Admittedly, in high dimensional attribute spaces the projection directions found by
this method may become difficult to interpret. Thus, Friedman and Stuetzle have pro-
posed various extensions to the basic method to improve its data exploration features
[FR 81] . For example, by restricting the number of attributes combined in any projec-
tion, the method may provide interesting two or three dimensional directions for data
exploration. With these extensions this method would provide similar features to the
TDIDT approaches discussed in the preceding chapters, with the additional capability
of providing asmoothnon-linear input/output modelling capability, which would be
particularly interesting for the estimation of power system securitymargins.

The SMART implementation of the projection pursuit regression technique was applied,
in the context of the Statlog project, on the two above-mentioned power system security
classification data sets. In both cases this method scored best in terms of reliability
(but also slowest in terms of learning CPU time). This, in addition to the possibility
of exploiting the continuous security margins, provides a strong motivation for further
exploration of the capabilities of these projection pursuit approaches in the context of
power system security problems.
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Figure 4.5 Various kernel functions and smoothing parameters

4.3.3 Other techniques

Below we group together three other classical nonparametric techniques. Although we
do not believe they would be very useful in our practical context (i.e. more accurate or
complementary in terms of functionality), we provide a brief description since some of
the results discussed later pertain to one of these methods.

Kernel density estimation

While theK � NN and projection pursuit methods aim at directly modelling the
conditional class-probabilitiespi(a), the kernel density estimation approach operates
indirectly by providing a nonparametric estimate of the class conditional attribute
densitiesp(ajci).

This approach uses the following expansion

p̂(ajci)
4
=

1
ni:

X
o2LS;c(o)=ci

�(a;a(o); �); (4:33)

where the function�(�;a(o); �) is a kernel function centered ata(o), and � is a
smoothing parameter. Various kernel functions are suggested in Fig. 4.5 together with
the effect of the smoothing parameter.

In addition to different possible choices for the kernel function, discussed in most
pattern recognition textbooks [DU 73, HA 81, DE 82] , it is also important to choose
the smoothing parameter to adapt the method to the data. Actually, it turns out that the
choice of the smoothing parameter, which is the kernel density version of our by now
familiar overfitting problem, is much more important in practice than the choice of the
type of kernel function.

Various techniques have been proposed to estimate the value of� on the basis of the
data. One possibility consists of maximizing the “leave-one-out” sample likelihood,
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defined by

L(LSj�)
4
=

Y
o2LS

p̂0(a(o)jc(o)) (4:34)

wherep̂0(a(o)jc(o)) is the density estimate at pointa(o) for classc(o), obtained when
removing the objecto from the learning set, i.e.

p̂0(a(o)jc(o))
4
=

1
ni: � 1

X
o02LS;c(o0)=c(o);o0 6=o

�(a(o);a(o0); �): (4:35)

The expression (4.34) may then be optimized with respect to� by a one dimensional
numerical search technique in the semi space� 2]0 : : :1[.

Histogram

A very simple approach to nonparametric density estimation is the histogram approach.

Basically, this method consists of dividing a priori the attribute space into subregions
and counting the relative number of states of each class falling into each subregion. In
the simplest case the regions are defined by dividing the range of each interval into a
fixed number of regular sub-intervals. The advantage of this approach with respect to
kernel density estimation or nearest neighbor is that it does not require to store any of
the learning states.

However, in order to make this approach applicable in the case of multidimensional
attribute spaces, the size of the elementary regions must be adapted to the learning set
representativity, in particular to avoid empty regions and to minimize the variations
among neighboring cells. This is the histogram version of the overfitting problem,
for which, not surprisingly, smoothing solutions have been proposed in the literature
[HA 81] . In spite of these improvements, we believe that the approach is mainly useful
in one, two or three dimensional situations. A particular situation where this is useful
is discussed in the next paragraph, in the context of the “naive” Bayes approach.

Illustration. Figure 4.6 illustrates the two-dimensional histograms in the(TRBJ;
NB COMP ) space, for the 3938 stable and 8559 unstable states of the data base
corresponding to our transient stability example ofx3.4. Using these histograms as
a classifier amounts to classifying into the stable class if an object belongs to a cell
where the number of stable states is higher than the number of unstable states. Thus,
the histogram classifier basically consists of dividing the attribute space into a number
of regularly distributedpredefinedcells, counting the number of learning states of each
class belonging to each such cell, and associating the majority class in the corresponding
learning subset to each cell.

This classification is shown in Fig. 4.7, where the regions corresponding to empty cells
are labelled “unknown”. In is interesting to notice that these regions, falling outside of
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Figure 4.6 Example two-dimensional histograms
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Figure 4.7 Classification corresponding to the histograms of Fig. 4.6

the sampled region cannot be identified straightforwardly with a tree classifier, which
would extrapolate the classification of the neighboring cells.

Naive Bayes

An interesting situation occurs when the attributes are independently distributed in
each class. Then the class conditional probability densities may be factorized in the
following way

p(ajci) =
Y
j=1;n

p(aj jci); (4:36)

and the multi-dimensional estimation problem reduces tom�nuni-dimensional density
estimations,p(aj jci) for each attribute.

In particular, for discrete attributes this amounts to counting the number of occurrences
of each possible attribute value in each class and use these values in order to estimate
the corresponding probabilities in a maximum likelihood or Bayesian approach.

For real valued attributes either a parametric estimator or one of the above nonpara-
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metric techniques (K �NN , kernel density estimation or histograms) may be used in
order to estimate the scalar probability density functionp(aijci). The most straightfor-
ward nonparametric technique is in this particularly simple uni-dimensional case the
histogram approach, due to its simplicity and computational efficiency.

It is interesting to notice that the above naive Bayes classifier leads to generalized linear
discriminant functions. Indeed, replacing the probabilitiesp(aj jci) by their estimate
p̂(ajjci) and taking the logarithm yields

logp(cija) / logpi + logp(ajci) = logpi +
X
j=1;n

log p̂(aj jci): (4:37)

4.4 CLUSTERING METHODS

While supervised learning techniques obviously aim at producing a model for a partic-
ular relationship which is assumed to exist between the input attributes and the output
classification or regression function, clustering or unsupervised learning aims essen-
tially at uncovering such relationships among groups of data points or among groups
of attributes used to describe them.

The clustering methods are therefore one of the basic pre-processing techniques used
in the context of statistical data analysis and learning approaches. They aim at iden-
tifying groups of correlated variables or regions of similar objects in the attribute
space. Discovering such similarities may allow us to compress the information by
replacing individual objects by prototypes and individual parameters by representative
features. This simplification may have very drastic implications, for example in terms
of supervised learning speed and effectiveness.

Unfortunately the theoretical justifications of the various practical clustering techniques
are rather weak [DU 73] . Thus, below we will first describe some classical approaches
in the context of clustering ofobjectsin a given number of groups and then give some
indications on how to determine an appropriate number of clusters. The same methods
may also be applied to the clustering of attributes, as we will illustrate on the basis of
our example problem of transient stability assessment.

4.4.1 Algorithms of dynamic clusters

Given a set of objects, and a numberK fixed a priori by the user, theISODATAand
K-meansprocedures determine a set ofK clusters, so as to represent most effectively
the prior distribution in the attribute spacep(a) by the cluster prototypes or centers.

In these methods, a cluster is defined by itsprototypeand its members are the learning
states which are mostsimilar to the cluster prototype. The iterative algorithms stop as
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soon as a stable partition of the data has been found.

In the basic algorithm, a prototype is defined as the mean attribute vector of a cluster and
the similarity is defined as the Euclidean distance. This leads to the basic ISODATA
andK-means algorithms searching for clusters minimizing the following quadratic
quantization error criterion

Je =
X
i=1;K

Ji; (4:38)

whereJi denotes the quantization error of the clusteri, defined by

Ji
4
=

X
o2LS;o2Clusteri

jja(o)� aijj
2; (4:39)

ai denoting the center or prototype of thei-th cluster.

This criterion is clearly sensitive to the normalization of the attributes, and thus the
clusters found may strongly depend on the normalization. In order to achieve invariance,
one should therefore transform the attributes using one of the techniques described in
x4.5. This may however also be detrimental in some situations. Thus the definition
of a clustering criterion is essentially a problem solved in an empirical, pragmatic trial
and error fashion.

The so-calleddynamic clustering algorithmis a generalization of the ISODATA method,
which allows us to use a general class of kernels for representing prototypes and employs
a more general similarity based optimality criterion [DE 82] .

ISODATA

In the ISODATA algorithm, the cluster centers are adapted iteratively in the following
batchfashion.

1. Choose the initial cluster prototypes randomly or on the basis of prior information.

2. Classify all the learning states by allocating them to the closest cluster.

3. Recompute theK prototypes on the basis of their corresponding learning states.

4. If at least one cluster prototype has changed, return to step 2, otherwise stop.

K-means

This quite similar approach starts with the definition of the initial clusters as given sets
of objects, and operates schematically in the following sequential fashion.

1. Start with a random partition of the data intoK clusters, and compute the corre-
sponding cluster centers as the means of each cluster’s objects’ attribute vectors.



124 4. STATISTICAL METHODS

2. Select the next candidate objecto from the learning set, and leti be its current
cluster.

3. (a) If o is in a single object cluster then this remains unchanged.

(b) Otherwise find the clusterj which results in a minimum overall quantization
errorJe, if object o is moved from clusteri to clusterj. If i 6= j move the
object and adapt both cluster centers.

4. If Je has remained unchanged during a complete pass through the learning set then
stop, otherwise return to step 2.

This latter approach has the advantage of being sequential and thus may be applied
in real time, in order to adapt the clustering to new incoming objects. Its main
disadvantage, with respect to the ISODATA batch algorithm is its higher susceptibility
of being trapped in local minima [DU 73] .

Determining the right number of clusters

In practice the number of clusters is often unknown and must also be determined on the
basis of the data. The classical approach to this problem consists of applying either of
the above algorithms repeatedly with a growing (or decreasing) number of clustersK.

In practice, for each value ofK a performance measure is computed for the correspond-
ing clusters obtained. For example, in the above mean square error framework, the
overall quantization errorJe(K) could be used for this purpose. TheJe(K) criterion
decreases towards zero whenK increases and an appropriate number of clusters may
be selected by detecting the value ofK corresponding to a “knee” in theJe(K) curve,
above whichJe decreases much more slowly.

4.4.2 Hierarchical agglomerative clustering

Hierarchical clustering aims at defining a sequence of clusterings forK 2 [1 : : :N ],
so that clusters form a nested sequence, i.e. such that objects which belong to a same
cluster at stepK remain in the same cluster at stepK � 1.

The top down or divisive approach consists of generating this sequence in the order
of increasing values ofK. In the bottom up or agglomerative approach, objects are
progressively merged in a step-wise fashion. We briefly describe and illustrate the
latter.

The agglomerative algorithm starts with the initial set ofN objects, considered asN
singleton clusters. At each step it proceeds by identifying the two most similar clusters
and merging them to form a single new cluster. This process continues until all objects
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Figure 4.8 Hierarchical attribute clustering example

have been merged together in a single cluster. Cluster similarity may be defined in
various ways, for example combining object similarities in the following way

SIMmin(Clusteri;Clusterj) = min
oi2Clusteri;oj2Clusterj

SIM(oi; oj); (4.40)

SIMmax(Clusteri;Clusterj) = max
oi2Clusteri;oj2Clusterj

SIM(oi; oj): (4.41)

The resulting hierarchical clustering may be represented by a dendrogram which shows
graphically the hierarchical groupings of objects along with the cluster (dis)similarities.
This is particularly interesting for the analysis of attribute similarities or when the
number of objects to cluster is small.

Illustration. An example dendrogram, built for the hierarchical clustering of attributes
for the transient stability example ofx3.4 is represented in Fig. 4.8.

For this illustration, we have considered a selection of 14 power flow and 3 power
generation attributes chosen among the 67 candidate attributes. The similarity among
the attributes was defined as their correlation coefficient (see eqn. (2.11)) which was
estimated for each pair of attributes on the basis of the 12497 operating states of the
data base.

The similarity of two subsets of attributesS1 andS2 was defined as the minimum
similarity of pairs of attributes of the two subsets, using eqn. (4.40). To improve the
graphical rendering we have used the logarithm of the inverse of this similarity measure
to draw the dendrogram in Fig. 4.8. Thus the vertical position of the line merging to
clusters represents the following quantity

Distance(S1; S2)
4
= � ln

�
min

a12S1;a22S2

j�̂(a1; a2)j
�
: (4:42)

It is interesting to observe from the dendrogram that PLG, TRBJ, TRABICHI, PLG23,
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TRBJO, TRABI and TRLAV form a rather homogeneous group of similar attributes,
the correlation being at least equal to 0.60 for each pair. Actually, a closer look at these
attributes shows that they all correspond either to generations of the LaGrande power
plant or to North to South power flows in James’s Bay corridor.

Similarly, the group of attributes TRJCA, TR7017 and TRLEV are related to lines
within the Qúebec to Montŕeal corridor, which are shared by the North to South and
the West to East corridors of the Hydro-Québec system.

4.4.3 Mixture distribution fitting

To conclude our brief introduction to clustering techniques let us mention an important
family of methods which approach the clustering problem in a probability distribution
fitting paradigm.

In this framework one considers the hypothesis that the learning sample was generated
by a probability distributionp(a) which is supposed to be a mixture ofK elemen-
tary probability densities corresponding to the elementary underlying classes under
investigation.

To illustrate this idea, we will merely describe the basic principle of the recentAutoClass
algorithm, but many other methods have been proposed within this framework; for
further information the interested reader may refer to [DU 73, HA 81, DE 82] .

AutoClass [CH 88a]

AutoClass is based on a Bayesian approach to clustering, proposed by Cheeseman
[CH 88a] . Its main advantages are its ability to determine automatically the most likely
number of clusters and to handle both numerical and symbolic attributes, including
hierarchically structured ones. The main assumption of AutoClass is that the attributes
values are independent in a given cluster. Thus each cluster is described by a product
of elementary attribute distributions. Real-valued attributes are modelled by uni-
dimensional Gaussian distributions and discrete attributes by probability tables.

The AutoClass approach is based on the Bayesian theory of finite mixtures. Each
learning state is assumed to be drawn from one ofK mutually exclusive and exhaustive
classes, described by a probability distribution as indicated above :

p(ajM) =
X

j=1;K

pj � p(ajcj;Mj); (4:43)

whereM denotes the model hypothesis which is composed of the vector of class
probabilitiespj and one set of model parametersMj for each classcj.
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For a given choice of the model parametersM , each observationa will have a proba-
bility of belonging to each class computed by

p(c(o) = cija(o);M) =
pi � p(a(o)jc(o) = ci;Mi)

p(a(o)jM)
: (4:44)

To learn the model parameters and its orderK, the joint probability density of the LS
under the model assumption and independence hypothesis is computed

p(LSjM) =
Y
o2LS

p(a(o)jM): (4:45)

From this, the posterior distribution of the model parameters may be computed, under
the hypothesis of known orderK by

p(M jLS;K) =
p(M jK)p(LSjM;K)

p(LSjK)
; (4:46)

wherep(LSjK) is the normalizing constant obtained by

p(LSjK) =
Z
MK

p(MK jK)p(LSjMK ;K)dMK ; (4:47)

whereMK denotes the parameter choice for a model of orderK, andMK the space
of possible such models.

The posterior distribution of the number of classes is then obtained by

p(KjLS) =
p(K)p(LSjK)

p(LS)
: (4:48)

The optimal order is the one maximizing the above probability.

It is important to notice that there are two prior distributions,p(K) andp(MK jK),
which must be filled in the above reasoning in order to define the algorithm.

In particular, we may for example assume that the prior distributions of the model
complexity are uniform and that the model parameters are conditionally distributed
uniformly, i.e. p(MK jK) is uniform in an a priori defined parameter interval. In
this case, the prior probability of a particular choice of parametersp(M;K) will
automatically decrease when the number of parameters increases. And this decrease
in prior probability will trade off the increased model fitp(LSjM;K) in eqn. (4.46)
and prevent overfitting. Of course, the algorithm may also take into account the user’s
prior beliefs about model complexity and parameters.

Thus, the apparently inconsequent hypothesis of aconditionaluniform prior model
probability given its complexity, leads to the cost complexity tradeoff. This should be
compared with the maximum likelihood strategy, which is equivalent to assuming a
priori that all models are equally likely,independentlyof their complexity.
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As we discuss in [WE 94b] , a very similar reasoning leads to the Bayesian justification
of the tree quality measure explained inx3.4. This gives an “a posteriori” explanation
of our choice of describing the AutoClass method.

4.5 DATA PREPROCESSING

Before reaching the conclusion of this chapter, it is our duty to provide some hints about
a certain number of classical data preprocessing techniques, which are often used to
transform an initial representation into a set of more appropriate attributes, and which
belong to the established statistical pattern recognition auxiliary tools.

These techniques provide an intermediate tool between the manual choice of an ad hoc
representation which is more of an “art”, and the fully integrated automatic learning
methods such as the machine learning and neural network methods.

4.5.1 Pre-whitening

Pre-whitening or normalization of data consists of linearly transforming each attribute,
to obtain a zero mean and unit variance

a0 =
a� aq
(a � a)2

: (4:49)

This is the least one can do in order to render numerical techniques, such as nearest
neighbor computations and clustering, independent of arbitrary attribute scalings.

4.5.2 Feature selection

Feature selection consists of reducing the dimensionality of the input data by selecting
a small number of the most discriminant or the most representative features. There
may be two motivations for reducing the dimension of the input space. The first one is
purely related to computational efficiency of the subsequent learning tasks. The second
reason is more related to the problem of overfitting.

Although there is a whole bunch of complicated feature selection algorithms described
in the literature [DE 82] , we will only describe some basic, very simple techniques
which could allow us to remove the redundant information, since many of the mod-
ern techniques for classification or regression have some built in feature selection or
extraction capabilities.
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Attribute clustering

As we have suggested above, the clustering analysis of attributes allows us to identify
groups of attributes which are very strongly correlated, i.e. which share the same
physical information. In the context of power system security problems this is very
frequent for variables such as power flows (see Fig. 4.8) or voltages (seex14.4). A
simple dendrogram may be drawn to suggest which groups of such variables may be
represented by a single prototype, e.g. a mean value. In practice, this may lead to a
more efficient and more robust classification.

But since the attribute clustering technique does not take into account the classification
information, it is not very selective in identifying the discriminant attributes.

Decision tree building

The next step for feature selection could be to build a decision tree, on the basis
of the available pre-classified data or a regression tree, as appropriate. The detailed
information on the scores obtained by each candidate attribute and their estimated
standard deviation and correlation, make it in general quite easy to determine a much
smaller subset of the most discriminant variables.

This technique has been used above in the context of the voltage security example
of Table 4.2, in the discussion of the nearest neighbor rule inx4.3.1. This method
was found to provide an important reduction in dimensionality in several other power
system security applications.

Simple sequential feature selection

One method of feature extraction, which has often been used for its great simplicity
consists of selecting the features sequentially according to the following figure of merit

J
4
=

jSB(a1; : : : ; ak)j

jSW (a1; : : : ; ak))j
; (4:50)

where jSB(a1; : : : ; ak)j schematically represents a between class scatter index and
jSW (a1; : : : ; ak)j stands for a mean within class scatter index. Both are supposed to be
computed in the attribute sub-space(a1; : : : ; ak).

The above figure of merit can then be determined for each single attribute to choose
the first attributea�1, and then for each pair of attributesa�1; a2, to determine the most
complementary attributea�2, and so on: : : . This is the sequential forward selection
approach. Another, dual scheme, consists of starting with the complete list of candidate
attributes and deleting at each step the least useful one, i.e. leading to the highest value
of the performance index for the remaining set of attributes.
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A simplification of the above scheme consists of computing the index in a scalar
attribute by attribute approach. E.g. assuming attribute independence and restriction
to the two-class case, an index may be computed for each attribute in terms of the ratio

Ja
4
=

j�a1 � �a2j
2

p1�2
a1
+ p2�2

a2

; (4:51)

of the square difference of the class-conditional mean values to the weighted sum of
the class-conditional standard deviations. Excluding strongly correlated attributes, one
may select then0 best attributes according to the above criterion.

4.5.3 Feature extraction

While the feature selection methods search for an optimalsubsetof the initial attributes,
the feature extraction methods aim at defining a set of - generally linear - feature
combinations.

We will merely indicate the basics of theKarhunen-Lòeve expansion ofprincipal
components analysis. The objective of this technique is to linearly transform the initial
attributes in order to concentrate the maximum of information in a minimum number
of transformed attributes.

In the following we suppose that each attribute has been centered by subtracting its
mean value. Moreover, we will use expectation operators to manipulate population
quantities. The same derivations may then be applied to the finite sample case by
replacing expectation operators by sample mean values.

Thus we assume that
Efag = 0: (4:52)

Then, let us consider an orthonormal system of vectorsu1; : : : ;un, i.e. such that

uTi uj = �ij; (4:53)

and express the attribute vectors as a linear combination of these vectors

a
4
=
X
i=1;n

ãiui; (4:54)

where
ãi = uTi a; (4:55)

since the vectorsui form an orthonormal basis.

If we take a smaller numberd < n of terms, truncating the above series, we obtain an
approximate representation of the vectora,

â =
X
i=1;d

ãiui: (4:56)
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We define our “optimal representation problem” as the choice of the vectorsui; i = 1; d
which minimize the following mean squared representation error

� = E
n
(a � â)T (a� â)

o
: (4:57)

In other words, we search for ad-dimensional subspace of the initial attribute space,
which is closest to the probability distribution in the Euclidean distance sense.

Substituting the expressions (4.54) ofa and (4.56) of ˆa into eqn. (4.57), we obtain

� = E

8<
:

X
i=d+1;n

ã2
i

9=
; ; (4:58)

where we have exploited the orthonormality conditions (4.53).

Thus, using the expression (4.55) of the expansion coefficients, we obtain

� = E

8<
:

X
i=d+1;n

uTi aa
Tui

9=
; ; (4:59)

or
� =

X
i=d+1;n

uTi

h
E
n
aaT

oi
ui; (4:60)

exploiting the fact that the vectorsui are independent ofa, to interchange the summation
and the expectation operators. Notice that the matrixE

n
aaT

o
is the covariance matrix

(cf. assumption (4.52)).

It can be shown that the stationary points of the above expression correspond to choosing
for ui eigenvectors of the covariance matrixE

n
aaT

o
, i.e. such that

E
n
aaT

o
ui = �iui: (4:61)

Under this condition the mean square representation error� is computed by

� =
X

i=d+1;n

�i; (4:62)

and will be minimal if the�i’s are chosen as then � d smallest eigenvalues of the
covariance matrix.

Reciprocally, the optimal truncation is obtained by using the eigenvectors correspond-
ing to the d largest eigenvalues. In principle, the truncation error would also be
minimized by using any orthonormal basis of the subspace spanned by the eigenvectors
corresponding to thed largest eigenvalues.

However, choosing the eigenvectors rather than an arbitrary orthonormal combination
of them, has the additional feature of decorrelating the transformed attribute values.
Indeed, it is easy to show that for this particular choice ofu vectorsEfãiãjg = �i�ij.
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4.6 CONCLUDING REMARKS

In this chapter we have aimed at providing an overview of the classical and also the
more recent statistical techniques, able to provide some interesting tools in the context
of our power system security assessment problems. Our main objective was to give an
intuitive understanding of the principles.

The second objective was to suggest possible practical uses; it led us to support our
description with several illustrative results from real power system problems. Although
doing so has introduced the additional difficulty of explaining, up to a certain degree,
the considered power system problems, anticipating thereby later chapters, we hope
that this has been useful in supporting our message.

This message might be summarized in three sentences.

Parametric approaches, though too simple to be stand-alone methods, may provide
very useful auxiliary tools, for example to define interesting attribute combinations or
to provide quickly a simple first order model.

Non-parametric approaches, in particular the projection pursuit techniques drawing
their inspiration from neural networks, often yield less transparent black-box models,
but they may be very powerful in terms of modelling capabilities.

Finally, a very important aspect in applying either of these techniques, is the proper
exploration and analysis of the data, using the various parametric, non-parametric,
supervised and non-supervised approaches as tools.

To conclude, we notice that an important part of the work of applying statistical, neural
network or machine learning methods to power systems security, consists of analyzing
the data base contents in order to check representativity assumptions so as to validate
the resulting criteria. In this context, graphical representations, such as scatter plots,
one or two-dimensional histograms or dendrograms may provide very useful tools, and
one of our objectives has been to provide some practical examples of such graphical
information representations.
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Artificial neural networks

5.1 INTRODUCTION

While the learning systems based on artificial neural networks became popular only
recently, they have already a very long research history and some have evolved towards
quite mature techniques. Considering the early work on neural networks, it is interesting
to observe the analogy with the first machine learning research. Both were mainly
motivated by the study and modelling of the human learning ability. However, while
the machine learning research was mainly aimed at providing a phenomenological
simulation model of the high-level capacities of the brain, the neural network approach
aimed at reproducing these latter capabilities, starting from a low-level model reflecting
the structure of the brain, in a bottom up fashion.

The emergence of artificial neural network models dates back to the 1940’s, with the
work by McCulloch and Pitts [MC 43] on modelling the brain neuron behavior. The
second wave of the research reached its peak in the early sixties with the perceptron
learning theorem of Rosenblatt [RO 63] and the negative results concerning the percep-
tron’s representation capability limitations of Minsky and Papert [MI 69] . Finally, the
last wave has started from the conjunction of the rapid increase in available computing
power in the early 1980’s, the theoretical work of Hopfield, and the improvements of
multi-layer perceptrons culminating with the (re)publication of the back-propagation
algorithm by Rumelhart, Hinton and Williams [RU 86] .

Since the mid 1980’s, an almost exponentially growing amount of theoretical and prac-
tical work has been published, leading to the creation of new journals and conferences,
and several textbooks. Even if we were restricting our focus to the field of power system
applications, it would still be very difficult to give a reasonably representative account
of the ongoing research. Thus, although there are many other potentially interesting
power system problems for neural network applications, such as adaptive control and
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load forecasting to mention only the most popular ones, we will restrict our attention to
security assessment applications, and discuss some of the most promising techniques
in this context only.

In the first part of this chapter we describe in some detail the single and multi-layer
perceptrons which are representative of the family of feed-forward neural network
architectures for supervised learning. Inx5.2.6 we will mention the functional link
network, which is another feed-forward structure which has been applied in security
assessment problems [PA 89b] . These correspond probably to the most well known
and mature neural network techniques, which have shown some true potential in the
context of real large scale power system problems [WE 93a] .

The second part of our description is devoted to the non-supervised neural network
approach of Kohonen, which we consider also as an attractive technique for data
analysis and graphical interpretations. However, while several research projects are
progressing in this context, these applications have not yet reached the maturity of
multi-layer perceptrons.

As we have already mentioned, a lot of interesting research is currently going on in
applying computational learning theory, as well as Bayesian and classical statistical
frameworks to the neural network paradigm. The aim of the latter work is to provide
theoretical foundations and unifications among the neural, statistical and machine
learning frameworks. But, it is still too early to assess the practical outcomes of this
work in terms of improved learning algorithms and/or more effective architectures.
Thus, as we have done in the preceding chapters we will merely point out for the
interested reader the reference book by Hertz, Krogh and Palmer which considers the
stabilized part of neural network theory [HE 91] .

We will provide some practical illustrations on the basis of our standard example of
power system transient stability assessment ofx3.4.

5.2 MULTI-LAYER PERCEPTRONS

To give a historical perspective of the work on perceptrons, we will start by describing
the single layer perceptron or linear threshold unit (LTU) and its learning algorithm.
Then we will consider the use of soft threshold units and the gradient descent mean
squared error (MSE) correction algorithm, which is the parent of the well known
back-propagation algorithm.

Further, we will proceed with multiple layer feed-forward network structures, and
general neuron activation functions, and after describing briefly the basic stochastic
gradient descent method, we will give a short description of more efficient batch oriented
second order optimization techniques, and conclude with some remarks concerning the
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Figure 5.1 Basic linear threshold unit

choice of network architectures.

5.2.1 Single layer perceptron

Note. For convenience and coherence with the other preceding and following de-
scriptions, we use the -1/+1 binary encoding rather than the often used 0/1 encoding.
Further, we will also use the extended attribute vector notation

a0
4
=

 
1
a

!
: (5:1)

Linear threshold units

The single layer perceptron, or simply perceptron, is a hyperplane model similar to the
linear discriminants ofx4.2.1. It is implemented by the linear threshold unit represented
in Fig. 5.1, which assigns a value of -1 or +1 depending on which side of the hyperplane
corresponding to its weight vector the attribute vector is located, and may be used in
order to solve a two-class classification problem. In particular, in the case of boolean
functions, the attribute values are themselves binary -1/+1 indicators.

Supposing that the learning set classification information has been encoded in the above
binary fashion, i.e. c(o) 2 f�1;1g, the ideal objective of the perceptron learning
algorithm is to reproduce the learning set classification perfectly, or equivalently to
choose a set of weightsw0T = (w0;w

T ) such that

X
o2LS

�
g(a(o)) � c(o)

�2 = 0: (5:2)

Learning problems for which this is possible are called linearly separable.

The perceptron learning algorithm is indicated in Table 5.1; it is a sequential method
considering successive passes through the learning states, and adjusting the weights at
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Table 5.1 Perceptron learning algorithm

1. Consider the objects of the learning set in a cyclic or random sequence.

2. Leto be the current object,c(o) its class anda(o) its attribute vector.

3. Adjust the weight by using the following correction rule,

w0new = w0old+ �
�
c(o)� g(a(o))

�
a0(o): (5.3)

each step so as to improve the classification. Notice that the corrections are equal to
zero for objects which are already classified correctly; for incorrectly classified objects
the correction of the weight vector is parallel to the object’s attribute vector, and the
direction is chosen so as to bring the output closer to the correct output valuec(o).

The parameter� denotes the learningrate of the algorithm, and various strategies
have been proposed to choose its value. It may be shown that if the learning set is
separable, then the fixed learning rate perceptron learning rule converges to a solution
in a finite number of steps, but the speed of convergence may depend on the values of
�. In addition, if the learning set is not separable, then the algorithm will never stop
changing the weight values. Thus, one of the techniques used to ensure convergence
consists of using a decreasing sequence of learning rate values�k �! 0.

The structure of the single LTU may be generalized to a single layer of LTUs, allowing
them to learn a boolean vector or binary coded integer output function, as would for
example be required for multi-class classification problems.

It was a great scientific deception at the time when Minsky and Papert published their
work on the representation capability limitations of the LTU. In particular, it is a well
known result that the perceptron is unable to represent an as simple function as the
two-dimensional logical XOR (exclusive OR) operator, or the generaln-dimensional
parity function. It was noted quite early that the solution to this problem calls for more
complex, multi-layer structures. Unfortunately, the discrete perceptron learning rule
does not generalize to multi-layer structures.

The solution to this problem calls for multi-layer structures with non-linear but differ-
entiable input/output relations, to allow the use of the error back-propagation learning
algorithm. Therefore, we will first consider thesoft threshold units which provide the
elementary brick to build up such general powerful multi-layer models.
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Soft threshold units and minimum mean squared error learning

The soft threshold unit is a slight modification of the perceptron, which considers a
nonlinear differentiable activation function applied to a linear combination of input
attributes, instead of a hard threshold.

The input/output functiong(a) of such a device is computed by

g(a)
4
= f(w0 +w

Ta) = f(w0Ta0) (5:4)

where theactivationfunctionf(�) is assumed to be differentiable. Classical examples
of activation functions are the sigmoid and hyperbolic tangent functions, but other types
of general non-linear smooth functions may also be considered.

Considering output values varying continuously between -1 and 1, and the possibility
of non-separable problems, we now reformulate the learning objective as the definition
of a weight vectorw0 = (w0;w) minimizing the mean squared error (MSE) criterion

MSE(w0)
4
=
X
o2LS

�
g(a(o)) � c(o)

�2 : (5:5)

The gradient of the MSE with respect to the augmented weight vectorw0 is computed
by

rw0MSE = 2
X
o2LS

�
g(a(o))� c(o)

�
f 0(w0Ta0(o))a0(o): (5:6)

Thus, using afixedstep gradient descent approach for minimizing the mean squared
error, in a sequential object by object correction setting, would consist of using the
following weight update rule

w0new = w0old� �rw0MSE (5.7)

= w0old+ �
�
c(o)� g(a(o))

�
f 0(w0Ta0(o))a0(o): (5.8)

This is analog to the perceptron learning rule of Table 5.1, where the learning rate� is
adapted proportionally to the derivativef0 of the activation function.

An alternative,batchlearning approach consists of computing the full gradient (5.6) of
the MSE with respect to the complete learning set before correcting the weight vector.

A further improvement would then consist of using avariable step gradient descent
method, for example thesteepest descentapproach. This consists of using a line
search so as to determine at each stage the step in the gradient direction resulting
in a maximal decrease of the MSE criterion. Other more sophisticated numerical
optimization techniques may be thought of, and are discussed below.

However, one of the remaining problems concerns the existence of local minima of the
MSE criterion, to which the gradient type search techniques will converge. A possible
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Figure 5.2 Soft threshold unit for the linear combination ofTRBJ and
NB COMP

solution consists of repeating the search procedure for various randomized initial weight
vectors; another suggestion has been to apply heuristic global optimization techniques
such as the simulated annealing method or the genetic algorithms discussed inx3.5.3.

Another problem concerns the minimum MSE criterion itself, which does not neces-
sarily lead to a minimum number of misclassification errors, neither in the learning set,
nor - a fortiori - in an independent test set.

Illustration

To illustrate the above minimum MSE method, let us turn back to our example of the
power system transient stability assessment problem ofx3.4.

We consider again the two-dimensional attribute space(TRBJ;NB COMP ) and
search for an optimal hyperplane. As is suggested in Figs. 3.12 and 4.1, the Stable
and Unstable classes are far from being linearly separable in this attribute space. Thus
the basic perceptron learning algorithm would probably not be appropriate and we
propose to use the minimum MSE criterion, together with a soft threshold unit, using
an hyperbolic tangent activation function

f (x) = tanh(�x) =
expf�xg � expf��xg
expf�xg+ expf��xg

: (5:9)

The input attribute values have been normalized by dividing them by their maximum
value (max(TRBJ) = 10000 and max(NB COMP ) = 12). The weight vectors
were initialized to random values chosen in the interval[�0:5 : : :0:5].

The parameter� - although redundant - provides a convenient way to control the initial
working range of the activation function. We have used a rather low value of� = 0:5,
so as to start in the linear part of the activation function. Using a very high value of�

on the other hand would result in saturating the activation function and slow down, or
even prevent the convergence to a good solution. The same learning set as previously,
composed of all the 12497 states of the data base, has been used.

In order to minimize the MSE, we have used the batchsteepest descentalgorithm. The
iterative process is stopped as soon as a local minimum is detected or when a certain
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Figure 5.3 Comparison of various linear combinations

maximal number of iterations has been reached. The main advantage of this procedure
is that it does automatically adjust the learning rate to the problem specifics and thus
no manual tuning is required.

After 858 iterations, corresponding to a total CPU time of 12850 seconds, the above
procedure converged to a local minimum of the MSE. The corresponding initial and
final weight values are shown in Fig. 5.2. One can see that the MSE has been reduced
from the initial value of 14371, corresponding to a random classification of the learning
states, to a value of 5691, corresponding to a weight vector

w0 = 10:15;wTRBJ = �19:83;wNB COMP = 4:87:

Taking into account the attributes normalization, this corresponds to the linear combi-
nation partition

TRBJ � 205�NB COMP < 5120MW;

which is depicted in Fig. 5.3 along with the previously found optimal score linear
combination of Fig. 3.12 and Fisher’s linear discriminant of Fig. 4.1.

The score of this test, obtained by formula 3.19, is equal to 0.3046 which is significantly
smaller than the optimal score of 0.3646 and the score of 0.3440 of Fisher’s linear
discriminant. This is essentially due to the fact that the minimum MSE criterion and
the score criterion correspond to a different compromise. For example, using the above
linear combinationTRBJ � 205� NB COMP and the optimal threshold search so
as to maximize the score measure, yields a threshold of 5753 MW, and a nearly optimal
score of 0.3558. This test is also shown in Fig. 5.3.

This simple but real example allows us to make some interesting practical observations.

First of all, the iterative gradient descent procedures are very slow and in practice often



140 5. ARTIFICIAL NEURAL NETWORKS

0 200 400 600 800

Iteration5000

7500

10000

12500

MSE

Figure 5.4 Variation of MSE during steepest descent iterations

require a large number of iterations to converge.

Thus, even in the case of a very simple low dimensional problem, with a small number
of parameters, the computing time required to determine optimal weight values may
become prohibitive, as soon as the number of learning states becomes important. This
is illustrated in Fig. 5.4 showing the slow convergence of the MSE, during the 858
steepest descent iterations.

Below, in the context of the multi-layer perceptrons, we will consider more efficient
numerical techniques allowing us to significantly speed up the gradient descent search.
Anticipating this description, we have used the so called “Broyden-Fletcher-Goldfarb-
Shannon” quasi-Newton approach to minimize the above MSE. This yielded a dramatic
improvement in computational efficiency, since the convergence was obtained within
13 iterations and a CPU time of 323 seconds. The solution was even slightly improved
(MSE = 5685) and corresponds to the weights

w0 = 10:92;wTRBJ = �21:25;wNB COMP = 5:18;

corresponding to the test

TRBJ � 203�NB COMP < 5138MW:

In spite of this important improvement, we will see that the multi-layer perceptron
learning process is in practice several orders of magnitude slower than the TDIDT
procedure, while providing most often only a rather small, if any, improvement in error
rate.

The second observation concerns the effect of using different optimality criteria which
may lead in practice to different results. We have already illustrated this several
times. Table 5.2 summarizes the set of results obtained in the context of this simple
two-dimensional example, using various techniques and criteria to determine the linear
combination and optimal threshold, and assessed on the basis of two different optimality
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Table 5.2 Effect of criteria and algorithms on CPU time and quality assessment
Learning criterion Algorithm Nb. CPU Test� Evaluation

Direction Threshold Iter. sec. � �0 Score RLS%
mxRLS% mxRLS% Optimal search 20 110 179 5469 0.3263 83.88
mx score mx score Optimal search 20 110 227 5560 0.3646 79.76

Fisher Fisher Direct 1 12 186 5465 0.3291 83.63
Fisher mx score Direct + search 2 20 186 5903 0.3440 79.07
MSE MSE Steepest Desc.858 12850 205 5120 0.3046 83.54

- - BFGS 13 323 203 5138 0.3066 83.61
- mx score St. D. + search 859 12857 205 5753 0.3558 79.28

� TRBJ � � �NB COMP < �0

criteria : the score according to eqn. (3.19) and the reliabilityRLS in terms of the
percentage of correctly classified states among the 12497 learning states.

For each trial, Table 5.2 indicates in addition to the criteria and algorithms used
to determine the optimal linear combination direction and threshold, the number of
iterations, the amount of CPU time required, the values of the linear combination
parameters, the corresponding score and percentage of correct classifications obtained
by using the corresponding test to predict the stability of the learning states.

The advantage of the optimal linear combination search is its flexibility with respect to
the type of optimality criterion, and its good efficiency. However, the generalization
of the nested optimization loop would hardly be feasible for more than, say, three
dimensions.

From the CPU time point of view, the most attractive technique is the direct computation
of Fisher’s linear discriminant, which however does not in general provide an optimal
linear combination with respect to either evaluation function. In the present case,
however, the pure Fisher’s discriminant is very close to optimal in terms of the reliability
estimateRLS .

On the other hand, using the perceptron like gradient descent technique is interesting
due to the generality of the method, both in terms of numbers of attributes used in
the linear combination and in terms of the actual neuron activation function and error
criterion used, as we will see. This will be discussed more in detail below, after we
have introduced the more general multi-layer architectures.

5.2.2 Multiple layer feed-forward networks

As we have mentioned above, the need for more complex multiple layer structures of
networks was felt as soon as the limitations of the perceptron were established. The
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usual multi-layer perceptron structure is represented in Fig. 5.5. In addition to the
input and output layers, a number of - generally at most 2 - hidden layers allow us to
provide arbitrary complex function mapping capabilities.

Because of its historical importance we will describe in some detail the basic back-
propagation algorithm, although in practice we did not actually use this method in our
simulations, due to its low computational efficiency. However, the back-propagation
algorithm uses the basic chain-rule algorithm for the gradient computation, which is
also the heart of the more sophisticated techniques discussed inx5.2.4.

Back-propagation algorithm

The basic idea of the algorithm is to compute the derivatives of the error function in a
layer by layer fashion, starting with weights feeding the output layer and ending with
the weights feeding the first hidden layer of neurons.

Let us consider the general feed-forward structure suggested in Fig. 5.6, where the
neurons are sequentially ordered from 1 toK. In this structure a neuronj receives a
net inputnj

nj(o)
4
=

X
i=1;j�1

wi;jxi(o); (5:10)

wherewij denotes the weight of the connection from neuroni to neuronj, andxi(o) the
activation (or output) of neuroni, for objecto. Further, each neuron has a differentiable
activation (or transfer) functionfj(�) and its output statexj is computed by

xj(o)
4
= fj(nj(o)): (5:11)

Although the classical multi-layerperceptron is a particular case of this structure, where
some of the weights are constrained to be equal to zero, it is simpler to explain the
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Figure 5.7 Back-propagation of errors

back-propagation algorithm on the basis of the above general, fully connected structure.

Further, we may consider the following general type of “error” function

ERR(wi;j; LS)
4
=
X
o2LS

h(x(o);y(o)); (5:12)

whereh(�; �) denotes a differentiable function of the neuron activation vectorx =

(x1; : : : ; xK) and of the desired output vectory = (y1; : : : ; yr).

The derivatives of the error function with respect to the network weightswi;j are then
computed by the following formula

@ERR(wi;j ; LS)

@wi;j

=
X
o2LS

X
k=1;K

@h(x(o);y(o))

@xk

@xk
@wi;j

: (5:13)

On the other hand, the essence of the back-propagation algorithm which is suggested
graphically in Fig. 5.7, consists of computing the partial derivatives

@xk
@wi;j

; (5:14)

by propagating them back from the high order to the low order neurons.
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More precisely, these derivatives are obtained by the following backward recursion
relations

@xk
@wi;j

= xi�j; (5.15)

where

�j = 0; 8j > k; (5.16)

�j = f 0j; 8j = k; (5.17)

�j = f 0j
X

p=j+1;k

wj;p�p; 8j < k: (5.18)

This is quite easy to prove.

First of all, the relations 5.16 express simply the fact that the network has a feed-forward
structure, which implies that the state of neuronk is independent of the weights of
connections to neurons of higher order.

Second, eqn. 5.17 is obtained by direct differentiation of 5.10 and 5.11.

And finally, the recursion relation (5.18) is obtained by applying the chain rule of
differentiation in the following way, as suggested in Fig. 5.8

@xk
@wi;j

=
@xk
@xj

@xj
@wi;j

; (5:19)

We can substitute in this equation the following identity

@xj
@wi;j

= xif
0
j; (5:20)

which follows directly from the base case eqn. (5.17). Making explicit the dependence
of xk onxj andwj;p 8 p = j + 1; : : : ; k, we note thatxk may be written as a function
g(wj;j+1xj ; wj;j+2xj; : : : ; wj;kxj). Thus it is clear that eqn. (5.15) applied towj;p,

@xk
@wj;p

= xj�p; 8 p = j + 1; : : : ; k; (5:21)

which is supposed to hold by induction hypothesis, implies also that

@xk
@xj

=
X

p=j+1;k

wj;p�p; 8j < k; (5:22)

Q.E.D.2

In a classicalmulti-layerfeed-forward network, the firstn+1 neurons would correspond
to the extended input attribute vectora0. Thus, their activation would be fixed, for a
given objecto presented to the network, independently of any weight values by

xj(o) = aj(o);8j = 1; n; andwi;j = 0;8i < j; (5:23)
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Figure 5.8 Explanation of the chain rule differentiation

and
xn+1(o) = 1 andwi;n+1 = 0; 8 o: (5:24)

On the other hand, the lastr output values would correspond to the output information
of the network,

xk�r+j = rj;8j = 1; : : : ; r andwj;i = 0;8i > j: (5:25)

Finally, the layers are defined as groups of consecutive neurons receiving informa-
tion from neurons in the preceding layer and feeding their information to neurons in
subsequent layer. Denoting byLl a layer numberl, andL the total number of layers

Ll = fj; j + 1; : : : ; j + nL � 1g; l = 1; : : : ; L (5:26)

this corresponds to a set of connectivity constraints

wi;j = 0;8i; jji 2 Ll; j 62 Ll+1 (5:27)

In the case of the multi-layer structure, the error function would explicitly take into
account only neuron activations of the last (output) layer. For example, the standard
MSE error function is defined by

h(x(o);y(o)) =
X
i=1;r

jxk�r+i(o)� yi(o)j
2: (5:28)

The overall derivative of the error function is then obtained by sweeping through the
learning set, and computing for each object the activation vectorx(o) in the feed-
forward fashion, and using the back-propagation algorithm to compute the derivatives
with respect to each weight in a backward fashion, cumulating the terms corresponding
to the components of the activation vector which are explicitly used in the error function,
proportionally to the corresponding partial derivative@h

@xi
. All the computations being

linear, this may be done in a single pass for all output neurons, and for a given activation
corresponding to a given object.

While the above recursion is a simple chain rule derivation, the interesting point is that
the corresponding error back-propagation algorithm is local and uses the same network
structure as the original feed-forward network. Another notable fact is the surprising
computational efficiency of this algorithm, sinceall the derivatives are obtained with
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the order ofw operations, wherew is the total number of weights of the network, which
is also the computational complexity the network output function computation.

Finally, the method may be used either in an incremental learning scheme, adapting
the weights after each presentation of an input attribute vector, or in the batch approach
cumulating derivatives over the full learning set before adapting the weights.

5.2.3 Other objective functions

In our presentation of the back-propagation algorithm,we have insisted on its generality,
showing that it is able to handle any kind of feed-forward network structures and may
be adapted to general activation and objective functions. Below, inx5.2.4 we will
discuss some alternative schemes for exploiting these derivatives in order to optimize
the objective function in an efficient way, while inx5.2.5 we will briefly comment on
some usual approaches of defining the network architecture in terms of its topology and
activation functions. In this section, we comment on some frequently used network
optimization criteria.

Regularization

Most of the objective functions which have been used in practice derive directly from
the standard minimum MSE criterion. They take the following general form

MSE(wi;j; LS) =
X
o2LS

X
i=1;r

jxk�r+i(o)� yi(o)j
2 +G(jjwi;jjj

2); (5:29)

whereG(jjwi;jjj2) denotes a generic “regularization” term, which aims at accounting
for the “smoothness” of the input/output mapping. The purpose of the regularization
term is to avoid high frequency components in the input/output mapping so as to
reduce overfitting problems. In many circumstances, using this kind of approach may
improve the generalization capabilities of the network with respect to unseen objects,
particularly when the number of parameters becomes large with respect to the sizeN

of the learning set.

Entropy based criteria

Various other types of fitting criteria have been derived from the logarithmic entropy
function. These are interesting alternatives in the case where the output information
corresponds to conditional class-probabilities [RI 91] . In this case, we assume that the
output neurons correspond to the classes, and, ideally, the output vector would be equal
to the vector of conditional class probabilitiesp(a) corresponding to the input attribute
vector.
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For example, the total residual entropy of theLS classification given the network
weights may be defined by

N �HCjwi;j(LS)
4
= �

X
o2LS

logP (c(o)jwi;j): (5:30)

HereP (c(o)jwi;j) denotes the activation of the output neuron corresponding to the class
c(o) for each object, which is interpreted as the conditional probability of the object’s
class predicted by the neural network model.

On the basis of the analogy of this criterion with the entropy criterion ofx3.4 used to
evaluate decision trees, we may suggest the following artificial neural networkquality
measure

Q(ANN;LS)
4
= N � IANN

C � � � C(ANN); (5:31)

whereIANN
C = HC(LS)�HCjwi;j(LS) denotes the mean information provided by the

ANN, andC(ANN) its complexity, e.g. its number of weights.

Various theoreticalminimum encoding lengthor maximum a posteriori probabilityin-
terpretations may be derived for this criterion [WE 94b] . From thepracticalviewpoint,
using the same approach to evaluate decision trees and neural networks may allow us to
compare them on the basis of a learning set by taking explicitly into account their com-
plexity. This in turn may offer interesting possibilities of combining these approaches
as suggested in chapter 6.

5.2.4 Efficient network optimization algorithms

The most obvious and simple way of using the back-propagation algorithm to optimize
the neural network fit to the learning set, is to use the fixed step gradient descent
algorithm, which is classically referred to asthe error back-propagation algorithm
[HE 91] . Unfortunately, this approach, already very slow in convergence in the single
layer perceptron case, is even much slower in the case of multiple non-linear layers.
In practice, the computing times become rapidly prohibitive as soon as the number of
weights and learning states increase.

In the literature, a very large number of alternative algorithms have been proposed to
speed up the convergence. The earliest methods, which consisted basically of adding
a heuristic “momentum” term to the gradient, present the advantage of preserving the
locality of the weight update rule of the back-propagation algorithm, which is their
main attractive feature. Unfortunately, these ad hoc methods require, in general, a
tedious manual tuning of their parameters, which for large scale problems may become
very time consuming.

More recently, a certain number of researchers have proposed the use of some of
the classical unconstrained optimization algorithms available from the optimization
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literature [WA 87, PA 87, FO 92] . The very important improvement in efficiency
obtained with respect to the standard steepest descent algorithm and the fact that no
user defined parameters must be tuned has led us to use this type of approach.

Since it is not our purpose to discuss the broad topic of non-linear function optimization,
we will briefly describe the particular method which we have been using in most of our
simulations in the context of power system security problems. This is the “Broyden-
Fletcher-Goldfarb-Shannon” (BFGS) quasi-Newton algorithm, already introduced in
our example ofx5.2.1.

Basic iterative optimization scheme

The basic scheme of the iterative optimization methods consists of defining at each step
of the process a search directions in the weight space, and searching for the minimum
of the error function in this direction. This is a scalar optimization problem

min
�
ERR(w + �s); (5:32)

wherew denotes the weight vector.

The steepest descent method consists of moving in the direction opposite to the gradient

s = �rwi;jERR(w); (5:33)

which leads to a zigzag optimization path, which converges slowly in some circum-
stances.

Quasi-Newton optimization

A better approach, at least nearby the solution, would be provided by a Newton-like
method consisting of computing the search direction by

s = �(r2ERR(w))�1rERR(w): (5:34)

This approach may unfortunately be inefficient due to the high cost of computing the
w(w+1)

2 terms of the inverse Hessian matrix(r2ERR(w))�1.

Thus, the basic idea of the quasi-Newton family of methods consists of building
up iteratively an approximation of the inverse of the Hessian matrix from repeated
computations of the gradient.

More precisely, the BFGS variant which we have used, is based on the following update
scheme at stepk [FO 92]

sk = �HkrERR(w)k; (5:35)
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and

Hk+1 = Hk +
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k +Hk�r�
T

�T�r

!
; (5:36)

where� denotes the change of the weight vector at stepk as determined by the optimal
search in the directionsk and�r denotes the change in the gradient direction from step
k to stepk+1. The method starts with an initial guessH0 of the Hessian matrix which
is generally taken as the identity matrix.

As we have observed in practice, the use of this method allows us to considerably
reduce the computational burden of the neural network learning, without requiring any
manual tuning of parameters.

While these quasi-Newton methods are the most prevailing efficient techniques used
in the context of feed-forward network learning, together with the conjugate gradient
methods, they still remain iterative in essence. In particular for real life, medium to
large scale problems, they may still require a large number of rather lengthy iterations,
without guaranteeing global optimization.

Illustrative example

To fix ideas, we have applied the above technique to our example problem of transient
stability described inx3.4. The neural network structure uses a single hidden layer,
composed of 20 neurons which receive their input from 68 input neurons corresponding
to the 67 pre-whitened candidate attributes and a constant input set to 1. Finally, the
output layer is composed of 2 output neurons, one for the stable class and one for the
unstable class.

The hyperbolic tangent activation function was used for each hidden and output layer
neuron, and all in all this - apparently simple - network structure corresponds to 68*20
+ 20 * 2 = 1400 adaptable weights. We have used the first 10000 learning states of the
data base as a learning set, so as to provide results comparable with the decision tree
built for the same problem, described inx3.4.4.

The BFGS algorithm was used to learn the network weights which allowed us to
reduce the MSE initially of 21040 to a final value of 2134, within a total number of
532 iterations corresponding to a CPU time of 140 hours. To reduce overfitting, a
regularization term equal to

P
i;j w

2
i;j was included in the optimality criterion.

The resulting network was tested on the test set composed of the 2497 remaining states,
resulting in an overall test set error rate of 2.44%, which compares rather favorably
with the 4.21% obtained with the DT of Fig. 3.16. Figure 5.9 illustrates the variation
during the iterative process of both the MSE determined in the learning set and the
classification error rate computed in the independent test set.



150 5. ARTIFICIAL NEURAL NETWORKS

0 100 200 300 400 500

BFGS Iter.
0.0

2500.

5000.

7500.

MSE

0 100 200 300 400 500

BFGS Iter.
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pe

MSE on learning set (N=10000) Pe on test set (M=2497)

Figure 5.9 Convergence of the BFGS algorithm for the transient stability example

These curves illustrate quite well the practical difficulty of deciding an appropriate
stopping rule for the iterative optimization algorithms. In this particular example we
could have decided to stop the algorithm somewhere between 100 and 200 iterations,
which would have allowed us to reduce the CPU time to about 60 hours, which is still
very slow.

To evaluate the practical advantage of using a second order quasi-Newton approach
together with a regularization term in the optimality criterion, we have repeated the
above simulation using the basic steepest descent procedure together with a MSE cost
function without penalization of weights; this is often considered as the “standard”
back-propagation method. This computation did not converge perfectly and was thus
stopped after 2000 iterations, corresponding to a CPU time of 443 hours. The final
value of the MSE was 752, which is significantly lower than the value obtained above.
However, the corresponding test set error rate was 3.12%, which is slightly higher
than the 2.44% obtained above. The variation of the MSE and error rate during the
successive iterations are shown in Fig. 5.10. It is interesting to observe that while the
test set error rate stops decreasing after 650 iterations, the MSE continues to decrease
steadily during the 2000 iterations.

We have also applied the BFGS algorithm to the same non-regularized MSE error
criterion. It converged after 309 iterations (about 80 hours) to a MSE value of 144 and
a test set error rate of 3.92%. Thus, in the present example using a regularization term
actually allowed us to reduce the error rate from 3.92% to 2.44%, and the error rate
of 3.12% obtained by the gradient descent algorithm was due to chance, because we
stopped the algorithm “prematurely”.

The slowness of the neural network optimization algorithms, even in the case of
intrinsically efficient quasi-Newton methods, makes practical experimentation with this
method hardly feasible for real sized problems, even with the most efficient presently
available computing hardware. In particular, the trial and error method suggested in
the next section for determining an appropriate network architecture is possible only
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Figure 5.10 Convergence of the steepest descent algorithm

with large amounts of available computing power and small to medium problem sizes.

On the other hand, the flexibility of the neural network model allows it to fit many
non-linear classification boundaries. In particular, as we have observed in the present
example, it is often possible to reduce the error rate with respect to competing methods,
such as the decision trees.

Finally, with the multi-layer perceptron and currently available methods, there is no
support to help the user to interpret the resulting set of weights. This is particularly
problematic in the context of high-dimensional input spaces, where often only a reduced
number of attributes are actually useful for discrimination.

Thus, at the current stage of method development, we may consider the multi-layer
perceptron as a flexible and generally accurate, but very slow and mostly black-box
approach. In particular, the danger in this black-box nature comes from the fact that
the multi-layer perceptron may exploit - without notifying it - abnormal correlations
existing among some input variables and the output classification in order to maxi-
mize the fit. For example, such pathological correlations may be unduly introduced
during the building of the learning (and test) samples, and this may lead to dangerous
extrapolations.

Another problem concerns overfitting and generalization in regions of low probability.
During learning, the neural network parameters are modified so as to reduce the MSE
mainly in the regions of high density in the learning set, and this leads often to
sacrificing accuracy in regions of lower density. This may sometimes lead to non-sense
extrapolations, particularly when the output information varies in an important fashion
in the denser regions.

For example we illustrate in Fig. 5.11 a typical problem which may be encountered
in practice with the multi-layer perceptron. The three-dimensional graphs show the
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Figure 5.11 Abnormal extrapolations due to overfitting

relationship between the critical clearing time1 of a three-phase short-circuit nearby an
important power plant of the EDF system (seex13.3) and the total active and reactive
generation of the power plant.

The continuous surfaces show the mapping obtained via an MLP approximation of
this stability margin after respectively 50 and 250 BFGS iterations. Notice that locally
within the CCT interval of[0:150s : : :0:350s] its value may be approximated quite
precisely using only the two attributes concerning the state of the nearest power plant.
However, for higher CCT values other effects related to the state of other nearby power
plants may also influence significantly the value of this stability margin.

Since the corresponding state variables have not been used as input attributes in the
present example, these effects may be considered here as noise. The difference between
the continuous mapping of the CCT via the MLP and the actual CCT values determined
by numerical simulation are shown by the cloud of points which represent the actual
values (P,Q,CCT) of a sample of 800 learning states. This shows clearly that the
mapping corresponding to 250 BFGS iterations tries to approximate more closely the
values observed in the learning set in the region[0:150: : :0:500] where the majority
of the latter states lie. Unfortunately this is achieved by sacrificing the fitting to the
few points farther away form the center of the cloud, thereby providing a pathological
behavior.

Notice that the above kind of problem may not be detected by monitoring statistical
features like MSE (even in a test set) or classification error rates. Only a more in depth
analysis of the relationship modelled by the neural network would enable the detection
of such abnormal behavior. While this was rather easy in the three-dimensional case of
the above illustrative example, it is hardly possible in the context of large scale power
system security analysis problems.

1The critical clearing time (CCT) of a fault is the maximum time duration it may take the protection
system to clear the fault without causing an irrevocable loss of synchronism.
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5.2.5 Network architecture and data pre-processing

From the theoretical point of view, several results exist showing that provided non-linear
activation functions are used, and if the topology of the network is sufficiently complex,
most practically interesting input/output mappings, if not all, may berepresentedby
the multi-layer perceptron with arbitrary good precision.

In practice, seldom more than two hidden layers are considered. In all our practical
simulations we have even found that a single hidden layer, with a rather small number
of neurons, seems to be sufficiently powerful, although we have not made many trials
due to the time taken by such simulations.

For a single hidden layer perceptron the total number of weightsw is equal to(n+ r+
1)�h, wheren; r; h denote respectively the number of input attributes, output variables
and hidden neurons. An often used rule of thumb consists of choosingh so as to obtain
a number of weightsw equal to the number of learning samples divided by a constant
factor, say five to ten, so as to ensure a high enough redundancy in the learning set and
reduce overfitting.

Data pre-processing mainly consists of scaling the input attributes, so as to avoid
saturating the non-linear activation functions during the initial iterations of the back-
propagation process. Such a saturation would lead to a flat MSE behaviour and the
possible freezing of the network weights to their initial values. In the context of
classification problems, we have generally used the -1/+1 output encoding, using one
output neuron per class. In the context of regression problems, for example when trying
to obtain a security margin as output we have observed that the proper scaling of the
output information not only improves the speed of convergence but also the quality of
the solution.

Another interesting possibility consists of using the hybrid approach discussed in
chapter 6, to determine the appropriate input attributes and the structure of the multi-
layer perceptron on the basis of a decision tree previously built and converted.

Finally, various other techniques have been proposed in the literature to determine the
appropriate structure of a network which we did not use, either because they were not im-
plemented in the back-propagation software used for our simulations (e.g. the optimal
brain-damage technique) or because they would have led us into prohibitive computing
times, without promising practical benefit (e.g. the iterative network growth). We refer
the interested reader to the reference [HE 91] for a description of current research on
network growing and pruning.

Anyhow, we believe that the projection pursuit technique discussed inx4.3.2 provides
a more attractive solution to this problem. Further, in the context of two power system
security problems, this method has already obtained significantly better results than the
multi-layer perceptron [TA 94] .
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5.2.6 Interpretations of neural network models

In this section we discuss briefly various interpretations of the multi-layer perceptron
which have been proposed. The difficulty of interpreting the meaning of a feed-
forward neural network as a function of its weights is a well agreed weakness. As
we have mentioned above, the general feed-forward neural networks provide therefore
essentially a black-box model of a problem. As formulated by Towell and Shavlik
[TO 93]

: : : this is a significant shortcoming, for without the ability to produce under-
standable decisions, it is hard to be confident in the reliability of networks that
address real-world problems.

Probably, there is a fundamental dilemma between conceptual simplicity on the one
hand, which enables us to interpret and understand a model, and representation power
on the other hand, which provides flexibility and accuracy in general.

The high representation power of the feed-forward neural network models is responsible
for their success in terms of accuracy. For the same reason, it is quite easy to represent
any kind of more or less simple, restrictive class of models by neural networks. We
will give some symbolic and geometric examples of this below. Unfortunately, this
overly general nature prevents us from providing the reverse mapping, translating a
neural network into a simpler, easily interpretable model, without making restrictive
assumptions and often unacceptable approximations and loosing the benefit of the MLP
model.

The analysis and interpretation of neural network models is an active research area,
but no approaches which would at the same time be general and satisfactory have yet
been proposed. The main reason for our scepticism on the eventual development of
such methods is the observation that in general the number of parameters of a neural
network is much larger than its number of input variables, frequently one or two orders
of magnitude. Thus, trying to understand a problem by interpreting the corresponding
neural network model, in terms of its weights, may turn out to be much more difficult
than trying to understand the original problem directly.

One possible approach, which we will advocate in the next chapter, consists of using
a hybrid methodology, maintaining at the same time an easily understood model (e.g.
a decision tree) and its alter ego in terms of a more accurate but black-box model
(e.g. a feed-forward neural network). The latter may provide improved accuracy by
slightly deviating from the former model, without however jeopardizing their overall
consistency in interpretation.
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Figure 5.12 The “hyperplane-box-region” model and the “prototype” model

Neural network implementation of frequently used models

To illustrate the generality of the feed-forward neural network model, we provide some
classical interpretations, suggesting that this is indeed a rather powerful and general
model.

Generally speaking, the first hidden layer may be considered as a feature extraction
layer, and the subsequent layers are viewed as providing logical combinations of
features.

The first such model, illustrated in the left part of Fig. 5.12, corresponds to the use
of sigmoid type activation functions. In this setting, the weights arriving at a given
neuron of the first layer define a hyperplane “à la perceptron”. The activation of such
a state will be high or low according to the semi-space in which the input pattern lies.
For a set ofh such hidden neurons, the activations provide a bit-pattern indicating the
membership of the current attribute vector in each of the corresponding semi-spaces.
A neuron in a second hidden layer may then combine this information so as to test
whether the state belongs to the intersection of some of these semi-spaces. Thush0

neurons in a second hidden layer allow us to define a set ofh0 convex boxes, and finally
the third output layer may associate the union of some of the convex regions of the
preceding layer with each output neuron. This allows us to define output classes of
arbitrary shape. In addition, taking into account the fact that the activation functions
may vary smoothly from -1 to +1, this type of network will actually allow us to define
regions as fuzzy sets.

Another, closely related model shown in the right part of Fig. 5.12, uses a single
hidden layer with kernel type (e.g. Gaussian) activation functions, together with a
simple linear output layer. In this interpretation, the weights from the input neurons
to a hidden neuron may be considered as defining the location of a prototype in the
(augmented) pattern space, and the activation of the neuron will be high only if the
input attribute vector is sufficiently close to this prototype. The weights to the output
layer combine the proximity information so as to approximate the desired output.
For example classes may be defined as unions of proximity regions surrounding the
prototypes, and regression functions may be considered as the superposition of kernel
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functions.

Another, similar representation uses sine or cosine activation functions, and the neural
network model may be interpreted as a kind of Fourier analysis technique. A fur-
ther generalization of this idea leads to the functional link network proposed by Pao
[PA 89b] , which is based on an extended attribute space defined by an a priori given
set of linearly independent functions of the input attributes, which are used in a single
layer perceptron fashion. This is the neural network version of the generalized linear
discriminants discussed in [DE 82] .

5.3 KOHONEN FEATURE MAPS

We now turn for a brief while back to the realm of unsupervised learning, and con-
sider one of the neural network based approaches to this problem, namely the feature
maps developed by Kohonen [KO 90] . Our aim is not to discuss the neural network
approaches to unsupervised learning in general, and there are many other interesting
such approaches for feature extraction, clustering or data compression which would be
interesting to consider [PA 89b, ZU 90, HE 91] .

There are three main reasons why we have chosen to describe the Kohonen feature
mapping approach. First, it is a promising method for data analysis, due to its graphical
interpretation possibilities, and could be particularly useful in the context of power
system security assessment, where in depth data analysis is of paramount importance.
Second, this method is essentiallycomplementaryto the classical statistical techniques
of unsupervised learning, presented earlier. Finally, some interesting applications of
the Kohonen’s feature map to power system security problems have been proposed
in the literature, and our brief description of the technique should provide the basic
notions required for understanding our later discussion of these applications.

5.3.1 Unsupervised learning

The self organizing feature map (SOM) developed by Kohonen belongs to the category
of competitive learning models which aim at representing a data set by a smaller number
of representative prototypes. There are many possible practical motivations for this
kind of approach. For example in the context of information communication, this may
provide an efficient way of encoding information. In the context of data analysis it may
provide a small representative subset of states.

In comparison to the other similar methods, e.g. the clustering algorithms discussed
in x4.4, the main originality of the SOM is that it allows us to organize the learned
prototypes in a geometric fashion, for example on a uni- or a two-dimensional regular
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Figure 5.13 Two-dimensional Kohonen feature map

grid or map.

In the sequel we will particularize our presentation to the two-dimensional case, which
is the most usual one, for graphical interpretation reasons. The interested reader may
refer to the paper by Kohonen [KO 90] for a general description and an in depth
presentation of the biological motivations underlying the two-dimensional SOM.

To fix ideas we have represented in Fig. 5.13 a hypothetical two-dimensional 4� 6
feature map. Each neuroni; j corresponds to a prototype in the attribute space, say
ai;j. The connection weights from the input layer to the map correspond to the attribute
values of the corresponding prototype. Further, in addition to an a priori defined distance
�(ai;j;ak;l) in the attribute space, the relative location of these prototypes on the feature
map defines atopologicaldistance.

In this model, the output corresponding to an objecto is defined as the nearest prototype
in the attribute space, i.e.ai

�;j� such that

�(a(o);ai
�;j�) � �(a(o);ai;j); 8 i; j: (5:37)

What is expected from the learning algorithm is to define the prototype vectors so as to
minimize the quantization error, e.g. in the MSE sense (as in the statistical clustering
algorithms ofx4.4), and in addition to define the positions of these prototypes on the
feature map, so as to preserve the topological properties of the original attribute space.
More precisely, we expect prototypes which are close in the original attribute space to
be located close on the map.

Notice that this kind of objective is not very different from multi-dimensional scal-
ing, which aims at finding a configuration of points (e.g. the prototypes) in a low-



158 5. ARTIFICIAL NEURAL NETWORKS

Table 5.3 Kohonen self-organizing map learning algorithm

1. Consider the objects of the learning set in a cyclic or random sequence.

2. Leto be the current object,a(o) its attribute vector, andai
�;j� its closest

current prototype.

3. Adjust the prototype attribute vectors according to the following correction
rule

�
ai;j

�new
=

�
ai;j

�old
+ �Λ

�
i� i�; j � j�

�  
a(o)�

�
ai;j

�old
!
: (5.38)

dimensional space such that the distance among the points in this low-dimensional
space corresponds to the distance among prototypes in the original attribute space
[DU 73] .

Kohonen’s algorithm

The elementary learning algorithm is an iterative method considering the learning set
objects successively and updating the weight vectors at each step, so as to reinforce the
proximity of the object and its currently closest prototypes. This is indicated in Table
5.3 in the particular case of a two-dimensional feature map.

The parameter� denotes the learning rate of the algorithm, and the functionΛ(�; �) is
a neighborhood function, i.e. a decreasing function when the distance on the feature
map increases. A frequent choice is to use the Gaussian kernel

Λ(x; y) = exp

(
�(x2 + y2)

2�2

)
: (5:39)

Both the learning rate� and the width parameter� are in practice gradually decreased
during successive learning iterations. Thus, initially corrections are made so as to move
a large part of the prototypes at each iteration considerably closer towards each learning
object. At the later iterations, only the the nearest neighbor prototype is moved and
only a small correction is made at each step.

Unfortunately, the theoretical analysis of this learning algorithm has not yet been carried
out very far, and among the many questions which may be raised only a few have been
answered and only in the simple one dimensional case.

Intuitively, we may feel that the above algorithm will tend to minimize a quadratic
quantization error in the learning set. Of course, at best a local minimum of this
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Figure 5.14 Kohonen map for the voltage security example. Adapted from [TA 94]

quantization error may be reached. Further, the meaning of this criterion depends, of
course, on the scaling of the input attributes, in the practical case of a learning set of
finite size.

On the other hand, in the case of a one-dimensional attribute space, it is possible to
show that asymptotically the prototypes are regularly spaced on the feature map with an
attribute density proportional top(a)2=3 wherep(a) denotes the probability density in
the original attribute space. So, the Kohonen feature map tends to place the prototypes
by undersampling high probability regions and oversampling low probability ones
[HE 91] .

5.3.2 Possible uses

The SOM is often used for graphical data inspection and visualization.

For example, a typical application consists of building a two dimensional feature map
and displaying graphical information on this map, showing class labels or attribute
values in terms of thei; j coordinates. This can also be used for monitoring the
position of objects on the map [NI 91, MO 91] .

Illustration 1. Similarities among power system states.

To fix ideas, we have represented in Fig. 5.14 a feature map which has been constructed
for the academic voltage security example ofx10.2, which was studied in the context
of the Statlog project. A random sample of 1250just after disturbance(JAD) states
was generated, and each state is characterized by 28 attribute values, corresponding to
the power flows, voltages and reactive power reserve.
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The Kohonen map of Fig. 5.14 was determined without using information about the
classification (critical vs non-critical) of the power system states. After convergence, the
labels indicated in Fig. 5.14 were calibrated by determining the nearest neighbors in the
learning set of each prototype vector and by associating to the latter the majority class
among its nearest neighbors. In Fig. 5.14 “+” represents a prototype corresponding
to a majority of critical situations, and “.” a prototype corresponding to a majority of
non-critical situations.

The clustering apparent in Fig. 5.14 shows, for example, that there may be two distinct
types of non-critical states [TA 94] . Monitoring the position on the map of the real-
time power system state could provide a means to display security information to an
operator. Using the latter map as a nearest neighbor classifier yields a test set error
rate of 5.6%, determined in an independent test set composed of 1250 other states,
generated in a similar fashion to the learning states. This is however a rather large error
rate, since for the same problem the decision trees obtained a test set error rate of 3.8%
and the multi-layer perceptrons yielded error rates of 1.7%.

Illustration 2. Similarities among physical parameters.

Finally, anticipating on the presentation of the voltage security study on the EDF system
in x14.4, we provide an illustration of an interesting possibility of using the SOM for
analysing physical correlations among variables.

To fix ideas, let us consider the problem of defining a set of representative attributes
to characterize voltage behavior of a large scale power system in the JAD state, which
is considered in the context of emergency state detection of voltage critical situations.
For this problem, physical considerations suggest that the low-voltage side voltage
magnitudes at the EHV/HV transformers may provide a very good picture of the
severity of the disturbance and at the same time will reflect the amount of load which
would be restored due to the automatic action of the transformer taps. Thus, these
variables are liable to provide good indicators to detect critical situations.

However, even in a restricted region of a large scale power system, such as the one
studied inx14.4, there may exist a rather large number of such transformers and
correspondingly a large number of HV voltage candidate attributes.

Thus, there is a need to compress this information into a smaller number ofequivalent
voltages, in short there is a need to identify thevoltage coherentregions in the power
system. Once these regions are identified we may define equivalent voltages through
the aggregation of elementary voltages in each region.

This is a typical attribute clustering problem, which we may try to solve with the
Kohonen feature map. In our example, we start with an initial set of 39 HV voltage
attributes. Each attribute is characterized by the value it assumes for a random sample
of JAD states. For each attribute the same sample of states is used corresponding, in
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Figure 5.15 Voltage coherency SOM

the case of our illustration, to a given disturbance and 100 randomly generated prefault
operating states.

Thus the “learning set” is composed of 39 vectors of 100 components. These vectors are
pre-whitened and the Euclidean distance used by the self-organizing learning algorithm
becomes equivalent to the correlation coefficient. In other words, this algorithm will try
to identify regions of strongly correlated voltages. To this end, we specify a 5�6 feature
map which is randomly initialized, and adapted on the basis of the above learning set.
After convergence, each cell corresponds to a new vector of 100 components. The map
is calibrated by identifying for each one of the 39 vectors corresponding to the 39 HV
voltages its nearest neighbor on the map, i.e. the prototype to which it is most strongly
correlated.

The obtained clustering is represented in the right part of Fig. 5.15. The non-empty cells
correspond to the actual 13 prototypes determined by the algorithm. Each prototype
corresponds to a set of HV voltages of which it is the nearest neighbor among all
prototypes defined on the SOM. The empty prototypes are those which are the nearest
neighbor of no HV voltage at all. In the left part of Fig. 5.15 the regions corresponding
to the non-empty prototypes have been represented on the one-line diagram of the EDF
system.

It is interesting to notice that the location on the SOM of the prototypes corresponding
to the voltage coherent regions may be compared with the adjacency of these regions
on the one-line diagram. For example regions No. 10, 11, 12, 13 which are located
rather far away from the voltage weak region are also grouped together and away from
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the other prototypes on the feature map. On the other hand, the intermediate regions
No. 6, 7, 8, 9 are also located in an intermediate position on the feature map. Finally,
the regions No. 1, 2, 3, 4, 5, which are at the hart of the physical voltage security
problem, are located in the left part of both the one-line diagram and the feature map.
This illustrates rather well the capability of the Kohonen SOM to preserve topological
relationships among prototypes.

The above analysis, although based on a very small sample of 100 states, reflects
physical information confirmed by operators’ knowledge and is also consistent with
other statistical analyses based on the hierarchical clustering algorithm presented in
4.4.2. With respect to this latter method, the Kohonen algorithm has several potential
advantages.

First of all it is in principle able to determine automatically the appropriate number
of prototypes. In our example, this led to 13 voltage coherent regions, although the
maximum possible number of prototypes in the used feature map was 30.

In addition this method provides an indication of the topological relationship among
prototypes, in terms of the distance on the feature map. We feel that this may be
particularly useful in the context of the determination of coherent regions, where the
resulting organization of prototypes may be compared with the electrical distances in
the power system.

In comparison to sensitivity based coherency approaches, the present technique is much
more flexible and potentially much more powerful. Indeed, the sensitivity techniques
are essentially providing a case by case analysis, which is determined for a given
power system topology and operating state. The present approach, however, provides
a systematic analysis which is based on a statistical sample which may be either very
specific or very diverse, depending on the type of analysis sought.

5.3.3 Supervised learning

Many parameters must be tuned in practice before obtaining good results with the
above algorithm in terms of a low quantization error. This concerns first of all the
choice of an appropriate map topology and neighborhood function, and a distance
definition in the original attribute space. This latter is often based on an Euclidean type
of distance based on some previously extracted features, e.g. a subset of pre-whitened
attributes. The other choices concern parameters of the algorithm such as the success
criterion and rules to define the learning rate and window, and the initial location of the
prototypes. Often, several learning sessions are run in parallel on the same data set, and
the most successful result is chosen as the final SOM, on the basis of the corresponding
quantization error criterion.

If used correctly, the above technique may allows us to design a set of prototypes
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which provide a good approximation of the information contained in a learning set, as
described by a set of attributes. This may directly be used for classification purposes,
or similarly for regression, by calibrating the prototypes on the basis of the learning
set. For example, for each prototype we may count the relative frequency of learning
states of each class of which the prototype is the nearest neighbor among all prototypes
on the map. These may then be used so as to associate a conditional class probability
vector and a corresponding majority class.

The above is the most elementary and simplest way of exploiting a SOM for prediction.
One may however argue that this will not lead necessarily to a good behavior in terms
of classification reliability, since the class information is attached a posteriori but has
not been used during the construction of the map. Indeed, in practice this method turns
out to provide very deceiving results in terms of classification accuracy. For example,
in the Statlog study the results obtained scored worst among all methods which have
been tried [TA 94] .

A better idea would consist of using classification information during adaptive training,
so as to take into account this information to control the location of the prototypes.
Applying this idea yields the so-called “learning vector quantization” (LVQ) family of
methods proposed by Kohonen [KO 90] , which modify the reinforcement rule of Table
5.3 so as to improve the classification reliability. We will not describe these methods
in detail, but the basic idea consists of attaching a priori a class label to each prototype,
and changing the sign of the∆ai;j correction term for those prototypes which do not
correspond to the same class as the current object.

5.4 CONCLUDING REMARKS

There is a very large number of neural network techniques for supervised learning,
both for classification and regression type of problems, as well as for unsupervised data
analysis and clustering.

In our description we have merely presented the two techniques which have received
most of the attention of researchers in the context of power system security applications,
by trying to give an honest look at these techniques, guided by our own practical
experience and the in depth study made in the context of the Statlog project. For the
interested reader, we strongly recommend reading the final report of the latter project
[TA 94] , which gives a dispassionate account of the state of the art in classification
methods.

The fact that we have chosen to describe both the multi-layer perceptron and the Ko-
honen self-organizing map may be interpreted as a definite conviction of the future
usefulness of these methods in the context of power system security assessment prob-
lems. However, this does not imply that other methods which we have not described,
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could not be interesting. Our purpose was mainly to provide the reader with a taste of
the practical advantages and difficulties of either method, which are complementary in
nature with other methods described in the earlier chapters.

Whatever their attractiveness, we believe that at the current stage of technology, the
main difficulty with these methods is their lack of interpretability features, in particular
in comparison to the machine learning methods. We have discussed this in several
places and have shown that it might prevent the methods from being used in the context
of real-world applications.

If we compare the two types of neural networks discussed in this chapter, we observe
first of all that the multi-layer perceptron techniques are very powerful in terms of
accuracy as well as being easy to apply.

In particular, with the more efficient second order quasi-Newton optimization methods,
no prior parameter tuning is required and learning times may be reduced so that the
application to problems of realistic size becomes feasible. These latter methods lead
however to more complex software implementation, and still suffer from high comput-
ing requirements; an improvement of two orders of magnitudes would be required to
allow response times to become small enough for interactive experimentation, within
the context of real-world power system security problem sizes.

The reverse situation holds for the Kohonen network, which has a rather fast and
straightforward learning algorithm but where it is the user’s responsibility to adapt
parameters so as to obtain interesting results. This method certainly requires some
more expertise to get the best out of it.

Resuming our discussion about the appropriateness of distinguishing between “sta-
tistical” and “neural” approaches to learning, we may observe that the probabilistic
framework used in the classical statistical methods is an important tool for the study of
neural network approaches. This is also reflected by the significant fraction of the more
recent theoretical work on neural networks, which deals with probabilistic modelling
and statistical analysis [LE 90c, BU 91, RI 91, RI 93] . At the same time, modern sta-
tistical methods (e.g. the projection pursuit techniques [FR 81, HW 93] ) are obviously
closely related to the connectionist models.

On the other hand, from the implementation point of view, the high parallelism of the
connectionist models is equally present in many, if not all, of the classical statistical
methods (nearest neighbor, kernel density estimation, projection pursuit,: : : ).

Thus, our classification into statistical and neural approaches is only for convenience
of presentation, and we don’t believe that from the viewpoint of applying methods
of either of these categories to power system security problems there would be a
fundamental distinction. More precisely, we believe that the differences among the
individual methods are more significant than the differences among the classes of
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approaches. The difference often lies more in the way these methods have been applied
in the past than in the algorithms. The neural network approaches have generally been
applied in a more or less black-box fashion whereas the statistical techniques use a
modelling approach, in order to identify and validate simplifying assumptions about
the problem structure, such as independence and normality. Consequently, neural
network techniques have mostly been applied as a stand-alone tool, while the statistical
techniques usually rely more strongly on a priori analysis of problem features and on
choosing appropriate data transformations for input and output representations.
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6

Hybrid approaches

6.1 INTRODUCTION

In the preceding three chapters we introduced a certain number of supervised and
unsupervised learning techniques, each one of which has its functionalities and also
its range of problems where a near optimal behavior may be expected. On the other
hand, many practical problems may require a combination of these methods for their
solution and from the methodological viewpoint, cross-fertilization among approaches
may lead to better, essentially hybrid strategies.

In the recent years, a growing number of hybrid methods have been published combin-
ing aspects from machine learning with statistical and neural network approaches. In
this chapter we will briefly describe some possible combinations of the decision tree
induction technique, which fills the basic requirement in the context of many power
system problems of interpretability and efficiency, and some other techniques which
may offer some possibilities to enhance this approach in order to extract more informa-
tion from the available data bases. In the process we will also provide some references
to other research work in the context of hybrid learning techniques.

From our practical point of view the aim of these hybrid approaches is mainly to
improve the accuracy of the security classification obtained by a decision tree, and in
particular to reduce as much as possible the risk of not detecting insecure situations
without increasing too much the false alarm rate.

167
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6.2 MACHINE LEARNING AND NEURAL NETWORKS

6.2.1 Introduction

There are several approaches to combine the idea of iterative tree growing algorithms
with the flexibility of general feed-forward neural networks.

The first type of approach uses a greedy network growing algorithm, which is strongly
inspired by the techniques used to build the trees. This yields a class of tree-structured
neural network training algorithms which are more or less closely related to the TDIDT
framework, and which aim essentially at fitting the network complexity to the available
data and to reduce computation times during the learning stage [SA 91c, CI 92] . The
projection pursuit algorithm discussed inx4.3.2 appears also clearly as a greedy type
of algorithm although the resulting network structure is not organized in a tree fashion.

Another approach consists of constructing decision trees using more complex surfaces
in the attributes space than single attribute (threshold) tests in order to split at a tree node.
Each of these surfaces is then implemented by a neural network model. The earliest
such methods merely used perceptrons or linear discriminants in order to determine
an appropriate linear combination [BR 84, UT 88] . The basic idea is to enhance the
decision trees to be able to identify some cross-correlations amongseveralattributes
and the goal classification. This was also the motivation behind the search for linear
combination attributes described inx3.4.3. As noted earlier, while these enhancements
may significantly improve the accuracy of the decision trees, it is also true that they
may hinder the interpretation of the tree’s information.

Thus, in the above approach there are still some developments required in order to
be able to assess, at the tree growing stage, whether the increased test complexity
yields indeed a significant improvement in accuracy and if not, to rely on the simpler
standard kind of node splits. In particular the training algorithms should be able to
find a compromise between trees using a too high number of too simple tests and those
using a too small number of too complex tests. This would in turn require us to develop
a measure oftest complexitywhich should be combined with the classical measures of
structure complexityused in the quality measures (e.g. in eqn. (3.14)). This possibility
is further discussed in [WE 94b] .

Finally, the last technique, which is also the most simple one to implement, consists
of using a two-stage process. In the first stage, a decision tree is derived in order
to compress information contained in the data base. This allows us in particular to
determine the attributes which have significant correlation with the target classification.
In the second stage this reduced set of variables is used as input attributes to the neural
network model, which is further adapted on the basis of the learning set, using an
available standard back-propagation software package.
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This strategy has the main advantage of simplifying considerably the resulting neural
network structures and thereby reducing dramatically training times. Several variants
may be imagined to derive an appropriate neural network architecture from a pre-
constructed decision tree [SE 90, AR 92] . Below we will discuss briefly the hybrid
techniques, further described in [WE 93a, WE 94a] ; we will provide some practical
applications of this particular approach.

6.2.2 A hybrid decision tree - artificial neural network approach for
power system security assessment

The hybrid Decision Tree - Artificial Neural Network (DT-ANN) approach aims at
combining the advantages of the two approaches while circumventing their weaknesses.
DTs are used to yield a first shot, transparent and interpretable model of the relationship
between variables representing the states of a power system and its security. The
powerful non-linear mapping capacities of multilayer perceptrons are then exploited to
augment the discrete classification of the tree with a continuous security margin type
of information. This richer information may be used in various ways; in particular, it
may contribute to making better decisions during the on-line use of the method.

Such a hybrid approach is schematically shown in Fig. 6.1. Decision trees are first
built using a data base composed of preclassified power system states; they identify the
relevant test attributes for the security problem of concern, and express, in a hierarchical
fashion, their influence on security. Second, this information is reformulated as a four-
layer feed-forward multilayer perceptron. Third, the MLP weights are tuned on the
basis of the learning set augmented with the securitymargin type of information to
enhance classification reliability and transform thediscreteclassification information
of the tree into acontinuoussecurity margin.

Among the possible ways to reformulate a DT as an equivalent neural network, we have
tentatively used the one proposed in [SE 90]. It consists of the following four-layer
structure [WE 93a].

1. The INPUT Layer (IL) contains one neuron per attribute selected and tested by the
DT. Their activation levels correspond to the attribute values of the presented state.

2. The TEST layer (TL) contains one neuron per DT test node. Each TL neuron is
linked to the IL neuron corresponding to the tested attribute.

3. The ANDing layer (AL) contains one neuron per DT terminal node. Each AL
neuron is connected to the TL neurons corresponding to the test nodes located on the
path from the top node towards the terminal node. Its activation level is high only if
the state is directed to the corresponding terminal node of the DT.

4. The ORing layer (OL) contains one neuron per DT class, connected to the AL
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Figure 6.1 Hybrid DT-ANN approach

neurons corresponding to the DT terminal nodes where the class is the majority class.
Its activation is high, if at least one of the AL neurons is active.

In order to replicate exactly the classification of the DT, sharp activation functions must
be used, to make the transition from -1 to 1 sufficiently sharp, when a state crosses the
security boundary defined by the DT.

If the network is used to approximate a continuous security margin, rather than to merely
classify, some modifications are required. First, the output layer would be replaced
by a single output neuron, fully connected to all neurons of the AL. In addition, since
the weights as given by the DT translation are not necessarily appropriate, it relies on
learning to choose them correctly. To obtain a smooth, easily adaptable input/output
mapping a rather smooth transition function is used.

However, in order to obtain meaningful results, and in particular to avoid overfitting
problems, it is important to take care about the normalization and truncation of the
margin before the back-propagation algorithm is used to adapt the weights of the ANN.
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This is because the attributes used to formulate the decision tree may not be sufficiently
informative to determine the margin when the latter is much smaller or much larger
than the threshold used to define the security boundary. Thus this kind of approximate
margin information will essentially be valid onlylocally around the security boundary.

6.3 MACHINE LEARNING AND DISTANCE COMPUTATIONS

The multi-layer feed-forward perceptron may be seen as an implicit way of defining a
distance in the attribute space. In the above hybrid approach this distance is used to
replicate at the output of the neural network a distance to the security boundary defined
by a decision tree in the attribute subspace corresponding to its test attributes.

As was shown, the weights may be further adapted so as to fit the corresponding metric
to a predefined security margin, in thevicinity of the security boundary. This is based
on the conjecture that the attributes which allow us to predict the securityclasswith
a sufficiently high reliability should also contain sufficient information to predict the
valueof the security margin, nearby the security boundary. This conjecture was verified
for different types of security margins in many simulations on simple test systems and
also on some real large-scale systems.

The advantage of using the implicit metric of the multi-layer perceptron is that the
back-propagation algorithm provides an effective and at the same time very flexible -
though time consuming - method to adapt this metric to the problem specifics, on the
basis of information contained in a learning set. Below we will discuss the possible
advantage of using classical distance computations in the attributes space defined by a
decision tree. In addition to providing the distance to the classification boundary of a
tree, this kind of distance may also be used to compute the similarity between states
on the basis of their location in the attribute space, which may for instance be used in
a nearest neighbor kind of classifier.

6.3.1 Margin regression

A conceptually quite similar idea to the above hybrid DT-ANN approach was first
proposed in [WE 88] . This approach is based on the definition of a distance in the
attribute space, in terms of weighted attributes used in a decision tree. Thus the distance
is of the following form

∆(o1; o2)
4
= k

s X
i=1;:::;n

wi jai(o1)� ai(o2)j
k; (6:1)

and the weightswi and orderk are adjusted on the basis of the learning set to correlate the
latter distance as strongly as possible with a predefined security margin. In particular,
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k = 1 yields the Manhattan (or city-block) distance which would correspond to a linear
approximation of the security margin in terms of the attribute values, near the security
boundary.

This idea is illustrated in Fig. 6.2, where the security boundary is supposed to be
defined with respect to a security marginSM and a given thresholdSM0.

The distance from a location on the secure side to the insecure region, is approximated
by the distance to the region covered by the terminal nodes of a decision tree, where
a majority of unstable learning states are recorded. The higher this distance the more
secure the state; thus monitoring the variation of this kind of distance will allow one to
identify whether the system drift moves its operating point closer to insecurity or not.
Similarly, the distance from a state on the insecure side to the secure region allows one
to assess its degree of insecurity and may provide a quick indication of how to modify
its operating point (its attribute values) so as to move towards the secure region. Since
a decision tree decomposes the security region into a union of hyperboxes defined by
simple constraints, the computation of the distance is almost trivial.

As indicated above, one of the major problems is the appropriate choice of weights
to combine the different attribute values in the distance, which may correspond to
different physical quantities such as powers, voltages and even topological indicators.
The approach taken in ref. [WE 88] was to consider that the weights would be defined
either a priori on the basis of pragmatic considerations, or they should be adapted
on the basis of the sensitivity of the “benchmark” security margin with respect to the
attributes used. In particular, in this reference we proposed to use an iterative numerical
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technique to adapt the weights on the basis of the precomputed margins of the learning
states, so as to maximize the correlation coefficient of the distance and the margin.

This approach yielded reasonably satisfactory results for several transient stability prob-
lems; nevertheless further research would be needed in order to develop a systematic
and robust optimization technique.

6.3.2 Nearest neighbor

Once an appropriate distance has been defined in the attribute space, one may think of
various interesting possibilities. For example, Fig. 6.3 suggests a straightforward way
to define a buffer region across the approximate security boundary where more refined
information should be used to classify a state. In particular, one may determine an
appropriate distance threshold and define the buffer region as the part of the attribute
space where the distance to the boundary is smaller than this threshold. This is
illustrated in Fig. 6.3, where a Manhattan distance was used hypothetically. Such
an approach may allow us to identify those states for which there is a high risk of
misclassification.

Further, within the above buffer region around the security boundary, we may use the
nearest neighbor classifier and exploit the same distance to identify the specific learning
state belonging to this region which is most similar to the current state.

Of course, as soon as a reasonable distance has been defined, many other possibilities
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may also be thought of. For example, suppose that a state is considered to be prob-
ably insecure, either because it falls into the insecure region where the decision tree
classification is deemed to be reliable, or because some of its nearest neighbors in the
attribute space are insecure. Then the distance may be used to find a set of reference
situations in the data base which are secure, and which are as similar as possible to the
current state. These reference situations may then be shown to the operator as a set of
alternative controls, and the one satisfying feasibility and economy constraints may be
chosen as a new operating point. This opens a broad range of possibilities, in particular
to provide very quickly preventive or corrective actions which may then be applied and
leave further time for more sophisticated techniques to determine a better new state.

6.4 DISCUSSION

Comparing the above two approaches we note that their main difference lies in the fact
that the DT-ANN hybrid approach provides a more systematic, and at the current stage
of research, more effective means to adapt the weights in order to fit automatically the
output to the desired security margin. A certain number of experimental results show
that this technique is quite effective. However, the obtained information is useful only
locally, nearby the security boundary and cannot provide distances among individual
states.

On the other hand, the explicit distance computations in the attribute space may be
easier to interpret and closer to the human way of thinking. They therefore offer a
promising research direction to exploit more systematically the information contained
in the generated data bases. At the present stage, several results have already been
obtained on various power system problems. For example it was found possible to
determine the coefficients of the distance so as to provide a good approximation of
the security margin, and to use this distance to identify states too close to the security
boundary to be classified reliably with a decision tree [WE 90a] . On the other hand,
using the attributes identified by a decision tree allowed us to improve systematically
the quality of the nearest neighbor classifier, and in some circumstances to reach and
even exceed the performances of the decision trees, while the standardK�NN method
using all candidate attributes got very poor results.

At the present stage of the research, the main difficulty is the lack of systematic and
robust techniques to determine the appropriate weights of the distance. Such a technique
could possibly be based on some of the more recent heuristic optimization methods
such as those described inx3.5.3; it could also take advantage of the information
quantity provided by the various test attributes of a decision tree; admittedly, this is a
prerequisite to the systematic use of these methods in the context of security assessment
problems.



7

Comparing supervised learning
methods

In this chapter we attempt to give a synthetic overview of salient characteristics of the
supervisedlearning methods presented so far. Our purpose is not to suggest that one
particular kind of method would be more appropriate than others. Rather, we start from
the premise that almost every method may be useful within some restricted context,
and summarize the respective strengths and limitations of the various methods so as to
highlight their complementary possibilities.

To simplify, we will only consider the main more or less “stand-alone” techniques,
leaving aside the auxiliary tools, such as genetic algorithms and linear models. On the
other hand, the discussion and comparison of unsupervised learning methods is rather
uneasy, in particular due to their empirical character.

We will first consider important practical criteria - computational and functional -
which should be taken into account when comparing supervised learning methods,
and briefly comment on the proper evaluation methodologies of these criteria. We
will accordingly distinguish three important classes of supervised learning methods :
rule based, smooth function mapping based and memory based. Further, we will
indicate interesting algorithms from each category, before summarizing their main
characteristics.

Finally, we will briefly review some important comparative studies and in particular the
Statlog project, from which several results have been quoted in the preceding chapters.
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7.1 CRITERIA

Among various criteria for comparing methods for supervised learning, we will consider
computational aspects and functional description in terms of the types and quality of
the security information which may be derived from a method. We will also point out
some aspects related to the evaluation methodologies which should be used in practice.

7.1.1 Computational criteria

These criteria concern the computing time and memory requirements of the methods
during the off-linelearning phase and the on-line use of a method forpredictionof
unseen cases. Of course, for a given method depending on the algorithms and the
software implementation, there may be various compromises among these two aspects.
In particular, the appropriate use of parallel computation might change considerably
the relative positioning of the different methods. Also, the computational requirements
depend, in general, strongly on the problem size. For example, at the learning stage
the productn�N of the number of attributes by the number of learning states may be
used as the problem size, while at the prediction stage the complexity of the learned
model would be useful, which depends implicitly on the above two numbers.

We have already illustrated in various examples that the methods which are slow during
the learning phase (e.g. the multi-layer perceptron) may be very fast in the prediction
stage. On the other hand, the nearest neighbor type of methods are in general quite fast
during the learning phase, but, compared to other methods, they are really slow and
require large amounts of memory during the prediction stage.

In the sequel we will give some indications about the relative computational perfor-
mances of the different methods, in the context of an assumed realistic problem size for
power system security assessment, corresponding to a productn � N 2 [105 : : :106]
and a model complexity adapted to this problem size.

7.1.2 Functional criteria

Under the category of functional criteria, we group all the non-computational criteria,
concerning the type and quality of information provided by the methods, both at the
learning and at the prediction stage. In particular, these criteria includeaccuracy.

Accuracy will of course strongly depend on practical problem features, such as the
type of security information sought, the number, type and distributions of attributes,
and last but not least the learning set size. In the context of security assessment we
have found that the relative accuracies of various methods depend on the physical
problem (e.g. preventive transient stability assessment vs. voltage security emergency
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state detection), and of course on the types of candidate attributes used. In particular,
some problems are rather local and are therefore easily handled by the decision tree
methods, while others tend to be more diffuse, calling for the combination of a higher
number of elementary attributes, which is easier to do with an approach like multi-layer
perceptrons or the projection pursuit technique.

Some methods are able to provide important data analysis and explanatory information
at thelearningstage, allowing us to identify the important attributes and the physical
relationships among them and the output information, thereby providing a good general
summary of the data base information. Other methods are able to identify the closest
reference case at thepredictionstage, and may thus provide case by case justifications
for their predictions.

Finally, some other methods are unable to provide any explanatory information at the
learning or prediction stage, but provide the possibility of modelling numerical output
information as a smooth function of its input attributes. This kind of method may be
particularly useful to approximate securitymargins, and providesensitivitycalculations
of the predicted margin with respect to input attribute values.

7.1.3 Evaluation methodologies

Often, comparisons among methods have led to rather useless results due to a lack of
rigor in the evaluation methodology. Below we will give some very straightforward
but important tips to help in making a honest comparative assessment of methods, both
from the accuracy and the computational points of view. Our discussion focuses on
power system security problems, but most of the considerations remain true in general.

Simulated data sets

We first discuss the use of simulated data sets. Indeed, in the context of power
system security assessment generally the data sets are obtained bygeneratinga random
distribution of states for a power system model and applying various calculations to
obtain the attribute values and security characterization.

This is further discussed extensively in the following chapters, but it is important to
notice that withsimulateddata sets, correlations are sometimes unduly - and unexpect-
edly - introduced among some variables due to particular modelling simplifications.
Some examples of these kind of correlations will be illustrated later, in the chapters
reporting on practical results. For the time being, let us consider a simple “imaginary”
example.

Let us suppose that we are considering security assessment of a power system, and
that we have generated a data base obtained from various load levels. We assume,
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that the states are generated by keeping a constant geographical load distribution and
power factors and that the generation pattern is adjusted to the load level via an optimal
power flow module, or any other deterministic procedure used to simulate operation
strategies. Thus, if the topology and voltage set-points are not varying independently
of the load level, the operating points lie on a one-dimensional subspace of the attribute
space. Moreover, it would not be surprising if the security margin was decreasing for
increasing load levels. However, using power flows and/or voltages as attributes may
apparently render the discrimination more difficult, at least for some methods (e.g. like
the nearest neighbor rules) which are sensitive to redundancy and normalization. On
the other hand, other methods could recover the one-dimensional load level information
from the given attributes, by approximating the inverse mapping. These latter methods
would then appear to be significantly superior to the former methods.

Of course, in real life the load distribution may vary as well as its power factor, but
more importantly the security criteria would be used to assess situations for which the
generation distribution would not correspond to the above deterministic rule. Thus it
would not be a good idea to subjugate completely the generation pattern to the load
level in the training and test sets.

We now temporarily close the discussion of the consequences of using simulated data
sets until chapter 11.

Accuracy concerns

The assessment of accuracy is certainly the primary concern in the context of supervised
learning, and even more in the context of its application to power system security prob-
lems. In general, we would like to be able to obtain a criterion neither overoptimistic,
which might lead to non-detections of dangerous situations, nor overpessimistic, which
would lead to overconservative control policies, and corresponding economic costs.

Of course, we know thatperfectcriteria are an illusion, particularly in the context
of learning approaches. Thus, it is of paramount importance to be able to assess the
accuracy or reliability in practical situations. The first requirement should be to use
a sufficiently large test set composed of independent states. By sufficiently large, we
mean about 1000 test states or more, so as to reduce the standard deviation of test set
error rates to less than 1% (according to eqn. (2.47)). Ideally the test states should also
be independent of the sampling assumptions made to generate the learning set. For
example, they should include states derived from data recorded in the field, modified
randomly so as to create various secure and insecure data sets. If it is not possible
to obtain data from the field, as is unfortunately the case at the research stage, an
appropriate approach consists of using the same sampling procedure as for the learning
states.

In practice the complete data base is merely divided into a randomly chosen test set (say
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of 1000 states), put aside and usedonly for the evaluation of accuracy. The remaining
states may then be used as learning sets and cross-validation sets to select appropriate
classifiers or regression models. Notice that it is important to use thesametest set
to compare various methods. Note also, that there is no valid excuse for using too
small test sets, since in the context of power system problems there is in principle
no difficulty in generating a large enough data base when starting a research project.
Once the software has been developed for the random sampling and the computation of
attribute values and security information, it is merely a question of CPU time. Since the
learning set will at least contain several hundreds of states, generating a large enough
test set will at most multiply the CPU time required for the data base generation by a
factor of 2.

A second aspect in evaluating security assessment methodologies consists of distin-
guishing among various categories of errors. For example, if security margins are
available, which is often the case, at least three categories of errors should be defined :
normalerrors (i.e. consisting of small deviations in terms of the margin),dangerous
errors (i.e. highly optimistic diagnostics),false alarms(i.e. pessimistic diagnostics).

Finally, it is important to realize that the learned models may depend quite strongly
on the random nature of their learning set. In particular, in addition to the uncertainty
of the test set error estimates due to finite test set size, there is an additional chance
factor due to the finite size of the learning set. For example, in our experiments in
transient stability and voltage security, we have found that this may be responsible for
relative variations of more than 10% in the test error rates. While using very large
learning sets could allow us to reduce this randomness, in practical large-scale system
security assessment environments, computational resources available for the generation
of the data base generally constrain its size (see the discussion in the next section).
Thus, while it may betheoreticallyinteresting to study the asymptotic behavior of a
method, from the practical point of view there is little interest in simulations considering
learning set sizes larger than say 500 times the number of independent attributes used
to characterize the power system states. Within this bound, it may be interesting to
construct learning curves (or surfaces) with various methods in order to assess the effect
of the learning set size and the attributes on the resulting accuracy.

Finally, an important bias in comparative studies may be due to the highly variable
degree of expertise of the authors in the different methods they try to compare. Often,
researchers compare their own favorite algorithm, for which they are presumably expert,
with a set of “competing” methods, which they discover while doing the comparative
study. For this reason, the compared algorithms often represent the state of the art only
for the favorite method, and under such conditions highly biased conclusions may be
reached.

The very large diversity of methods makes it difficult to obtain honest comparisons,
and this is the main reason why this kind of comparison has started only recently, in
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particular with power system security problems. Within this context, we have provided
our data sets to the research teams involved in the Statlog ESPRIT project (see below,
x7.3.1), which offers the guarantee of an unbiased assessment, as much as possible.

Computational performances

In addition to accuracy, computational performances are also very important, and should
be assessed in order to evaluate the relative ease of experimenting with a method using
various sets of parameters.

Clearly however, most of the software packages used at an early stage of a research
project are quite suboptimal in terms of computational efficiency and it is often possible
that an order of magnitude of speed improvement may be obtained.

Another aspect which may render the assessment of computational performances dif-
ficult, is related to manual tuning which is required with many heuristic methods and
which may influence quite strongly the resulting performances. Often the best (and
also the least) one can do is to acknowledge the fact that there is such a tuning stage,
and to indicate the amount of time it took in practice to adjust the parameters to the
particular problem at hand.

In addition, at the present time, computer architectures are changing rather quickly and
the relative speed of the various methods’ implementations may strongly depend on
the computer architecture, such as fast floating point units or size of high speed cache
memory, and compiler facilities like parallelization and other optimizations.

Finally, while in many methods (e.g. the decision trees or the multi-layer perceptrons)
the constraining computational requirement is related to the learning stage, with other
methods (e.g. nearest neighbor, kernel density estimation) the prediction stage may be
much more constraining in practice. So, both aspects must be assessed carefully.

7.2 SURVEY OF METHODS

Below we provide a summary of the main characteristics of the different supervised
learning methods selected for further consideration. Of course, our judgement cannot
be free from subjectiveness and is limited in scope to power system security problems.
However, factual foundations of our assessment are given in the chapters of Part 3,
relating to applications of various methods to a variety of security problems of real-life
and academic systems. Our presentation is also influenced by the Statlog project, which
appears to be in good agreement with our own results obtained independently.
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7.2.1 Three classes of methods

Before providing a synthetic description, we will classify the supervised learning
methods into three categories, according to the possible uses that they may provide in
the context of security assessment.

Rule based

To this class belong methods, like the decision tree and rule induction methods, which
are able to provide the model they have learned in the form of explicit, more or less
global rules, expressing in an easily understandable fashion the information they have
extracted from a learning set. To each rule corresponds a set of conditions on the
attribute values, which correspond to an elementary region of the attribute space.

This precludes us, in practice, to represent information about continuously varying se-
curity margins in a continuous model. Rather, it is necessary todiscretizeinformation :
security margins must be quantized into a small number of securityclassesand models
are expressed as discretizing the attribute space into a rather small number of regions
of “constant” security.

The price of discretizing is loss of information together with a certain degree of
approximation. These methods may however be very competitive with more complex
techniques, provided that the complexity of the problem is not too high, and in particular
that it is possible to provide a reasonable approximation of the security classes with a
small (say less than 100) number of regions.

Of course, it is possible to derive continuous models from the box type description, for
example by using distance computations [WE 88] or interpolation techniques [CA 87]
or using the hybrid techniques discussed in the preceding chapter.

Smooth function mapping based

This class of models, such as the projection pursuit technique or the multi-layer per-
ceptron, are based on the regression approach to supervised learning. They are able to
approximate security margins by a continuous input/output mapping, thereby offering
possibilities such as sensitivity analysis and control.

On the other side of the coin, we find mainly the absence of understandability of the
resulting models, in particular in the case of high-dimensional input spaces.

Of course, using a reduced set of attributes and projecting the multidimensional model
on this reduced space, may allow us to have a closer look at its input/output relationship,
and provide some interpretation. This would however call for another method, e.g. of
the preceding category, to suggest interesting combinations of variables to look at.
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Memory based

In contrast to the two preceding approaches, which translate the initial learning set
into a synthetic model which is self-sufficient for later prediction tasks, the memory
based methods require the explicit storage of the learning states and exploit these for
prediction by identifying in a case by case fashion the most relevant encountered states.
This class contains the instance based learning methods from machine learning and the
statistical nearest neighbor and kernel density methods.

In power system applications, the main advantage we may anticipate for such methods
is that they would allow some refined local reasoning capabilities, and provide justi-
fications to the operator in the form of validated reference cases. Additional human
expertise might then be used in order to question the validity of the extrapolations. Re-
ject options may thus be implemented on the basis of the differences observed between
the current situation and its nearest neighbor in the data base. For example, if a very
unusual topology is encountered, which was not represented in the learning set and
if the nearest neighbor state has a very different topology, then either a conservative
bound may be derived on the security margins or the state may be rejected as impossible
to analyze by analogy with the learning set cases, the latter being too different. Another
interesting possibility is for the validation of control actions. If a state is not sufficiently
stable, then we may search in the stable subset of the data base for the nearest neighbor,
in terms of control distance.

While strong in local reasoning, the nearest neighbor approach is unable to provide
directly the required global information and a simple iterative approach could become
cumbersome due to the computational costs of searching large data bases.

Of course, either of the two preceding approaches may provide the required global
information to render the search of large data bases more efficient. In particular, we
have mentioned in the preceding chapter that a hybrid DT-NN approach may use the
partition provided by a DT in order to directly guide the search towards the right region
of the attribute space. This may lead to improvements in terms of computational speed
of one or two orders of magnitude.

Figure 7.1 gives a pictorial representation of the classes of learning methods, and their
associated characteristics, which are assessed more precisely in the next section in the
context of power system security.

7.2.2 Synthetic comparison

Here it is important to insist on the fact that the evaluation may significantly change
from one problem to another. We report on our own experience, in the context of
power system security problems, which is however well confirmed by results obtained
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Figure 7.1 Different classes of learning methods

Table 7.1 Synthetic characterization of supervised learning methods (see text for
explanation)

Method Accuracy Computational(SUN Sparc2) Functionalities
VSESD PTSA Tot Learn (sec) Predict (sec)I M L R S

Rule 0 0 + - 0 0 103
� 104 10�4

� 10�3 Y P N P P
Smooth ++ ++ + + + + 105

� 106 10�3
� 10�2 N Y N Y Y

Memory + - - - - 0 - - - 102
� 103 10�1

� 100 Y Y Y Y N

by other researchers and in particular in the Statlog project.

Table 7.1 provides a summary of main features of the methods from the three above
classes. For the accuracy assessment we reproduce rankings for five different problems.
The first two problems correspond to voltage security emergency state detection (VS-
ESD) described inxx14.2, 14.4, and the three other problems correspond to examples
discussed inxx13.3, 13.4 on preventive wise transient stability assessment (PTSA).

For each problem, several trials have been made for each class, corresponding to
different parameters and methods. For the rule based techniques we give results cor-
responding to various tree induction methods. For the smooth function approximation
techniques results are obtained either from the projection pursuit technique SMART
or from the multi-layer perceptron. Finally, for the memory based methods we have
used theK�NN method, adjusting the value ofK to obtain optimal results and using
various lists of candidate attributes appropriately pre-whitened; in particular, those se-
lected by the decision tree building procedure provided, in general, significantly better
results than the initially proposed attributes.

In Table 7.1, the class of methods obtaining the best result is marked + (or ++ if this
result is significantly better than the others), the one obtaining the worst result is marked
- (or - -) and the one obtaining intermediate results is marked (-, 0, +) as appropriate.
The last column provides the mean accuracy ranking of the method. The next two
columns indicate computational requirements in terms of an interval corresponding to
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computing times in seconds required for learning a model and for using it for making
one prediction. These numbers, while purely indicative, are scaled in seconds CPU
time on a 28 MIPS SUN SPARC2 workstation and correspond to a problem size
corresponding to our example transient stability problem ofx3.4.1.

Finally, for each kind of method we have indicated its functional possibilities, in terms
of interpretatability (I), margin computations (M), locality of reasoning (L), reject
options (R) and sensitivity computations (S). We use the following abbreviations : Y
to denote a functionality which is definitely there, N to indicate its absence, and P to
distinguish those cases where a functionality may be possible via some adaptations.

7.3 RESEARCH PROJECTS

We take the opportunity to discuss (very briefly) some of the research projects which
have aimed at comparing various learning methods. It appears that many of the
published studies happen either to be of a rather limited scope or to suffer from some
of the pitfalls we mentioned earlier.

In the context of power system security assessment, no valuable comparative studies
have been published so far, involving state of the art methods from all three classes of
machine learning, statistical and neural network approaches. This is mainly because
up to recently research was still at the level of preliminary investigations, considering
mostly simulations on academic test systems of small size. We are convinced that
the unbiased assessment of the methods requires tests on real systems, in particular of
large-scale dimension.

This is justified by the fact that the learning problems become really difficult only
if the security problem considered is sufficiently complex, corresponding to variable
topologies and large-scale effects. We will discuss this in more depth in the next few
chapters. Here we will merely point out the sound comparative study of the Statlog
project and give some further references to some of the best known comparative studies
available in the literature.

7.3.1 Description of the Statlog project

Goals

The main goal of the Statlog project was to break down the divisions among differ-
ent disciplines of machine learning, statistics and neural networks, which hindered a
systematic high quality comparative review of learning methods.

The project concentrates on supervised learning methods for classification problems,
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and the first goal was to provide a critical performance assessment of presently available
methods and indicate the nature and scope of further developments required by some
particular methods to meet the expectations of industrial users.

Methods

More than 20 different methods have been compared, including the standard and
modern statistical techniques, various decision tree and rule learning methods and
various neural network based approaches.

Each method was run by a research team appropriately selected so as to offer a high
level of expertise in the particular technique considered.

Problems

More than 20 different large-scale problems have been considered, concerning bank
credit assignment, image recognition, image segmentation, medical diagnosis, power
system security assessment and various other problems.

Most of the data sets are real, i.e. non-simulated data sets.

Conclusions

We strongly recommend the reading of the book corresponding to the final report
of the project [TA 94] . In the chapters of part 3 of this thesis, concerning practical
applications of power system security problems, we will reproduce and discuss in detail
the results obtained for the two corresponding problems.

7.3.2 Other studies

Besides the Statlog project, we mention the study of ref. [AT 90] , since it is often
quoted and is the only recent work, in addition to our own work reported in [WE 93a] ,
which compares different methods for power system security assessment. This study
compared multi-layer perceptrons and decision trees on three problems among which
one is a small power system security problem. The authors of [AT 90] conclude that
results obtained by both methods are impressive, although their multi-layer perceptrons
are slightly better in terms of accuracy. This is a neat comparison, but unfortunately it
does not report on any computational aspects, neither does it consider a real or realistic
power system problem.

In addition to the above, several more or less serious comparisons have been published
comparing decision trees with neural networks [SH 91, MO 89, FI 89] .
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Finally, the authors of reference [WE 89c] compare a large set of methods, including
various statistical techniques, machine learning and neural networks.
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8

Physical problems

In this second part we will concentrate on essential issues of the application of
the learning techniques to power system security assessment. In the last part we
will illustrate practical applications mainly in the context of transient stability
and voltage security.

8.1 APPLICATIONS OF LEARNING TECHNIQUES

The general principle of the (machine) learning approach to security assessment is
synthesized in Fig. 8.1. For a given security problem we may distinguish three steps :
(i) data base generation; (ii) statistical analysis and automatic synthesis of security
criteria (trees, neural nets,: : : ) along with their validation; (iii) use of the criteria to
assess security of new incoming situations. The dotted feedback lines in Fig. 8.1 show
the iterative nature of the process.

The physical problem statement is considered in this chapter.

The data base generation calls for a random sampling approach and requires in practice
the development of an effective tool, which must be tuned to the power system and
security problem at hand. This is further discussed in chapter 11.

The statistical analysis step and design of security criteria calls for the proper application
of the techniques described in the chapters of the first part. We will illustrate their use
later in chapters 13 and 14.

Finally, the way the criteria could be exploited in various planning, operational planning
and operation environments will be discussed below in chapters 9 and 10.

In practice, the particular outlook of this learning approach will vary with the physical
phenomena considered, the way they are tackled, the particular environment, and the

189
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DATA BASE GENERATION

DESIGN OF SECURITY INFORMATION

EXPLOITING THE SECURITY INFORMATION

Numerical simulations (attributes, security margins : : : )

Statistical analysis (frequencies, correlations, scatter plots : : : )

Validation (w.r.t. test sets, prior expertise : : : )

Synthesis of security criteria (decision trees, margin regression : : : )

Analysis (security class, margins, critical contingencies : : : )

Random sampling (parameters, distributions, number of states : : : )

Problem statement (power system, physical problem, contingencies : : : )

Control (preventive or emergency) & Design

Sensitivity analysis (critical parameters, e�ective controls : : : )

Figure 8.1 Learning approach to power system security assessment

practical use which is projected. This is discussed in the next section.

Notice that in many applications the first two steps of Fig. 8.1 are performed off-line,
generally in the study environments where classically the security limits are established
by experts, while the last step is performed on-line in the control room environment,
where operators exploit the security information to run their system.

Generally, in terms of the computer based learning methods four types of possible
security diagnostics will be distinguished.

Unknown. The current situation is too different from those which have been considered
in the random sampling approach when building the data base for the learning of
the security criteria. Thus, there is no possibility of extrapolating the available
information. The best is to run a numerical simulation (or an approximate, faster
calculation).

Ambiguous. The current situation falls in the domain of validity of the data base, but
is too close to the security boundary and we are unable to decide whether it is secure
or insecure.

Definitely secure. The current situation falls in the domain of validity of the data base,
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and has a very high probability of being secure. Hopefully this is the case in the
majority of situations.

Definitely insecure. The current situation falls in the domain of validity of the data
base, and has a very high probability of being insecure. The operator must quickly
determine preventive control actions or prepare emergency controls to be activated
in case the contingency actually happens.

8.2 PHYSICAL PHENOMENA

The considered physical phenomena (e.g. short-term vs mid-term transients) may
influence very strongly the way off-line security studies are organized. Also, depending
on the structure of the system (radial vs meshed, isolated vs strongly coupled: : : ) the
way security problems are approached may change significantly.

The time scales corresponding to the considered dynamics influence also strongly oper-
ation strategies defining how much control may be done in the context of emergencies
and how much should be done in advance, in a preventive approach. For example,
slowly developing voltage collapse emergencies may leave enough time for corrective
control, while very rapidly developing system wide disturbances, as is the case with
transient instabilities, can hardly be corrected in real time with present day technology.
They must thus be circumscribed in a preventive security assessment approach, to
avoid instabilities with respect to the most probable disturbances, and with appropriate
pre-designeddefense plans to minimize the consequences of instabilities. Below we
discuss further these two problems.

8.2.1 Transient (angle) stability

In the following we give a brief discussion of some basics of transient stability assess-
ment. We refer the interested reader to the book [PA 93] and the references it provides
for a more in depth discussion of various important topics in transient stability, and an
account of research trends in the context of fast transient stability assessment methods.

Basic formulation

Transient stability concerns the dynamic behavior of a power system during the first -
say 10 - seconds following major disturbances, such as a three-phase short-circuit on
the extra-high voltage (EHV) grid, followed by one or several line and/or generator
trippings.

The system is said to be transiently stable with respect toa particular disturbance
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Figure 8.2 Transient stability behavior : stable vs unstable

if its dynamic performance during the first seconds following the latter occurrence is
“acceptable”. Criteria of acceptable transient behavior depend on the particular utility.
For example in some European utilities only the first swing stability is considered
explicitly and the system is termed “stable” if no pole slips among any two synchronous
generators are observed during the first few (2 or 3) seconds. On the other hand, in
most North-American utilities a longer time period of about 10 seconds is considered
and the criteria take explicitly into account the stabilization (damping) of EHV voltage
and frequency oscillations within acceptable ranges.

Whatever the precise technical criteria, during the period of time considered in transient
stability studies the relevant question is mainly whether the system will be able to reach
a short term electromechanical equilibrium state in the postfault configuration or not.
This will be the case if the system entering its postfault configuration is in theregion
of attraction of an acceptable postfault equilibrium state. This state space stability
concept is illustrated in Fig. 8.2 which shows a hypothetical two-dimensional dynamic
state space, which, while extremely simplified, captures the essentials of most real-life
transient stability problems.

The trajectories in Fig. 8.2 show the important periods of time considered in transient
stability studies.

The prefault state is the equilibrium in which the system sits at the moment of occur-
rence of the disturbance, which is a normal synchronous operating condition.

The during fault time period is the very short duration (� 100ms) starting with the
inception of the initiating fault (e.g. a short-circuit) and leading to subsequent
protective switching operations (e.g. line tripping, followed by unsuccessful reclo-
sure and retripping). During this period the generators start departing from their
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synchronous operation, those being closer to the fault location accelerating more
strongly than the others, in general.

The postfault period, will in case of stable behavior result in the system settling down
to its new equilibrium state, or in case of instability in possible loss of synchronism
and subsequent tripping of some of the generators. In practice, it may take only
a few seconds before the system irrevocably loses its synchronism, which leaves
only a very short time period available for the possible detection and correction of
developing instabilities.

Transient stability is a strongly non-linear problem, and in particular highly fault
dependent. Thecritical clearing time (CCT) of a fault is a conventional security
margin used to quantify the transient stability with respect to a disturbance. It is the
maximum time duration it may take to clear the fault without causing the irrevocable
loss of synchronism. If the CCT is larger than the actual fault clearing time the system
is actually stable, otherwise it is unstable. Another security margin used in transient
stability studies is the so-called energy margin, determined in the context of the direct
Lyapunov-like methods [WI 70] .

Plant mode vs area mode instabilities

In the context of transient stability studies one may distinguish between two different
modes of electromechanical transients.

The first kind of behavior is illustrafted in our transient stability studies on the EDF
system inx13.3; it concernsplantmode instabilities where a power plant located closest
to the fault location is endangered by losing synchronism with respect to the remaining
system. In this case the limiting parameters concern mainly the active and reactive
generation of the considered power plant.

The second kind of situation is the so-calledareamode instability where a complete
subsystem, including several power plants, loses synchronism with respect to the
remaining system to which it is loosely connected. Although these latter situations
may be more complicated to analyze in practice, it is interesting to notice that a
very large majority correspond also to a “two-machine” problem, where one group of
machines is in danger of losing synchronism with respect to theremainingmachines.
The limiting parameters in this kind of situation are often the power flows through
weak interface tie lines between the two areas.

Whatever the kind of instability, the group of generators losing synchronism is denoted
as thecritical cluster and in practice it turns out that one may study most (if not
all) multi-machine situations by considering only the relative motion of the critical
cluster with respect to the remaining machines. Thus, stability assessment amounts to
identifying the critical cluster and building a two-machine equivalent and from there a
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Figure 8.3 Typical marginally stable and unstable swing curves

one machine infinite busequivalent, which may be studied by the well known equal-
area criterion [XU 92] . This is quite an important outcome, since it simplifies greatly
the transient stability assessment problem by focusing on the most important physical
effects. In particular, the knowledge of the critical cluster may be exploited in order to
suggest effective preventive and emergency control actions [OH 86, XU 93c] .

Available approaches to transient stability assessment

There are two classes of approaches to transient stability assessment. They both rely on
an analytical simulation model of the system appropriately exploited by system theory
approaches.

The first is the conventionaltime-domain step-by-step simulation(SBS) technique,
which is used in most utilities for off-line studies. The method consists basically of
exploiting a mathematical model of the power system dynamics during the considered
time span, and a numerical simulation package in order to simulate the during and post
fault transients. This yields the so-called swing curves describing the dynamic behavior
of the relative motion of the mechanical angles of the machines, the observation of
which allows in principle to identify instabilities.

This is illustrated in Fig. 8.3 for a double line fault for the system considered inx13.3.
The left part of Fig. 8.3 shows the swing curves of a subset of 8 machines, for a
marginally stable situation, corresponding to a clearing time of 189ms. Assuming a
clearing time of 190 ms would yield the unstable behavior depicted at the right part of
Fig. 8.3.

In terms of accuracy, the SBS method is certainly the benchmark and is used to evaluate
the accuracy of other methods. However, in terms of useful security information the
technique provides only a very crude YES/NO type of information, and cumbersome
repetitive computations are required in order to obtain security margins and sensitivities
of these margins with respect to operating parameters assessed in the prefault situation.



8.2. PHYSICAL PHENOMENA 195

Acceleration area

Deceleration area

Mechanical power

During fault electrical power

Postfault electrical power

Critical angle = 0.6937 rad (t = 200ms)

-2 -1 0 1 2 3 4

δ(rad)

-5000.

-4000.

-3000.

-2000.

-1000.

0.0

MW

Figure 8.4 Equal-area criterion applied to the critical machines of Fig.8.3

The second class of methods are the so-calleddirect Lyapunovapproaches (already
mentioned inx1.3.1) which aim essentially at avoiding the lengthy simulation of the
postfault transients. The basic principle of these methods consists of characterizing
the stability of the postfault equilibrium by an energy function, which is a positive
definite scalar function defined in the state space region surrounding the postfault
stable equilibrium point, and by approximating the relevant part of the stability region
separatrix by a constant energy surface corresponding to a maximal admissible value of
the energy function. The assessment of the security may then be done by determining
the value of the energy function when the systementersits postfault configuration and
comparing the latter energy with an appropriate threshold value corresponding to the
maximal admissible value of stable states.

In principle, these kind of methods are able to significantly reduce computation time
while providing in a one-shot procedure the value of a security margin and sensitivities
of the latter with respect to some important parameters [PA 93] . Their main difficulties
are related to their simplifying assumptions concerning dynamic modelling of the
system. This may require in practice ad hoc adaptations of the method to power system
specifics and may lead to tedious validation studies.

As a particular case of direct methods, we mention theextended equal-area criterion
(EEAC) which is described in [XU 88] , and which has been used in some of our
preliminary studies [WE 87a, WE 90a] . It is based on the conjecture that transient
stability problems may be explained in a satisfactory way by a two-machine aggregated
model, further reduced to a one-machine infinite-bus (OMIB) equivalent; an approach
for identifying automatically and efficiently the machines belonging to the critical
cluster complements the method.

Figure 8.4 shows a graphical representation of the equal-area criterion corresponding to
the swing curves represented in Fig. 8.3. The main curve of sinusoidal shape represents
the electrical power in the postfault configuration as a function of the mechanical angle�
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of the equivalent OMIB system. The intersections between the upper straight horizontal
line representing the equivalent mechanical power and the previous curve define the
stable and unstable equilibria of the postfault equivalent OMIB system. The lower,
almost flat sinusoidal curve represents the electrical output power of the OMIB system
in the during fault period and the difference between the latter and the mechanical
power is proportional to the acceleration in the during fault period, the integration of
which with respect to� is proportional to the kinetic energy received in the during fault
period by the OMIB system. This is the acceleration area which is depicted in Fig. 8.4.

The fault clearing consists of switching “instantaneously” from the during fault to
the postfault electrical power characteristic, which results in a deceleration. It may
be shown that if the deceleration area as is shown on the picture is larger than the
acceleration area then the system will remain stable, otherwise it will lose synchronism.
Thus the difference between these two areas defines the stability energy margin.

Further, the critical clearing angle corresponding to equal acceleration and deceleration
areas may be computed easily and therefrom the critical clearing time. In the present
case, the critical angle is of 0.6937 radians which corresponds to a critical clearing time
of 200ms, which we may compare with the interval of[189: : :190] found via the SBS
procedure. Notice that this is fairly precise even though the system machines are far
from being divided in two coherent groups, as is shown in Fig. 8.3.

In the context of the research on the EDF system reported inx13.3, this method has
proven to be an extremely robust and efficient tool for the study of the simplified model
[XU 92] . Further, recent research shows promise in adapting the method to cope with
the main relevant modelling effects such as fast-valving and voltage regulators.

8.2.2 Voltage security

A majority of recent large-scale system breakdowns have been the consequence of
instabilities characterized by sudden voltage collapse phenomena.

The main reason for this are the improvements of protection devices as well as gen-
erators speed and voltage regulators and SVCs, which have increased the transient
stability limits of power flows, allowing more power to be transferred over longer dis-
tances. The reactive compensation problems resulting from higher active power flows
and consequently higher reactive losses have led to making the appropriate control of
EHV voltage problematic in extreme situations, leading to voltage instabilities which
have caused large blackouts.

This has been a major incentive to research in the context of voltage security. The topic
being rather recent, there are still many open questions in particular concerning the
definition of widely accepted models and corresponding stability criteria. We refer the
interested reader to the references [IE 90, NO 91] for a recent overview of the concepts
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Figure 8.5 Time scales for voltage stability simulations. Adapted from [VA 93b]

and industry experience in this field.

Basic formulation

Voltage security may be defined (loosely) as the ability of a system to maintain its
capability of controlling its EHV voltage while submitted to various disturbances, in
particular with respect to outages and rapid load build up.

Thus, while transient angle stability is by definition only concerned with a single very
short time frame, in the context of voltage security the physical phenomena may be
divided intovarioustime scales, depending on the physical causes driving the process
of voltage collapse.

Figure 8.5 adapted from reference [VA 93b] indicates the four basic time scales which
may be involved in the context of voltage stability studies.

The instantaneous network equations consider the quasi steady state equilibrium
reached after electromagnetic transients have died out. This leads to a set of
algebraic “load flow” equations.

The transient behavior concerns a typical time scale of the first 10 to 20 seconds
following a fault. In addition to a risk of angle instability, the system may also be
endangered during this period from the voltage collapse point of view, in particular
by fast load dynamics, tending to restore very quickly the active power demand after
an outage, or by under-voltage induction motors stalling leading to a fast increase
in reactive load.

The mid-term voltage instabilities concern the phenomena driven by slower controls
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acting in a period of a few minutes following an outage, such as the load restoration
process due to the automatic on-load tap changers and the over-excitation limiters
of generators.

The long-term behavior concerns the ability of the power system to follow the antic-
ipated increase in demand and takes into account various “tertiary” controls acting
in the same time frame of say some tens of minutes.

Short-term vs mid-term vs long-term instabilities

The problem of voltage security is basically related to the existence of a maximum
amount of (active and/or reactive) power which may be transferred through the trans-
mission network from the remote generation sites to the load.

Figure 8.6 shows the well-known PV curve illustrating the maximal load transfer
capability of an EHV system to a load region by the voltage characteristic of a particular
225kV bus in this region. Whatever the precise meaning of the physical quantities, this
kind of curve describes the voltage security problem correctly, at least qualitatively.
Due to the non-linearity of reactive transmission losses and due to the upper limits of
reactive power generation capability curves of generators and compensating devices,
there exists a maximum amount of power which may be delivered to any group of EHV
buses.

The difference between the current load level and the maximum value is the load-
power margin. In a large-scale power system this quantity may be computed using
various hypotheses of the augmentation of individual loads and their correlations. One
particular approach consists of computing the margin assuming that the active and
reactive load levels are following a direction defined by the real-time observed trend
[LE 90a] ; another approach consists of computing the direction so as to maximize a
given criterion [VA 91a] . In any case the computed margin may be used to assess
the vulnerability of the base case power system state with respect to the long term
load trend. It may however also be used as a security index to rank contingencies, by
computing the value of the load-power margin in the post-contingency situations.

The “long-term” voltage security assessment problem is mainly concerned with the
evaluation of load power margins as a function of expected changes in the system
within the considered time window. If there are no planned or unforeseen outages, a
normal load build up would consist of moving along the PV curve of Fig. 8.6 from A
to B, and the task of the operator would be to bring sufficiently soon additional local
generation into operation to avoid collapsing at this point. It is important to notice that
in practical power systems the point of collapse may be reached with normal values of
voltages.

Since we are mainly interested in the security assessment with respect to major equip-
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ment outages, we will explain in some more detail the physical phenomena which are
of interest in this context.

Let us consider Fig. 8.6 and suppose that at the intermediate point C an important
disturbance leads to an EHV line outage. Physically, the system will move along the
“instantaneous” load characteristic according to its transient dynamics, from point C
to point C’. Due to the sensitivity of load to voltage this results in a drop of load as
well as voltage in the HV and MV subsystems. Consequently automatic on-load tap
changers (OLTCs) try to increase their transformer ratios in order to restore nominal
secondary voltage, which will in turn tend to restore the pre-disturbance load level.

In terms of the PV curve of Fig. 8.6 this consists of shifting the instantaneous load
characteristic towards point B’. Figure 8.7 shows the time variation of the voltage
nearby the consumers. During normal operation, the tap-changers and the various
EHV voltage control loops maintain nominal voltage. Following a major outage the
MV voltage level drops consequent to the drop in EHV voltage. In the subsequent
stage however, the transformer ratios are changed automatically so as to restore the
nominal voltage.

Orders of magnitudes of time scales are as follows

A to B. Typically we would expect a fast load build up to take of the order of half an
hour to reach a critical situation. It is the operator’s responsibility to monitor the
margins in the normal situation and with respect to possible disturbances so as to
take appropriate decisions in due time if the margin becomes too small.

C to C’. This transition includes the protective switching, electromechanical transients
and action of the first overexcitation limiters, and could typically take between 10
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and 20 seconds. A transient voltage instability could correspond either to the
non-existence of point C’ or to its location beyond the nose of the curve.

C’ to B’. This transition is mainly driven by the automatic OLTCs and may take in
practice some minutes. Notice that if the point C corresponds to a pre-disturbance
load demand larger than the post-disturbance maximal loadability, this transition
will eventually lead to voltage instability. There may be sufficient time to anticipate
such a critical evolution and apply appropriate emergency control actions, such as
blocking the tap changers, shed some load and/or start up some fast units for local
reactive power support.

Conventional approaches for voltage security assessment

Because of the very broad time frame covered by voltage stability related phenomena,
it is not surprising that a rather broad range of approaches and tools have been proposed
in the literature and are used in practice. Since it is out of the scope of this thesis to
discuss all these methods, we will merely describe briefly the three approaches which
have been used in the context of the simulations reported in chapter 14. It turns out
that these are quite representative of the spectrum of voltage stability analysis tools.

The first method is the purely staticload flow computation. The aim of this tool
was to assess for a given situation whether the corresponding demand level was nearby
(possibly beyond) the nose of the PV curve. Closely located multiple load flow solutions
may be considered as a good indicator of loss of voltage control and risk of voltage
collapse. When this situation arises, conventional load flow computations either have
difficulties in converging or may converge towards a highly sensitive solution. In the
investigations reported in [WE 91c] we have used a load flow software together with
the sensitivity computation of total reactive generation with respect to incremental bus
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load changes as a voltage security analysis tool [CA 84] .

The second tool, used in the context of the simulations on a 7-bus system reported in
[VA 91b] , consists of a fulldynamic simulationvia an appropriate numerical integration
technique, which takes into account the modelling of electromechanical transients as
well as the voltage regulators, in addition to the OLTC dynamics. This kind of tool
allows us in principle to simulate all the relevant phenomena, and might thus be
considered as a benchmark tool.

Finally, the last kind of tool used in the more recent investigations on the EDF system
models only the equilibrium equations of the transient dynamics and thus consists of
successive transient equilibrium calculationsfollowing the tap changer and secondary
voltage control driven discrete dynamics. This is an intermediate approach between
the two former ones; while neglecting the short-term transients it is able to consider
the sequential variation of the load and controls which are relevant in this time frame,
while being computationally efficient enough to model large-scale systems with a high
level of detail at the subtransmission level [VA 93b] .

8.3 PROBLEM FORMULATION

In this section we screen important aspects of a range of security problems which may
be considered in off-line security studies, and for which it might be appropriate to define
one or more learning problems, in terms of : (i) auniverseof possible power system
situations, (ii) securityclassesor margins, and (iii) attributes used as predictive input
information. In doing so we will not distinguish among the above discussed physical
nature of the problem : similar security problems may be defined with respect to either
transient or voltage stability, and even with respect to both, at least in principle.

The complexity of the security assessment task of a large-scale power system requires
us to decompose it into simpler subproblems, corresponding to the investigation of the
influence of a restricted set of parameters on the security in a restricted sense, consid-
ering contingencies one by one, or looking at the phenomena observed in a particular
region of the overall system. When the security information thus collected is supposed
to be exploited in a future operation or study environment it is important to circum-
scribe the class of situations to which this information may be safely extrapolated. This
is particularly true if the process of deriving the security information is more or less
automatic, as is the case in the computer based learning frameworks presented in this
thesis.

Recall that in a practical situation the security problem definition is generally strongly
dependent on the planning and operation practices of a power system as well as the
underlying physical problem. Thus, the following discussion merely provides a weak
general framework, while the actual solutions are mostly ad hoc, and rely very heavily
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on the existing expertise of utility engineers.

8.3.1 Prefault power system configurations

In general, we consider the security assessment of a restricted part of the power system
under study. For example, in the transient stability problem introduced inx3.4.1
only the aspects concerning the power flow limits of the James’ Bay corridor have
been considered. In the voltage security studies described inx14.4, the concern is a
subregion, weak in terms of voltage security. Similarly, in the study carried out on the
EDF system ofx13.3, we consider the very specific subproblem of transient stability
constraints of an important power plant.

Such a decomposition may rely either on prior physical information about the consid-
ered security problem, or less ideally on practical administrative boundaries existing in
a power system. In any case, they will lead to at least three levels of representation in
the context of a security study, as is represented in Fig. 8.8.

The study region includes all components which are suspected to have afirst order
effecton the security level, with respect to the problem of concern. This will include
the elements which may be outaged in contingencies as well as all components
whose influence on security is deemed important to assess, and in particular those
which may be used as control means to enhance security. When generating a data
base all relevant combinations of the corresponding component states should be
screened, quite independently of the practical probability of their occurrence in real
life.

The buffer region includes the class of components whose status mayinfluence mar-
ginally the security level in the study region, while it is not desired to use these
as control or predictive variables. The corresponding states should be sampled,
independently of the study region, so as to represent correctly various possible
situations which may happen in reality.
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The external region contains the rest of the system, the precise state of which is
supposed to beirrelevant for the considered security problem. In general the
external system state is inherited from the base case and kept essentially unchanged.
It may however be a good idea to use two or three different base cases so as to make
robust the study results.

It is important to notice that the above decomposition is independent of the mathematical
simulation model used to represent devices in the security simulations. For example,
although this is certainly not optimal, it is a common practice in the industry to use
within a given study context the same level of (rather detailed) modelling for the whole
system of the considered utility while representing in a simple (if not simplistic) way
the systems of neighboring utilities.

Topologies

The topology of a power system is defined by the transmission lines and EHV trans-
formers in operation as well as the configuration of substation busbars in terms of
electrical nodes. These aspects may have a very strong effect on the security level and
a particular difficulty is related to the high number of possible topologies which may
result from the various combinations of elementary states.

A particular security study might focus on a specific (constant) topology, but in general,
in the context of large-scale EHV systems the future topology is not perfectly known
at the time when the security study is carried out, and several possible topologies must
be considered.

Generally, there is a small number of relevant substations which may operate in either
one or two nodes. If these may have a primary effect on the security then they should be
sampled independently. Frequently, there exist operation guidelines suggesting which
substation configurations should be chosen under particular conditions.

Considering the availability of transmission lines and transformers, a convenient way to
define possible topologies consists of considering modifications with respect to a base
case, in terms of a set of lines and transformers in operation which may become out of
operation or vice versa. Then, various levels of topology variations may be considered,
with an increasing number of differences with respect to the base case, and all possible
combinations are enumerated independently, excluding the irrelevant ones.

Finally, when generating a data base all the possible topologies are a priori sampled
and the data base size should be large enough to screen well enough each important
class.
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Load / generation / power flow patterns

From the EHV point of view it is often a good approximation to assume that the
elementary bus loads in a given region are strongly correlated. In addition, it is
generally convenient to assume that the power factor is constant independently of load
level at each EHV bus. Thus, the most simple approach would consist of defining an
interval of possible regional load levels, sampling the latter interval and distributing the
corresponding active and reactive load on individual buses proportionally to the base
case values.

However, if the active or reactive loaddistributionmay have a non negligible effect on
the security level, as may be the case in the context of voltage security, it may be better
to combine the above uniform distribution with various random variations of individual
loads and power factors.

The generation pattern is in practice strongly coupled to the load level and transmission
system topology, due to the operation planning practices. However, in the context
of security assessment studies where the purpose is precisely to derive the required
information to define these strategies, it is very important to screen various generation
patterns,independentlyof the load level and topology. This will include varying the
number of available units in the power plants of the study and buffer region as well as
their level of active and reactive generations. The external system may be used in order
to supply missing active and reactive power.

In the preceding approach, the power flows are a consequence of the independent choice
of topology, load and generation patterns. This may lead to unrealistic or inappropriate
distributions of power flows. An alternative approach could be to choose the power
flows independently and to define load and generation patterns so as to comply with
these flows. This kind of strategy may be used in the context of transient stability
studies of radial systems such as the one described inx3.4.1.

8.3.2 Classes of contingencies

In addition to the range of power system configurations, an important parameter is
the kind of contingencies with respect to which security is evaluated. This depends
again very strongly on utility specific practices and on the physical characteristics of
the considered power system.

Initially, most of the pattern recognition and machine learning studies concerned pre-
ventive security assessment considering one contingency at the same time. This was
mainly motivated by the highly non-linear characteristics of most security problems
with respect to large disturbances, which makes the security region strongly contin-
gency dependent. By allowing us to exploit more efficiently the local nature of security
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constraints, this contingency by contingency approach yields indeed simpler problems,
for which it is often easier to derive accurate contingency specific security information.

On the other hand, our recent multi-contingency investigations in the context of both
transient and voltage stability have shown the interest in carrying out systematic studies,
screening in parallel a broad panel of contingencies for all relevant power system
configurations. This allows us for instance to systematically compare the relative
strengths of contingencies and to identify critical contingencies and classes of similar
contingencies. It may also provide feedback information to improve the protection
system for example by reducing clearing times for the most critical faults.

In general, a security study should screen all the relevant contingencies corresponding
to a given problem. Until now, most of the security studies in the context of operation
planning used a manual approach selecting interesting scenarios combining the choice
of interesting power system configurations and the selection of the potentially most
dangerous contingencies, on the ground of prior knowledge and intuition of the expert.
Although in some particular situations it may be easy to identify the most critical
contingencies, given enough available computing power it may be preferable to simulate
systematically every contingency for every considered power system configuration,
since the only price to pay for this richer information is in terms of CPU time.

8.3.3 Learning problems

In the context of power system security assessment, a learning problem is defined by
a set of possible power system states which are classified as secure and insecure with
respect to various possible contingencies or described by security margins.

In addition, it is interesting to distinguish between preventive and emergency state
security assessment.

Attributes

In thepreventive security assessment, the considered power system states are normal
prefault situations independent of the contingency. The security is assessed with respect
to a list of hypothetical contingencies. The attributes are variables which thus essentially
characterize the prefault system state, and which are likely to provide security criteria.
It is important to distinguish among various kinds of attributes, such ascontrollable,
directly observable, and complexad hocattributes. The type of attributes chosen
in practice depends on the particular compromise between interpretability / accuracy
/ robustness which is sought. For a given security problem it may be interesting
to consider various such compromises and derive the corresponding criteria. Notice
that the time constraint is not very restrictive in the context of preventive security
assessment, as far as the computation of complex attributes is concerned.
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In theemergency-wise security assessment, the considered power system states corre-
spond actually to post-contingency situations. For example, in the context of transient
stability these states would typically be snapshots of dynamic - non-equilibrium - states
during a period of 100 to 200 ms after fault clearing. Within this context timing un-
certainties may become an important factor rendering the available measurements less
useful. In the context of mid-term voltage stability, on the other hand, the considered
situations would correspond typically to the pseudo-equilibrium states reached after
the short-term transients have died out. In this case uncertainties concerning the load
model may make the interpretation of measurements ambiguous. The attributes used to
characterize the power system states may be of three types : (i) system measurements
collected in real-time, possibly filtered by a fast state estimation triggered upon the fault
occurrence, if sufficient time is available as for example in the case of mid-term voltage
security assessment; (ii) information obtained from the protection system allowing to
identify the disturbance; (iii) stored precomputed information obtained from the pre-
fault system state. Notice that, depending on the time frame only a subset of these
attributes may be actually available in real-time, for a given practical power system;
but in the future we can imagine faster information systems and better real-time pro-
cessing capabilities, allowing to use more and more sophisticated information. These
considerations will be clarified further in the later chapters by means of some practical
case studies in the context of both preventive and emergency wise security assessment.

Security information

To define a learning problem we need to choose a particular encoding of security
information in the form of either discrete classes or continuous security margins. Many
different ways of encoding this information may be thought of more or less adapted to
various learning techniques.

As concerning security margins, we already mentioned that it is possible to define
continuous margins which allow us to quantify the degree of security, in most security
problems. If a classification model is sought, e.g. a decision tree, then the classes
can be defined with respect to one or more thresholds on the security margin. For
example, in the context of transient stability assessment a conventional margin is the
critical clearing time, and a state could be classified as secure if its critical clearing
time is larger then the upper bound of the actual clearing time. In the context of voltage
security assessment, we may use the load power margin as an appropriate indicator
of the distance to insecurity, and we would consider a system as secure with respect
to a particular disturbance, if this state evolves to an acceptable mid-term equilibrium
in the post disturbance configuration and if the latter state has a large enough load
power margin to allow some plausible safe increase in the load level during the minutes
following the incident.

As concerning the number of contingencies tackled simultaneously, we already men-
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tioned some pros and cons of the single- vs the multi-contingency approach. If we
consider the single-contingency approach, we must formulate a number of elementary
learning problems covering the pre-established list of relevant contingencies.

If we consider multi-contingency criteria there are various possible approaches. In
the context of emergency control, we would aim at building contingency independent
criteria, i.e. criteria which would be able to predict the future evolution of the system
for a wide class of emergency situations resulting from a combination of a wide
class of prefault states subjected to various possible disturbances. This could even
be a practical requirement if it is not possible to identify the actual contingency in
real-time. In the context of preventive security assessment, on the other hand, there
are at least two possible options : contingency dependent multi-contingency criteria,
and global contingency independent criteria. In the first case, we seek to assess the
security of scenarios combining a prefault state and an hypothetical contingency, and
these scenarios would be characterized by attributes providing both information on the
prefault state and the contingency [AK 93] . In the second case, we would look for
worst case security assessment with respect to a class of contingencies, considering the
security level of a state as the security with respect to the most constraining contingency.
The latter kind of criteria could be very useful in order to assess the global degree of
security of the study region and to provide control means so as to achieve security
simultaneously with respect to all possible contingencies.
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Practical contexts

9.1 INTRODUCTION

In the preceding chapter, Fig. 8.1 has synthesized in three main steps the principle of
the general automatic learning approach from simulations.

The data base generation and the automatic construction of security criteria are the two
tasks which require large amounts of computational resources and where the expertise
of security specialists is required to analyze and validate the resulting criteria. Notice
that in the near future we expect to reduce the response time of these kind of studies
to some hours, by exploiting increasing speed of CPUs and trivial parallelism. While
this will allow us to prepare the security criteria closer to real-time and thus take
into account a better knowledge of the actual situation, it is clear that the successful
derivation of security criteria will rely on the validation by the engineers responsible
for security studies and thus cannot be completely automated, nor brought fully into
the on-line environment.

However, once the data base has been generated and the security criteria have therefrom
been derived and validated, they may be easily, and with a wide variety of possibilities,
exploited in the on-line operation context. Moreover, the adaptation of the parameters
of the security criteria to a major shift in the operating conditions could be done quite
automatically in real-time, provided enough computing power is available.

Below, we discuss the main tasks accomplished in the off-line security study envi-
ronment of planning and operation planning and in the context of on-line security
assessment and real-time monitoring and control. In each particular context, we will
indicate the general tasks and suggest possible uses of the automatic learning based
framework to improve the quality of the security information and make better deci-
sions. In the next chapter, we will come up with some specific applications, taking into
account feasibility and practical relevance.
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Notice that in addition to providing a methodology able to produce useful security
information by making it easier to run multitudinous simulations and exploit the results,
the computer based information acquisition supposes - or at least encourages - a
uniform coding of information, and this makes it easier to communicate information
among different persons. Further, the use of a same methodology in both planning
and operation planning studies will produce a synergy between these two environments
thereby improving system performance and economy.

9.2 OFF-LINE STUDIES

One of the main tasks of off-line security studies is to figure out the main weaknesses
of a class of future power system configurations, so as to take appropriate decisions to
improve the reliability and security of the system at reasonable costs.

The main difference between planning and operational planning is the much higher
level of uncertainties in the former case.

9.2.1 Planning

In the context of planning studies, hypothetical situations are considered several years
in advance, and parameters of the future equipments are often unknown and must
be postulated. For example, important first order parameters like machine transient
reactances may show errors of up to 20%, and line reactances are often erroneous by
several percent, and of course the load prediction is far from being reliable.

Within these error bounds the planner has to justify investment decisions of a very
high financial and technical impact. Probably, the economic costs of future insecurities
are rather difficult to evaluate at this step, and even if they are systematically taken
into account in reliability studies [DO 86] , the importance of security is often under-
estimated. At least, it is not the feeling of many operational planning engineers that
security concerns have received the due consideration in planning studies and it is often
true that design decisions have not taken into account security criteria early enough.

An important concern in power system security is that technological, environmental and
economical pressure may impose changes in the system design and operating strategies,
which in turn may drastically change the limiting phenomena. It is well known, for
instance, that in western North America, the limiting factor of the transmission system,
which used to be angular transient stability, has become in recent years voltage security.
This is due to the successful countermeasures taken to cope with transient stability, in
particular the faster (and more clever) protection and powerful (in the very short-
term) voltage support devices (excitations and SVCs) as well as fast valving and other
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emergency control schemes. Nobody can be certain about the future outlook of power
systems, but for sure, further important technological improvements (e.g. FACTS,
high temperature superconducting devices,: : : ) and socioeconomic changes (e.g. open
transmission systems) will continue to strongly influence their structure.

The planning environment is the first place where such a drift from one security problem
to another may be detected, provided that extensive and systematic security studies are
carried out.

At the same time, the planning environment is the most open one to experimentation
of new methodologies. Traditionally, Monte Carlo type simulations have been used
to assess reliability; as we discuss in chapter 11, these are closely related to the com-
puter based learning techniques described in this thesis. Exploiting these techniques
appropriately relies on the three following coexisting factors [CA 93b] .

Models. Appropriate models are needed to study the various, short-term, mid-term
and long-term dynamic and static aspects which are important for system security.
Much progress has been made in this field during the last 20 years, and we may
expect to be able to maintain the adequacy of models when major technological
changes will be incurred in the future. Maybe some progress would be needed
in handling the unobservable parts of a power system (e.g. load characteristics,
interconnections,: : : ) by modelling the effect of existing uncertainties in security
studies. A technique able to do this is suggested inx12.1.3.

Effective simulation tools. This aspect encompasses algorithms and their mapping on
existing hardware. While imperfect in various aspects, we may consider that the
existing numerical methods offer a sufficiently complete panel of methods appropri-
ate for security assessment problems. Maybe the most desirable progress concerns
the modularity and maintainability of the corresponding software packages, and
the construction of appropriate user oriented environments built on the top of the
simulation packages. This should allow us to easily combine various simulation
modules in order to determine security margins, sensitivities and evaluate design
or control options. Further, these top-level environments should be able to ex-
ploit, in a transparent way, the available distributed and heterogeneous computing
environments.

Data management. Security studies involve large numbers of repetitive simulations,
and as increased available computer power and more effective distributed computing
environments become reality, these numbers will start growing very quickly. Thus,
it becomes more and more important to develop efficient data management method-
ologies and tools. This concerns both the preparation of input information, helping
to choose relevant cases and the management and analysis of output information.
The computer based learning framework offers such a methodology. It allows
to systematically screen relevant power system situations and disturbances and to
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apply various simulation modules in order to obtain the corresponding security in-
formation. On the other hand, various complementary techniques are available for
analyzing and exploiting the resulting information in order to help taking improved
design decisions.

9.2.2 Operational planning

In contrast to planning, in operational planning the system components’ characteristics
are known with a much better precision and modelling uncertainties are mainly limited
to the load characteristics and external systems which are difficult to identify. Now the
engineer is responsible for the secure operation of his system, in a more deterministic
setting than in the context of planning, while maintenance requirements and economy
issues influence strongly the acceptable choices.

Operational planning studies aim also at adjusting parameters, e.g. settings and coor-
dination of protections and preparing emergency control schemes.

Generally speaking, in operational planning security studies lead to the definition of
operation guidelines which must be reliable to the greatest possible extent. In particular,
this leads to the use of rather detailed modelling practices which so far have strongly
limited the number of possible simulations made to define the security limits for the
operator. Thus, present practice consists mainly of choosing a small number of relevant
situations in a manual way to derive the operation guidelines, while introducing margins
so as to avoid insecure operating states.

While the operational planners may be reluctant to use probabilistic techniques and to
consider new methods in general, because of their heavy responsibilities, we believe
that systematic screening techniques such as those proposed in this thesis, will be very
useful in the future to exploit systematically the growing computing powers available.
We also believe that many of the security analysis methodologies and tools used in
planning, may be inherited in the operational planning environment, as soon as the
available software and hardware become sufficiently powerful to use the same models
in planning studies as are presently used in operational planning.

Consequently, the present gap between the two environments should shrink and secu-
rity information could be transferred continuously from the planner to the operational
planner; the latter would essentially refine the security limits obtained from preced-
ing studies, given the additional information about system parameters and expected
operating ranges. Further, by using common models and methodologies, it will be
much easier to communicate among planners and operational planners; in particular
better feedback from the latter may be expected leading also to better planning design
decisions for future security.

Notice also that using the same data management environment would allow to share
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information much more easily, for instance by remote data base access, either from the
planners or from the operational planners side. Further, all this information may in turn
become accessible as easily to the operator in training sessions and also directly in the
control room.

An important aspect worth mentioning concerns the trends towards opening access to
the transmission system. While it is too early to assess the exact impact of this on
future power systems, it is clear that free access will tend to distribute some of the
presently centralized decision processes to various external bidders, controlling on the
basis of their own economic criteria the generation and load behavior. One of the
possible important consequences will be that the operator in charge of the transmission
system, which will tend to a sole “grid”, will have to face much more uncertainties
about short and medium term behavior of loadand generation. This means that it
might well become infeasible to continue using the deterministic criteria used so far,
and probabilistic methodologies able to model and cope with uncertainties would be
needed. This is another important motivation to develop techniques such as those
described in this thesis.

9.2.3 Training

Since planning and operational planning make it possible to avoid critical situations
with a very high probability, operators seldom experience such situations in real life.
Nevertheless, they must be prepared to react correctly to such events, and the most
effective preparation is via training simulators reproducing the various critical scenarios
which may lead to major disturbances on the EHV system.

We are convinced that the large amounts of information about the security of a power
system collected within the previous two study environments might be exploited very
usefully in the context of operator training.

If a well organized security assessment framework is used in the future planning
and operational planning studies, with a systematic way of storing and accessing
information about elementary cases, then this information may be easily accessible
from the training environment. Thus, scenarios which have been simulated previously
may be analyzed by the operator together with the security criteria which have been
derived on their basis and which provide the operating guidelines. For example, this
information may be used as a catalog to choose security scenarios for the training
simulator corresponding to predetermined security characteristics.

Further, in addition to exploiting the individual cases stored in a data base, synthetic
explicit models such as decision trees may be shown to the operator via appropriate
graphical visualization tools to explain security problems and teach counter-measures.
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9.3 ON-LINE APPLICATIONS

In the context of on-line system operation, the task of an operator will be to follow the
load buildup and monitor the security level of the system with respect to the most likely
contingencies, so as to take provisional actions to ensure the security of the system in
preventive mode, or to prepare corrective actions in the case of emergency. This task,
while being most of the time routine, may become extremely tricky and overwhelming
if the system enters an unusual state, e.g. due to an unusually fast load buildup or to
some unforeseen outages.

9.3.1 Normal operation

In normal operation, the security criteria derived from the planning and operation plan-
ning environments may be used to help the operator appraise the current situation. For
example, security margins may be displayed for various contingencies - as with con-
ventional security assessment approaches - and the situations of the off-line generated
data bases found to be most similar to the current state may be systematically tracked
according to various similarity criteria defined off-line.

On the other hand, if a potentially dangerous contingency is identified, decision trees
may be exploited to identify the most effective control means, and a secure state may
be proposed to the operator by looking up the data base. This is of course a dreamed
situation which may be reached in some distant future.

Let us notice that in the context of normal operation, economy is a very important
aspect. Thus preventive control decisions should not be taken lightly. This implies in
particular that the cost of overconservative security criteria is a determining factor of
their acceptability. If tools are available in the control room to determine appropriate
corrective emergency actions then it is possible to apply the preventive control only
temporarily, so as to give some time to the latter tools to determine and arm the
appropriate emergency control actions, on the basis of the present situation.

Finally, one very important condition for a method to be accepted in the on-line
environment is that it must not increase the probability of erroneously declaring a
state as secure with respect to current practices. Of course, no method can pretend
to be perfect, but at least the probability of dangerous non-detections should be small
enough. Within this constraint, the objective will be to reduce to the extent possible
the probability of false alarms, in order to allow an as economic as possible operation.
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9.3.2 Under emergencies

The distinguishing feature of an emergency with respect to the preceding situations
is that this it is a post-contingency situation, where the short-term evolution isdeter-
ministicand can lead to a more or less important loss of integrity. Thus the question
is not whether we should do something, but what should we do to minimize the loss
of integrity. Time - and not economy - becomes the critical factor here, and the main
strategy consists of taking quickly some simple palliatives, in order to save enough
time to determine and implement further levels of more refined curative actions.

For example, if an important plant is in danger of losing synchronism we may sacrifice
some of its generation by shedding one or two units. This may however initiate a
process of dropping voltage, which may in turn be mitigated by blocking tap changers
or tripping load, which will leave some additional time to get voltage and frequency
support from some fast startup units, thus giving time for the operator to further
reschedule the generation in a more economic fashion.

Since emergency control is the last chance to avoid moving to the in extremis state,
it is important to define appropriate strategies for the early detection of emergencies
after the occurrence of a disturbance. As we suggested above, some of these strategies
may be derived from the preventive security assessment made during normal operation,
but in addition, emergency state detection and control should be able to cope with
unforeseen events, since often a dangerous situation results from a complex combination
of contingencies for which it is impossible to make provision in normal mode operation.

Another particular aspect of emergency states is that they correspond to unusual - non
equilibrium - states, where often real-time information and models may be erroneous.

9.4 COMPUTING ENVIRONMENTS

Before concluding this chapter, we will briefly discuss the impact of modern computing
hardware and software environments on the computer based learning techniques applied
to security assessment.

Observing the evolution in the last ten years we may identify some important factors.

Client / server. This is a uniform model of interactions between the producer and the
consumer of a resource (CPU, data base: : : ) which allows to build very complex
computer systems on the basis of a simple generic model.

Distributed. It is clear that local and wide area networks have given another dimension
to computer systems. With a very cheap local area network technology it is easy
to upgrade progressively systems composed of more than hundred workstations,
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which may share information and other resources in a very transparent way for the
end-user.

Standards. Standardized operating systems (UNIX), communication protocols and
software development and run-time environments (languages like C++, graphic
libraries like X11 Motif: : : ) make it easier to transfer complex applications from
one platform to another, and allow easier communication and cooperation between
various applications running on different systems.

Open. The preceding three items have increased considerably the flexibility of com-
puter systems, both from the hardware and the software viewpoint, leading to the
ideal concept of “open systems”.

Hardware progress. The higher success of the above “parallel distributed processing”
approach, as compared to the “massively parallel processing” approach, is also due
to the fact that the systems have been able to take advantage - in a very smooth
fashion - of the permanent improvements in computing hardware. For example in a
period of five years, processor speeds and memory have been multiplied by a factor
of more than ten, without any increase in costs.

Due to the cost effectiveness of the distributed memory architecture, it is very likely that
in the future this same basic architecture of systems will become the standard platform,
used at the same time in the research divisions, in the study environments of planning
and operational planning and in operation. Of course, the functional requirements
in these various contexts are different; for instance control room applications and
supervisory software will probably remain very different from those used in the off-
line study environment [DY 93] .

Nevertheless, the main point is that no architectural constraints will prevent an applica-
tion currently used in off-line studies to be accessible in the control room, for example
via transparent network computing. On the other hand, there will be virtually no techni-
cal barrier for exchanging data among various control centers and study environments.
Further progress may be expected in the coming years in the following areas.

Processor speed. In the next three years we may expect processor speeds of standard
UNIX workstations to be multiplied by a factor of ten, and maybe another speedup
of the same order by the year 2000. At the same time the capacities of short-term
and long-term memories will scale up proportionally.

Networking. While local area networks are presently extensively used to distribute
applications among dedicated processors, high speed wide area communications
become possible among various remotely located areas. This allows to exchange
data more efficiently among different departments of a utility and thereby to increase
the cooperation among them.
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Software. For the building of CPU servers composed of a large number of UNIX
machines accessible on the utility network, new coupling tools are being developed,
allowing one to exploit heterogeneous distributed memory systems [GE 93b] .

Notice that these changes will lead more and more to a uniformization of hardware and
software environments, allowing integration in the control room of security assessment
software presently used only in the off-line studies. At the same time, information may
flow back from the on-line computers to the study environments allowing us to take
easily system snapshots and to feed them into the security simulation software. The
security studies thus obtained may be systematically analyzed to assess and correct
current policies.

9.5 CONCLUDING REMARKS

In this chapter we have stressed the fact that the strong trend in computer architectures
is likely to lead to similar computing environments in the three practical application
fields of planning, operational planning and on-line operation. At the same time, the
computing powers are expected to increase very rapidly in the near future, making
possible the use in these three contexts of unified approaches, power system models
and data representations.

On the other hand, to exploit efficiently these possibilities, new tools - mainly for data
management and top level functions - must be studied and developed. The approach
described in this thesis may meet these requirements well. It may be used in either
of these application fields to run security studies more systematically; even more
importantly, it will encouragethe sharing of information among the different practical
contexts and the use of common methodologies and models.
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Typical applications

In the preceding chapters we introduced the underlying physical phenomena and the
practical functional requirements of various security assessment problems. The aim
was to provide a general view of possible applications of the learning approach to
security assessment. In this chapter we will present two concrete examples which have
been studied in the literature via the proposed methodology. Our purpose is to fix
ideas by providing a deeper insight rather than an exhaustive enumeration of possible
applications.

10.1 ON-LINE PREVENTIVE SECURITY ASSESSMENT

Nowadays, on-line preventive security assessment is being approached via two com-
plementary methods; the first is the use of limit tables determined off-line; the second
is based on on-line numerical computations using more or less simplified analytical
models.

The first technique is basically a pattern recognition approach, where the patterns are
determined in a tedious manual way. The computer based learning framework es-
sentially provides a means to perform pattern recognition more systematically, thereby
allowing us to exploit more effectively the available computing powers while mastering
their rapid growth.

In the particular context of on-line transient stability, most of the utilities dealing with
this problem presently rely on off-line predetermined limit tables. The other approaches
to transient stability evaluation involve bulky computations and are not yet feasible on-
line with present day control center facilities. On the other hand, because of the very
short time span of transient stability problems, emergency control is limited to more or
less local protection systems, also based on pre-established thresholds.

219
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Figure 10.1 Preventive transient stability assessment of a power plant

10.1.1 Example problem statement

We consider a transient stability limited power plant, and aim at identifying the oper-
ating limits which should be respected in a normal situation in order to guarantee the
ability of the power plant to maintain synchronism with respect to a set of “dimension-
ing” contingencies. This problem has been studied in the context of our collaboration
with EDF; the results are reported in references [WE 90b, WE 91d, WE 91e, WE 93d,
AK 93] ; below we provide a simplified sketch of this study.

Figure 10.1 shows the power plant, composed of four nuclear units of 1300MW, which
feed the remaining power system through four step-up transformers and six 400 kV
lines. The study plant interfaces with the external system through a buffer region
comprising the relevant 400 kV and 225 kV system whose status might influence the
stability of the power plant.

For the stability of this power plant, the following kind of faults are considered as
potentially constraining.

Single-line faults. A single-line fault is characterized by a three-phase short-circuit
on a line which is cleared by a permanent tripping of that line. Different such faults
correspond to different possible locations of the short-circuit on different possible
lines. A priori, the most constraining assumption for the plant stability corresponds
to a short-circuit on the end of the line connected to the plant’s substation.

Double-line faults. These are very severe contingencies corresponding to a simulta-
neous short-circuit on two parallel lines and resulting in the tripping of both lines
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in the post-fault period.

Busbar faults. These faults correspond to a three-phase short-circuit on the busbar
of the study plants’ 400kV substation. They lead to the tripping of all lines and
machines connected to the corresponding busbar section. Depending on the as-
sumption of the distribution of lines and machines on different busbar sections,
different busbar faults are possible in practice.

All in all the above yield a set of 17 different faults : 6 single-line faults (3 normal
and 3 consisting of a slow reclosure on a faulted line after 20s), 6 double-line faults
(3 normal and 3 consisting of a slow reclosure assumption), 5 busbar faults (2 normal,
and 3 with the assumption of unavailable breakers).

10.1.2 Data base generation

To generate a data base representative of normal and extreme prefault situations we
have screened the following range of parameters.

Study plant (internal) region.

Topology. Prefault outage of 0, 1, 2 or 3 lines out of the six 400kV outgoing
“evacuation” lines of the power plant.

Unit commitment. Between 1 and 4 units in operation.

Active generation. Variable and non-uniform sharing of active power among units.

Voltage set-points. Uniform variation of voltage set-points of the power-plant
units, so as to obtain a uniform distribution in the interval of [390: : :420]kV
on the EHV side of their step up transformers.

Buffer region.

Load level. Regional load-level is variable, independent of the generation schedule.

Power plants. The operating state of the two closest power plants to the study plant
are variable from the point of view of their active power, reactive power and
number of units in operation.

Substation configuration. The number of electrical nodes within the three closest
400kV substations, forming the interface with the external system, are varied
according to system statistics.

External system.

The external system is essentially kept unchanged with respect to the base case,
which is a winter peak load assumption; only some remote power plants are used
to compensate the active power balance of the study plant and the buffer region.
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Figure 10.2 Automatic off-line construction of a data base

The definition of the above independent parameters has resulted from discussions with
the power system engineers in charge of the stability studies. The buffer region has been
defined so as to encompass the part of the EHV system liable to influence the stability of
the study plant, and the corresponding effects have been varied in the random sampling
procedureindependentlyof the state of the power plant, so as to reflectplausiblesystem
operating states.

On the other hand, the parameters of the study plant itself, including the status of the
six EHV outgoing lines, have been varied independently of each other, so as to screen
the full rangeof possible operating states. Thus, the resulting security criteria cover a
much larger range of plant conditions than those usually encountered in practice. For
example, while usually nuclear generation sets are exploited at nominal active power,
we have screened also the situation where one or two units operate at intermediate
power.

Following these preliminary discussions, a random sampling procedure was developed
to construct the data files corresponding to a sample of 3000 prefault states. For
each state, a loadflow computation was performed, yielding a “sound” state and the
attributes describing the plant and outgoing lines’ statuses were stored in the data
base files, together with the 51,000 CCT values, obtained from the systematic stability
simulations performed for the 17 above defined contingencies. This is schematically
illustrated in Fig. 10.2. These computations involved a complete model of the EDF
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EHV system, comprising about 500 nodes, 1000 branches and 60 machines. To
speed them up, a simplified dynamic model was used for the machines and the step-
by-step transient stability computations were performed in parallel on four 28MIPS
workstations, yielding an overall response time of about ten days for the 51,000 CCT
computations.

Using a realistic dynamic model for the generators would increase by a factor of about
30 the total computing time. Thus, to make computations feasible in practice, faster
workstations and a higher degree of parallelism would be required, which will be
technically possible in a very near future. Notice also that the number of faults which
would be studied in reality for each operating state would probably be smaller. For
instance, as we will see inx13.3, the single line faults are always less severe than the
corresponding double line faults and would not need to be studied. Thus, using for
example twenty 90 MIPS workstations these simulations could be done within about
the same response time of ten days.

10.1.3 Security criteria learning

For each state a wide variety of attributes have been computed describing the state
of the study plant and the power system elements inside the buffer region. They are
essentially more or less sophisticated parameters of the prefault operating state, such
as power injections and flows, voltages, topological indicators, number of machines
and lines in operation, short-circuit powers: : : . Depending on the projected use of the
security criteria only a subset of these attributes was used to derive security criteria in
the form of decision trees.

In refs. [WE 90b, WE 91d, WE 91e, WE 93d, AK 93] and also in the summary provided
in chapter 13.3, we further discuss the investigations carried out. They concern for
instance the decision trees’ reliability and complexity assessed in terms of the degree of
sophistication of the used candidate attributes and also the various ways of exploiting
multi-contingency information of the data base.

Below we will merely illustrate two particular examples.

Global security criterion

A globaldecision tree was derived to characterize the region of simultaneous stability
with respect to a set of 14 faults.

A state is considered to be stable with respect to a particular fault if the CCT of this
fault is larger than the actual clearing time (90ms for line faults and 155ms for busbar
faults). Among the 3000 prefault states, 2300 where used as a learning set; among
these 733 are unstable with respect to at least one out of the 14 contingencies.
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Figure 10.3 Global decision tree covering 14 contingencies. Adapted from [WE 93e]

The resulting decision tree is portrayed in Fig. 10.3. One can see that to characterize
the stability of the study plant the tree building procedure has selected a subset of 10
attributes out of the 40 candidates. These are simple, more or less directly controllable
prefault parameters like

Nb-Lines, the number of outgoing lines in operation.

P-Plant, the total active power of the machines in operation in the power plant.

Tr-P, Tr-Q, active or reactive power flows through various lines.

V-Plant, the EHV voltage in the plant substation.

Figure 10.3 also illustrates that the tree may assess in a single shot the stability of the
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power plant and also suggest control means in order to move, whenever necessary, the
operating state from the unstable region to the stable region.

Of course a decision tree provides a rather rough model and is subject to classification
errors. As indicated in Fig. 10.3, 7.4% of the 700 independent test states are misclas-
sified. More precisely,
3.4% correspond to false alarms where a state is declared unstable while it is actually
stable;
0.9% correspond to “normal” errors, namely states which are marginally unstable1 and
which are classified stable by the tree;
3.1% correspond to dangerous diagnostics, namely states which are fairly unstable2

and which are classified stable by the tree.

Single-contingency security criteria

In the case where a learning problem corresponds to a particular contingency, the
security classes are defined with respect to one or more threshold values on the CCT
of this contingency. In the most simple case which we consider here, the stable and
unstable class are defined with respect to the actual clearing time of the CCT.

Building a decision tree for this more specific stability problem aims at exploiting
more specific information concerning the plant operating state, such as for example the
number of lines in operation in the post-fault configuration, i.e. the number of lines in
operation in the prefault which are not tripped for the particular assumed fault.

Figure 10.4 illustrates a decision tree thus obtained for a particular double-line fault.
A state is classified as unstable if the CCT of this fault is smaller than the actual
clearing time supposed to be equal to 90ms. It is interesting to observe that the most
discriminating attribute used at the root takes into account fault specific information :
P/Nbl denotes the ratio of the total active power generated in the prefault state by the
number of outgoing lines remaining in operation in the postfault state. For this tree the
test set error rate has reduced to 1.9%3. At the same time, there are only 3 dangerous
non-detections, i.e. cases classified stable by the tree, while their CCT is actually
smaller than 81ms.

Using the hybrid approach described inx6.2, we have derived a multilayer perceptron
from the DT, where the 7 test attributes identified by the tree are the input variables,
and where the value of the CCT is approximated in the interval[70: : :110]ms around
the classification threshold. The weights of the multilayer perceptron composed of 7

1There exists at least one fault whose CCT is in the interval[0:9� : : : � [, where� is the clearing time.
2There exists at least one fault whose CCT is in the interval[0:0 : : : 0:9� [.
3To build and test the tree only the states among the 3000 of the data base where at least one of the

two faulted lines is in operation have been used; this yielded respectively 2132 “relevant” learning states
and 643 “relevant” test states.
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Figure 10.4 Single contingency decision tree for a double-line fault. Adapted from
[WE 93e]

input neurons, a single hidden layer of 15 neurons and a single output neuron, were
adapted on the basis of the known CCT values using the BFGS procedure. The input
attributes have been prewhitened and the output stability margin was normalized as is
suggested in Fig. 10.5. The procedure reached a local minimum of the regularized
MSE criterion within 80 iterations, corresponding to a CPU time of 4440 seconds (to
be compared with the CPU time of 390 seconds, necessary to build the decision tree).
This allowed us to further reduce the test set error rate to 1.2%, and at the price of a
false alarm rate of 3.4%, to eliminate all dangerous and normal non-detections!

10.1.4 Comments

The preceding example suggests several interesting aspects of decision trees built in the
context of stability assessment, and more generally ofpreventivesecurity assessment.

First of all, it is interesting to use standard operating parameters in order to build
security criteria, and in particular decision trees. This makes it possible to analyze the
attributes actually selected and their threshold values. For example, the decision trees
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Figure 10.5 Output normalization for the hybrid MLP CCT approximation

of Figs. 10.3 and 10.4 reproduce well known relationships among standard operating
parameters and stability.

Global and single contingency decision trees are complementary. The former provide
straightforward conditions of simultaneous stability with respect to the set of faults
for which they have been derived, and this kind of information is directly applicable
for preventive control. The latter trees are liable to provide a more reliable security
assessment, and may therefore be useful - possibly together with other more black box
criteria - to identify all potentially dangerous situations.

The use of security margins as a complement of security classes has also several
interesting outcomes. First of all, margins may be exploited to analyze more closely
classification errors, since they allow us to differentiate among dangerous and normal
errors. Further, they may be exploited in a regression model to provide a smooth
approximation of the stability which may in turn be used to reduce the probability of
non-detections of unstable states. In the present example this approach has been very
effective in reducing the probability of non-detections.

10.2 EMERGENCY STATE DETECTION

Putting aside the case of thermal overload problems of static security, in emergency
state detection main issues are the limitation of available real-time information about
the system state due to the shorter time frames, and the fact that the system is in an
abnormal, dynamically evolving situation.

While in preventive security assessment real-time information may be assumed to be the
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output of a reliable state estimator validated by the operator, and there is enough time
available to make more or less sophisticated network computations, in the emergency
state the available information often reduces to a set of raw measurements, and the time
period left for decision making becomes much shorter.

One of the main difficulties in emergency state approaches is that the power system is
in a dynamic state at the moment of acquiring the attribute values, and it is necessary
to make sure that the stability criterion derived is sufficiently robust with respect to
random (uncontrolled) variations in the data acquisition time.

Another fundamental question is how to choose an appropriate time constant to refresh
periodically the stability criteria to adapt them to changing power system conditions.
The related feasibility question concerns the amount of computational power which
must be invested in order to provide reliable enough criteria with a response time
compatible with the frequency of updating the criteria. This may strongly depend on the
particular power system under consideration and the degree of modelling sophistication
required for simulations. Thus, there is still need for more in-depth investigations, in
particular in the context of testing the feasibility of this approach for real large-scale
systems.

Note that computer based learning approaches have already been proposed for real-
time transient stability prediction in the emergency state [OS 91, RO 93] . Due to
the very short time frame available (of say between 100 and 300 ms after the fault
clearance), these approaches would be supposed to be fully automatic and closely
related to adaptive system protection and adaptive out-of-step relaying [CE 93] .

The authors of ref. [RO 93] discuss preliminary research on transient stability predic-
tion on the basis of real-time phasor measurements, using decision trees. Here, we
will consider the case of mid-term voltage instabilities and provide a discussion of the
particular considerations of emergency state detection.

10.2.1 Example problem statement

We consider the EHV system depicted in Fig. 10.6, which was designed to reflect
typical behavior of a voltage weak region of an EHV power system, importing variable
amounts of reactive power through the interconnection lines.

The effects of the external and buffer region are modelled by the infinite bus at node
11, interconnected to the weak region by two rather long 380kV lines. The interface
between the local EHV transmission system and the 90kV subtransmission network is
represented by two buses 50 km apart; at one of these buses a local power plant is con-
nected composed of three units of 113 MW (133 MVA). Reactive shunt compensation
is connected to the 90kV buses, whose voltages are normally regulated via the OLTCs
which equip the 380/90kV transformers. The MV distribution networks and the load
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Figure 10.6 Voltage emergency state detection in a weak region. Adapted from
[VA 91b]

are represented by an equivalent model at buses 1, 5 and 6, including an equivalent MV
load, compensation and OLTC. The voltage regulator of the local generation sets is
equipped with a maximum excitation limiter which tolerates a temporary overexcitation
of about twice the permanent limit, during 40s.

Five possible disturbances have been considered

Line trippings. Loss of line 11-1 or 11-2.

Unit tripping. Loss of one or two units of local generation.

Combined. Loss of line 11-2 and two units of local generation.

The emergency state detection problem consists of predicting during thejust after
disturbance state(JAD), i.e. during the short-term equilibrium state that the system
reaches after the electromechanical transients have died out, say about 20 seconds after
the disturbance inception. Using a snapshot of system measurements, the prediction
determines if the forthcoming OLTC load restoration process, together with the action
of overexcitation limiters, will lead to voltage collapse or not.
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10.2.2 Data base generation

A data base representative of the JAD states was obtained by generating, firstly, a sample
of various prefault situations, and applying to each state the five disturbances to produce
the five corresponding voltage stability scenarios. These have been simulated with a
variable step short-term dynamic simulation program, which computed the attribute
values and allowed us to classify the scenarios as either critical or noncritical. This is
further described below.

Prefault states

A sample of 500 prefault operating points was generated randomly. Since no prior
information was available for this synthetic system, uniform and independent prior
distributions were used for the following input parameters of the loadflow [VA 91b] .

External system. V11 was varied between 1.0 and 1.1 pu.

Local generation. P7 was varied between 0 and 350MW and the minimal number of
units was put into operation to yield this power. The reactive power of each unit
was chosen uniformly between -20 and +64 MVar.

Load level. The total load was varied between 900 and 1350 MW, and distributed
among loads at buses 1, 5 and 6.

Reactive compensation. The number of capacitor banks (of 50 MVar each) at buses
3 and 4 was varied between 2 and 6.

The 500 prefault states were generated by drawing randomly the above input variables
and applying a loadflow computation; those states which were actually kept were only
those in which this computation converged properly and for which the EHV voltages
were within predefined bounds.

JAD states

To obtain the data base composed of 2500 JAD states, each of the 500 prefault states
was combined with the 5 disturbances. For each of the corresponding 2500 scenarios,
the disturbance was simulated starting from the prefault equilibrium using a standard
numerical integration program. At time t=20 seconds, the attributes characterizing
the JAD states were computed and saved into the attribute files. The simulation was
continued up to five minutes and the scenario classified as noncritical if the voltages
controlled by the 3 OLTCs were successfully brought back to their set-point values.

The overall data base generation procedure, whose aim was to provide a representa-
tive sample of possible JAD states, combining various prefault operating states and
disturbances, is illustrated in Fig. 10.7.
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Figure 10.7 Construction of a data base of JAD states

The 28 candidate attributes used to characterize the JAD states are those indicated in
Fig. 10.6. They represent essentially EHV quantities which may be available from the
SCADA system in the JAD state.

10.2.3 Security criteria learning

To obtain a security criterion, the data base was randomly split intoN = 1250 learning
states andM = 1250 test states. A decision tree, built on the basis of the learning
states and the 28 candidate attributes is represented in Fig. 10.8. This is essentially an
emergency state detection criterion applicable in the JAD state, independently of the
prefault state and the particular disturbance which are at the origin of the JAD state.

The decision tree is composed of 7 test nodes and 8 terminal nodes. Its top node
corresponds to the completeLS, composed of 454 critical and 796 noncritical states.
Out of the 28 candidate attributes only three have actually been selected to formulate the
tree. In fact, two of these, V4 and Res7, carry 97% of the information of the decision
tree. When used to classify the 1250 unseen test states, the decision tree realizes 96.24%
correct recognitions. Thus, despite its simplicity, it is able to correctly represent voltage
security behavior of the considered system. Among the 47 classification errors of the



232 10. TYPICAL APPLICATIONS

V4 : volt. a HV node #4
Res7 : react. gen. reserve
Q111 : react. power exch.

Top node : 1250

454 Critical learning states
796 Noncritical learning states

T2: 457 Y

T3: 441 Y

L1: 367 Y
T4: 74

N

D1: 57Y D2: 17
N

Res7 < -18.65Mvar

V4 < 1.003pu

T5: 16
N

L2: 3
Y L3: 13N

V4 < 0.995pu

Res7 < 0.55Mvar

T6: 793N

D3: 18
Y T7: 775N

L4: 761 Y
D4: 14

N

Q111 < 295.95Mvar

Res7 < -71.75Mvar

V4 < 1.017pu

N = 1250
M = 1250

Pe = 3:76%

PND = 1:2%

PFA = 2:56%

Figure 10.8 Emergency state detection tree. Adapted from [VA 91b]

tree there were 15 non-detections and 32 false alarms.

The geometric representation of the decision tree is given in Fig. 10.9, where its
critical and noncritical security regions have been projected on V4 and Res7, together
with the 2500 states of the data base. Each class appears as the union of hyperboxes
corresponding to the terminal nodes of this class. In turn, each terminal node’s hyperbox
is defined as the intersection of the semiplanes defined by the tests at its parent nodes.

Further, the hybrid DT-ANN approach was applied. Since in this particular case no
continuous security margin was available, aclassificationmultilayer perceptron was
derived from the decision tree. This is the two hidden layer perceptron represented
in Fig. 10.10. Its initial weights have been derived by translating the decision tree
and then adjusted so as to reduce the MSE, by using the BFGS optimization method.
This allowed us to reduce the error rate from 3.76% to 2.96%, corresponding to
7 non-detections of critical states and 30 false alarms. Obviously, the hybrid DT-
ANN approach has improved the reliability of the tree much more significantly in the
previous case ofx10.1.3, than in the present case. The reason may be found in the richer
information provided by the CCT margin in the transient stability case ofx10.1.3.

10.2.4 Comments

The approach used to build a representative data base for emergency control consists
of applying a set of possible disturbances to a representative sample of prefault states.
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906 Critical post-
contingency states

Critical region
L1 + D1 + L2 + D3
+ D4 (not shown)

Noncritical region
D2 + L3 + L4
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Figure 10.9 Critical vs noncritical regions of the DT of Fig. 10.8. Adapted from
[WE 93a]

While in the above example we have merely illustrated the idea of building a contin-
gency independent criterion, in real life systems various questions may be raised. For
example

Should (or can) the emergency state detection rely on fast identification of the
disturbance ?

Should the criterion be built for a large set of possible disturbances or would it
be better to use a set of disturbance specific criteria ?

Should (or can) the emergency state detection rely on information concerning
the prefault state, e.g. predetermined security margins ?

Should the criteria be built off-line for a large range of prefault situations, as in
our example, or should they be tuned to a much smaller range of prefault states
and be adapted on-line ?

How can uncertainties about the model used be taken into account when gener-
ating a data base ?

Can we assume that the system snapshot is taken at a fixed instant after the
occurrence of the disturbance ?

How can we define an appropriate compromise between the early anticipation
of emergencies and the selectivity of the detection ?
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Figure 10.10 Multilayer perceptron derived from the DT of Fig. 10.8. Adapted from
[WE 93a]

How can emergency control actions be derived appropriate to cure the detected
problem ?

In the sequel we will address some of these questions; the answers may of course
depend strongly on the type of security problem considered (in particular on the time
scales involved) and the physical characteristics of the considered power system.
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Meaningful data bases

Having swept through the main considerations concerning learning methods and secu-
rity assessment contexts, and having fixed ideas about the similarities and differences
of various practical learning based security assessment problems, we are now ready to
discuss the thorny problem of data base generation.

Any researcher who has been involved in the application of pattern recognition, machine
learning or neural network methods to power systems security assessment has realized
that obtaining a representative data base is a difficult problem. Indeed, whereas for
many learning problems we may consider that the data bases are provided a priori
(consider for example load forecasting, letter recognition: : : ) in the case of security
assessment the samples need to be generated via a computer based simulation of random
sampling. This is because it is not possible nor desirable to build these samples solely
by collecting data from usual power system situations.

For example, when a hypothetical system is considered (in planning studies, or when
testing methodologies on synthetic systems) there is no available statistical information
about usual operating regions. Further, when a power system is operated, security and
other technical considerations introduce possibly strong correlations among operating
parameters1, and these would lead in practice to represent mostly the secure situations
resulting from past security guidelines, whereas the purpose is precisely to build a
sample which will contain rich enough information about secure and insecure states so
as to improve these guidelines.

Thus, there is a rationale to free the data base generation from too many strong hy-
potheses about operating conditions, and this introduces the need to define a priori an
approach for generating the data base. For very simple systems corresponding to low
dimensional attribute spaces, it may be possible to generate data bases in a systematic

1Here we use the term parameter to denote any kind of variable, either topological or of the continuous
electrical state type.
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fashion, e.g. by assuming uniform distributions of attribute values in a first step and
then perhaps zooming in later on smaller regions overlapping the security boundary
[WE 86, EL 89] . Unfortunately, for the study of real, large-scale systems, where a
minimum of several tens of degrees of freedom need to be considered, it is quite un-
likely that a general and well justified approach could exist for the data base generation
which will thus be both ad hoc and empirical in nature.

During the last 8 years we have been involved in the generation of many different data
bases for transient stability and voltage security issues of several realistic systems. We
will try to synthesize the acquired experience in the following sections, and propose
some additional methodological improvements as deemed necessary.

11.1 LOCAL NATURE OF SECURITY PROBLEMS

We have already mentioned that when we consider a security study, the first step consists
of defining a study region. While we might consider the particular power system of a
utility as a single “tight” system and its security as a singleglobal concept, it is well
known that the security is up to a certain degree local, and its study will take advantage
of decomposing the overall problem into subproblems.

The decompositions may follow various criteria and it is hardly necessary to say that
they will depend on the particular security problem at hand, i.e. the characteristics of
the considered power system and the considered physical problem. Practical examples
are for instance given below.

Site studies, as in the study of the transient stability limits of an important power plant,
described inx10.1.

Transmission corridor studies, as in the example ofx3.4.1.

Load region studies, as in the study to be described inx14.4.

The main point is that the local nature of security problems is exploited by the utility
engineers to decompose the overall system problem into a number of subproblems
easier to appraise, and this decomposition is based onprior expertise and physical
insight. The same should be done when applying computer based learning techniques,
to take also advantage of prior expertise. On the contrary, applying these methods to
overly general security problems without exploiting prior expertise (which is always
conditioned to specific security subproblems) may lead to unduly complex solutions,
if not to a disaster.

Once the considered security problem is relatively well understood things become
easier. In particular, during the several subsequent steps, existing knowledge may be
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injected for

� defining random sampling schemes for generating a data base;

� choosing contingency lists (and models) to evaluate security;

� defining security classes or margins and candidate attributes to characterize security;

� analyzing the resulting security criteria and validating them;

� suggesting feedback information on previous aspects to improve future data bases
and security criteria.

These aspects are considered in the next few sections.

11.2 RANDOM SAMPLING OF STATES

Once the considered security problem has been defined, the next step is to specify
the random sampling of the data base of relevantnormalpower system states. Notice
that even if we are interested inemergencystates, an appropriate approach consists of
first defining the random sampling ofnormalstates and then applying disturbances to
produce emergency states. This is due to the fact that prior information is available
about normal states, which are considered in security studies and which are much more
usual than emergency states.

The definition of random sampling requires the decomposition of the power system
into a study region, a buffer region and an external system, as we have discussed in
x8.3. Recall that the study region encompasses the part of the system corresponding
to the primary parameters which may influence its security, and the buffer region the
intermediate part where secondary parameters may influence security marginally and
which should be taken into account; several approaches to choose values of these latter
free parametersare discussed below.

11.2.1 Primary parameters

The primary parameters are a subset of those which are known or suspected to have
a strong influence on the security, and which are not supposed to take a constant, a
priori known value [LE 90b] . For the generation of a representative data base, these
parameters could be sampled in a uniform and a priori independent random sampling
approach. Note that from a practical point of view, when many possible factors affect
security we may assume a priori that there may be interactions among these factors;
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hence the necessity of sampling the factors independently, in order to be able to identify
the interactions.

For these primary parameters the actual type of distributions used is however often
neither uniform nor independent, due to several practical limitations. The first, main
limitation is that some of the factors which are to be studied do not correspond to
independent input variables of the load flow computation used to construct and validate
the operating states. The second reason is that in practice there are somecentral
regions of the operating space where we would like to obtain maximally reliable
security information. On the other hand, we are not willing to cut off completely the
extreme regions; hence the necessity of a compromise between the representation of
usual and extreme situations.

In practice these considerations lead to non-uniform distributions and non-independent
primary variables. While this is unavoidable for any realistic power system secu-
rity problem, there are some straightforward safeguards against possible pitfalls. In
particular, deterministic rules introducing dependences among variables (such as eco-
nomic dispatch) should be avoided. Further, we should avoid as much as possible
choosing the operating states directly on the basis of their security level; in particu-
lar, approaches aiming at generating samples only near a particular security boundary
are almost guaranteed to produce misleading results and to be brittle with respect to
changing conditions.

It is important to note that any kind of trick trying to cleverly choose the samples
so as to improve the reliability of information may possibly cause serious difficulties
in interpreting and validating the results. In addition, it is liable to introduce further
difficulties when system conditions change and when new security problems are con-
sidered. Finally, these tricks turn out to be unable to significantly improve the reliability
of the resulting criteria [EL 89] . In our opinion it is certainly preferable to use a more
loose sampling approach, exploiting less strongly existing correlations and security
information, even if we are required to pay the price of generating somewhat larger
samples in order to obtain the desired degree of accuracy. Anyhow, this amounts to
cheap computing power, without time consuming human intervention.

The independent variables considered for sampling are generally topology, load and
generation. Often, some weak correlation between load and generation is introduced
in order to control indirectly the power flows through some critical interfaces and to
avoid completely unrealistic situations in terms of these power flows.

11.2.2 Free parameters

Free parameters are those whose influence is known to be quantitatively small in practice
and whose explicit modelling is not desirable. There are basically two approaches to
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take their effect into account.

The first would merely consist of randomizing their values so as to cancel their mean
effects. In order to avoid biasing the study of the primary parameters it is then
paramount to choose these values independently from the values taken by the latter
parameters. The sampling distributions of the free parameters may be chosen on the
basis of statistical information available from the historical data. Otherwise, it is
often justified to use Gaussian distributions, at least if they are influenced by many
independent considerations, as is often the case.

The second approach, which we could term the “min-max” approach, consists of
choosing a particular and constant set of values for the secondary parameters which
offer a guarantee of conservatism. These are the so-called “umbrella” configurations
used by power system engineers [RI 90] . For most security problems it is not too
difficult to identify such situations, due to the monotonicity property of security margins
with respect to the usual parameters. Of course, it would also be possible to consider
simultaneously the dual extremely optimistic case, and to characterize each combination
of primary parameters by the security interval corresponding to the most pessimistic
and most optimistic choice of secondary parameters.

11.2.3 Topologies

As we have already mentioned, topology is a parameter similar to load or generation.
One of the possible difficulties is due to the combinatorial nature of topological vari-
ations. A good approach to define an appropriate sampling scheme for topologies
consists of defining one or more hierarchies of topological classes and to choose sam-
pling probabilities for each subclass. Practical examples of this are given in chapters
13 and 14.

11.2.4 Constraining the set of generated states

There are several constraining effects which cause the a posteriori distributions obtained
in a data base to be different from those initially specified.

Firstly, a random sampling scheme as suggested above introduces generally some con-
straints among variables. For example, for a generation plant we might introduce
specifications that under certain conditions the number of machines in operation must
not be larger than a certain value. Or there may be an upper bound on the total active
generation of a power plant in a radial configuration. For the security problems corre-
sponding to real power systems which we have studied, there have always been several
such special considerations which cause the resulting a priori probability distributions
to be distorted.
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Secondly, once a variant has been drawn randomly it must be transformed into a proper
specification of an electrical normal state of the system, which implies a load flow or
state estimation kind of procedure. This will in turn modify the statistical distributions,
for instance because the load flow computations do not converge or because the resulting
states do not correspond exactly to the input specification.

A third level of filtering which is generally applied, consists of excluding from the data
base unrealistic situations on the basis of tests applied to output variables of the load
flow; e.g. voltages and power flows must be within tolerable limits. The effect of this
filtering on the resulting distributions should also be analyzed.

A systematic approach to analyze the effect of filtering on the resulting distributions
is to construct a so-called a priori data base composed of the input variables drawn
randomly for each state, and to classify these states as “accepted” or “rejected”, the
latter class being subdivided into subclasses corresponding to the different reasons for
rejection. This data base may then be analyzed systematically using the same available
statistical tools which are used to analyze the attribute distributions in the a posteriori
obtained data base of retained states.

For example, Fig. 11.1 shows the effect of loadflow convergence filtering on the
distribution of the power transfer through the James’ Bay corridor of the data base
described in 3.4.1. In this case, 15000 states have been drawn a priori to yield the
12497 a posteriori states. As we can see, the effect of non-convergence, while slightly
more important for the lower power flows, did not significantly modify the sampling
distribution of this attribute.

In a development stage, when the random sampling software is designed for a new set
of specifications, this analysis is very important to identify possible bugs and to draw
to the attention any software limitations.

11.2.5 How many states should be generated

Of course, the answer to this important question will depend on the number of degrees
of freedom in the primary parameters, the complexity of the relationship between these
parameters and the security status and also the degree of reliability which is sought.
Further, practical tractability limitations put an upper bound on the number of states in
a data base.

Ideally, we would like to screen all possible combinations of situations, but with present
day technology, and for real medium to large-scale power systems it would be hardly
feasible to consider more than say 10,000 to 20,000 states. Further, this limit may
become much lower depending on the complexity of security simulations and on the
desired response time.
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Figure 11.1 Effect of loadflow divergence on the distribution of a power flow

On the other hand, there are some indications that below say 20 to 50 samples no
information at all may be extrapolated reliably. Thus, a representative data base should
contain several times this number of states for all a priori important categories of
states. In particular, these categories concern the main security classes and the major
topological families. Finally, to estimate test set error rates a sufficient number of test
states must be taken out of the data base, say between 500 and 1,000 states, at least.

If we combine these orders of magnitude, we conclude that a realistic data base could
contain between say 3,000 and 15,000 states. This number is of course a purely
indicative order of magnitude, but if a data base contains less than say 1,000 states we
would be very reluctant to draw any valuable conclusions at all from it.

11.3 ALL SAMPLING TECHNIQUES ARE BIASED

Whatever circumspection and precautions are taken when generating a data base, there
is no escape in using judgement for deciding to which population we can honestly
generalize the results obtained in an experiment based on controlled random sampling.

All sampling approaches are biased, be it only by the choice of the independent variables
taken to screen the situations. So, it is our conviction that within this framework,
success relies very strongly on the collaboration of utility engineers and their ability
and willingness to take the responsibility of analyzing, criticizing and finally validating
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the criteria. This is why it is so important to stick quite closely totheir way of looking
at security problems and to provide the security criteria in a form fitting with human
analysis faculties. This brings us to the next section, where we give some indications
for future strategies to truly assess and validate obtained security criteria.

11.4 HOW TO VALIDATE : : :TRULY

The first step of validation consists of testing the robustness of security criteria derived
on the basis of a test set of states of the data base which have not been used for the
design of the security criterion.

This is however not sufficient and may be misleading in various ways. Too good results
may be due to the exploitation of some correlations which have been built into the data
base unduly. Bad results may not be representative of real performance. In particular,
false alarm rates may be much higher than they would be in real life due to the fact that
the states in the data base are much more concentrated around security boundaries than
in real life.

The second step of actual validation will be to compare the security criteria with prior
expertise and to determine the plausibility of the modelled security criteria. This
presupposes some possibility of interpreting the statistical relationships which are
modelled in the data base. This may still be biased, in the sense that if everything goes
right, the information reflected in the base itself depends on prior beliefs, and some
effects may have been missed. So a good idea would be to generate some cases able to
check the hypotheses.

Thus, the third step will consist of generating some independent samples by relaxing
some of the hypotheses initially used to generate a data base; in particular it would
be very useful to collect real life samples and generate some random variants of these
samples to test the data bases.

Finally, when assessing the quality of a security criterion it is clear that differenttypesof
errors should be identified. In particular the dangerous errors concerning the insecure
states which are missed should be analyzed in detail. They may correspond either to
normal errors, i.e. errors which are very close to the security boundary and abnormal
errors or outliers which correspond to states far away from the sample of states used to
derive the security criterion. The analysis of these latter cases should provide guidelines
in order to improve the representativity of the data base. How to do this is, however,
an open question at the present stage of research.



11.5. RELATIONSHIP WITH MONTE CARLO SIMULATIONS 243

A PRIORI

A POSTERIORI

DATA BASE GENERATION

PROBLEM SPECIFICATION

1. Study region, buffer region and external system

OFF-LINE DESIGN OF SECURITY CRITERIA
1. Formulate learning problems
2. Build and test security criteria
3. Analyse and validate criteria

USE OF SECURITY CRITERIA (OFF-LINE and ON-LINE)

1. parameters and distributions and numerical tools

2. run simulations to construct data base
3. analyse attributes and security classes

1. define security classes, margins and attributes

2. Contingencies, models, security criteria

3. analyse resulting sampling distributions
2. generate samples and reject unacceptable states

Figure 11.2 Overview of the learning based security assessment approach

11.5 RELATIONSHIP WITH MONTE CARLO SIMULATIONS

Figure 11.2 provides a synthetic view of the various steps involved in the application
of the security assessment framework. The four main subtasks concern the problem
specification, data base generation, off-line design of security criteria and use of security
criteria. The top-down arrows show the logical relationship whereas the bottom up
arrows indicate the iterative “generate and test” nature of the overall process.

It is interesting to notice that this overall structure is quite similar to the approaches
presently in use at many utilities to determine the security criteria [LE 90b, RI 90] .
The main difference between the two approaches is that the present manual approach
considers selected power system situations one by one whereas the statistical approach
looks simultaneously at large samples of representative states.

On the other hand, Monte Carlo methods are also based on the random sampling of
scenarios followed by the simulation and analysis of each scenario. They are used as a
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complement to analytical methods, for example in the context of reliability evaluation
and probabilistic production costing studies, in order to compute expected values of
interesting quantities, such as failure rates or operating costs. Monte Carlo methods are
used to take into account complex models, where the analytical computation of expected
values would lead to unacceptable simplifying assumptions. Reference [PE 92] gives
a good discussion of analytical vs Monte Carlo types of techniques in probabilistic
power system analysis.

There are mainly two differences with the framework presented in this thesis.

1. Monte Carlo simulations aim at modelling theactual probability distribution of
power system configurations in a given time span, while in the learning approach,
as we have discussed, it is often preferable to bias very strongly these distributions
in a way depending on the particular problem considered.

2. Monte Carlo simulations are basically seeking a precise estimate of theoverall
expected value of an output quantity, whereas in our studies we are more interested
in evaluating precisely the effect of some input quantities on the output.

Thus the techniques and tools developed in the context of Monte Carlo simulations could
also be useful in the context of our framework. For example, the idea of combining
analytical approximations with Monte Carlo simulations in order to reduce variances
might be fruitfully exploited in the context of our security assessment framework, to
make improved use of available information. At the same time the statistical techniques
for data analysis and learning could be very useful in the context of Monte Carlo
simulations, for example to assess the sensitivity of the output variable to probability
distributions of input quantities or to assess the effect of design alternatives on the
expected values of the performance index. One may also imagine that the regions
corresponding to the terminal nodes of a decision tree could be used to stratify samples
so as to reduce the variance of estimators.

11.6 CONCLUDING REMARKS

In this chapter we have pointed out several major difficulties which arise when we try to
generate a representative data base for real systems. One of our objectives was also to
make clear that nouniversalone-shot procedure exists - or is likely to exist in the future
- to solve this problem. Thus the successful application of the methodologies presented
in this thesis will greatly depend on the willingness of power system engineers to
inject their knowledge into this process and to compare the resulting security criteria
with their own expertise about the problem, yielding an intrinsically iterative cycle of
improvements.
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This will probably require some changes in present day practices and also some further
adaptations of statistical methods. This is to say that apart from some specific cases,
there is still a long way to go before potential users get sufficiently familiar with the
statistical approaches so as to apply these methods to a large range of security problems.
Nevertheless, we note that the techniques proposed in this thesis are somewhere in
between the present daymanualpractices and the standard way of applying Monte
Carlo methods. Therefore, it will probably be easier to incorporate our statistical
methods into system planning studies, where Monte Carlo simulations are already in
use for random sampling, and where probabilistic methods have a greater chance of
being readily accepted.

On the other hand, one of the main outcomes of our experience is that in order to assess
quantitatively security criteria obtained the very close collaboration of engineers in
charge of security studies is paramount.
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Modelling aspects and numerical tools

In this chapter we collect together considerations related to modelling aspects in
security assessment studies. In particular, we start by discussing computational
feasibility aspects at the data base generation step, and we finish with modelling
aspects at the machine learning step.

12.1 SIMULATION MODELS AND METHODS

So far, the type of statistical learning approaches described in this thesis have not yet
found actual application to real systems. At best, various feasibility and evaluation
studies have been carried out on real systems in order to appreciate the practical pros
and cons. The methods have mostly been studied with simplified power system models.

For large-scale power system transient stability, and to a lesser extent voltage stability
assessment, computations may be quite time consuming and it might be questionable
whether the data base generation and the related numerical simulations are feasible
within acceptable response times and realistic computing powers. Actually, we will
show that with today’s high end workstations which exceed 100MFLOPS computing
power on a single processor, and by exploiting trivial parallelism, even the most time
consuming simulations among the above become possible with a reasonable number
of CPUs.

12.1.1 Voltage security

In the voltage security study described inx14.4, a data base is generated by using the
STEC simulator described in [VA 93b] . The corresponding model uses a rather detailed
power system model, including the representation of the 90 and 63kV subtransmission
network in the study region together with EHV/HV and HV/MV OLTCs. The precise
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model used is described elsewhere, but let us merely quote some indicative figures.

1244 buses, corresponding to the complete 400kV network of EDF, the 225kV grid in
the buffer and study regions, as well as the subtransmission system within the study
region.

1188 branches, corresponding to the EHV lines and transformers.

443 transformers with OLTC, corresponding to the EHV/HV and the HV/MV trans-
formers in the study region.

36 generators, using a static model representing rotor currents and saturation charac-
teristics as well as equilibrium characteristics of voltage and frequency controls.

35 compensation devices, which are automatically switched according to a voltage
threshold logic.

Secondary voltage control, which is operating in two independent control regions so
as to coordinate reactive resources in order to maintain EHV voltage at a desired
profile.

This model can be considered as quite realistic for the study of the mid-term voltage
phenomena considered in this research project. To obtain a data base, normal operating
states were considered. They were generated by a random sampling approach described
in x14.4. On the basis of a sample of 13,513 randomly drawn variants of a base case
situation, 5,000 yielded acceptable operating states, whereas the 8,313 remaining ones
were rejected mainly due to the divergence of loadflow computations. For each one
of these operating states more than 300 attributes were computed and 26 disturbances
were simulated with the STEC software. These simulations included the modelling
of the secondary voltage control and the 443 tap changer dynamics during several
minutes after inception of the disturbance and the determination of a post-disturbance
load power margin, for the stable situations. Thus 130,000 simulations were carried
out, comprising an important proportion of load power margin computations.

To carry out all the related simulations, four SUN SPARC10 workstations were used
in parallel, and the overall elapsed time was approximately one month, corresponding
to about 25% of the use of the available CPU time, taking into account other processes
running on these systems. The total amount of data generated was about 100MB
(compressed) including the 300� 5000 prefault attributes and the 26� 300� 5000
“just after disturbance” attributes for each one of the 26 disturbances.

We note that presently available high level workstations may be up to five times faster
in floating point arithmetic than the SUN SPARC10 workstations. Thus, with four
such high performance workstations fully dedicated to the data base generation this
response time may be reduced to two days, which is quite acceptable in the context of
off-line security studies. This means also that with computing hardware which may
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be available in the next two years, smaller data bases focusing on a reduced number
of disturbances (say 5) may be obtained within less than one hour elapsed time, for
this problem. This opens new possibilities for generating or refreshing data bases and
security criteria very near to real-time operation, say less than half a day in advance.

12.1.2 Transient stability

Transient stability simulations are known as the most time consuming simulations
within security assessment. For example, to compute a single security margin value
with respect to transient stability and using realistic1 modelling would take about one
hundred times more instructions than the above computation of a voltage security
margin.

This means essentially that with present day technology we must rely on a much higher
level of parallelism in order to reduce the corresponding CPU time. However, the
required computing power may become available in a very near future, notably due
to the wide area interconnection of utility information systems, which opens access to
large volumes of inactive (not exploited) computing power.

We notice also that we may expect to see in future control centers and associated
computing environments computing powers of the order of 10 GFLOPS and more,
which will be exploited only at a small fraction of their nominal power with standard
software applications. Thus several GFLOPS will be available without additional cost
and could be exploited very systematically for the above kind of simulations. For
example, with a computing power of 5GFLOPS it would take less than 30 minutes to
run 1,000 transient stability simulations on the Hydro-Québec system. Estimating that it
would require about 200,000 such simulations (10 contingencies and 20,000 operating
states) to study in detail a large range of topologies of a transmission corridor, this
would take about 100 hours of elapsed time.

12.1.3 Coping with model uncertainties

The preceding discussion indicates that using realistic models in the context of system-
atic large-scale power system security studies becomes computationally feasible with
current and a fortiori with future computing hardware. We thus expect to see more
evaluation studies in the coming years under these conditions.

Nevertheless, while the type of models and in particular the type of phenomena which
are to be taken into account when simulating power system behavior are well known

1Our orders of magnitude are based on the model presently used at Hydro-Québec for transient
stability studies, which considers the 735kV system and all non-radial lower voltage levels, yielding 450
buses, 650 branches, 80 equivalent generators, and 6 equivalent SVCs, all modelled in detail.
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for most practical power systems it is not always possible to identify a set of parameters
valid for a large range of operating conditions, as may required to be simulated within
the context of security studies.

There may be several reasons for this. For example, in planning studies it is often
required to consider hypothetical generation and transmission equipment and some
of their parameters are very gross approximations. Similarly, many parameters vary
with time due to aging. Another important reason leading to uncertainties is related to
unobservable parts of the power system which lead to the use of dynamic and / or static
equivalents, which are often unreliable.

For instance, in transient stability studies it may become important to represent neighbor
utilities correctly when considering faults at the periphery of a system. Unfortunately,
strong competition among utilities tends to impede the exchange of data and measure-
ments, although information technology would make this quite easy to realize. We can
foresee that the current trends towards opening the access to the transmission system,
as experienced in Great Britain and some other countries, will make this problem much
more acute specially in the context of modelling generation equipment characteristics
which are of primary importance for security assessment.

Another difficult problem concerns the modelling of the load component [IE 92b] .
Here the difficulty is related to the very high number of elementary devices and compo-
nents in the distribution systems and the fact that only a small part of these are actually
observable due to the relatively low number of measurements and signals. Although
appropriate static (and to a lesser extent dynamic) equivalent models may be formulated
(e.g. active and reactive power as polynomials of voltage and frequency), the major
difficulty is due to the fact that the parameters of these models will vary in practice
according to time and to the geographical location. In practice however, most utilities
use a single constant load model for the major part of the load (say more than 90%)
together with some special loads to represent effects of large industrial plants (elec-
trolysis factories, AC/DC converters: : : ) which are easier to model than compound
domestic and industrial loads.

From the point of view of the machine learning framework, it is interesting to observe
that the uncertainties in the power system model can be readily taken into account
in a similar way to the free parameters characterizing the state of the buffer region.
Since however it is generally difficult to appraise a priori how the model will affect
security, it is not always possible to replace the unknown parameters by a single value
always yielding conservative results. Thus, a better strategy would be to define random
distributions of the unknown model parameters (load sensitivities, external equivalents
: : : ) and let these vary according to the random sampling procedure.

The machine learning techniques may then be applied in various ways, depending on
the type of information desired. For example, if a security criterion, robust with respect
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to model uncertainties is sought, the candidate attributes should not provide explicit
information about the latter model. On the other hand, if it is desired to assess the
quantitative impact of model uncertainties on the security of the system, then some
attributes could be used which provide information about this model and the criteria
thereby obtained could be compared with the former robust criteria, to assess the
impact of the model. This would provide the possibility of making global sensitivity
assessments with respect to modelling aspects over a very broad range of conditions
represented in a data base.

12.2 PHYSICAL ASPECTS OF LEARNING PROBLEMS

Once a particular security study has been delimited on the basis of considerations
discussed in the preceding three chapters, and once a data base providing information
about classes of power system states and relevant contingencies has been constructed,
several importantmodellingchoices have to be made to derive proper security criteria
from machine learning techniques. Such modelling issues are discussed below.

12.2.1 Problem decompositions

Although a security study will generally cover a restricted security subproblem, this
decomposition may still cover a very wide range of situations and contingencies. For
example, the voltage security study in the context of the EDF system covers many
different topologies and 26 different contingencies. Similarly, the transient stability
study of the Hydro-Qúebec system, while considering only one of the three main
transmission corridors of this system, still considers a very complex security problem
since more than 300 different topologies are covered and simultaneous stability with
respect to all possible single-line faults in the transmission corridor are considered.

Thus, to obtain good security criteria and also to facilitate their analysis and validation,
it is generally appropriate to decompose the complete security problem covered by a
data base into a series of simpler, more tractable subproblems. This decomposition may
be done by considering either subclasses of power system configurations or subclasses
of contingencies, or both.

Power system configurations

This decomposition consists of considering a subset of operating states contained in a
data base which a priori are supposed to share some common features for the considered
security problem. Generally the criteria used to decompose the data base are provided
by major topological characteristics (such as the number of lines in operation in a part
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of a transmission corridor, or the number of nodes in an important substation) supposed
to influence the kind of contingencies which may become constraining and / or the type
of parameters which will influence significantly their severity.

Groups of contingencies

Sometimes it is easier to decompose the problem a priori by considering groups of sim-
ilar contingencies, or if there are no striking similarities to consider single-contingency
security criteria, right from the beginning.

Most often the power system engineer’s expertise may suggest how to associate sub-
classes of power system configurations with groups of contingencies known to be
potentially severe for these subclasses.

The main interest in the problem decomposition is the possibility to exploit prior
knowledge about security assessment. If such prior physical knowledge is rich enough,
one may expect to obtain better security criteria, with easier interpretation and valida-
tion. Throughout our investigations with the decision tree method reported in the next
chapters, it was consistently found that by decomposing an overall problem into sub-
problems, simpler and often more reliable trees could be obtained than if too complex
complete security problems were considered.

Of course, to increase reliability other means may also be used, such as richer security
information in the form of security indices or margins (e.g. see below), or a larger data
base, or even more sophisticated attributes; but the problem decomposition approach
is a simple and effective means of exploiting existing prior knowledge and providing
interesting output information.

12.2.2 Security classes vs margins

Basically the security problems are formulated as a two class problem : the power
system in a given state is either sufficiently secure or it is not. In addition to this
discrete information, other continuous securityindicesmay be determined, such as
energy margins or critical clearing times in transient stability, or the voltage security
indices proposed by several authors [TA 83, CA 84, VA 91a] .

In contrast to these indices, operators useoperating marginsdefined in terms of oper-
ating parameters, which determine e.g. how much increase in power flow or in system
load may be tolerated without the system becoming insecure. Thus, security indices
are useful to the operators insofar as they help to derive operating margins, for example
through numerical or analytical sensitivity computations. On the other hand, operating
margins may also be obtained without calling for the indices, via repetitive security
simulations, which are however generally too bulky to be performed in real-time.
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Figure 12.1 Deriving operating margins

In the context of machine learning approaches, it is in principle not required to de-
termine security indices or operating margins while pre-analyzing the security of the
generated samples. Indeed, only a precise characterization of each state is required for
constructing the security criteria, and if the sample data is rich enough the resulting
criteria will implicitly contain information about the marginin terms of the parameters
used as attributes. Thus, if the attributes are the usual operating parameters, the syn-
thetic security criterion learned may inform about the operating margin for any desired
situation, if not directly, at least by the same “dichotomization” approach presently
used to derive these margins from repetitive security simulations. The main practical
difference is of course the CPU time aspect, since classifying a situation as secure or
insecure will be a matter of milliseconds when using the learned criteria, while each
security simulation requires a matter of seconds or minutes, even with very simplified
models. This is illustrated in Fig. 12.1.
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Stated otherwise, the machine learning methods allow us to derive global approxima-
tions of the security boundaries which subsequently may be very easily exploited to
recover operating margins, even if only a discrete secure vs insecure classification was
provided at the learning time.

The above discussion does not however imply that securityindiceswould not be inter-
esting to exploit for the design of the security criteria, in the context of the machine
learning framework. Actually, within the context of our research we repeatedly found
that security indices (and also operating margins) provide indeed very valuable infor-
mation and may be exploited in practice to increase the flexibility in the construction
and validation of security criteria.

For example, in the preceding chapters we have illustrated the use of security indices
(CCTs) to distinguish among normal and large errors when assessing the reliability
of the security criteria derived from a set of simulations. Further, in the context of
classification it may be useful to slightly bias the classification in order to increase the
probability of detecting unstable states, and this may be realized easily by exploiting
continuous security indices at the learning stage, as we will illustrate in the next chapter.
In the same spirit, we have used the hybrid DT-ANN approach and margin regression
techniques to increase the reliability of security criteria.

We may conclude that relevant security indices or operating margins may provide richer
information and lead to more effective use of the machine learning approach. On the
other hand, the off-line determination of security indices leads to higher, but generally
not prohibitive, computing times.

12.2.3 Types of attributes

In the preceding discussions we mentioned that in power system operation some par-
ticular parameters are privileged attributes because they correspond to the variables
which are usually manipulated by operators. These so-called operating parameters
mostly correspond to particular power flows (zone import or export, flows through
corridors) or power generation reserves in different regions as well as regional load
levels. They are used to appraise the overall security situation in terms of operating
margins. The values of the latter are generally interdependent and change strongly with
the power system configuration.

On the other hand, in terms of decision making and in particular assessing the system
security, other physically more appropriate variables may be used, for example to
simplify the description of security regions. The choice of these variables is part of
the classical representation problem which we have mentioned in chapter 1. Below we
will discuss implications of various possible choices of attributes and it is important to
realize that whatever the intermediate attributes used to learn a security criterion, in the
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end they must be reformulated in terms of the operating parameters normally used in
the considered utility.

Controllable attributes

By controllable attributes we refer to those elementary or synthetic parameters whose
values may be easily adjusted so as to act on the security of a power system in a given
operating context. They may indeed correspond to actual controls, such as voltage
set-points or active generation, but they may also correspond to other parameters which
may be indirectly adjusted by acting on the former, such as power flows and reactive
power generation, provided that there exists a computational tool or a manual approach
which can be applied to the corresponding control.

These kind of attributes are more or less equivalent - if not equal - to the basic operating
parameters and the translation of a security criterion is more or less trivial. In addition
to the usual control variables we include also the logical status type of information
describing the topological configuration of the network and load level, which may
become controls under particular circumstances.

Ideally, security criteria would be directly expressed in terms of these simple and easy to
appraise attributes. However, since the physical relationship between these parameters
and security may be quite complex in practice (otherwise security assessment would
be a trivial task which is definitely not the case), it may be difficult to derive security
criteria which are sufficiently accurate.

Observable attributes

The second level in the degree of sophistication of attributes consists of more complex
functions of the power system state and configuration, but which can still be con-
sidered to be parameters available in the security assessment environment, and which
essentially characterize the situation independently of any hypothesis about a particular
contingency.

The most simple parameters may be active and reactive losses and angular spreads.
More complex combinations of topology and operating point, such as short-circuit
power for example, are available in many control centers. Other, even more sophisti-
cated quantities may involve the computation of internal angles of generators or reactive
reserves derived from the current operating point and capability diagrams. Moreover,
some standard contingency independent security indicators may provide very valuable
information, such as the pre-fault load power margins computed normally for preventive
voltage security assessment.
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Complex attributes

Attributes start to become truly complex as soon as their definition (and computation)
depends on an assumed contingency. For example, in the context of preventive security
assessment one may use information about the fault clearing scheme, so as to compute
quantities as defined above but corresponding to the post-fault configuration.

Various more or less sophisticated attributes may be thought of and have been proposed
in the literature. For instance, in the context of transient stability, attributes have
been derived on the basis of Lyapunov functions, such as initial kinetic energy and
accelerations, computed immediately after fault clearing.

Several comments can be made.

First, increasing the sophistication of attributes can certainly lead to improved perfor-
mance in terms of accuracy, however this is always at the expense of a reduction in
interpretability and a corresponding difficulty in validation.

Second, in some sense the more sophisticated the attributes the less interesting the
information provided by the machine learning approach. At the extreme the attribute
may be so sophisticated that it is almost equivalent to the security information which
is sought. Then using the learning approach merely reduces to tuning a few thresh-
olds on this “super attribute”. This may be an interesting approach to compare and
systematically analyze on the basis of a large sample various relationships among var-
ious security indices, but is not generally an interesting avenue for the development of
security criteria.

Third, the more sophisticated the attributes the more important the computational in-
volvement to determine their values. For instance, using attributes derived from the
Lyapounov direct method may be obtained at the beginning of the post-fault period.
This will then require us to simulate the system in the during fault period, for each con-
tingency and for each operating state, which will significantly reduce the computational
advantage of using security criteria obtained by a machine learning approach.

Finally, the more intricate the computations required to obtain attribute values the more
information we need about the relevant modelling aspects. For example, if we compute
attribute values in the JAD state for voltage security assessment, we need to make
a hypothesis about the load model; similarly for transient stability assessment. This
means that these attributes will implicitly exploit information about the load model,
and care must be taken to account for uncertainties on the latter values, in order to
avoid overestimating the quality of these attributes.
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13

Transient stability

In this last part we report on simulations we carried out in the context of
machine learning approaches. The description is organized in terms of the
physical problems and corresponding practical application studies.

13.1 INTRODUCTION

Our research on the application of artificial intelligence methodologies to power systems
was initiated some 8 years ago, in the context of on-line transient stability assessment.
The objective was to assess what and which kind of AI methodologies could be helpful
to solve this highly nonlinear problem, conventionally tackled via long numerical
simulations, impossible for on-line applications.

Since experts derive their transient stability knowledge mainly from off-line simula-
tions, it was judged that a machine learning approach could automate this process to
a certain extent. In particular, such an approach was expected to be potentially able
to exploit off-line large amounts of computing powers, which were starting to become
available. This motivated us to identify ID3 as a plausible machine learning method,
able to treat large-scale problems; to assess its feasibility, we first adapted and applied
it to various “academic” problems.

Of course, our research was closely related to other tentative applications to this problem
of pattern recognition techniques, in particular artificial neural networks. However,
while the latter methods - as they were formulated - mainly relied on a small number of
pragmatic features, our main goal was to stick as closely as possible to the way experts
tackle the problem in real life, so as to take advantage of their collaboration and their
feedback, paramount for the success of such a method. In turn, this imposed the use of
standard operating parameters as attributes and required us to formulate the resulting
criteria in as simple as possible manner to make their interpretation accessible to the

259
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experts. It was also deemed necessary to decompose the strongly nonlinear problem
of transient stability into simpler subproblems, in order to derive simple and at the
same time reliable decision trees. This yielded essentially single-contingency trees;
our corresponding investigations are collated inx13.2.

This initial research has shown the credibility of the proposed approach and consolidated
the tree building methodology as it is formulated today. The following step has
concerned a research project started in the early 1990’s in collaboration with the R&D
department of EDF; the objective was to assess the feasibility of the approach in
the context of the particularly large-scale EDF system. Initially, transient stability
assessment was tackled for on-line purposes. But it soon became clear that this method
could be interesting within the contexts of planning and operational planning as well;
thus the evaluation of potentials and weaknesses and the possible improvements of the
methodology concerned a rather broad field.

Note that while simplified dynamic models were used to save computation times,
we were able to answer many practical questions, in particular those relating to the
specification and generation of a data base, and the improvement of the quality of
decision trees to reduce non-detections of unstable situations. Later on, the research
was extended to multicontingency decisions trees and considered compromises between
these and single-contingency ones. These investigations are reported in detail inx13.3.

Finally, a second research project was started in 1992, in collaboration with the opera-
tion planning and control center teams of Hydro-Québec, aiming to assess the decision
tree methodology in the context of their system. The long-term objective was to provide
a tool for the operational planners, by allowing them to determine in a systematic way
the operating guidelines for their system concerning the transient (and also mid-term)
stability limits. It was thus hoped to advantageously replace the presently used meth-
ods. The first, promising results obtained within this research are reported inx13.4
together with the projected future research.

Having gradually gained confidence in the methodologies of data base generation and
of learning methods, we started investigating complementary features of statistical
and neural network methods; they led us to make some additional tests with the data
bases generated for the EDF and Hydro-Québec systems. They are reported where
appropriate.

13.2 ACADEMIC STUDIES

Three studies were carried out on three different academic systems of growing size, a
simple One-Machine-Infinite-Bus (OMIB) system, an outdated 14-machine version of
the Greek system and a 31-machine North-American system.
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Figure 13.1 OMIB system

These simulations, described in [WE 90a, WE 91a] , allowed us to obtain a good under-
standing of the ID3 decision tree induction method initially used; they also validated the
adaptations made on the automatic optimal threshold search for numerical attributes,
and on the stop-splitting criterion [WE 89a] .

Below we briefly describe the three study systems and summarize the main outcomes, in
order to provide some insight into the research process gradually leading to the present
formulation of the decision tree method. Thus, in this retrospective, description of
detailed quantitative results will be avoided.

13.2.1 Study systems and data bases

OMIB system

The simple OMIB system is represented in Fig. 13.1. The single machine is represented
by a classical model, i.e. by constant mechanical power (equal to the prefault electrical
output active power) and constant electromotive force (equal to the its prefault value)
behind transient reactanceX0, which models the effect of the actual direct axis transient
reactanceX0d and short-circuit reactance of the machine’s step-up transformer. The
transmission system is modelled by a constant equivalent short-circuit reactanceX̀

and infinite inertia. The operating point of the OMIB system is defined by the prefault
active generation of the machine and the voltage magnitudes at the machine EHV bus
Vm and at the infinite busV1 [WE 90a] .

The learning and test samples were generated according to uniform and independent
sampling ofP; Vm; andV1 in the following intervals (in per unit) :

Vm 2 [0:9 : : :1:1]

V1 2 [0:9 : : :1:1]

P 2 [0:3 : : :0:7]:

Transient stability was assessed with respect to a lateral1 three-phase short-circuit
(3�SC) at the machine EHV bus. The CCT was computed by the equal-area criterion
[PA 93] .

1A “lateral” fault is a fault with identical prefault and post-fault configurations.
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Decision trees were built on the basis of the standard ID3 method augmented with
the optimal threshold search algorithm. The candidate attributes used were the above
three independent variables. Two-class decision trees were grown for various sizes
of learning sets, using various CCT thresholds to define the stable and unstable class.
Several naive stop-splitting rules were experimented with, which showed the need for
a rule combining both apparent information quantity and learning subset size. The
test set error rates varied between 2% and 3%. These simulations allowed us also to
appraise the biased character of the resubstitution error rates computed on the basis of
theLS.

While this example was clearly too simple to allow extrapolations to real large-scale
systems, it had the advantage of enabling us to generate random learning and test
sets very efficiently and with a great flexibility. We gained some experience with the
decision tree building method and in particular with the dependence of the decision
trees on the random nature of the learning set. We have learned that this randomness
of trees did not disappear with a growing learning set. Due to the lack - at that time
- of an effective stop-splitting rule, increasing the learning set size yielded an almost
proportional increase in tree complexity and, while the attributes chosen and their
thresholds tended to stabilize at the top-nodes, the deeper test nodes kept being rather
sensitive to the random samples.

Thus, there was a true need for a stop-splitting criterion capable of preventing the
method developing nodes on the basis of too small samples. Our first idea was to stop
splitting at nodes corresponding to a too small learning set, in terms of a threshold
Nmin on the number of states. Later, guided by the discussions in [KV 87] the idea
came to use a hypothesis test for this purpose.

Notice that our initial motivation for introducing the hypothesis test was not to improve
the generalization capabilities of the trees nor to identify noisy attributes, but rather,
to prevent the method from developing nodes which were overly dependent on the
random nature of the learning set. Only later did it become apparent that this strategy
could also identify noisy attributes and improve significantly the reliability of trees,
in particular when the classification problem becomes non-deterministic because of
missing information in the attributes.

Greek system

To confront the methodology progressively with more realistic systems, we applied it
to a 14-machine version of the Greek EHV system. For this study, we considered a
complete 150kV and 380kV system representation, comprising 92 buses and 112 lines
and studied the transient stability limits of an important power plant with respect to a
lateral three-phase fault at its EHV bus. Thus, this was essentially equivalent to the
above OMIB simulation, where the infinite bus is replaced by the complete system
model.
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The data base was composed of 201 different operating states of fixed base case topol-
ogy, by combining in a deterministic procedure variations of active power generated
in the study plant, with variations of active and reactive generations and load nearby
the study plant [WE 90a] . Due to the very small size of the data base (at that time,
we used a DEC 20 computer of about 2 MIPS which limited somewhat the possibility
of generating a large data base) we built decision trees on the basis of the complete
data for two, three and four classes. Ten different candidate attributes were proposed
concerning the active and reactive power generations and the load and voltage near
the faulty bus. In the context of these simulations we introduced for the first time the
improved hypothesis test based stop-splitting criterion described inx3.4.4.

To evaluate the reliability of the obtained decision trees with respect to unseen situations,
we have used theleave-one-outcross-validation scheme. This procedure has the
advantage of producing unbiased error estimates without requiring an independent test
set (seex2.5.7). The obtained error rates varied between 5.0% for the two-class problem
and 9.5% for the four-class problems.

The main conclusion was that the complexity and error rates of the decision trees
increased progressively with the number of security classes. The second main outcome
was that the method was able to identify among the candidate attributes a subset of
most discriminating ones, and the resulting trees were able to provide interesting and
interpretable physical information. Thus, the method was able to exploit the more or
less local characteristics of a given security problem. This motivated further, more
systematic investigations on a larger power system model.

31-machine system

In the meanwhile, the available computing powers had grown enough to allow tack-
ling larger power systems and to initiate systematic studies with sufficiently large data
bases, providing representative independent test sets to evaluate the resulting decision
trees. We have thus considered the 31-machine system described in [LE 72] , composed
of 128 buses and 253 EHV lines (345kV and 765kV). It is an equivalent system of
an (unknown) North-American utility and its interconnection. It was deemed suffi-
ciently large to provide interesting simulation results and sufficiently simple to avoid
unnecessarily bulky computations.

Further, to provide an unbiased estimation of the method we have generated a single
globaldata base, independently of any fault specific considerations (as opposed to the
fault-dependent data base constructed for the Greek system). Admittedly, we would
not normally advocate this method (cf. the discussion of chapter 11); nevertheless,
this blind procedure provided an unbiased evaluation of our methodology. Had we
introduced fault specific considerations, we would have made the conclusions depend
on the quality of the physical knowledge injected in the data base generation procedure,
whereas the purpose was to evaluate the knowledge which could be acquired via the
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learning method. The other reason for generating a global data base, by screening a
broad range of power system situations with more or less independent changes in the
power flows and voltage distributions, was to attempt to represent all major effects.
Thus, it was possible to check the local nature of single-contingency transient stability
limits expressed in terms of the static prefault parameters.

The data base was randomly generated on the basis of plausible scenarios, correspond-
ing to various topologies, load levels, load distributions and generation dispatches.
Hereafter we sketch the way used to generate them, to analyze them from the transient
stability point of view, and to build the attribute files [WE 91a] . The buses of the power
system were grouped into zones and the operating states composing the data base were
generatedrandomlyaccording to the followingindependentsteps.

1. Topology.Selected by considering base case topologies, single outages of a gen-
erator, a load or a shunt reactor, and single or double line outages. The outaged
elements were selected randomly.

2. Active load.The total load level was defined according to a Gaussian distribution
(� = 32GW and� = 9GW ). It was distributed among the zones according to the
random selection of participation factors, then among the load buses of each zone
proportionally with respect to their base case values. The reactive load of each bus
was adjusted according to the local base case power factor. This resulted in a very
strong correlation of the loads of the same zone, and a quite weak one among loads
of different zones.

3. Active generation.In a similar fashion the total generation corresponding to the
selected load level was distributed among the zones according to randomly selected
participation factors, then among the generators of each zone according to a second
random selection of participation factors. Thus, neighbor generators were less
correlated than neighbor loads. The reactive generations were obtained by a load
flow calculation; the voltage set-points were kept constant.

4. Load flow calculation.To check the feasibility of an operating point and to compute
its state vector, it was fed into the load flow program, and accepted if the latter
converged properly. A total of 2000 states were accepted corresponding to 90% of
the generated states.

5. 31� 2000 approximate CCTs.For a 3�SC at each one of the 31-generator buses
the CCTs were computed using the very fast extended equal-area criterion [XU 88,
XU 89] . This gave us good information about the relative severity of these con-
tingencies in relation to the states represented in the data base and allowed us to
select three “interesting” ones for detailed investigations. The CCTs of the latter
were determined by the SBS method using the classical simplified transient stability
model.
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Table 13.1 Tree features and number of classes. Adapted from [WE 91a]
Gen. 2 classes 3 classes 4 classes
bus # #N Pe(%) #A #N Pe(%) #A #N Pe(%) #A

2 7 2.27 3 17 5.67 4 27 9.60 7
21 9 3.73 3 17 3.60 4 25 8.40 6
49 5 1.53 1 9 4.33 2 15 7.53 3

6. 300� 2000 attribute values.These comprised zonal statistics on loads, generation
and voltage, voltage magnitudes at all buses, voltage angles at important buses,
active and reactive power of each generator, and topology information as well as
power flows.

The diversity of the above data base allowed us to investigate a diverse set of aspects
discussed below within the context of a diverse set of security problems. This enabled
us to gain confidence in the methodology which in turn motivated us to carry on with
our investigations on real systems.

13.2.2 General trends

Below we give an overview of the general trends observed from the above “academic”
studies for the main parameters of the decision trees, namely their accuracy and com-
plexity. It is important to note that since the learning and test sets are random samples,
the reported tendencies describe the mean expected behavior, and it is possible that in
a particular situation a slightly different behavior would be observed.

However, the indicated characteristics have been determined on the basis of a large
number of simulations (more than 1300 decision trees; three different power systems;
hundreds of different candidate attributes; more than 100 different classification prob-
lems). Furthermore, they have been very systematically confirmed by the subsequent
simulations on real life power systems described in the sequel.

Number of classes

Table 13.1 summarizes typical tree characteristics as influenced by the number of
security classes. The trees were grown for three different faults of the 31-machine
system on the basis of 500 learning states and 81 static candidate attributes. The value
of� = 0:0001 was used in the stop-splitting rule. This value is further discussed below.
#N denotes the total number of nodes of the trees and #A its number of selected test
attributes among the 81 candidates.Pe denotes the test set error rate, estimated on the
basis of the 1500 test states not used to build the trees.

We notice that overall the trees remain quite simple and reliable. The number of nodes
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Figure 13.2 Tree features and numberN of learning states. Adapted from [WE 91a]

is about proportional tom�1 (m being the number of classes). The error rate becomes
large only for four classes; however, this is compensated by the fact that the errors of
four-class trees are less dangerous since they happen in general among adjacent classes.
The number of selected attributes remains very small and (which is not apparent in the
table) the attributes selected for different faults are quite different. This confirms the
fact that the trees are able to exploit the local characteristics of each transient stability
problem.

Influence of the learning sample

Figure 13.2 shows the typical effect of the size of the learning set on the complexity
and reliability of the decision trees.

The trees were built for a four-class problem for the 31-machine system. We observe
that their complexity and accuracy increase steadily with the learning set size. At the
same time, the number of selected attributes is found to increase from 2 to 11. Thus,
the more information provided to the tree induction algorithm the more detailed the
information it will be able to represent in the derived decision tree. It is also interesting
to notice that for small and moderate sample sizes the decision tree characteristics may
strongly depend on the random nature of the learning set.

On the effect of �

Figure 13.3 shows the typical effect of the pruning parameter� used in the stop-splitting
rule. Recall that a value of� = 1:0 amounts to growing the tree completely, so as
to classify correctly all the learning states, whereas the theoretical value of� = 0:0
would amount to producing a trivial single node tree.

Each point of each curve provides information of the mean relative size and error
rate of 12 different trees corresponding to 4 different learning samples and 3 different
contingencies. The curves show that for a two-class tree very small values of� (� 10�4)
tend to provide a very good complexity vs reliability compromise. Indeed, the tree
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size is less than 60% of the completely grown tree, whereas its reliability is close to
optimal. On the other hand, when the number of classes increases, the optimal values
of � tend also to increase. For three or four classes, the complexity of trees decreases
more quickly with� and a value of� � 10�3 seems to be appropriate. Notice that
the variation of the test set error rates expressed in the curves is of the same order of
magnitude or smaller than the standard deviation of these estimates; thus, the slight
increase in test set error rate systematically observed is below the significance level.

These results were confirmed by the very large range of simulations carried out on a very
diverse set of problems. A discussion of this behavior is provided in [WE 92b, WE 93h] .

Type and number of attributes

Another investigation concerned the effect of the candidate attributes on the tree char-
acteristics. This concerned the so-called masking of attributes selected by the method,
in order to assess the degree of complementarity of attributes and the effect of adding
new attributes to the candidate list. Since the decision tree induction algorithm is able
only to optimize locally at each test node, it is possible - but not very likely - that
masking a selected attribute may actually improve the resulting tree, and conversely
adding new attributes may also lead occasionally to a degradation of the tree quality.

However, in the very large majority of situations the expected “normal” behavior
is observed, and generally the above abnormal variations are rather marginal when
they are observed. In order to provide a more detailed assessment of the decision
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trees, the detailed information about score measures and information sharings among
attributes illustrated in Tables 3.12 and 3.13 have been developed and integrated in the
tree building software. In particular, this allowed us to assess the complementary or
correlated nature of candidate attributes, for the real life problems discussed below.

Error rate estimates

In the context of the simulations with the 31-machine system the cross-validation
estimate was compared systematically with the test set error rate. It was found that it
may underestimate (and also overestimate) significantly the test set error rate. This led
us to reject this method for our later simulations.

Computational aspects

In the above simulations, we used our own software implementation of the TDIDT
method written in CommonLisp, that we found largely efficient. We have provided
earlier some comparative performance figures, for real sized problems. In the context of
the above academic research, we have checked that the computational complexity of the
learning algorithm is slightly super-linear in the numberN of learning states and slightly
super-linear in the number of candidate attributes. Observe that the “theoretical” upper
bound of “n � N logN ” does not take into account the effect of garbage collection
and swapping overheads which may become more important for a larger number of
attributes.

13.2.3 Discussion

The above investigations took about 4 years in order to understand, develop and evaluate
a new methodology for power system security assessment. It crystalized into what
we have called DTTS for decision tree transient stability method, since initially this
method was applied to transient stability assessment. This research included a bunch
of orthogonal investigations concerning the use of the decision trees and in particular
the definition of distances in the attributes space, which we do not report here for the
sake of conciseness [WE 88, WE 90a] .

We have already mentioned that these investigations are not sufficient to assess the
practicality of this kind of approach within a particular power system and a given
physical problem. In fact, in the context of learning methods we must be very cautious
to avoid extrapolating unduly from one problem to another : a given method may work
very nicely on thek � 1 first problems and fail on thekth one. Nevertheless, the
investigations have shown the systematic character of the technique. They also have
shown that to handle a new problem the main task is the proper definition of a data base;
the subsequent application of the decision trees will be rather systematic even if the
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physical characteristics described in the data base are very different. Thus, the practical
feasibility of this method for real systems relies mainly on the proper generation of
data bases and on the validation by experts of the derived criteria.

These and other important practical questions were considered in the simulations
described below.

13.3 EDF SYSTEM

When we started our research collaboration with EDF, there were many open questions
about the practical feasibility of the decision tree approach. Some of these questions
were of a very general scope, others were specifically linked with transient stability in
the context of the EDF system. Before discussing the particular test bed used for our
research, let us quote the most important questions initially considered within the basic
single contingency DTTS method. In particular we quote the following.

Is it possible to exploit and adapt the decision trees to take into account the
strong effect of topology on transient stability ?

How can we generate sufficiently rich data bases and in particular obtain a
sufficient number of unstable situations, given the very small actual clearing
times of the protection system ?

Given the above indications, is it possible to build sufficiently reliable trees, on
the basis of a reasonable number of learning states, say at most several thousand
states ?

In the course of the research other additional questions appeared to be very important,
concerning the impact of the type of candidate attributes, pragmatic quality aspects and
multicontingency considerations. In particular we quote the following.

What is the quantitative impact of the type of candidate attributes on tree com-
plexity and reliability and which appropriate compromises may be identified ?

How can pragmatic quality measures be defined taking into account the different
kinds of classification errors and how can we adapt the decision tree induction
method so as to improve this pragmatic quality, in particular so as to reduce the
number of non-detections of unstable situations ?

What kind of global or contingency dependent multicontingency information is
required for on-line operation ?

How can appropriate groups of contingencies be identified to be efficiently
treated by a single tree ?
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In addition to the above practical questions, the data bases constructed for the EDF
system were also exploited in order to make various theoretical and comparative studies,
which are indicated below inx13.3.6.

Finally, the investigations of this long-term research project contributed to gain further
confidence in thepractical feasibility of the framework presented in this thesis and
allowed many improvements whilst making the methodology more practical. In partic-
ular, they yielded the data base generation approach described in chapter 11 and led to
improving the pragmatic decision tree quality in order to identify and reduce the dan-
gerous errors. On the other hand, our close collaboration with the operational planning
and planning departments of EDF has allowed us to acquire a better understanding of
practical needs and thence of potential applications of our methodology.

13.3.1 Study system and data base description

To answer the above questions a particular test problem was considered. It concerns
the stability assessment of an important nuclear power plant. It was chosen on the basis
of available prior experience along with a preliminary study for screening a broader
region.

All in all four different data bases were generated throughout this research. To provide
insight into the iterative “generate and test” nature of this process, we describe in detail
the options concerning the two first data bases, used in the studies reported inxx13.3.2
- 13.3.4, and give some indication of the main differences of the two other data bases
used in the simulations described inxx13.3.5 and 13.3.6. The reader not interested in
these details may skip them, and read only the description of the base case conditions.

The results obtained within this study are described and discussed in refs. [WE 90b,
WE 91d, WE 91e, AK 93, WE 93a, WE 93d] .

Base case conditions

The considered system is an earlier version of the EDF system formerly used for oper-
ation planning studies. It encompasses the complete 400 kV grid of the French system
as well as the most important part of the 225 kV network, yielding a 561-bus / 1000-line
/ 61-machine system. Equivalent representations were used for the surrounding Euro-
pean interconnections (Germany, Switzerland, Italy, Spain and Belgium). The overall
generation produced by the 61 (equivalent) machines corresponds to about 60,000 MW
of national generation and 50,000 MW of external equivalents. Its one line diagram is
sketched in Fig. 13.4.

The case study concerns the stability assessment of an important plant situated in
Normandy (North-West part of France). Thisstudy plantwas selected via a preliminary
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Figure 13.4 One-line diagram of the EDF system

investigation of 60 different contingencies at the 400 kV level for 9 different operating
states. Figure 13.5 describes its substation and immediate neighbors at the 400 kV
level.

The data bases were generated from a base case via modifications described below.
They essentially concern the “study region”, but of course all load flow and stability
computations were run on the entire system. This study region presumably encom-
passes all components liable to influence the stability of the study plant. It was
determined by EDF engineers in charge of stability studies. Interestingly, it was also
identified, in an independent way, using the “Combined Electromechanical Distance”
approach [BE 91b] .

The study region is composed of three large power plants (the study plant is the plant
number 3) along with the surrounding substations, and about 60 lines at the 400 kV
and 225 kV levels. The overall installed generation capacity of these plants is about
10,000 MW and the base case load is approximately of 5,600 MW (corresponding to
winter peak load) shared among 42 different load buses.
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Figure 13.5 One-line diagram of the study plant substation. Adapted from [WE 93d]

Initial data base

The primary objective was to obtain a sufficiently rich data base, which at the same
time contains plausible operating states of the region and covers as much as possible
weakened situations. For this purpose, a certain number of independent variables, liable
to influence the system stability were defined, concerning both topology and electrical
status. For each variable a prior distribution was fixed on the basis of available
statistical information about the usual situations, so that all interesting values would
be sufficiently well represented in the data base. Moreover, to exclude unrealistic
situations, constraints were imposed on values taken by different variables. 3000
operating states were thus randomly drawn, their stability was assessed and the values
of various types of candidate attributes were computed (seex13.3.3).

For each state the following tasks were executed :

1. definition of the load level in the study region, the topology of the 400 kV regional
network, local active and reactive generation scheduling;

2. building of the load flow and step-by-step data files;

3. load flow computation and feasibility check;

4. appending of the states attribute values in the corresponding attribute files;

5. computation of the CCTs of the considered disturbances via step-by-step simula-
tions.

The following three severe contingencies have been identified, classified in a decreasing
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order of criticality.

Busbar fault : three-phase short-circuit located on the busbar section 71 in substation
1; cleared by opening the lines 121 and 142, tripping machine M3 and opening the
breakers 12 and 13 to isolate the faulted section.

Double-line fault : 2 simultaneous three-phase short-circuits near sections 71 and 74
of substation 1, on the lines 141 and 142; cleared by opening both lines.

Single-line fault : a three-phase short-circuit on line 131 near the busbar section 72;
cleared by opening this line.

The CCTs of the above contingencies were computed by a standard step-by-step pro-
gram.

The main parameters used to draw randomized prefault operating states were topology,
active generation / load, voltages, as outlined below.

Topology. It was defined by the 18 regional 400 kV lines and by the number of nodes
in the 4 substations represented in Fig. 13.5.

Line outages. 10% of the states were generated with a complete (i.e. base case)
topology, 50% with a single line outaged, selected randomly among the 18 lines
of the region; the remaining 40% corresponded to the simultaneous outage of
two “interacting” lines : 40 pairs of interacting lines were defined, consisting
of lines either in parallel in a same transmission corridor, or emanating from
the same bus.

Study plant substation. Substation 1 was restricted to 1 node (breakers 12 and
34 were closed) if a single generation unit was in operation; otherwise it was
50% of the time configured with 1 node and 50% with 2 nodes, and so are
substations 3 and 4. Substation 2 was 90% of the time configured with 2
nodes.

Load. The total regional active load level was drawn according to a Gaussian distribu-
tion of � =3500 MW and� =1000 MW. It was distributed on the individual load
buses proportionally to the base case bus load. The reactive load at each bus was
adjusted in order to keep a constant reactive vs active power ratio (Q

P
� 0:15).

Active generation. The active power generations of the three power plants were de-
fined independently, according to the following procedure.

1. Unit commitment. Given a plant, the number of its units in service obeyed a
plant specific distribution. Thus, for plant 1, 0 to 4 machines may be in service,
according to a priority list, and with uniform probabilities. For plant 2, the 4
following combinations were used : no unit in operation (10%); either unit 1
or unit 2 in operation (30%); both units 1 and 2 simultaneously in operation



274 13. TRANSIENT STABILITY

(60%). For the study plant, 10% of the cases corresponded to a single unit in
operation, 20% to 2 units, 30% to 3 units and 40% to 4 units; the units being
committed were drawn randomly, under the restriction of an as uniform as
possible share of the generation on the two nodes of the substation 1, if the
latter was configured with 2 nodes.

2. Active power generation. Once again, to maximize the interesting cases the
rules were plant specific. For plants 1 and 2, a random generation was drawn
in the interval of the global feasibility limits of its operating units. For the plant
3 of Fig. 13.5, the first two units in service were rated at their nominal power
of 1300 MW each, the next two were rated according to a random number
drawn in the feasibility limits of the units. This enabled the generation of
a maximum number of highly loaded situations, without losing information
about intermediate, albeit less realistic cases.

Voltage profile. A simple strategy was used to produce sufficiently diverse voltage
profiles, near the study plant. The EHV setpoint of its operating units was drawn
randomly in the range of 390 kV to 420 kV, independently of the local load level.
Furthermore, the voltage setpoint of plant 1 (the next nearest one) was drawn in the
same range and independently. This produced a quite diverse pattern of reactive
generations and flows in the study region (see below).

The above randomized modifications of the base case provide, via load flow computa-
tions, the 3000 operating states of the data base. The diversity of situations covered by
them is reflected by the statistical distributions portrayed in Figs. 13.6 corresponding
to key variables of the study plant. Figure 13.6a sketches the total active generation
of the plant : the vertical bars at 1300 MW (resp. 2600 MW) represent the number of
operating states (OSs) with one (resp. two) units in operation, rated at their nominal
power; the bars between 2850 MW and 5200 MW represent the OSs where at least
three units are in operation, two of which are rated 100% and the remaining at an inter-
mediate level, ranging from 250 to 1300 MW. Figure 13.6b shows a typical distribution
of the reactive generation of a given unit of the study plant; its Gaussian shape nicely
reflects the regional load pattern.

Figure 13.6c shows the multimodal CCT distribution of the busbar fault. The OSs
around 235ms correspond to the great majority of “normal” situations; those near 0ms
correspond to topologically exceptionally weak OSs; those above 350ms to “unusually”
stable states. Figure 13.6d illustrates that the sole attributes P-M4 and V-M4 are unable
to properly separate the stable (�) and unstable (+) states, despite the important role
played by these attributes in the various decision trees shown below.

Incremental data base

In order to investigate the possibility of improving the decision trees by expanding a
particular subtree, an incremental data base was generated for a subrange of situations



13.3. EDF SYSTEM 275

(a)  Active generation of the plant (MW)
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Figure 13.6 Statistics relative to the study plant. Adapted from [WE 93d]

corresponding to the constraints defining a particular deadend node of a tree built on
the basis of the above “global” data base. This resulted in an additional set of 2000
situations corresponding to a single-node configuration of the study plant substation and
the lines 132 and 141 systematically taken out of operation. The related investigations
are reported below inx13.3.4.

Multicontingency data base

A third data base has been generated in order to investigate multicontingency aspects,
and, in particular, the complete set of contingencies which could possibly constrain the
operating state of the power plant. Seventeen such potentially harmful contingencies
were preselected by the operation planning engineers; they are detailed below inx13.3.5.
To take advantage of the experience gained with the first data base, a new set of 3000
operating states were generated on the basis of slightly different specifications. The
main differences in the random sampling procedure are the following.

The study plant substation was kept in a constant single-node configuration. This
simplified the stability assessment.
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The line outages were restricted to the 6 outgoing lines. The probabilities were re-
spectively of 0.1 for no outage, 0.35 for one line outage, 0.35 for two-line outages
and 0.2 for three-line outages. This tended to weaken the prefault situations and
hence to increase the number of unstable scenarios.

The active regional load was drawn according to a Gaussian law of� =2500 MW
and� =800 MW. This yielded a lower level of reactive generations in the study
plant and thus also weaker situations from the transient stability viewpoint.

The active generation of the units in operation in the study plant were generated
according to triangular distributions instead of the uniform distributions used above.
The objective was to increase the diversity of high generation situations by creating
more such situations, and by distributing them on a slightly larger range of values.

Constant topology data base

Finally, a simplified data base was constructed corresponding to a constant base case
topology. In this data base, the number of units in operation in the study plant was
however kept variable while the total plant generation was distributed according to a
triangular distribution and shared uniformly by the different units in operation.

This data base was mainly exploited in the preliminary investigations of the hybrid
DT-ANN method reported in [WE 93a] and inx13.3.6 below. Only a single lateral
fault in the study plant substation was considered.

Discussion

The above description illustrates the iterative “generate and test” nature of the devel-
opment of an appropriate data base. All in all, the successive data bases generated for
the EDF system correspond to 11,000 different prefault operating states and 18 con-
tingencies. A total number of 65,000 CCTs have been computed and about 1,300,000
attribute values !

Incidentally, we mention that in addition to the investigations on the DTTS method, the
data bases were extensively exploited in another parallel research project concerning the
development of an improved version of the DEEAC method [EU 92, XU 92, XU 93a,
XU 93b] . This is a typical byproduct of the data bases generated within the machine
learning framework.

13.3.2 General parameters

A main goal of the first broad investigation carried out on the EDF system was to
determine appropriate values of the parameters of the DTTS method. About 40 DTs
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were thus built for the following range of parameters :

� learning set size :N=500 and 2000;

� values of� : � = 10�1 and 10�4;

� classifications : 11 different classifications were considered, relative to the three
faults, and different numbers and values of thresholds defining the classes.

Stability classes

For each contingency, various classifications were considered, for two-, three-, four-
class trees and various threshold CCT values.

Threshold at the “actual clearing time”. As indicated in Fig. 13.6c, despite the ex-
treme severity of the contingencies, only a small proportion of the learning states
were found to have a CCT lower than the “actual clearing time” (equal to 155ms
for a busbar fault and 100ms for line faults). An important question is therefore :
how does this imbalance between stable and unstable states influence the DTs?

Threshold at the median of the CCT distribution. If the threshold is taken as the
median of the CCT distribution (e.g. 235ms for Fig. 13.6c), the class boundary
is situated in a very dense region of the attribute space. Two competing effects
are thus expected : (i) more learning states near the class boundary provide richer
information on the attribute vs stability relation; (ii) more test states near the class
boundary will yield higher error rates.

Multiclass trees. Four-class trees were built by using three threshold values including
the actual clearing time and two larger values. In addition, for the busbar fault two-
class trees using a threshold of 350ms, and three-class trees using two threshold
values of 155ms and 350ms have also been built.

Candidate attributes

In x13.3.3 we describe the 13 lists of candidate attributes of growing complexity (all
in all 160 different attributes) which have been proposed for the decision tree method.
They characterize the study region by its topology, its electrical status, and/or the
combined effect of the two, via more or less complex combinations. These candidate
attributes may be classified into one of the three following categories, according to the
type of information they convey and the type of applications that the resulting decision
trees could handle in practice.

Controllable attributes include the regional load level, voltage set-points and active
generation of units, as well as the topological variables. The corresponding DTs
would yield straightforward analysis andcontrol tools.



278 13. TRANSIENT STABILITY

T11 + L5 + D7
CCT<155ms: 152 OSs
155ms<CCT<350ms: 1523 OSs
CCT>350ms: 325 OSs

T2: 349
Y

D1: 336 Y
L1: 13

N

TPPCL < 1630.2 MW

T3: 1651N

L2: 64
Y T4: 1587N

T5: 144
Y

L3: 79
Y

T6: 65
N

D2: 27
Y

D3: 38
N

Subst3 < 2 nodes

AP/LP < 1255.5 MW

T7: 1443N

T8: 1438 Y

T9: 177
Y

L4: 99
Y

T10: 78
N

D4: 19
Y

T11: 59
N

D5: 31
Y

L5: 28
N

Line142-Q < -43.5 Mvar

Line141-P < 127.7 MW

AP/LP < 1220.3 MW

D6: 1261N

V-M4 < 395.5 kV

D7: 5

N

TPPCL<2356.5MW

Q-M4 < -100.1 Mvar

M4-Post-Fault = Isolated

AP < 921.0 MW

62 Misclassified states out of 3000
37 of 2000 LS

25 of 1000 TS

0 100 200 300
CCT0

5

10

15

Nb

Min = 0.8ms
Max = 348ms    
µ =  195ms
σ = 94ms

Figure 13.7 3-class DT. Adapted from [WE 93d]

Observable attributes include in addition dependent variables such as reactive gen-
erations, power flows and/or relative phases. Corresponding trees would require
auxiliary post-processing tools to allow control applications but their information
could still easily be appraised by operators.

Complex attributes may take into account any kind of information concerning the
fault location and clearance scenario as well as prefault operating state information.
These may be combined to yield complicated “ad hoc” attributes, which at the
expense of a lesser intelligibility may sometimes increase significantly the reliability
of the trees.

The trees have been tested on the basis of 1000 test states, not considered during the
learning stage. Figures 13.7 and 13.8 portray two such representative trees correspond-
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T12+L8+D5

CCT<155ms: 152 OSs
CCT>155ms: 1848 OSs

T2: 158
Y

T3: 90 Y

D1: 11
Y L1: 79N

Line141=out

T4: 68
N

L2: 11
Y

L3: 57
N

P-M4<136MW

Subst1<2nds
T5: 1842N

T6: 237
Y

L4: 80
Y T7: 157N
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Y
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N

D3: 37
Y

D4: 54
N

Subst3<2 nodes

Subst1<2 nodes

P-M4<1298MW

T9: 1605N

T10: 86
Y

L5: 48
Y

T11: 38
N

L6: 16
Y

T12: 22
N

L7: 5
Y

L8: 17
N

P-M4<234MW

Subst3<2 nodes

Subst1<2 nodes

D5: 1519N

Line232=out

V-M4<394kV

Line132=out

T6 + L3 + D4

CCT<155ms: 189
CCT>155ms: 311

T2: 401 Y

T3: 39
Y

T4: 16
Y

L1: 7
Y

L2: 9
N

Q-M124<-38Mvar

L3: 23
N

P-M12<2092MW

T5: 362N

D1: 156 Y T6: 206N

D2: 49
Y D3: 157N

Line131-Q<-43Mvar

P-M124<2360MW

Line131-P<21MW

D4: 99
N

P-M124<3381MW

Figure 13.8 DT1 of Table 13.3 subtree for node D1. Adapted from [WE 93d]

ing to the busbar fault.

Discussion

The main outcomes of this investigation are outlined below.

“Optimal” parameters. A good compromise of complexity vs reliability is achieved
with N = 2000 and� = 10�4. By using such low values of�, one dramatically
reduces the tree size without deteriorating its reliability, and often improving it : e.g.
for DT11 of Table 13.3, the size reduces from 63 to 19 nodes for� decreasing from
0:1 to 10�4; at the same time, its error rate improves (slightly) fromPe = 1:5% to
1:3%. Even more drastic complexity reductions are observed in the case of 3- and
4-class trees.

Effects of topology and electrical status. The method was able to formulate in an
effective and transparent way the combined effect of topology and electrical status
on the system stability. This is illustrated by the three-class tree represented in
Fig. 13.7. The selected test attributes are of the following three types :topology :



280 13. TRANSIENT STABILITY

Subst3 (Nb. of nodes), M4-Post-Fault (isolated or not);electrical status : Q-M4,
V-M4, Line141-P and Line142-Q;“ad hoc” combinations : Accelerating Power
(AP), Total Prefault Power of Cleared Lines (TPPCL), Accelerating Power divided
by the number of remaining Lines in the Postfault configuration (AP/LP).

Classification w.r.t. the “actual clearing time”. The obtained trees2 are very simple
(15 to 30 nodes, less than 10 test attributes) and quite reliable (Pe � 1 to 2%).
Such typical trees are portrayed in Figs. 13.7 and 13.8. (The LH subtree attached
to node D1 of Fig. 13.8 is discussed inx13.3.4.) Relating to the tree of Fig. 13.7,
the typical error-bar diagram in the lower part of the figure provides more refined
information about the classification errors, in terms of their CCT : out of the 62
states misclassified by the tree3, a very large majority are clearly concentrated in the
�10% range of the thresholds of 155ms and 350ms defining the stability classes.

As concerning the tree of Fig. 13.8, it is interesting to note that most of its test
attributes (5 out of 7) are topological ones; a further analysis (not given here)
shows that they carry about 67% of the “information quantity” (i.e. classification
capability) of the tree.

Classification w.r.t. the median. The corresponding trees are generally much more
complex (e.g. about 50 nodes, up to 20 test attributes) and present significantly
higher error rates than the previous ones (Pe � 7 to 11%). However, considering
their CCT distribution, one again observes that the errors essentially concentrate in
the vicinity of the class boundary. As an illustration Fig. 13.9 provides the CCT
distribution of the classification errors of DT26 of Table 13.3 (Pe = 7:1%, 51 nodes,
14 different test attributes) : 90% of the errors concentrate in the 235ms � 10%
range and only 3% of the errors (5 cases out of 3000) fall below 210ms.

Four-class trees. The error rate and the complexity are even more important. However,
here most of the errors are located in adjacent classes and correspond to a less
misleading diagnostic than for two-class trees. This is illustrated in Table 13.2,
where the diagonal entries correspond to correctly classified states, the entries
below the diagonal to overly optimistic diagnostics, those above the diagonal to
overly pessimistic ones.

13.3.3 Effect of attributes

The “optimal” parameters determined in the above investigation (� = 10�4,N = 2000)
were used to assess the different types of candidate attributes described below. Trees

2For the actual clearing time as well as for other thresholds located in a valley of the CCT distribution.
3All the available 3000 states are used for the purpose of this error analysis, in order to ensure that

no “large” errors are missed, should they be learning states. The 62 errors are composed of 25 out of the
M = 1000 test states and 37 out of theN = 2000 learning states.
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170 Misclassified states out of 3000
99 Learning states out of 2000 LS

71 Test states out of  1000 TS

11 OSs5 OSs

195 210 235 260 300
 CCT ms0

10

20

30

Min= 193ms    
Max= 342ms    
µ= 238ms
σ= 18ms

Figure 13.9 CCT distribution of errors of DT26. Adapted from [WE 93d]

Table 13.2 Distribution of errors of a 4-class tree. Adapted from [WE 93d]

True class (thresholds in ms)
Nb. of test states (Nb. of all states)

<155 155-200 200-250 >250 Total

Class <155 59 (197) 12 (25) 3 (3) 1 (2) 75 (227)
via 155-200 11 (25) 139 (496) 36 (71) 0 (2) 186 (594)
DT 200-250 0 (0) 24 (53) 286 (867) 41 (88) 351 (1008)
(ms) >250 0 (0) 1 (1) 30 (70) 357 (1100) 388 (1171)

Total 70 (222) 176 (575) 355 (1011) 399 (1192) 1000 (3000)

were thus built for the busbar fault, corresponding to various lists of candidate attributes
and to the two 2-class classifications obtained with the threshold values of 155ms and
235ms.

Different types of candidate attributes

13 lists of candidate attributes have been used during our application study.

1a. Controllable attributes. This minimal list contains the 38 following variables :
(i) active generation of each unit of each plant of the region; (ii) their EHV voltage;
(iii) global regional load; (iv) logical attributes describing the topology. Ideally, the
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DTs should rely on this kind of attribute only.

2. Observable attributes. The following 9 lists are composed of prefault attributes of
growing complexity, i.e. of decreasing controllability. Lists 2a-2e are elementary
parameters of the operating state, easily available in a control center. Lists 2f-2i
refer to composite attributes, combining information about several power system
components, which however are restricted to be fault independent.

2a = 1a + Reactive generation of each unit of the region.

2b = 2a + Power flows on important lines

2c (resp. 2d.) = 2b (resp. 1a.) + Phases of the main substations of the study re-
gion, relative to the external load area.

2e = 2b + Linear combinations of P, Q and V allow us to take into account with
a single tree test, the combined effect of two different characteristics via a
linear combination.

2f = 2b + Topology combinations

2g = 2f + Power combinations

2h = 2g + Short-circuit admittances/powers quantify the combined effect of line
outages as well as substation and plant configuration on the strength of the
topology.

2i= 2h + Linear combinations of P, Q and V

3. Complex attributes obtained by including in list 2g attributes of arbitrary com-
plexity possibly taking into account the during and / or postfault configuration.
They generally yield simpler and more reliable trees, but require more complex
computations and a certain expertise to use them.

3a = 2b + “Ad hoc” combinations suggested by prior experience and physical in-
terpretations. They take into account the effect of topology and electrical
status on the accelerating power during the fault on period and of the number
of available lines to exchange the stored energy during the postfault swings.

3b = 3a + Postfault information provided in the form of equivalent postfault equi-
librium parameters (Th́evenin e.m.f., power angle, maximal electric power: : : )
of an empirical “one machine infinite bus” representation used by planning
engineers, as a rule of thumb for first shot stability assessment.

3c = 3a + Linear combinations of P, Q and V. 4

4Notice in Table 13.3 the good performances of DT13 and DT26 obtained by using attributes of this
type.
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Table 13.3 Effect of the types of candidate attributes. Adapted from [WE 93d]
N = 2000 M = 1000 � = 10�4 Hm = 10�2

ATTRI- � = 155ms � = 235ms
-BUTES 222 Unst & 2778 St 1493 Unst & 1507 St

List Nb. DT Quality Compl. DT Quality Compl.
Pe% IDTQ % #N #A Pe% IDTQ % #N #A

1a 38 DT1 1.8 63.7 25 7 DT14 11.3 70.7 49 14

2a 48 DT2 1.5 74.5 29 9 DT15 11.5 71.4 51 13
2b 60 DT3 1.7 76.6 23 10 DT16 9.9 71.9 53 15
2c 72 DT4 cf. DT3 cf. DT3 DT17 10.1 71.4 55 18
2d 50 DT5 2.3 58.7 21 9 DT18 10.6 70.9 45 13
2e 63 DT6 2.0 80.2 23 9 DT19 10.0 75.3 55 14
2f 72 DT7 1.6 76.1 21 10 DT20 cf. DT16 cf. DT16

2g 92 DT8 cf. DT7 cf. DT7 DT21 11.1 73.5 61 18
2h 120 DT9 1.7 78.7 23 11 DT22 11.3 75.1 67 20
2i 123 DT10 1.4 79.9 21 8 DT23 9.7 76.6 55 18

3a 100 DT11 1.3 78.2 19 9 DT24 8.2 79.2 43 14
3b 119 DT12 1.9 85.0 9 4 DT25 7.3 88.2 41 15
3c 103 DT13 1.0 78.6 15 7 DT26 7.1 81.5 51 14

Tree characteristics

Some interesting characteristics of the resulting trees are summarized in Table 13.3,
for growing attribute complexity : list 1a corresponds to purely controllable attributes,
lists 2a-2i to observable ones, and lists 3a-3c to complex ones. The first two columns
of the table identify the name of the list and the number of its candidate attributes. The
next five columns relate to trees built with the “actual clearing time” threshold (155ms),
whereas the following five use the “median” threshold (235ms). For each one of these
two blocks, the following columns are listed :
� “DT” : the tree name
� Pe% : the test set error rate
� IDTQ % : the information quantity provided by the tree, evaluated as a percentage of
the learning set entropy; it reflects the degree of tree classification capability in a global
way [WE 91a]
� #N : the tree complexity in terms of its node number
� #A : the number of test attributes selected by the tree.

A comprehensive discussion about the rich, multiform information provided by a tree
would necessitate much space. We will restrict ourselves to observe again that globally,
the trees can indeed provide a clear picture of the intricate transient stability phenomena.
At the same time, they assess the stability behavior of an operating state in terms of
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solely the test attributes relevant to this state. Further, the influence of each test attribute
may be appraised by means of its relative position in the tree and by its information
quantity or classification capability.

These and many other pieces of information may be very useful to the system operators;
they corroborate and/or complement their own experience obtained via tedious everyday
learning of the system behavior, and help them get a refined and confident understanding
of the phenomena.

The sheer classification ability of the tree through its hierarchical structure is another
fundamental property worth mentioning again; it is nicely highlighted by comparing
DT1 of Fig. 13.8 with the extreme intertwining of states’ stability degree suggested by
Fig. 13.6d, drawn for two quite important numerical test attributes of the tree : P-M4,
the active power generated by unit 4 which appears at three different test nodes and
contains about 19% of the tree’s information quantity, and V-M4, which, although used
only once, contains 14% of the information quantity of the tree.

Coming to more specific information stemming from the results of this section, we
observe the following.

Stop-splitting rule. The effect of parameter� on the tree complexity and reliability,
observed in previous studies, is fully corroborated : using low� values allows one
to reduce the tree complexity by a factor of 2 to 3, while improving (albeit slightly)
reliability.

DTs built w.r.t. the “actual clearing time”. Table 13.3 shows that even the most el-
ementary attributes (list 1a) yield DTs of satisfactory reliability (this is confirmed
by a more refined analysis of the classification errors). A very good compromise
thus seems to be DT1, if sensitivity analysis and preventive control applications are
sought. On the other hand, DT13 seems to be a good choice if only analysis is
considered : it is more reliable and the used attributes, although interdependent and
fault specific, remain quite easy to appraise in a control center environment. Thus
the combined use of both DT1 and DT13 would allow us to achieve both reliability
and flexibility of use.

DTs built w.r.t. the median. For DT14 to DT26, the effect of candidate attributes on
tree parameters is more strongly marked : complexity and reliability vary in an
important fashion. Likewise DT1 and DT13, DT14 and DT26 appear to be a good
choice.

Linear combinations. The automatic linear attribute combination allows one in gen-
eral to somewhat improve the tree reliability (lists 1f, 2d and 3c). Their slightly
better performances are however obtained at the expense of less straightforward
tree interpretability capabilities. A further use of such attributes will be illustrated
in x13.4.
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13.3.4 Quality improvement

In its information theoretic formulation, the decision tree induction algorithm does not
distinguish between the different natures of information. In particular, it provides a
tradeoff among the detection of states of different classes which does not take into
account the pragmatic non-detection costs. Basically, the method aims at predicting
class probabilities as precisely as possible. However, in security assessment practice
one is more interested in a highly sensitive detection of unstable states than of stable
states. Hence the necessity to define pragmatic quality measures and to bias the tree
induction method in order improve the latter, if required.

Pragmatic quality measures

The detailed assessment of the pragmatic quality of decision trees led us to distinguish
between the following types of errors :-

False alarms. Stable states classified as unstable.

Non-detections. Unstable states classified as stable.

Dangerous errors. Fairly unstable states classified as unstable. A state is fairly unsta-
ble if its CCT is smaller than 0:9� , where� is the threshold used to classify states,
normally equal to the actual clearing time.

Normal errors. Unstable but not fairly unstable states classified as stable.

In practice, one is more interested in reducing the number of non-detections, and among
these, more particularly the dangerous errors than the normal errors.

In regard to these error types, the trees obtained so far via the “pure” DTTS (Decision
Tree based Transient Stability) method achieve very low error rates, with very few
dangerous errors. Yet, for real life uses, it is desirable to further reduce as much
as possible the dangerous diagnostics, without generating, however, too many “false
alarms”. To achieve this goal, the three following “pragmatic quality measures” have
been used to account for different types of errors of a tree :PFA the proportion of false
alarms;PND the proportion of non-detections;PDE the proportion of dangerous errors.

Reducing the number of dangerous errors

Among several techniques investigated, we mention the most efficient ones : (i) using a
CCT threshold slightly (5-10%) larger than the desired one, so as to increase the number
of states classified unstable; (ii) biasing the probability of unstable states, by increasing
their weight; (iii) using high relative non-detectioncosts for the unstable states when
determining the class labels of terminal nodes according to the rule described in Table
3.8. This amounts to labelling a deadend as stable, only if a large enough majority of
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Table 13.4 Quality improvement of DT3 of Table 13.3
Technique for PFA PND PDE
improvingQ Nb. (%) Nb. (%) Nb. (%)

Basic 9 (0.30) 48 (1.60) 12 (0.40)
(ii) 23 (0.77) 32 (1.06) 9 (0.3)

(ii) + (iii) 47 (1.57) 17 (0.57) 2 (0.07)

its states are stable. In other words, the “small” deadend nodes, located on the stability
boundary, are preferably labelled unstable.

The simulations show that the combined use of either technique (i) or (ii) at the tree
building stage and technique (iii) at the tree application stage, yields very satisfactory
results. This is illustrated in Table 13.4, which lists the different types of errors of DT3
of Table 13.3, and its improved versions. (The percentages are given with respect to
the 3000 states used to evaluate the tree qualities.)

Reducing the number of false alarms

As one may see, the previous techniques allow us to efficiently reduce the number
of dangerous diagnostics of a tree, but at the price of an increased number of false
alarms. We therefore propose to use an incremental tree development scheme, in order
to compensate for the latter increase.

This is illustrated in Fig. 13.8, where 500 additional learning states have been used
to build an incremental subtree for node D1. This node corresponds to the following
constraints : “Line132=out” (introduced at the top-node); “Subst1<2” (introduced at
node T2); and “Line141=out” (introduced at node T3).

Further investigations were carried out on this subregion of the attribute space, for
which a data base composed of 2000 states was generated. This rather specific range
of operating conditions corresponds more closely to a characteristic range of situations
which would be studied in operation planning. Thus, the resulting trees may reflect
more closely the type of criteria which could be used in practice, rather than the
previous very “general” trees. In the multicontingency study described below, we have
generated a data base for a similar range of conditions.

In the above subregion of D1 of the operating space the percentage of unstable states
is equal to 44%, which is much higher than overall. Thus, without incremental tree
growing the local error rate at the terminal node D1 would be 44% of non-detections
or, if we use high non-detection costs of unstable states, 56% of false alarms. To
improve the tree, a subtree is grown on the basis of 1500 states. It is slightly more
complex than our “global” tree, reflecting the fact that more refined information is
required to distinguish among unstable and stable states in the corresponding region.
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Table 13.5 Quality improvement of subtree of DT1 of Fig. 13.8
Technique for PFA PND PDE
improvingQ Nb. (%) Nb. (%) Nb. (%)

Basic 64 (3.2) 44 (2.2) 17 (0.85)
(ii) + (iii) 195 (9.75) 9 (0.5) 2 (0.1)

This tree presents error rates between 5 and 10 %, depending on the type of “false
alarm vs non-detection” compromises sought. The quality measures corresponding to
an unbiased and a very conservative compromise are given in Table 13.5. Thus, if we
replace the deadend node by the biased subtree, we are able to reduce the false alarm
rate from 56% to 9.75%, at the price of a negligible number of non-detections.

The above suggested iterative tree enhancement requires further investigations to be-
come truly effective, e.g. to quantitatively evaluate the amount of additional learning
states required and the proportion of tree nodes that need to be expanded. It appears
however to be very promising, as shown by preliminary investigations. In particular, a
large majority of the false alarms of a tree are generally located at a small number (3
or 4) of its “weak” deadends. Thus only a small part of a tree would need an iterative
enhancement, and consequently only a reasonably small number of additional learning
states would be required.

Discussion

The above presentation shows the possibility of controlling the “false alarm vs non-
detection” compromises of decision trees. One of the main tools used to analyze and
improve the trees is the precomputed stability margin, here in the form of the CCT.
While the computation of these margins is costly in terms of computing times, this is
largely paid back by the increased flexibility of security assessment. Other approaches
to exploit the margin information are discussed inx13.3.6.

On the other hand, if no margin information is available, we need to develop alternative
approaches allowing us to shift the thresholds in the decision trees so as to control
their “false alarm vs non-detection” compromise. Other possibilities have already
been mentioned in chapter 6 concerning the combination of decision trees and distance
computations in the attribute space, in order to obtain complementary information from
the nearest neighbors in the data base. This needs further research however.

13.3.5 Multicontingency study

For multicontingency security assessment the following is a sample of questions which
may be raised.
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What are the global stability limits of an operating condition within which it is
simultaneously stable with respect to all contingencies ?

Which are the contingencies for which a state is unstable ?

What is the overall ranking of the contingencies in terms of their severity, for a
range of operating conditions ?

The first two questions may be easily tackled via single-contingency trees. However,
multicontingency trees may also be considered in order to take explicitly into account
the similarities and differences among contingencies.

Within this context we may distinguishglobal andcontingency dependentmulticon-
tingency trees.

The former kind of tree was illustrated inx10.1.3 and in Fig. 3.16. They classify an op-
erating state as unstable as soon as it is unstable with respect to at least one contingency,
without however indicating which one. Their main advantage is interpretability : they
are able to provide the type of information which is necessary to an operator in order to
quickly appraise the security of the system and identify potential problems and possible
control actions.

The other type of multicontingency decision trees are essentially aiming at compressing
the single-contingency trees without loss of information about the identification of the
dangerous contingencies.

As concerns the third question, it may be answered by various statistical analyses of
the data base and in particular the so-called contingency ranking trees discussed below.

The multicontingency study results are detailed in ref. [AK 93] ; below we merely give
some examples and the main conclusions.

Simulated contingencies

We selected contingencies which are possibly constraining for the study plant. Ex-
ploiting symmetry to exclude redundant contingencies, a total of 17 faults have been
defined.

12 Line faults comprising :

3 Single Line Faults (SLF) : three-phase short-circuits (3�SCs) on one of the outgoing
lines which is cleared by opening the line. The fault clearing time is 90 ms. i.e.
� = 90ms.

3 Single Line Delayed reclosure Faults (SLDF) : a delayed reclosure (after 20 secs)
of circuit breakers for SLFs is considered, assuming a permanent fault. The system
equilibrium reached when the circuit breakers reclose is computed by running a load



13.3. EDF SYSTEM 289

flow. A 3�SCs is simulated starting with this initial condition. (� = 110ms.)

3 Double Line Faults (DLF) : two simultaneous 3�SCs on the double circuit lines
towards each of the three neighboring substations are considered. (� = 90ms.)

3 Double Line Delayed reclosure Faults (DLDF) : these are the DLF with delayed
reclosure of breakers.� = 110ms .

5 Busbar Faults (� = 155ms) comprising :

2 Single Busbar Faults (SBF) : 3�SCs on the busbar sections cleared by isolating
the busbar section, tripping the machine and opening the lines on the section. (Faults
numbered 13 and 14.)

1 Double Busbar Faults (DBF) : when a busbar section is out of operation, the
machines and lines on it are transferred to the opposite busbar section. A 3�SCs is
assumed on this section. (Fault numbered 15.)

2 Central Busbar Faults (CBF) : when a busbar section is out of operation, if a 3�SCs

were to occur on the central busbar section, up to two lines and one machine would
be lost and breakers would be opened, resulting in 2 nodes at the substation. (Faults
numbered 16 and 17.)

Global decision trees

The upper part of Table 13.6 gives a comparison of the test set error rates and complex-
ities of various strategies used for simultaneous stability assessment with respect to all
17 faults. For the single-contingency DTs, the complexity is the sum of the number of
nodes of all the DTs. To allow direct comparisons, the DTs built for the two strategies
should be based on the same set of candidate attributes. The set1 of candidate attributes
is a very rich set composed of 241 attributes including fault independent and fault
dependent ones; set2 attributes correspond to a simpler set of fault independent specific
and global attributes of list 2g; set3 corresponds to elementary observable attributes of
list 2b.

The characteristics of the tree obtained via the two strategies and for the two last lists of
fault independent candidate attributes are shown in rows 2 and 4, and 3 and 5 of Table
13.6. Observe that the increase in error ratePe of the global trees vs the corresponding
single-contingency trees (e.g. 13.0% vs 10.5%) is accompanied by a dramatic decrease
in complexity (e.g. 47 vs 315 nodes).

The second part of Table 13.6 shows the characteristics of the global trees obtained for
a more homogeneous group of 14 contingencies, where the double and central busbar
faults have been excluded. The tree corresponding to the Set2 attributes (similarly to
the DT in Fig. 13.10) was described earlier in Fig. 10.3 inx10.1.3.
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Table 13.6 DTs for collective stability assessment

All 17 contingencies
No Type of DT Pe % #N

1 17 Single-contingency DTs (Set1 attributes) 6.6 % 201
2 17 Single-contingency DTs (Set2 attributes)10.5 % 315
3 17 Single-contingency DTs (Set3 attributes)14.7 % 214
4 1 Global DT (Set2 attributes) (see Fig. 13.10)13.0 % 47
5 1 Global DT (Set3 attributes) 16.6 % 25

14 similar contingency
No Type of DT Pe % #N

6 14 Single-contingency DTs (Set1 attributes)4.4 % 204
7 14 Single-contingency DTs (Set2 attributes)9.5 % 264
8 1 Global DT (Set1 attributes) 5.7 % 53
9 1 Global DT (Set2 attributes) (see Fig. 10.3)7.4 % 41

The type of information provided by a global DT is illustrated at Fig. 13.10. It is
interesting to notice that its test attributes are referring to general, fault-independent
parameters of an operating state. For example, the test selected at the top node shows
the influence on the stability of the number of lines in operation in the prefault phase.
Other test attributes account for the total active prefault power generated or flowing
through different groups of lines.

Coming back to the respective advantages of global vs single-contingency DTs, we
first note that the latter often allow us to take better advantage of contingency-specific
attributes; they are able to provide richer stability information and to identify potentially
dangerous contingencies. On the other hand, global trees characterize in a very simple
and compact manner the structural stability limits of a subsystem of the overall power
system. However, their quality depends strongly on the set of contingencies which
are grouped and also on the type of attributes used. In terms of practical uses, the
global trees are more likely to provide a control tool for the operator, whereas the
single-contingency trees are able to express more refined information which may be
usefully exploited by the engineers in the context of off-line studies and as an analysis
tool for on-line operation.

Contingency dependent decision trees

With respect to global DTs, contingency-dependent multicontingency DTs aim at
telling also which contingencies are unstable under particular conditions. They there-
fore classifystability caseswhich belong to the Cartesian product set of the prefault
operating states (OSs) and of the contingency set. Starting withN operating states and
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Figure 13.10 Global decision tree for all 17 faults

C contingencies this yields possiblyN � C stability cases. These are generally char-
acterized by three types of candidate attributes : (i) contingency independent attributes
characterizing the OS; (ii) OS independent attributes characterizing the contingency;
(iii) combined attributes taking into account both the OS and the contingency (e.g. such
as post-fault topology: : : ).

One of the potential advantages of these trees is their ability to uncover and exploit
similarities among contingencies. The partial tree shown in Fig. 13.11 illustrates
this possibility. This tree was built for the three faults defined inx13.3.1 : (i) the
“busbar” fault (denoted “BF”, in the tree), cleared after 155ms; (ii) the “double line”
fault (“DLF”); (iii) the “single line” fault (“SLF”), both cleared after 100ms. The three
contingencies together with the 3,000 operating states yield 9,000 stability cases : a
random sample of 6,000 are used as the learning set, and the remaining 3,000 as the
test set. To save space, LH and RH parts of the tree have not been represented in the
figure. Note that the nodes where the retained test attribute is “Fault” are encircled by
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Figure 13.11 Partial view of a contingency dependent tree. Adapted from [WE 93d]

dotted line boxes.

Comparing this tree with the corresponding single-contingency ones, we observe that
it has (i) a complexity of 47 nodes vs 45, the total number of nodes of the three single
contingency trees; (ii) an error rate of 1.6% vs 1.7%, the mean error rate of the single
contingency trees; (iii) 14 different test attributes (including the attribute “Fault”) vs
18, the total number of different test attributes of the single contingency trees.

Thus, without loss of reliability, the multicontingency tree provides a more synthetic
view of the stability relationship than several single contingency trees. Moreover,
similarities among contingencies are identified and highlighted by the tree (e.g. the
operating states corresponding to node D10 are unstable with respect to fault BF; states
corresponding to node D11 are stable for the SLF and DLF faults etc.).

Further, inspection of Fig. 13.11 suggests that, although equivalent to the information
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Figure 13.12 Frequency diagram of the number of simultaneously unstable faults

provided by a set of single-contingency trees, the information provided by the corre-
sponding multicontingency tree is presented in a more compact and easier to exploit
fashion. This can be explained by the fact that similarities of different contingencies
are exploited during the tree building so as to simplify the resulting tree. In particular,
overlappings of unstable (resp. stable) regions are identified and embedded in the tree :
hence, combinatorial explosion, inherent in multicontingency control on the basis of
single contingency trees, is avoided as much as possible.

Overall, though it is still too early to assess advantages of a multicontingency tree, we
observe that it directly provides any of the following types of information :

� for a given fault (among those used to build the tree) is the considered operating
state likely to be unstable or not ?

� for a given operating state, are there faults likely to create instability ?

� which conditions characterize the prefault attributes of stable operating states for a
given set of possible faults ?

Conceptually, the trees introduced here are similar to the emergency state detection
trees introduced inx10.2.3. They both classify stability cases; however, their purpose
is quite different : in the above trees we aim essentially at analyzing contingency
similarities while in the context of emergency state detection we aim at building a
robust and to possible extent a contingency independent tree, classifying stability cases
in terms of attributes determined in the just after disturbance (JAD) states.
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Figure 13.13 Contingency ranking via a global DT. Adapted from [PA 93]

Contingency ranking

The frequency diagram in Fig. 13.12 describes the overall frequency of OSs, which
are simultaneously unstable for 0, 1, 2,: : :17 faults. It shows that it is rather unlikely
to observe OSs simultaneously unstable for more than 7 faults.

Another kind of analysis is illustrated by thecontingency ranking treeshown in Fig.
13.13. It is constructed on the basis of the complete data base classified globally with
respect to the 17 contingencies, a state being classified unstable if it is unstable for at
least one contingency. On the other hand, the attributes used to build the tree are the
17 elementary single-contingency classifications, denoting a state as unstable if it is
unstable with respect to the corresponding contingency. The fact that only 8 out of the
17 contingencies have been necessary to recover completely the global classification
indicates that there is some redundancy among the different contingencies.
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Table 13.7 Contingency ranking
NodeDLF1DLF2BF1DLF3BF2BF3BF4BF5 DLF4DLF5DLF6SLF1SLF2SLF3SLF4SLF5SLF6
L1 447 164 103 87 84 85 111 63 215 106 51 46 29 24 77 31 31
L2 0 278 33 120 56 90 53 2 0 120 86 0 13 25 0 26 33
L3 0 0 183 24 6 58 113 0 0 0 12 0 0 0 0 0 2
L4 0 0 0 127 32 24 6 6 0 0 66 0 0 0 0 0 0
L5 0 0 0 0 80 1 9 2 0 0 0 0 0 0 0 0 0
L6 0 0 0 0 0 40 3 1 0 0 0 0 0 0 0 0 0
L7 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0
L8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
L9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Tot 447 442 319 358 258 298 316 75 215 226 215 46 42 49 77 57 66

Each one of the 8 left-most leaves of the tree corresponds to a subset of unstable
states; e.g. L1 corresponds to the 447 set of states which are unstable w.r.t. DLF1; L2
corresponds to the 278 states which are unstable w.r.t. DLF2 andwhich are stable w.r.t.
DLF1 : : : . The right-most leaf L9 on the other hand corresponds to the subset of stable
states. Its interpretation is that if an OS is stable with respect to the eight contingencies
in the tree, then it is also stable with respect to the other 9 contingencies. The tree
identifies a minimal set of most constraining contingencies. Further, it provides a
ranking of the latter, the top-most contingencies being the most severe ones.

Table 13.7 provides a more detailed description of the states corresponding to each of
the 9 leaves of the tree, in terms of the number of states which are unstable with respect
to any of the 17 contingencies. Since the leaves correspond to a non-overlapping
partition of the complete data base for each contingency, they partition its unstable
states. Thus the total number of states within each column corresponds to the total
number of unstable states of the corresponding contingency. For example, considering
the columns DLF4, SLF1 and SLF4 we observe that the unstable states with respect
to any of these contingencies are also unstable with respect to DLF1. Similarly, the
unstable states w.r.t. DLF5, SLF2, SLF3 and SLF5 are covered by DLF1 or DLF2.

13.3.6 Other learning approaches

In this section we describe some investigations made in the context of the EDF system
with other methods than the basic decision tree induction described in detail above.
These are interesting from several respects, since they offer for the first time a com-
parative assessment of different computer based methods in the context of a real life
power system and are based on a representative data base.

We will first describe briefly the results obtained with the sporadic investigations
concerning the hybrid DT-ANN and DT-NN methods presented in chapter 6. Then we
reproduce the results obtained in the Statlog project with the data base that we have
provided. This unique comparative study offers a very broad and systematic assessment
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of state-of-the-art methods in computer based learning, with respect to a typical and
realistic preventive transient stability assessment problem.

Hybrid

In x10.1.3 we have illustrated the use of the hybrid DT-ANN approach to improve the
accuracy of a single-contingency tree for a double-line fault.

In ref. [WE 93a] a more systematic exploration is reported, concerning a simplified
problem corresponding to the constant topology data base described above. In this
study, various methods have been compared, in particular a bare DT, a nearest neighbor
classifier used to interpolate CCTs in the space corresponding to the test attributes
selected by the tree, and hybrid as well as standard multilayer perceptrons. The results
of this study are summarized below.

The data base of 3000 OSs was divided into aLS composed of 2000 states, used for
DT building and MLP learning, and aTS composed of the remaining 1000 states,
exclusively used to estimate error rates and accuracies of CCT approximations. A
DT was built for a lateral fault, and was translated into an MLP composed of 4 input,
15 test, 16 anding and 2 output (classification) neurons, containing 138 parameters.
The MLP’s output was also exploited to avoid errors nearby the stability boundary :
rejecting states for which the activations of the two output neurons were not sufficiently
different.

The two output neurons were further merged, in order to obtain a “margin regression
MLP”. Several ways were considered to normalize the CCTs among which we report
the “full” hybrid approach, where the full range of CCTs is used and the “truncated”
hybrid approach, where only a small subrange around the classification threshold is
used. In the simulations using neural networks, the parameters are adapted on the basis
of the CCTs of the 2000 learning states.

Results are summarized in Table 13.8 showing the main features of the different
methods. Accuracy is evaluated on the 1000 test states, and characterized in three
ways : (i) the global fit is reflected by the correlation coefficient� (a value of 1 would
indicate a perfect fit, hardly reachable on test states); (ii) near threshold� the fit is
evaluated byPe, the percentage of erroneous classifications when using the method
to classify test states w.r.t. the initial threshold of 0.240s ; (iii) classification errors
are described by the lower and upper bound of their CCTs, and their Mean Absolute
Deviation (MAD) w.r.t.� . This number may be compared to the precision of the CCTs
computed by the SBS method, which is here of�5ms.

It is seen that the hybrid approaches significantly improve the accuracy of the clas-
sification, the error rates being reduced by a factor of 2 w.r.t . the DT. At the same
time, the CCTs of the classification errors fall within the SBS tolerance around the
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Table 13.8 CCT approximation via MLPs
CCT Nb. of inputs Nb. of Accuracy on TS (#TS = 1000)
Max Network Iter. � Pe % CCTs of Errors

structure INF–SUP MAD

Full Hybrid MLP (BFGS)
1.000 4 (as DT) 50 0.915 1.7 230–248 (4)

4-15-16-1 200 0.918 1.9 220–248 (5)

Truncated Hybrid MLP (BFGS)
0.350 4 (as DT) 50 0.979 1.5 230–258 (5)

4-15-16-1 200 0.982 1.4 220–239 (5)

Direct MLP (Conjugate Gradient Polak-Ribiere)
1.000 17 cand. 50 0.939 5.5 220–286 (12)

17-25-1 200 0.973 3.8 220–277 (9)
900 0.986 1.6 230–258 (8)

10-Nearest Neighbor interpolation
1.000 4 (as DT) – 0.903 2.4 210–258 (7)

Decision Tree
1.000 4 (as DT) – – 3.3 202–267 (11)

threshold� . The results also show that the “truncated” version outperforms the “full”
version. In particular, the low� obtained for the latter approach indicates that a precise
approximation of the CCT, in its full range is not possible with the DT test attributes. It
is therefore preferable to use truncated CCTs, to avoid overfitting problems in regions
where the attributes lack information.

Often, overfitting results from too many learning iterations; this is illustrated by the
(albeit small) degradation of accuracy for the full hybrid network after 200 iterations.
What is not apparent from statistical figures, as given in Table 13.8, is that the overfitting
problem may cause CCT values to oscillate dangerously in the less densely represented
regions, which may lead to completely erroneous extrapolations.

In terms of the computational involvement, the “truncated” version is definitely superior
to the others, since it requires only precise CCTs in the interesting range around� . In
practice, since most of the states fall outside this range, this would allow simulation
times to be reduced by at least a factor of 2. The computing times corresponding to
the off-line (not accounting the SBS simulation times) and on-line use of the different
methods are indicated in Table 13.9.

To obtain comparable accuracy with the “direct” approach requires a very large and
often prohibitive number of learning iterations. For example, after 200 iterations its
error rate is still higher than for the initial DT; to reach the accuracy of the “truncated”
hybrid approach more than 900 iterations are required. Taking into account the fact
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Table 13.9 CPU times on a 28MIPS Sparc2 SUN workstation
Method Off-line (seconds) On-line (ms)

Decision trees Grow, Prune, Test : 170 0.3/state
Truncated Hybrid 100 BFGS iters. : 8,000 4/state

Direct MLP 900 CG iters. : 89,000 10/state

that in real life problems the number of potential attributes could be much larger than
in our example, the viability of the direct approach seems questionable.

Statlog

The results obtained within the Statlog project [TA 94] were obtained on the first data
base constructed for the EDF system, corresponding to the results obtained above in
Table 13.3 and to the candidate attributes of list No. 2b, and the classification with
respect to the actual clearing time of 155ms.

This problem was chosen as the most representative one of preventive-wise transient
stability assessment. It corresponds to rather elementary observable attributes which
do not play in favor of the decision tree methods, which obtains the best results in
terms of accuracy with more sophisticated attributes. Using a larger set of candidate
attributes would also have been at the disadvantage of the statistical and neural network
approaches from the computational point of view.

The results obtained are summarized in Table 13.10. The first column describes the
particular algorithm used; for the sake of clarity we have grouped together the methods
according to the three families of algorithms discussed in Part 1. (Among the machine
learning methods the first seven are of the TDIDT family : Cart, Indcart, NewID, AC2,
BayTree, C4.5, Cal5.) The three following columns indicate the amount of virtual
memory and of CPU time in seconds required during the learning and testing stages
for each algorithm. This gives an indication of the relative performance of different
algorithms, which have mostly been determined on standard workstations (e.g. SUN
SPARC2). Finally, the last two columns indicate the error rates obtained in the learning
and test set. The difference between these two numbers gives an indication of the
degree of overfitting of various methods.

We quote the conclusions given in ref. [TA 94] :

Smart comes out top again for this data set in terms of test error rate (although
it takes far longer to run than the other algorithms considered here). Logdiscr
hasn’t done so well on this larger data set. The machine learning algorithms
Cart, Indcart, NewID, AC2, Bayes Tree and C4.5 give consistently good results.
Naive Bayes is worst and along with Kohonen and ITrule give poorer results
than the default rule for the test set error rate (7.4%).
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Table 13.10 Results obtained in the Statlog project. Adapted from [TA 94]
Maximum Time(sec) Error Rate %

Algorithm Storage Train Test Train Test

Statistical methods
Lin. Discrim 75 107.5 9.3 4.8 4.1

Quadrat. Discrim 75 516.8 211.8 1.5 3.5
Logist. Discrim 1087 336.0 43.6 3.1 2.8

SMART 882 11421.3 3.1 1.0 1.3
Kernel. dens. 185 6238.4 * 5.7 4.5

K �NN 129 408.5 103.4 0.0 5.2
NaiveBay 852 54.9 12.5 8.7 8.9

Machine learning methods
Cart 232 467.9 11.8 2.2 2.2

Indcart 1036 349.5 335.2 0.4 1.4
NewID 624 131.0 0.5 0.0 1.7

AC2 3707 3864.0 92.0 0.0 1.9
BayTree 968 83.7 11.8 0.0 1.4

C4.5 1404 184.0 18.0 0.8 1.8

T
D

ID
T

Cal5 103 62.1 9.8 3.7 2.6
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Castle 80 9.5 4.3 6.2 6.4
CN2 4708 967.0 28.0 0.0 2.5

ITrule 291 9024.1 17.9 8.0 8.1
Neural network methods

Kohonen SOM 585 * * 6.1 8.4
Dipol92 154 95.4 13.1 3.0 2.6

MLP bprop 148 4315.0 1.0 2.1 2.2
Rad. Basis Fun. NA * * 3.7 3.5

LVQ 194 1704.0 50.8 1.8 6.5

We observe that the results obtained with any of the TDIDT methods are quite consistent
with our own results. Indeed, the error rates range from[1:4 : : :2:6] with a mean value
of 1.86 %, whereas our own algorithm has obtained 1.7%. In terms of learning CPU
times, the times range between[62: : :3864] seconds with a mean value of 735 seconds,
which may be compared with the value of 288 seconds obtained on a SUN SPARC2
workstation with our own algorithm. On the other hand, in terms of testing CPU times
our own algorithm takes about 2 seconds to complete the DT testing, which is among
the fastest methods.
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13.3.7 Summary

The very broad and at the same time in-depth investigation made on the transient
stability of an important generation site of the EDF system took all in all 42 months
and reached its conclusion some months ago. Although simplified modelling of the
machines was used throughout this study, mainly for convenience, we believe that most
of its conclusions would remain valid if a realistic detailed modelling of the machines
were used. It is worth mentioning that a research project is currently progressing
towards the integration within the very fast DEEAC method of the most important
“first order” effects of speed and voltage regulators [XU 93b, XU 93d] . Hopefully, this
method will allow us in the near future to build data bases more closely representing
the real behavior of the power system, with similar or even reduced computing times
than in our study.

At the end of this study, there are still some open practical questions. They concern in
particular the best way to exploit the decision trees in planning, operational planning
and operation. Certainly, the unique capability of the decision trees to identify the
most influential variables and to explicitly represent the physical relationships among
these and stability, make the method particularly appropriate for the determination of
operating guidelines in the context of operational planning. On the other hand, the
resulting tree should be exploitable as a control tool for the operator.

Since the scope of our study was from the beginning restricted to the consideration of
plant mode instabilities and to the study of plant operating limits, its conclusions can
hardly be extrapolated to the other more complex area mode instabilities which may
appear in some parts of the EDF system. But we believe that the conclusions would
certainly remain valid for similar site studies, and although the random generation
procedure was very closely tailored to the specific study plant, it might be transposed
quite easily to the study of other power plants or regions of the EDF system.

On the other hand, we will see in the next section that meanwhile the DTTS method
has been applied to more complex situations, involving in particular a larger number
of different topologies and intricate interactions of the latter with other variables.

Finally, as concerns the data base generation, which is one of the main practical
problems which must be solved in applying the method, the maturity acquired on the
basis of the above research contributed to the development of a new data base generation
software and methodologies in the context of the research projects described in the
sequel.
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13.4 HYDRO-QUEBEC

This system is characterized by very long UHV transmission lines carrying large
amounts of power (735 kV lines carrying over 1500 MW, on distances over 1000 km).
Hence, the transmission capacity of this system is strongly related to transient stability
limits. The criterion of concern here is the system’s ability to withstand the loss of
any single 735 kV line, following a short-circuit of 100 ms [RI 90] , possibly with
unsuccessful reclosure. Another interesting characteristic of this system is that it is not
synchronized with any neighboring utility, all interconnections being through DC links
or back-to-back connections.

13.4.1 Transient stability power flow limits

The on-line strategy presently used by Hydro-Québec is an interesting system specific
approach.

It consists of comparing the actual system’s state with a large number of states, pre-
analyzed and preclassified off-line. These latter states result from the combination of
topology and load-generation-consumption scenarios and of preassigned disturbances
[VI 86] . It gives rise to a very large combinatorial. For example, the number of
energized equipment alone (lines, static compensators, synchronous condensers,: : : )
amounts to over 200 equipment statuses. The resulting combinatorial process is difficult
to develop in a systematic way while identifying “interesting disturbances”, leading
to the loss of critical lines. The difficulty is increased by the fact that the stability
assessment of such a complex system must take into account refined system modelling,
and thus calls for heavy time-domain computations (fast, direct methods are here
hardly acceptable because of the major role played by SVCs and DC links and because
of stability criteria which require to check upper and lower bounds on voltage and
frequency during 10 seconds in the post-fault state).

On the other hand, the limiting contingencies and parameters depend essentially on the
topology, and the present strategy consists of decomposing the overall system into more
or less independent corridors, and to study the limits on each corridor by assuming a
pessimistic hypothesis for the remaining corridors. For each corridor, the topologies are
then grouped within families according to the number of links (i.e. the minimal number
of parallel lines in operation along the corridor). For each such study, the engineers
determine, on the basis of their physical insight, a small set of parameters for which
stability limits are determined, essentially independently. In addition to the highly
empirical character of this methodology, heavily relying on engineering judgement,
one of the weaknesses of the method is that it introduces a potentially very high degree
of conservatism.
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Up to now this strategy has proven satisfactory, essentially because the number of
simulations which could be run within acceptable response times was rather restricted.
However, the increase in system complexity and stringent operating conditions makes
this strategy nearing its own limits; in particular, the very off-line generation of appro-
priate scenarios becomes quite laborious, in particular due to tediousmanualselection
and analysis of scenarios. For example, the determination of the stability limits of the
“four link” James’ Bay corridor, considered below, amounts to about 3 man-years. In
short, while the computers tend to become fast enough to run much larger numbers
of simulations, the bottleneck within this approach tends to shift to the tasks which
are presently done more or less manually, namely the setting up of scenarios and the
analysis of results.

Another increasingly stringent difficulty consists of coping with the very rapid changes
in the system behavior. For example, in recent years series compensation and HVDC
links have been put in operation; both affect very strongly the stability limits. Although
these new equipments would presumably allow an increase in the power flows, it
would require systematic redetermination of the stability limit values to take actual
advantage of this possibility, which would take several man-years. Further, in the
near future additional power plants will come into operation within the James’ Bay
complex, and the transmission capacity will be increased through additional lines and
series compensation. In addition, in future operation it may be necessary to strengthen
the security criteria, so as to enable the system to cope with three-phase faults. Finally,
in recent years, mid-term voltage instabilities have started being observed and must be
incorporated into the operation strategies. All these rapid changes make the off-line
determination of security limits a more and more challenging task.

The presently used on-line strategy amounts to extrapolating stored diagnostics on
simulated data, to assess whether the actual system state is safe enough to withstand
preassigned disturbances. This on-line strategy relies on a dedicated software, LIMSEL
(for “LIMit SELection"), which is basically an ad hoc data base tool to store and fetch
the relevant limit values and operating strategies predetermined off-line.

The DT methodology seems to be particularly well designed as an interesting alternative
or complementary approach. The stability limits determined presently are essentially
contingency independent limits of simultaneous stability with respect to all potentially
constraining contingencies, similar to those which would be obtained from a global
DT. The machine learning framework could provide a valuable tool in order to assist
the engineer by making automatically some of the presently manual tasks, while taking
full advantage of existing expertise. It could consist of using precontingency operating
states classified with respect to a set of contingencies rather than a single one. A
precontingency state would be classified as “stable” if it is simultaneously stable with
respect to each one of these contingencies in the set and unstable otherwise. The
candidate attributes, on the other hand, would be chosen from important precontingency
topological information (important transmission lines in or out of service) as well as
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precontingency power flow levels on important transmission lines.

The resulting trees would therefore be similar to the global trees discussed in the
context of the EDF system. They would allow us to assess whether a new operating
state, characterized in particular by its topology and power flow levels, is indeed able
to withstand all preassigned contingencies. Thus, the DTs would provide clear and
accurate assessment with, moreover, known tolerance. At the same time, they could
help engineers in charge of the data base generation to identify systematically the
critical power flows and to augment and adjust the data base in a way suggested by the
trees test attributes, thus providing richer and less conservative information.

A research project has been started in June 1992, to assess the potential use of the
decision tree method within this context. In a first stage, the objective was to appraise
the functional capabilities of the method, without aiming at a quantitative evaluation of
the accuracy of the decision trees as compared to the present strategy. A second research
stage will be required to assess the method in terms of the incumbent computing burdens
and resulting accuracy characteristics which would be representative of a realistic
application.

13.4.2 Study system and data base description

Within this research, a data base was generated for the Hydro-Québec system corre-
sponding to the situation of summer 1992. The first goal was to screen systematically
all relevant “four-link” configurations of the James’ Bay corridor, yielding a highly
complex set of topologies. The reasons for choosing this situation were the high level
of complexity, and the availability of optimized stability limits in the LIMSEL function.

Data base specification

In order to generate the data base, a specification was decided on the basis of existing
expertise in order to screen all relevant situations. In particular, the following variables
were chosen as parameters of the random sampling procedure.

The power flows in the three important corridors of the Hydro-Québec system are
drawn independently in the intervals indicated in Fig. 13.14. The James’ Bay
corridor corresponds to the study region whereas the Manic-Québec and Churchill
Falls corridors are outside the study region but may influence the value of its stability
limits.

The generation of the main complexes of hydro-electric power plants are adjusted so
as to obtain the chosen power flows, while the distribution among the individual
Lagrande and Manic/Outardes plants are randomized to yield a wide diversity
among the power flows of the individual lines. Since the power flows and load
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Figure 13.14 Main transmission corridors of the Hydro-Québec system

levels vary considerably, the active losses are also highly variable. In this 735 kV
longitudinal system, the active losses may represent more than 1500 MW, i.e. more
than 5% of the total system load. In order to avoid unrealistic generation at the
slack bus, the losses are taken into account to adjust the overall load level. They are
first approximated as a quadratic function of the total generation, then iteratively
adjusted during the load flow computation, so as to bring the generation at the slack
bus within predefined bounds [WE 93c] .

The topology is chosen independently according to a pre-defined list of possible com-
binations of line outages with respect to the complete five-link topology. Only the
James’ Bay corridor is affected and only so-called four link topologies are gener-
ated. A four-link configuration is a topology where at least one of the longitudinal
lines of the James’ Bay corridor is out of operation, and at most one in each of the
4 sections, A, B, C, D. This yields a total of more than 300 possible topologies,
grouped into 3 important classes [BE 91a] .
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The voltage support devices (SVCs and synchronous condensers) available in the six
substations of the James’ Bay corridor, indicated in Fig. 13.14, are widely variable
during the random sampling since their influence on the stability limits is very
strong. Their total number is drawn between 0 and 12 according to predefined
probabilities, and their distribution in the substations is also randomized.

The precise specification of the random sampling scheme is described in [WE 93c] .
This specification has led to the development of a program which allows us to system-
atically generate and analyze the data bases. Due to the complexity involved we will
briefly comment on this below.

Data base generation

An important difficulty which we knew in advance we had to face with this system
was related to the load flow convergence problem. Indeed, while most West-European
systems are characterized by a highly meshed EHV system and many generation sites
uniformly distributed with respect to the load, thus presenting a good anchoring of the
EHV voltages, the Hydro-Qúebec system has only a few very remote generation sites
and its longitudinal grid leads to very loosely controlled voltages.

The important variation of the power flows in the random sampling, induces highly
variable reactive losses and hence voltage drops, which may be large enough to prevent
a standard load flow computation from converging properly. Further, in order to be
realistic the situations in the data base should represent normal operating conditions,
which implies that the reactive compensation devices (mainly shunt reactors in the 735
kV transmission system, and shunt capacitor banks in lower voltage subtransmission
systems) are adapted to the power flows and load level so as to maintain the UHV and
HV voltages within tolerances. For the UHV system, this is normally done manually
by the system operator who switches shunt reactors on the basis of his experience, so
as to adjust the voltage to its nominal value. Up to recently, this manual approach was
also used by operational planning engineers in order to set up their scenarios for the
stability studies.

In order to simulate this voltage control loop, anautomatic reactive compensationloop
was developed and included into the RP600 load flow program used at Hydro-Québec.
In spite of this important improvement, the first random samplings yielded a very high
percentage (up to 70%) of diverging load flow computations. To be able to analyze
the physical or algorithmic reasons for such high divergence ratios, various frequency
diagrams were drawn for the a priori data bases, corresponding to the specifications of
the randomly selected variants, classified asdiverging vs converging.

Figure 13.15 shows a typical frequency diagram, similar to those obtained in the
earlier data base generations. The proportion of converging and diverging load flow
computations is represented in terms of the specified values of the power flow in
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Figure 13.15 Convergence diagram of Manic-Québec power flow (6 base case files)

the Manic-Qúebec corridor. One can see that only a small proportion of states did
actually converge, and it appears clearly from the diagram that the cases of divergence
predominate mainly for power flows below 8,000MW. The reason for this is linked
to the fact that the initially used base case solutions5 corresponded to a power flow
of 10,000 MW in the Manic-Qúebec corridor, which prevents the load flow from
converging properly when the desired power flows in this corridor are too far away
from this value.

All in all, several iterations were required in order to obtain satisfactory data base
generation. For example, in order to improve the convergence of the cases correspond-
ing to a low power flow in the Manic-Québec corridor, we have used six additional
base case solutions corresponding to a power flow of 7,000 MW in this corridor. This
yielded a panel of 12 base case solutions corresponding to the combinations of low and
high power flows in the James’ Bay and Manic-Québec corridors and 3 topological
variants. To each random variant the most similar base case was associated, according
to its power flows and topology. This resulted in a final divergence rate of 16.7%, and
a further systematic analysis showed that the corresponding cases were more or less
uniformly distributed in terms of all the important parameters. As an illustration of
the final result, Fig. 13.16 reproduces the final distribution of the cases of load flow
divergence in terms of the Manic-Québec power flow. With respect to the diagram of

5Rather than starting the load flow computation from a flat voltage profile, the solution corresponding
to the base case is used as an initial guess.
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Figure 13.16 Convergence diagram of Manic-Québec power flow (12 base case files)

Fig. 13.15, one can observe that the proportion of divergences is strongly reduced and
they are more or less uniformly distributed.

The above example indicates the possible difficulties one may encounter in generating
a data base. A practical solution to this problem is sketched in Fig. 13.17. It consists
of systematically generating in parallel the a priori and the a posteriori data base and
analyzing the corresponding statistical distributions.

The a priori data base corresponds to the randomly selected variants. In the above
example, 15000 such variants were drawn randomly. Each variant is described by
a certain number of a priori defined attributes, corresponding to the independent
variables and input variables of the load flow computation. In the above case, they
correspond mainly to the power flows and corresponding generation vs load pattern
as well as topology and availability of var compensators. Each such variant leads
to a base case specification and an incremental input file for the load flow program.
The latter are fed into the load flow computation, and the state is classified according
to its convergence or non-convergence.

This data base may thus be analyzed with the statistical methods presented be-
fore in order to appraise the reasons of divergence, and to modify, if required,
the data base generation or load flow algorithms. This analysis is also useful to
identify early enough the correlations possibly introduced, which may influence the
representativity of the actually obtained data base.
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Figure 13.17 Data base generation procedure

The a posteriori data base is composed of the obtained states for which the load flow
computation did successfully converge. In the case of the Hydro-Québec data base,
12497 such states were finally obtained. In addition to the independent variables
characterizing the variants, each state may be described by additional attributes
obtained as a result of the load flow computation. In particular, the effectively
obtained power flows, generations and load level were considered in the present
case.

The final data base generation phase took about one week of elapsed time on a SUN
SPARC10 workstation used at 30% of the available CPU time. The total amount of
uncompressed data is about 70Mbytes.

Stability classification via LIMSEL

The states of the a posteriori data base have been classified by using the LIMSEL
program together with a snapshot of the on-line data base of stability limits made in
August 1992.

For each state, the LIMSEL program receives information about its key variables and
returns the existing stability limits corresponding to the state. While LIMSEL provides
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Figure 13.18 Groupings of generators or lines defining stability limits used for the
global stability assessment

stability limits for each corridor, in our investigation we have exploited only the stability
limits corresponding to the power flows and generations within James’ Bay corridor.
The corresponding set of constraining contingencies correspond to about 10 different
single line faults all located in this corridor. The different stability limits used are
identified by the dotted lines in Fig. 13.18; their values depend mainly on the topology
and on the number of compensators in operation. If at least one of the actual power
flows or generations is larger than the corresponding limit value provided by LIMSEL,
the state is classified unstable. The above classification resulted in 3938 stable states
and 8553 unstable states.

In addition, the relative difference between the limits and the actual values provide sta-
bility margins. They have been exploited to distinguish among the unstable test states,
the fairly unstable ones from the marginally unstable ones. Namely, the marginally
unstable states are states which do not violate stability limits by more than 2%. Thus if
either the limit values were increased by 2% or the corresponding critical power flows
were reduced by 2%, they would be classified stable. In the complete data base there
are 393 such marginally unstable states. In addition, the stability margins have also
been exploited in order to improve the tree quality (see 13.4.5).

As we have mentioned earlier, there are no stable states with a power flow larger than
8700 MW in the James’ Bay corridor. However, this upper bound given by LIMSEL
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is quite conservative, and in a stability classification based on numerical simulations
we would expect to observe a significant number of stable states in this region. Thus,
the sampling of power flows up to 10,000 MW power flows in the James’ Bay corridor
will be justified in the second stage of the research.

Classification by numerical integration

The dotted box in the left part of Fig. 13.17 shows the alternative approach to realize
the stability classification, consisting of transient stability simulations, e.g. using the
ST600 program of Hydro-Qúebec. In a future quantitative assessment, this would be a
prerequisite to obtaining an unbiased comparison of the decision trees and the present
strategy coded in the LIMSEL data base.

About 125,000 simulations would be required, considering that about 10 contingencies
must be screened for each of the 12,500 states of the data base. Exploiting an equivalent
power of 100 SUN SPARC2 stations to run the simulations in parallel these would take
about two weeks using the ST600 program (which takes about 15 minutes/simulation).
The same response time could easily be reached with a much smaller number of the
faster workstations now available, which may offer more than ten times the computing
power of a SUN SPARC2.

Two years ago, running these simulations would have been hardly feasible within
acceptable response times. This justifies the fact that when the research project started
it was decided to first evaluate thefunctionalitiesprovided by the DTTS approach.
This was indeed possible with a reasonable computational investment by exploiting the
LIMSEL data base rather than numerical simulations. It is true that using LIMSEL
as the reference does not allow us to extrapolate the error estimates straightforwardly;
in particular, the decision trees obtained below could hardly outperform LIMSEL.
Nevertheless, this approximate approach allowed us to get, through the derived decision
trees, a good idea of the type of decision trees which could be obtained with a data
base preclassified via SBS simulations. Using the ST600 program in the near future
will make it possible to re-classify the data base and to compare quantitatively the
performances of the decision trees with those of LIMSEL.

13.4.3 Global decision trees

The investigations summarized below are reported in detail in [WE 93f] .

One of the main challenges for the decision tree method was to cope with the increased
complexity due to the very high number of topologies covered in this study. Thus,
in contrast to the research on the EDF system where we started our investigations
with simple single-contingency trees, in the present research we start with the most
complex global decision trees. In the next section we consider more elementary sub-
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problems corresponding to subclasses of topologies and assess the potential advantages
of problem decompositions.

Candidate attributes

The research was conducted in very close collaboration with the engineers responsi-
ble of the stability limit determination at Hydro-Québec, who proposed initially the
following 67 candidate elementary attributes, all concerning the James’ Bay corridor.

Topology. A total of 27 topological variables were used, comprising 5 attributes iden-
tifying classes of topologies, 17 elementary line status indicators and 5 attributes
indicating the number of compensators and shunt reactors in operation in various
substations.

Power flows and generation. A total of 40 power flows and generations were used,
comprising 19 global power flows, 6 generations and 15 individual power flows of
important lines.

In a second stage, the attribute list was completed with some combinations of the above,
in particular some linear combinations and some power flows divided by the number of
lines in operation in specific parts of the James’ Bay corridor. This list of 87 candidate
attributes thus contains practically the same information as the initial one, but in a more
appropriate fashion for the decision tree method.

Pruning vs stop-splitting

Concerning the determination of the tree complexity, we have occasionally used the
pruning approach (e.g. in the example ofx3.4) and mostly the stop-splitting rule with
� = 10�4. It was found that the optimal pruning level corresponds generally to� in the
range[5� 10�5 : : :10�3], with a tendency of being slightly larger than in our preceding
investigations.

Learning and test sets

In order to estimate the quality of the decision trees, we have kept the last 2497 states
of the data base. The remaining 10,000 states were used as learning or pruning states.

In a preliminary investigation, learning sets of variable size were used to build the
decision trees. Table 13.11 reports the results obtained with the basic list of 67
candidate attributes, a value of� = 10�4, and for various numbersN of learning
states. We notice that the error rates stop improving whenN reaches about 5,000
states, while the complexity of the trees as well as the number of test attributes increase
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Table 13.11 Tree characteristics for various learning set sizes
N Pe #N #A

1000 13.7 29 11
2000 11.7 50 16
4000 8.5 93 25

N Pe #N #A
6000 8.6 125 29
8000 8.0 157 30
10000 8.0 207 35

further. Notice that except for the case ofN = 10;000, where a single tree was built,
the values provided in the table correspond to mean values of several trees built for
randomly selected learning sets.

Linear combination attributes

The above error rates are rather high given the very large number of learning states;
as indicated above, the first possibility investigated to improve them consisted of
determining some combined attributes on the basis of the experience gained. This
yielded indeed a significant improvement of quality. For example, let us consider the
tree partially represented at Fig. 13.19 which is the direct cousin of the tree discussed
in our illustrative example ofx3.4, represented in Fig. 3.16, the latter being built with
the augmented list of candidate attributes. Similarly to the tree of Fig. 3.16 a tree was
constructed on the basis of the first 8000 states of the data base and� = 1:0, which
yielded an overall number of 703 nodes. It was then tested on the basis of a pruning
set (PS) composed of 2000 states not used to build it and its pruning sequence was
generated. Finally, the pruned tree partially represented in Fig. 13.19 was selected
using the “1 standard error rule”. It reduces to 253 nodes and, on the basis of the 2497
test states (used neither as in itsLS nor in itsPS), yields an error rate of 7:17%.

Let us have a closer look at the two trees to further analyze the effect of using a richer
set of candidate attributes. On the one hand, in the tree in Fig. 13.19 the attributes
selected at the first two levels are respectively (i) “PLG” the total power generated
in the Lagrande power plant; (ii) “Trbjo” which is the power flow in the western
part of the James’ bay corridor; and (iii) “NbComp” which is the total number of
var compensators in operation in the corridor. On the other hand, in the tree of Fig.
3.16, the attributes selected at the two first levels are the following combined ones :
(i) at the top-node and its left successor the linear combination of “Trbj”6 and the
number of compensators “NbComp”; (ii) at the right successor of the top-node the
attribute denoted “Tr7069” which is the power flow in the northern part of the east
corridor divided by the number of lines in operation in this part. Thus, the elementary
attributes have been replaced by more sophisticated ones, leading to a more efficient
discrimination among the stable and unstable states.

6“Trbj” denotes the total power flow in the James’ Bay corridor, which is equivalent to “PLG” the
total generation of the Lagrande power plant
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Figure 13.19 Partial view of decision tree built with 67 attributes :N = 8;000
M = 2497

Table 13.12 Effect of improved attributes on tree characteristics,
Attributes Pe% PFA% PND% PDE% #N #A

67 basic (Fig. 13.19) 7.17 3.32 3.84 2.65 253 37
67 basic + 20 combinations (Fig. 3.16)4.21 2.09 2.12 1.20 115 24

The comparison of the two trees is further summarized in Table 13.12, which indicates
clearly that the richer list of candidate attributes is able to improve very significantly
the tree quality. In particular, the proportion of dangerous errors is strongly reduced
and similarly the complexity.

13.4.4 Problem decompositions

The above shows the interest of using composite attributes allowing us to take into
account simultaneously several physical effects. However, although the resulting trees
provide satisfactory accuracy, they are still quite complex and rather difficult to interpret.
This suggest that the global stability problem formulated here is probably too complex
to take full advantage of the decision tree approach. Hence the idea of decomposing
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the data base into subdatabases corresponding to subclasses of configurations.

In the study reported in [WE 93f] several such decompositions have been systematically
considered and the resulting decision trees were compared with the corresponding
global trees. It is interesting to observe that all these decompositions have improved
significantly the decision trees, even if some were more effective than others. For
example, decomposing the overall data base into the three main classes of topology
used in ref. [BE 91a] , allowed us to reduce the mean error rate from 8% to 5.8%, while
keeping the 67 basic candidate attributes.

In terms of interpretability, let us explain the resulting simplification on an example.
Figure 13.20 illustrates a decision tree built for the subdata base corresponding to the
22-North configurations, i.e. situations where at least one line in the Western part A
or B of Fig. 13.14 is out of operation and all lines in the Eastern part A and B are
in operation. The tree, composed of 33 nodes is built on the basis of the 2746 such
situations found among the 10,000 first states of the data base, using� = 10�4 and
the 87 candidate attributes. It was tested on the basis of the 657 22-North situations
among the last 2497 states of the data base, yielding a test set error rate of 3.50%,
corresponding to 1.97% of non-detections and 1.53% of false alarms.

We first note the high simplicity of the tree; more importantly, it represents, according
to the experts, sound information. In particular, each one of the selected attributes could
be explained on the basis of the prior information available. This was possible thanks
to the use of standard operating parameters to formulate it. Moreover, although the
linear combination tests were slightly more difficult to interpret, this was compensated
by the consequent simplification of the tree structure and its higher reliability.

13.4.5 Quality improvement

Similar to the EDF research project, we have also applied the quality improvement
techniques in the present case. In particular, in order to reduce the number of non-
detections, already very small in the standard trees, the classification of the decision tree
was biased by biasing the classification of the learning states via an artificial reduction
of the limits provided by LIMSEL.

This technique has shown to be rather effective. For example, shifting the limits by 4%
allowed us to reduce the proportion of non-detections of a global tree to 0.56% (instead
of 2.12%), while the rate of false alarms increased to 6.45% (instead of 2.09%). Even
more effective results are obtained in the case of the tree of Fig. 13.20 where the non-
detections reduce to 0.30% while the false alarms are increased only to 5.17%. The
resulting tree is represented at Fig. 13.21; as indicated in the figure non-detection costs
twenty times higher for the unstable states has been used, so as to bias the classification
of the tree. On the other hand, due to the biased classification of the learning states the



13.4. HYDRO-QUEBEC 315

T16 + L7 + D10

Learning set classification
Unstable: 1630
Stable: 1116

Test set classification.
Non detection costs :    Unst.: 1.0   St.: 0.9999   

Reference Decision   Tree   Class
Classe-Test Unstable Stable Total
Unstable 370 5 375
Marginal 20 8 28

Stable 10 244 254
Total 400 257 657

L1: 1123
Y T2: 1623N

D1: 160
Y T3: 1463N

L2: 134
Y T4: 1329N

T5: 307
Y

T6: 221
Y

D2: 106
Y

T7: 115
N

D3: 22
Y

T8: 93
N

L3: 7
Y

T9: 86
N

L4: 6
Y

T10: 80
N

T11: 27
Y

L5: 7
Y

D4: 20
N

Plg3<1225MW

L6: 53
N

Tr7062>1972MW

Trbj-308Nb_Comp>5257MW

Trbje< 1873MW

L7090<1

Tr7093>1048MW

D5: 86
N

Nb_Li_So<3

T12: 1022N

T13: 53
Y

D6: 28
Y

D7: 25
N

Trbjo-1.6Trbje>-474MW

T14: 969N

D8: 4

Y T15: 965N

T16: 43
Y

L7: 5
Y

D9: 38
N

Nb_Comp<10

D10: 922N

Tr7062>2135MW

Tr7045>2210MW

Tr7062>2209MW

Trbj-308Nb_Comp>4727MW

Tr7062>2388MW

L7079<1

Trbj-269Nb_Comp>5536MW

Figure 13.20 Decision tree built for the 22-North configurations :N = 2746M =

657

thresholds have been adjusted, leading to pure stable terminal nodes, instead of those
in Fig. 13.20 which contained often a small minority of unstable states.

13.4.6 Other approaches

For the sake of completeness and further appraisal of the decision tree approach, we
provide some recent results we obtained with other learning methods.
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Figure 13.21 Improved DT built for the 22-North configurations :N = 2746M =

657

Multilayer perceptrons

These results were already mentioned in chapter 5. We merely indicate that three
multilayer perceptron simulations were carried out on the complete global stability
problem, corresponding to the trees in Fig. 3.16 and 13.19. The test set errors rates
obtained varied between 2.44% (obtained with the BFGS procedure and a “regularized”
MSE criterion) and 3.93% (obtained with the BFGS procedure and a standard MSE
criterion).

Thus, the decision trees appear to give very satisfactory results, provided that the richer
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Table 13.13 K �NN results for the Hydro-Qúebec system
K 1 3 5 7 9

67 candidate attributes
Pe% 12.58 11.33 10.53 10.21 10.25

24 attributes of DT of Fig. 3.16
Pe% 6.93 6.73 6.13 6.13 6.61

list of candidate attributes is used. More importantly, in addition to their very good
performances in terms of reliability, they are able to tell us which physical relationships
they have identified. We recall also the fact that the decision tree building is about
two orders of magnitude faster than the backpropagation training procedure of the
multilayer perceptrons.

Nearest neighbor

Table 13.13 shows the accuracy results obtained for the same global problem, with the
K � NN classifier for two different cases. The first set of results corresponds to the
use of all 67 attributes in the distance computation7. The results are quite deceiving
with respect to the decision trees and multilayer perceptrons. We note that the value
of K = 7 provides the best results. The second set of results corresponds to using
only the attributes identified by the decision tree of Fig. 3.16 : the reliabilities are
significantly improved with respect to the preceding ones but the level of performance
of the best DTs or MLPs are not reached; here again the value ofK = 7 yields the best
results. The well-known high sensitivity of the nearest neighbor to the attributes used
in the distance computation (and more generally to the weights used in the distance) is
observed here very clearly.

The comparatively good results obtained with the attributes selected by the decision
tree suggest that using the latter and further adjusting the weights on the basis of the
learning sample seems to be a promising direction.

13.4.7 Discussion and perspectives

It is still too early to draw definite conclusions about the application of machine learning
methods to transient stability assessment of the Hydro-Québec system. Nevertheless,
the above results suggest conclusions similar to those made in the context of the EDF
system.

First of all, taking into account the fact that the limits implemented in the LIMSEL data
base are representative of realistic stability limits, we may conclude that the decision

7The attribute values are however pre-whitened.
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trees are indeed able to extract interesting and interpretable information, on the basis
of a representative sample of power system situations. Compared with other pattern
recognition methods, they are efficient and score well (if not the best) in terms of
reliability. Further, the method provides means to suggest and enable experimentations
with various types of attributes and problem decompositions, and this is yet another
asset for the success of the method.

Coming back to our initial goal of evaluating the functionalities of the machine learn-
ing approach, we deem it has been reached even though no actual transient stability
simulations were carried out for this research. We indeed found that the method is able
to screen systematically very complex classes of situations and to determine stability
characteristics. As an anecdote, we mention that during our investigations we have
been able to detect a set of about 30 states for which a particular limit value was
erroneously stored by LIMSEL; this was found to be a transcription error made when
the LIMSEL data base was updated, and corrected subsequently.

More specifically, the overall problem was found to be slightly too complex to enable the
extraction of easily interpretable security information without decomposing it, although
the method could cope quite well with it from the reliability viewpoint. However, once a
data base has been determined for such a broad class of situations, appropriate problem
decompositions may be found out a posteriori by building various decision trees, in a
trial and error fashion and on the basis of the information held in the data base. This
helps us also to gain insight into the problem specifics.

The future research direction is clearly to use numerical simulations in order to pre-
classify the data base states. Decision trees could be systematically built for problems
decomposed in terms of both families of topologies and families of contingencies.
These trees could then be compared with the present day practice, codified in the
LIMSEL data base.
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Voltage security

14.1 INTRODUCTION

The application of the decision tree approach to voltage security assessment was initially
proposed by our research colleagues of EDF [GO 89b] ; they were motivated by the
voltage collapse incidents experienced in the EDF system [HA 90] . In 1990, a data
base, constructed in the context ofemergencystate detection of the Brittany EHV
subsystem [ZH 90] , was thus exploited to yield a first set of decision trees [WE 91b] .
During the same period, a student at the University of Liège investigated in his “final
project” the decision tree based approach topreventivevoltage security assessment, in
a fashion similar to the single-contingency DTTS method [WE 91c, VA 93a] .

Following these preliminary investigations, a research collaboration was initialized
in early 1992 between the R&D department of EDF and the University of Liège, to
explore feasibility aspects of the decision tree approach to emergency voltage insecurity
detection. In addition to decision trees per se, simulation models and numerical tools
were accordingly examined. The main results of this first research stage are summarized
in [MI 92, WE 92a] , and discussed below.

In mid 1993, the collaboration was diversified to encompass the development of appro-
priate data base generation tools, and a much broader multicontingency study, looking
both at preventive and emergency wise security assessments. Although it is still too
early to draw conclusions, we will describe the data base generation software and the
first related results thus obtained.

Before concentrating on this broad EDF research, we recall the academic system study
presented earlier to comment on the results obtained within the Statlog project with its
data base.

319
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Table 14.1 Results obtained in the Statlog project. Adapted from [TA 94]
Maximum Time(sec) Error Rate %

Algorithm Storage Train Test Train Test

Statistical methods
Lin. Discrim. 588 73.8 27.8 2.2 2.5

Quad. Discrim. 592 85.2 40.5 3.6 5.2
Logist. Discrim. 465 130.4 27.1 0.2 0.7

SMART 98 7804.1 15.6 0.3 0.6
Kernel. dens. 125 3676.2 * 2.6 4.4

K �NN 86 1.0 137.0 0.0 5.9
NaiveBay 276 17.4 7.6 4.6 6.2

Machine learning methods
Cart 170 135.1 8.5 0.9 3.4

Indcart 293 86.5 85.4 0.7 3.4
NewID 846 142.0 1.0 1.7 2.7

AC2 222 1442.0 79.0 0.0 3.4
BayTree 289 24.7 6.7 0.0 3.0

C4.5 77 66.0 11.6 1.0 4.0

T
D

ID
T

Cal5 62 13.9 7.2 2.5 2.9: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Castle 279 230.2 96.2 2.9 4.7

CN2 345 272.2 16.9 0.0 3.2
ITrule 293 1906.2 41.1 4.3 6.5

Neural network methods
Kohonen SOM 216 7380.6 54.9 2.6 5.6

Dipol92 49 43.0 11.9 1.5 1.8
MLP bprop 146 478.0 2.0 1.1 1.7

Rad. Basis Fun. NA 121.4 29.3 2.1 3.4
LVQ 115 977.7 32.0 0.2 5.4

14.2 ACADEMIC STUDY

In x10.2 of chapter 10 we described the problem formulation of emergency voltage
insecurity detection on the basis of an academic type synthetic system designed for the
purpose of experimentation. The corresponding data base was passed to the researchers
of the Statlog project, who used it to compare a wide range of methods.

Table 14.1 collects the obtained results. We observe that projection pursuit (SMART)
together with the logistic discriminant produce significantly better results than the
other algorithms (Pe � 0:65%); but SMART is about 50 times slower than the logistic
discriminant. The neural network algorithms (MLP and Dipol92) provide also very
good results (Pe � 1:75%). The TDIDT algorithms (Cart, Indcart, NewID, AC2,
BayTree, C4.5, Cal5) provide intermediate results (Pe � 3:26%), similar to those
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obtained inx10.2. On the other hand, the Kohonen SOM (and LVQ) as well as the
K �NN method are much less accurate (Pe � 5:6%).

A possible explanation of the good performance of the linear model (Log. Discrim.)
is the reduced problem size of the present example, which certainly plays in favor of
the parametric estimation techniques. Thus, this is not likely to hold in general.

As already noted inx4.2.1 we observed the high sensitivity of the linear models (Lin.
Discrim vs Log. Discrim.) to the learning criterion used. On the other hand, the
results obtained by the various TDIDT approaches are quite close to each other, which
suggests that these non-parametric approaches are quite robust with respect to changes
in their learning criterion.

Since SMART has performed so well on our two power system securityclassification
problems, it should certainly deserve further investigation. In particular, it should
be possible to exploit very effectively security margins with this method, since it is
actually aregressiontechnique (seex4.3.2). For example, in ref. [WE 94c] we suggest
how these regression techniques could be exploited usefully in the context of voltage
security assessment.

In terms of reliability, we observe that decision trees score slightly less well for voltage
security than for transient stability. This is probably related to the fact that in voltage
security the individual attributes are less discriminating or, in other words, that the
security boundaries are more diffuse. Whether this is a general property of emer-
gency voltage insecurity detection is not yet clear. Inx14.4.4 we will reconsider this
comparison on the basis of a more realistic example.

14.3 PRELIMINARY INVESTIGATIONS

We briefly report on the investigations carried out on the EDF system in a preliminary
stage of the research.

14.3.1 Preventive mode

The proposed method is a replica of the DTTS method. It assesses the ability of
a precontingency state to withstand a preassigned contingency in terms of the state
parameters preselected by the tree, built for this contingency [WE 91c] . It is worth
mentioning that refs. [LI 89, LI 91] propose a quite different tree approach for the
purpose of voltage optimization.

The precontingency states used for the tree building are obtained in a way similar to that
of x10.1.2. The contingencies of concern here are generally single or double outages
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of EHV transmission and/or generation equipment, and the question asked is whether
the system will be able to reach an acceptable mid-term equilibrium in the minutes
following the outage.

The power system behavior subsequent to the disturbance may be assessed via the var-
ious methods discussed inx8.2.2. In this research we used a simple post-contingency
load flow computation. A state is thus classified “secure” or “insecure” according to
whether the load flow converges or not towards an acceptable post-contingency operat-
ing state. Feasibility limits, such as upper and lower bounds on voltage magnitudes are
evaluated at the solution point together with sensitivity coefficients, checked to ensure
that a state may be classified as secure. Admittedly, this type of classification is quite
simplified but sufficiently realistic, given the preliminary nature of the investigations.

The trees built in this context concern the Brittany region of the EDF system which
has in the past experienced voltage problems [HA 90] . A data base composed of 2000
prefault operating states was generated, using a 320-bus, 55-generator, 614-branch
model of the EDF system, representative for the modifications imposed in the Brittany
region. The latter states were obtained by imposing random variations concerning (i)
the active power generation schedule in a large enough region surrounding Brittany, (ii)
the local reactive resources (power plant configuration, voltage set-points, HV and MV
compensation, synchronous condenser), (iii) the regional active and reactive load level,
(iv) single (400 kV or 225 kV) line or transformer outages. The candidate attributes
used for the tree building comprise 21 EHV voltage magnitudes, 8 load or compensation
levels, 47 power flows (through lines, transformers, and cut-sets), 13 active or reactive
power generations, and 12 reactive power generation reserves.

Figure 14.1 gives a typical tree built for a contingency corresponding to the loss of a
600 MW generation unit in the study region. It was built with a value of� = 5 � 10�5

on the basis ofN = 1000 states; it was tested on the remainingM = 1000 test
states, and provided an error rate of 5:3%. Below the figure we indicate how the
information quantityNITC = 818:8bit provided by the tree is shared by its different
test attributes. Observe that more than 65% of the information is provided by the two
first attributes “Qatcor” (the power flow trough the 400kV/225kV transformers in an
important substation) and “Res-Comb” (the reactive generation reserve in the power
plants within or nearby the Brittany region). Note that the test attributes were selected
among 101 candidates proposed to the tree building procedure.

While it is difficult to explain the reason why “Qatcor” was selected at the root of
the tree, we mention that if we remove it from the list of candidates, “Res-Comb”
will instead be selected. Figure 14.2 shows the projection of the secure and insecure
states of the data base on the subspace of the above two attributes, and shows also
the “hyperplanes” corresponding to the thresholds used in the tree. This scatter plot
allows one to appraise correlations among the two attributes together with the way the
decision tree discriminates among secure and insecure states.
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Top-Node : 1000
Insecure: 558  learning states
Secure: 442  learning states

Information quantities provided by the test attributes
(In % of the total DT information = 818.8 bit) 

Qatcor : 46.7 Res-Comb : 18.9 Res-Bret : 16.4
Vflama7-1 : 4.6 Vtregu6 : 3.7 QCor380 : 2.6
V-distr7 : 2.1 Qbla : 1.9 Res-Corche : 1.6
Qcortot : 1.5

T2: 446 Y

D1: 384 Y
T3: 62

N

L1: 28
Y

T4: 34
N

L2: 6
Y

D2: 28
N

Res-Corche<292Mvar

Vtregu6<1.008

Res-Comb<1088Mvar

T5: 554N

T6: 97
Y

D3: 13
Y D4: 84N

Qcor380<-6.9Mvar

T7: 457N

D5: 45
Y T8: 412N

D6: 15
Y T9: 397N

T10: 394Y

L3: 3
Y T11: 391N

L4: 389 Y

L5: 2
N

Qcortot<237Mvar

Vdistr7<1.006

L6: 3
N

Qbla<940Mvar

Vflama7-1<1.047

Res-Comb<935Mvar

Res-Bret<442Mvar

Qatcor<21Mvar

N = 1000M = 1000
Pe = 5:3%
� = 5 � 10�5

Figure 14.1 Preventive voltage security DT. Adapted from [WE 91c]

In addition to the above example, three-class trees were built, enabling one to distinguish
among the insecure states those which may be corrected via the rapid action of gas
turbines. Also, two-class trees were built for contigencies consisting of the loss of
one or two circuits of an important 400kV line. These preliminary investigations,
based on rather simplified modelling and security criteria and using learning sets of
moderate size, were however able to show the potential of the decision tree approach for
preventive voltage security assessment. In particular, their ability to provide physically
sound and interpretable information was highly appreciated.

14.3.2 Emergency mode

In the context of emergency state detection, the proposed approach and resulting
procedure are quite different from the previous ones. The leading idea is that voltage
instability following a contingency generally does not develop as fast as the transient
one (typically voltage collapse takes several minutes whereas electromechanical loss
of synchronism takes only a few seconds); this leaves time to detect the potentially
critical states afterthe contingency occurrence and to take corrective actions.



324 14. VOLTAGE SECURITY

-200. -150. -100. -50. 0.0 50. 100. 150.

Qatcor
0.0

500.

1000.

1500.

2000.

Res-Comb

.

.
.

.

.. .

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.
.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.
.

.

.

.

. . .

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

. ..

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.
. .

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

..
.

.
.

.

.

.

.

.

.
.

.

.

.

..

.

.

.
. .

.
.

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.. .

.

.

.

.

.

.

.
.

.

.

.

.

. . ..

.

.

.

.

.

.

.

.
.

.

.

. .

.

..
. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.
.

.

.

.
.

.

.

.

.

.
.

.
.

.

.

.

. .

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. .
.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .
.

.
..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..
.

.. .

.

. .

.

.

.
.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

. .

.
.

.

.

. .

. .

.
.

.

.

.
..

.

.

.

. .

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.
.

..

.

.

.

.

.

.

.

.

.

. .

.
.

.
.

. .

..

.

. .

..

.
.

.

.

.

.

.
.

.

. .

.
.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.
.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.
.

.

.
.

.

.
.

.

.

.

..

.
.

.

.

.

.

..

.

.

.

.

.
.

.

.

..

.

.

.

.

.
.
.

.

..

.

.
.

.

.

.

.

.

.

.

.
.

.
.

.

.

. .

.

.

.

.

.

.

.
.

. .
.

.

.

.

.
.

.

.

.

.

.

.

. .
.

.

.

. .

.

.

.

.

.

.
.

.

..

.

.

.

.
.

.

.

.

.
.

.

.

.

.

. .

..
.

.
.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.. .

.

.

.

.
.

.
.

.

.

.

.

..
.

.
.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

. .

.

.

. .

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

. Secure : 869
ρ=.41634
Qatcor
µ=   70.63     σ=   33.90  
Res-Comb
µ=   1341.     σ=   245.0  

•

• •

•

•

•

•

••

•

•

•
•

•

•

•

•
•

•
•

•
•

•

•

••

•

•
•

•

•

•

•

•

•

•

•

•
••

• •

•

•
••

•

••

•

•
•

•

••

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

• •
•

•

•

•

•

•
•

•

•

•

•

•
•

••

•

••

•

•
•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

••

•

•

••

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•
•

•

•
•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••
•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

• •
•

•

•

•

•

•

•
•

•

• •
•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

• •

•

•

•

•
•

•

•

• ••
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
• •

•

•

•

•
••

•

• •

•

•

•

•

•

•

•

•
•

•

•

••
•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

••

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•
•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•
• •

•

•

••

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
• •

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

••

•

•

•• •

•

•

•

•
• •

• ••

•

•

•

•
•

•

•

•
•

••

•
•• •

•

•

• •
•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•
•

•

• •

•

•

•

• •

•

•
•

•

•

•

••
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

••

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•
• •

•

• •
•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

• •

•

•••

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

••
•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•
••

•

• •

•

• •

•

•

•

•

•

•• •

•
•

•

•

•

•

•

•

•
•

• •
• •

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

••
••

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•
••

•

•
•

•

•

•

•

•

••

•

•

•

•

•

••
•

•

••
•

•

•

•
•

•

••

•

•

•

•

•

•

•

•

•

•

•
•

•

••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•
•

••

•

•

•

•

•

•
•
•

•

•
•

•

•

•

•

•

•

•

•

•

• •
•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

••

• •

•

•

•

•
•

•

•

•

•

•

•

•

•

• •

• ••
••

••

•
•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

••
•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

••

•

•

•

•

•

• Insecure : 1131
ρ=.51722
Qatcor
µ=  −9.292     σ=   49.91
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€ Total:2000
ρ=.71544
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Res-Comb<1089Mvar

Res-Comb<936Mvar

Figure 14.2 Distribution of 2000 random states in the (Qatcor,Res-Comb) space.
Adapted from [VA 93a]

A main difference of this method with respect to previous approaches is the type of
considered system states. They result from various operating conditions, supposed to
be subjected to a set of disturbances; they are determined after a short-term interme-
diate equilibrium has been reached, i.e. after the electromechanical transients have
vanished (approximately 10-20 seconds after the disturbance inception). Such “just
after disturbance” (JAD) states along with their classification (non critical if the state
ultimately reaches a new acceptable equilibrium, critical otherwise) are used to build
a tree, which therefore is relative to a set of disturbances. Subsequently, the tree may
be used on-line to decide, in terms of JAD attributes whether, following a disturbance
a system state is critical or not.

In the study described in [ZH 90] a data base composed of approximate JAD states was
constructed for the Brittany region by using a simplified model, consisting essentially
of a load flow computation using voltage sensitive load representations. In this data
base the JAD states were generated directly without computing the corresponding
precontingency states. Moreover, the procedure used aimed at generating a majority of
borderline samples, in a particular kind of dichotomization approach.

The resulting trees, not reported here to save space, were of satisfactory accuracy
but quite difficult to interpret. This was mainly due to the highly biased data base,
where the generated states were correlated to the secure/insecure classification of previ-
ously generated states, destroying in particular the property of statistical independence
[WE 91b] .
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14.4 PRESENT DAY RESEARCHES FOR EMERGENCY MODE
VOLTAGE SECURITY

This section deals with the first stage of our research in collaboration with EDF,
where emergency voltage insecurity detection is a main objective. Based on the
experience reported inxx14.3.1 and 14.3.2, it was decided to develop a new data base
generation approach. This consisted mainly of adapting the procedure described in
x8.2.2 to the specifics of the EDF system. In particular, the JAD states are obtained
in a two step procedure : (i) generation of a representative sample of independently
drawn normal prefault states; (ii) application of various disturbances to yield the
corresponding contingency specific JAD states, and possibly merging the latter to build
multicontingency trees.

The main advantage is that this approach uses basically the same philosophy as the data
base generation for preventive security assessment. It allows us to control the statistical
representativity independently of the pre-disturbance states and of the disturbances
themselves, which is paramount for the validation of the resulting security criteria.
Further, it allows us to carry out in parallel preventive and emergency wise security
assessment on the basis of the same data bases which may provide interesting analysis
possibilities, as we will illustrate below.

14.4.1 Data base generation

Level of modelling

In addition to the above methodological changes in the data base generation, it was
deemed necessary to use a more realistic model of the power system and thence to
use more sophisticated simulation tools. With respect to the previous models there are
mainly two refinements.

Secondary voltage control. To generate representative sets of pre-disturbance situa-
tions the effects of secondary voltage control and automatic shunt compensation
have been taken into account. These contribute much to maintain predisturbance
voltages close to their nominal values and influence strongly voltage security limits
as well as the reactive generation and EHV voltage patterns observed in the normal
or JAD states.

Time-domain simulation. In the previous data bases we used only post-contingency
load flow computations to classify and compute the candidate attributes in the JAD
state. Here we simulated the system evolution and reproduced the sequence of events
following a disturbance inception, in order to take into account OLTC and rotor field
current limitation delays interacting with secondary voltage control actions. For
this purpose, a simplified voltage stability oriented time-domain simulation method



326 14. VOLTAGE SECURITY

MV

HV

EHV

Figure 14.3 Compound OLTC - Load - Compensation model

developed at the University of Liège [VA 93b] was adapted to the specifics of
the EDF system. The main advantage of this method with respect to standard
time-domain numerical integration is computational efficiency, allowing one to
handle a realistic large-scale system with acceptable response times. However, to
limit complexity a simplified representation of the effect of EHV/HV and HV/MV
transformers was used in the form of cascades of transformers as represented in
Fig. 14.3. This model representation allowed us however to simulate the voltages
at the HV side of the EHV/HV transformers, which have been shown as interesting
attributes (seex10.2 and below).

In addition to providing a reasonably detailed level of modelling, the above improve-
ments allowed us also to gain significantly in flexibility. They provided quite satisfac-
tory data bases; from a physical viewpoint they avoided major simplifications which
could be misleading.

Figure 14.4 shows the general principle of the data base generation including (i)
the random sampling of variants; (ii) the validation of the variants via the load flow
computation, and the simulation of steady state secondary voltage control and automatic
HV shunt compensation effects; (iii) the computation of prefault attributes (for use in
preventive security assessment); (iv) the computation of the JAD states corresponding
to a snapshot at a preselected time� along the post-contingency trajectory; (v) the
subsequent simulation of the mid-term dynamics until either a voltage collapse is
diagnosed or MV voltages are restored within dead-bands around nominal values;
(vi) the computation of an approximate post-contingency load power margin, which
amounts here to simulating a sequence of steps of the load demand in the Brittany
region, and to observing the resulting dynamics [MI 92] .

Generation of pre-disturbance operating states

The one-line diagram of the EHV (225kV and 400kV) system in the study region is
represented in Fig. 14.5. The random variations made in the data base generation
concern the topology as well as the load level, pilot node voltage set-points and active
generation schedule.
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Figure 14.4 Principle of the data base generation

The topology variations consist of one (40%), two (50%), or three (10%) simultaneous
outages of lines (mainly 400kV, and some 225kV) or transformers.

The load level is varied according to a uniform prior distribution in the interval
[6000: : :9000] MW; as an illustration of the effect of load flow divergence, we show
at Fig. 14.6 the a posteriori distribution of the load levels in the data base. Observe the
effect of the filtering introduced by the load flow divergence, gradually increasing for
increasing load levels.

The active generation scheduled within the region by the three power plants outlined
in Fig. 14.5 was fixed by a random sampling of combinations of generation units in
operation, so as to control the level of power imported from the remaining system
(each unit in operation is supposed to operate at its nominal active power rating).
The reactive generation within the region is fixed according to the secondary voltage
regulation criterion, which essentially aims at controlling voltages at the pilot nodes,
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Figure 14.5 One-line diagram of the study region.

while maximizing the total reactive reserve. Pilot node voltage set-points are drawn
randomly according to a Gaussian distribution around their usual values, to take into
account tertiary voltage control by generating sufficiently diverse situations [MI 92] .

The resulting distribution of the regional load level vs the level of active power import
and vs the reactive reserve available in the three power plants, are depicted graphically
in Fig. 14.7 for the pre-disturbance states contained in the data base. Each one of the
strips in the left-most scatter plot corresponds to a particular combination of units in
operation. In the right-most scatter plot we appreciate the effect of secondary voltage
control, able to maintain a rather high reactive reserve, even for relatively high load
levels.

Simulated disturbances and JAD states

Three disturbances have been studied, namely (see Fig. 14.5) : (i) loss of one generating
unit in operation in plant 1 (generating about 600MW); (ii) loss of one circuit of line
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Figure 14.6 Histogram of the regional pre-disturbance MV load level
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Figure 14.7 Power import and reactive reserve in the study region

1; (iii) 400kV busbar fault in substation 1 (leading to the loss of up to three 400kV
lines entering the substation, one generation unit of 600MW, and two 400kV/225kV
transformers).

For each disturbance the JAD states are normally considered at� = 30s after the
disturbance inception. At this time instant machine excitation limits are already active,
and the first actions of the secondary voltage control have been applied. On the other
hand, the OLTC delays are larger than 30s.

Attributes

The candidate attributes are computed from a system snapshot either in the pre-
disturbance state or at a given time instant (� = 30s, 45s or 80s) in the post-disturbance
state. The latter will be called in the sequel JAD or emergency mode attributes whereas
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the former will be called normal or preventive mode attributes. There are also some
attributes which take into account information from both the JAD state and the normal
state, in order to quantify the impact of the disturbance on the electrical state of the
system.

The first list (list 1) of candidate attributes contained the following 154 readily available
real-time attributes.

HV voltages, at the HV side of the 39 EHV/HV transformers represented explicitly in
our study.

EHV voltages, characterizing 29 important 225kV and 400kV buses in the study
region.

Power flows, corresponding to the active and reactive flows in 30 EHV lines.

Topological indicators, of 12 lines which may be out of operation in the prefault
situation.

Load, active and reactive MV load levels of the region.

Reactive reserves, of 8 individual and 4 combinations of power plants, corresponding
to the difference between the reactive generation and its upper capability limit.

In preventive mode the preceding are contingency independent attributes computed in
the normal state and will be denoted by “list 1a” in the sequel. On the other hand, in
the JAD state they depend both on the contingency and on the time instant� and will
be denoted by “list 1b” (resp. c, d) for� = 30s (resp. 45s, 80s).

In addition, the following two attributes were also used in some simulations, although
they call for more complex computations.

Delta-Pc, the variation in the active MV load level due to the voltage sag caused by
the disturbance.

Marge-P-Pre, the pre-disturbance load power margin, i.e. the amount of additional
regional load demand which may be delivered without the system becoming unsta-
ble.

Stability criteria, load power margins and classifications

A system evolution is considered to be unstable if either it cannot reach a solution of the
short-term equilibrium equations or it reaches an unacceptable equilibrium. The latter
may correspond to unacceptable EHV or HV voltages and/or unacceptable sensitivity
coefficients, or to a situation where the post-contingency load power margin is below
a pre-determined thresholdMa [MI 92] . A JAD state corresponding to an unstable
future evolution is denotedcritical, whereas a normal state is denotedinsecurewith
respect to a contingency if the latter yields unstable behavior.
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Table 14.2 Proportion of unstable situations
Contingency Nb. of relevant % of “unstable” states

No. Description JAD states Ma = 0MW Ma = 300MW
1 Loss of 600 MW 2312 7.4 23.7
2 Loss of 400 kV line 2000 1.6 8.1
3 Busbar fault 2000 20.0 33.5

1154
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Figure 14.8 Pre- and post-disturbance active load power margin distributions
(the relevant 2312 states for disturbance number 1)

In our simulations we have used eitherMa = 0MW orMa = 300MW, to define two
possible classifications. Table 14.2 shows the corresponding percentages of unstable
scenarios among the relevant states of the data base. Figure 14.8 shows the normal state
load power margin distribution and the corresponding post-disturbance distribution after
the loss of 600MW of generation in plant1. The states which have a negative margin
are arbitrarily set at -150MW; the states which correspond to a very large margin are
arbitrarily set at 1500MW.

Considering the proportions of unstable states, we note that the normal disturbances
corresponding to a single line or generator trip, lead to a very small proportion of
unstable situations, even if the security criterion requires a post-disturbance margin of
300MW. This limits somewhat the representativity of the unstable states of the data
base, and provision was taken in the next generation data base discussed inx14.5, so
as to obtain a sufficient number of unstable states. In spite of this limitation, many
interesting aspects could be investigated on the basis of this data base and it allowed us
to gain experience in the context of voltage security and in particular emergency state
detection. We will further see that the obtained results are already very promising in
comparison to the criteria presently in use at EDF.
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14.4.2 Overview of obtained results

Single-contingency trees have been built for classifying the JAD states of the three above
contingencies, for various candidate attributes and two different security classifications.
In addition, multicontingency trees were grown for theunionof the three corresponding
data bases of JAD states. Finally, a complementary investigation was carried out with
the first disturbance, to analyze more systematically candidate attributes and quality
improvements.

In this section we briefly report on the general results obtained with the three contin-
gencies. In the next section we will focus on the more in-depth analysis of the first
contingency.

Single contingency trees

Table 14.3 summarizes the performances of the decision trees obtained for the three
contingencies, two classifications and two lists of candidate attributes. All trees have
been constructed on the basis of half the data base states and tested on the remaining
half. The pruning parameter of� = 10�4 was used in the stop-splitting criterion.
For each decision tree we indicate its specifications (the candidate attributes and the
classification) together with its main characteristics (number of nodes, of selected
attributes; accuracy assessment). The last column indicates the type of information
of the most salient attributes selected by a tree and the amount of its information as a
percentage of the total tree information.

Note that the dangerous errors (DE) correspond to non-detections (ND) which are
unstable with a margin less or equal to zero. For the trees built with respect to a post-
disturbance margin of 300MW, the false alarms (FA) are states classified insecure by the
tree although their margin is larger than 300MW; the non-detections are states classified
secure althoug their margin is smaller than 300MW, and include the dangerous errors.
On the other hand, for the trees built with respect to a post-disturbance margin of 0MW,
the false alarms are states classified insecure while they have a margin larger than 0MW,
whereas the non-detections reduce to the dangerous errors.

The following tendencies may be observed.

� Without margin (DTs no. 1 and 5), the trees select HV voltages as the most
interesting attributes.1 This behavior was also observed in the academic example.
It may be “explained” by the fact that the HV voltage sag observed in the JAD state
reflects at the same time the strength of the disturbance and the amount of load
which must be restored by the action of the tap changers. A further analysis of
the scores provided by the individual HV voltages at each tree node shows that the

1For contingency no. 2 no meaningful tree could be built due to the small number of unstable states.
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Table 14.3 Single-contingency decision tree performances
Dt. Specifications Decision tree characteristics
No. Cand. Atts.Ma #N #A Pe% PFA% PND% PDE% Types of Atts.

Loss of 600MW in plant 1
1 List1b 0 15 7 4.20 1.47 2.77 2.77 HV volt. (81.5%)
2 List1b 300 21 9 8.48 3.81 4.67 0.17 Reac. res. (76.5%)
3 + Delta-Pc 300 19 8 7.09 4.33 2.77 0.00 Delta-Pc (77.6%)

Loss of one circuit of 400kV line 1
4 List1b 300 17 8 4.60 2.80 1.80 0.00 Reac. res. (60.9%)

Busbar fault in substation 1
5 List1b 0 25 12 7.30 2.30 5.00 5.00 HV volt. (56.8%)
6 List1b 300 29 12 11.01 4.80 6.30 1.40 Reac. res. (61.8%)
7 + Delta-Pc 300 23 9 7.10 3.90 3.20 0.10 Delta-Pc (77.6%)

method hesitates among various more or less equivalent HV voltages, due to the
high correlation among them. A more robust approach discussed inx5.3, would
consist of using appropriate mean values based on the identification of voltage
coherent regions. The latter may be achieved by using an appropriate clustering
method to exploit the statistical information contained in a data base of JAD states.

� Including a margin of 300MW in the security criterion (DTs no. 2, 4 and 6)
causes the reactive reserve attributes to be selected in preference to HV voltages. A
possible explanation lies in the fact that this security criterion is more “preventive
like”. The trees become slightly more complex, which merely reflects the higher
number of unstable states in their learning sets, and almost all the dangerous errors
are removed.

� The use of the “Delta-Pc” attribute further improves significantly the trees by
reducing their complexity and number of errors. This attribute is a weighted mean
of the MV voltage sag, taking into account the sensitivity of the load to MV voltage
variations as well as the amount of load connected to each EHV bus. This “clever”
combined attribute was suggested by the analysis of previous trees, as a possible
robust combination of more elementary attributes.

To provide a further ground for appraising the accuracy of the above trees, we have
applied to the JAD states of each disturbance the criterion presently in use at EDF, which
merely consists of blocking the OLTCs as soon as the EHV voltage at a particular
given node is below a pre-determined threshold. Its comparison with the reference
classifications defined above is indicated in Table 14.4, where the proportions of its
various types of errors are indicated. They are defined in similar fashion to the classes
of errors of the corresponding trees so as to allow a straightforward comparison.

Comparing these figures with those of the decision trees given in Table 14.3, we
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Table 14.4 Presently used criterion
Ma Pe% PFA% PND % PDE %

Loss of 600MW in plant 1
0 16.91 16.39 0.52 0.52

300 13.62 6.57 7.05 0.52

Loss of one circuit of line 1
0 8.60 7.60 1.00 1.00

300 11.45 5.80 5.65 1.00

Busbar fault in substation 1
0 29.75 29.15 0.60 0.60

300 23.65 19.40 4.25 0.60

Three contingencies (weighted means)
0 18.35 17.65 0.70 0.70

300 16.11 10.39 5.72 0.70

conclude that the decision trees built with respect toMa = 300MW are able to
make fewer dangerous errors and at the same time significantly less false alarms than
the presently used criterion. On the other hand, the decision trees constructed with
Ma = 0MW make slightly more non-detections, but their low false alarm rates suggest
that it would be possible to further improve the trees by using an intermediate margin
threshold 0< Ma < 300MW.

Multicontingency trees

One of our initial objectives was to identify the risk of voltage collapse on the basis of
information acquired fromavailablesystem measurements in the JAD state. In particu-
lar, the criteria should not rely on information concerning the past (i.e. pre-disturbance)
system states nor on the disturbance identification. Thus, although only three distur-
bances have been analyzed it was deemed interesting to consider a multicontingency
decision tree by merging the three data bases, and to analyze its characteristics.

A learning set of 3156 states was obtained by merging the 3 learning sets, and a test
set of 3156 states by merging the 3 test sets. As before, a tree was first built on
the basis of the classification withMa = 0MW, then withMa = 300MW. In these
simulations the basic list of elementary candidate attributes was used (List1b) so as to
obtain trees with the desired real-time features. In Table 14.5, the multicontingency
trees are summarized and compared with the corresponding values obtained by the
single contingency trees2. (Note that, for comparison purposes we have used for the
loss of line1 in the case ofMa = 0MW a single-contingency “default” tree which

2i.e. thetotal number of different test attributes, the total number of nodes and the weighted mean
values of the various error rates
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Table 14.5 Multicontingency tree performances
Specifications Decision tree characteristics

Cand. Atts. Ma #N #A Pe% PFA% PND% PDE% Types of Atts.

Multicontingency trees
List1b 0 35 17 4.02 1.52 2.50 2.50 Reac. res. (50.7%)
List1b 300 51 21 7.95 5.26 2.69 0.22 Reac. res. (65.9%)

Weighted mean of single-contingency trees
List1b 0 41 19 4.36 1.27 3.10 3.10 HV volt. (70.04%)
List1b 300 57 24 8.08 3.80 4.28 0.51 Reac. res. (66.90%)

Presently used criterion for three contingencies (weighted means)
0 18.35 17.65 0.70 0.70

300 16.11 10.39 5.72 0.70

corresponds to a single node tree classifying all states as secure.)

Comparing the multicontingency with the single-contingency trees we may observe that
the number of nodes of the former is slightly smaller than the total number of nodes
of the latter. The multicontingency trees are also slightly more accurate in the mean.
They have thus been able to exploit similarities among unstable JAD states. Further,
we may see that the HV voltage attributes disappear from the multicontingency trees,
which suggests (and confirms) that they are rather contingency specific. This is also
confirmed by the fact that the multicontingency trees are rather robust; in particular,
they show the ability to classify JAD states corresponding to disturbances not used in
their learning set without important performance degradation. They are also able to
detect unstable states for the weaker contingencies which cannot be covered as well by
single contingency trees. However, the single-contingency trees are easier to interpret
since they are less complex and correspond to a more elementary physical problem.

Finally, comparing the above results with the mean results corresponding to the
presently used criterion, we may see again that the trees constructed by incorporat-
ing a load power margin in the criterion are much more efficient than the admittedly
very conservative EHV voltage criterion, presently used. They are better in terms of
their ability to identify the critical situations and at the same time are able to reduce, by
a factor of two, the proportion of false alarms. Further, the multicontingency trees built
without using the margin are naturally less effective in terms of identifying unstable
states, but they are able to reduce the proportion of false alarms by a further factor of
two.

Thus, although the decision trees obtained here for emergency voltage insecurity de-
tection are of lower reliability than trees obtained for transient stability assessment,
their potential advantages with respect to present day practice appears clearly from
the preceding analysis. We will further illustrate below how the machine learning
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methodology offers a flexible framework for the systematic analysis of JAD states and
of alternative security criteria.

14.4.3 Further investigations on contingency number 1

Although the third, more severe contingency leads to a higher number of unstable
states, it was not considered to be representative of the “usual” disturbances; thus
complementary investigations were rather carried out on the first contingency, corre-
sponding to the loss of 600MW of generation in plant 1. For this contingency various
trees were constructed, all with respect to the second classification taking into account
a margin of 300MW. The latter was indeed deemed to be more representative of the
conservative criteria sought in practice. In these investigations we first analyzed various
effects related to the candidate attributes and then applied additional techniques likely
to improve the quality of the detection, in particular the hybrid DT-ANN approach.

Effect of candidate attributes

We first analyze the influence of the time instants� corresponding to the JAD state, then
consider decision trees using attributes computed in the pre-disturbance state, leading
to preventive security assessment criteria, similar to those discussed in 14.3.1.

A. Various measurement instants �

We first analyse the effect of the OLTC driven dynamics on the pattern of insecure
states.

For this purpose, in addition to the tree no 2 described in Table 14.3 (corresponding to
� = 30s), we built two other trees on the basis of JAD attributes determined respectively
at � = 45s and� = 80s. The three corresponding trees are represented in Fig. 14.9,
where the notation “Qr” is used for reactive reserve attributes of various combinations
of generation plants, “Ln” for active or reactive power flows, and “EHV” (resp. “HV”)
for EHV (resp. HV) voltage magnitudes, the latter being expressed in p.u..

Considering the three trees, we observe first that they are of similar complexity. On
the other hand, we note that increasing the measurement delay leads to a significant
increase in reliability, in particular in terms of non-detections. Further, the EHV voltage
attributes appear gradually in the trees, providing about 70% of their information. This
reflects the physical fact that after the initial delay of 30s, the EHV/HV transformers
start increasing their ratios, which tends to decrease the EHV voltages in the attempt to
restore the HV voltages (see Figs. 8.6 and 8.7). Again, the fact that the EHV voltages
are correlated is reflected by the similar scores they obtain at the various nodes of the
tree, and this tends to make the selection of a particular voltage depend strongly on the
random nature of the learning sets.
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Figure 14.9 Emergency mode detection criteria for various measurement instants

It is also interesting to assess the robustness of the criteria with respect to uncertainties
in the measurement instant, by using decision trees built for a given� to classify JAD
states corresponding to different� ’s. For instance, the tree of Fig. 14.9a built for� =

30s yields an error rate of 14.3% (corresponding toPFA = 8:1% andPND = 6:2%) if
applied to classify JAD states obtained at� = 80s. On the other hand, the tree of Fig.
14.9b, built for� = 45s, yields an error rate of 8.5% (corresponding toPFA = 3:0%
andPND = 5:4%) when used to classify the above JAD states at� = 80s.

Thus, the action of the OLTCs changes significantly the outlook of the critical states.
Before their action, low HV voltages are a symptom of insecurity, but as soon as the
tap changers start acting these voltages start increasing, which makes the JAD states
look “less insecure”. On the other hand, EHV voltages, as well as reactive reserves,
have a more monotonic behavior, since the action of the tap changers will make the
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Figure 14.10 Preventive mode decision trees built with pre-disturbance attributes

weak situations look even weaker later on. Thus, criteria formulated in terms of the
latter kind of attributes are probably more effective in practice, even though they may
be seem to be less effective in the very first time instants following a disturbance.

B. Pre-disturbance attributes

A further comparison was made by constructing a tree for the above disturbance and
taking into account a margin of 300MW, on the basis of the “List1a” of candidate
attributes evaluated in the pre-disturbance state, yielding thus a preventive voltage
security criterion. This tree is represented in Fig. 14.10a; we notice its similarity with
the emergency mode tree of Fig. 14.9a : the same attribute is selected at the root
node, corresponding to the reactive reserve available from the synchronous condenser
feeding the study region (see Fig. 14.5).

It is also interesting to compare this tree with the one represented in Fig. 14.1, which
corresponds to the same disturbance but to a different stability criterion (in particular not
taking into account a load power margin of 300MW) and a slightly different base case
condition and random generation of the data base. In spite of these main differences,
similarities may be observed : the two trees exploit mainly reactive reserve attributes;
the EHV voltages are used only very marginally. This expresses the fact that in the
highly compensated systems the EHV voltage profiles are rather flat, independent of
the distance to insecurity. This is even more apparent in the tree of Fig. 14.10a. A
possible explanation of this is that in the latter case the effect of secondary voltage
control was modelled, which leads to almost constant pre-disturbance EHV voltages,
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while it was neglected in the preliminary data base used to construct the tree of Fig.
14.1.

The fact that the preventive mode tree is less (although only slightly) accurate and at
the same time more complex indicates that the post-disturbance attributes are more
discriminating than the pre-disturbance ones. However, in preventive-mode security
assessment it is possible to exploit more sophisticated attributes. For example, the
tree represented at Fig. 14.10b was constructed by including in the list of candidate
attributes thepre-disturbanceload power margin (denoted in the tree by “Marge-P-
Pre”). Admittedly, this simplifies very significantly the resulting tree structure, while
strongly improving its accuracy. It is worth mentioning that 96.5% of the information
quantity provided by the tree is provided by “Marge-P-Pre” and only 3.5% by the two
other attributes. Note also that the rather coarse determination of the load power margin
(with steps of 150MW) certainly reduces its discriminating power.

The simplicity of the tree enables straightforward interpretation, as follows.

if the pre-disturbance load power marginis smaller than 750MW,
then thepost-disturbance load power marginis smaller than 300MW;

otherwise if thepre-disturbance load power marginis larger than 900MW,
then thepost-disturbance load power marginis larger than 300MW;

otherwise a more refined analysis should be made to determine the security.

This example highlights how decision tree building may provide interesting information
about the relationship between values assumed by long-term preventive mode security
margins and the system capability to withstand disturbances. Moreover, the above
attribute is a contingency independent security index, characteristic of the overall
system robustness. It may be available in many control rooms, determined with standard
on-line security assessment tools such as the one described in [LE 90a] . Another
complementary possibility explored in [WE 94c] would consist of approximating the
value of the post-disturbance margin, for a given disturbance, in terms of the parameters
characterizing the pre-disturbance state. Its pre-disturbance load power margin could
be one, among others.

Quality improvements

The purpose of the investigations reported below was twofold : (i) to assess to what
extent a very simple criterion, exploiting only two or three attributes selected by a tree,
may be used to reliably identify critical situations; (ii) to evaluate the capability of the
hybrid DT-ANN approach to provide accurate criteria for emergency voltage insecurity
detection.

A simple two-level tree structure, as shown in Fig. 14.11, was used for this purpose,
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Figure 14.11 Simplified two level tree structure and its security regions

exploiting the two main attributes selected by the tree of Fig. 14.9a. Various techniques
were compared to determine appropriate threshold values, in order to reduce as much
as possible the number of non-detections, while minimizing the false alarms.

The particular combination of thresholds shown in Fig. 14.11 was determined by an
iterative minimization of the mean non-detection cost (determined in the learning set).
In order to force the method to give priority to the reduction of non-detection errors,
various compromises were tested. The one corresponding to a non-detection cost 10
times higher for the insecure states than for the secure states was considered to be
appropriate. The thresholds were adjusted so as to maximize the non-detection cost,
by using a cyclic unidimensional search procedure, adapting each threshold in turn,
until a local maximum was reached. Although, this technique was appropriate thanks
to the small number of thresholds used in this problem, its application to optimize more
complex trees, with a larger number of thresholds, would need a more sophisticated
search algorithm (e.g. the genetic algorithm described inx3.5.3).

In the right-hand part of Fig. 14.11 we show the security region determined by the
tree together with the 1156 independent test states. The overall error rate of the
tree is of 13.4%, which corresponds toPFA = 13:1%, PND = 0:3% andPDE =
0:0%. Notice that the non-detections correspond to 4 states whose margin belongs to
[150: : :300]MW . Again, it is interesting to compare these figures with the perfor-
mance of the presently used criterion, in Table 14.4 : for a similar overall error rate,
the modified decision tree allows, in spite of its simplicity, to virtually detect all critical
situations, whereas the EHV voltage criterion leads to a non-detection rate of 7:1%
including 0.5% of dangerous errors.

The above tree has also been tested on the JAD states corresponding to� = 80s, leading
to an error ratePe = 21:0%, out of which 0.2% (2 states) are non-detections. This
confirms the monotonic behavior of the reactive reserve attributes, and suggests various
possible compromises. On the one hand, using rather high thresholds as in Fig. 14.11
will lead to an early detection of the critical situations and the higher the thresholds,
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Table 14.6 K �NN results for disturbance 1
K 1 3 5 7 9 11 13 15 17 19
Pe% 8.13 7.70 8.91 8.30 7.96 7.61 7.61 7.70 7.79 8.04

the higher the margins with respect to a possible fast load build up. On the other hand,
using lower thresholds will allow us to reduce the non-detection rates at the expense of
a less anticipative detection.

The preceding discussions show the multitudinous potential uses of the decision tree
approach. The latter is indeed able to derive in a very flexible manner security criteria
of appropriate characteristics. The quantitative comparison of the derived criteria with
those presently in use, shows also that on the basis of a rather small data base it is
nevertheless possible to derive interesting and useful security criteria, in spite of the
complexity of the considered phenomena. In particular, we note that the decision trees
told us to use reactive reserve attributes in order to define robust and efficient emergency
state detection criteria.

14.4.4 Hybrid approaches

In addition to the preceding simulations various other learning methods have also been
applied to the above data base, in the context of the same disturbance and classification.

Nearest neighbor

Table 14.6 reproduces results of the nearest neighbor method obtained using the 9
attributes selected by the tree of Fig. 14.9a, appropriately pre-whitened. The results
suggest that the proper choice of a distance in the tree test attribute space might allow
us to improve the classification performances of the trees. They show also that the
“optimal” value ofK lies around 13.

Multilayer perceptron

A more in-depth investigation was carried out to evaluate the capabilities of the mul-
tilayer perceptrons, and in particular of the hybrid DT-ANN approach described in
chapter 6. In these simulations, reported in [WE 92a] , various hybrid and standard
multilayer perceptrons were built. In Table 14.7 we report the main information lead-
ing to important conclusions. The columns of the table indicate the type of MLP
approach, the attributes used as input variables, the type of structure (number of neu-
rons in successive layers), the type of output information provided at the learning stage
and finally the error rate obtained in the independent test set, when using the MLP to
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Table 14.7 Multilayer perceptrons built for disturbance 1
Type of MLP Attributes Structure Type of info. Pe%

Direct 154 candidate 154-5-2 Classes 5.6
Hybrid 9 test attributes 9-10-11-2 Classes 8.2
Hybrid 9 test attributes 9-10-11-1 Margin 6.8

DT 9 test attributes Classes 8.5

predict the classification of unknown states. For the ease of comparison we recall also
the characteristics of the corresponding decision tree.

First of all, we notice the significant improvement of the error rates obtained by the
MLPs using all 154 candidate attributes. This observation supports our previous
impression that emergency voltage insecurity detection information is diffused among
many different attributes.

Concerning the hybrid MLP, we observe that while without exploiting a security margin
it hardly improves the accuracy of its corresponding tree, it improves it significantly
when exploiting the post-contingency security margin during the learning stage. Noting
again that in the present study the margins were determined rather coarsely, mainly
to reduce computation times, it is expected that the hybrid approach should perform
better on the basis of the richer data bases discussed below.

14.5 MULTICONTINGENCY STUDY

In this section we will briefly deal with the next generation data base, constructed
so as to improve some of the shortcomings noted above. We describe first the main
modifications made in the software and models used and then we comment on the range
of situations and contingencies which have been screened.

14.5.1 Data base generation adaptations

One of the objectives of the present research collaboration is to exploit the preceding
experience so as to specify and implement a flexible prototype data base generation soft-
ware, in particular able to generate systematically large-scale data bases corresponding
to a large number of operating states and contingencies.

A second requirement was to evaluate the feasibility of using a more elaborate power
system model, representing in detail the HV subtransmission system in the study region.
Another important improvement concerned the development of a more reliable voltage
stability criterion and a more elaborate load power margin computation, allowing us in
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particular to minimize discretization and other computation errors [VA 93b] .

Finally, in order to take into account existing uncertainties about the load behavior,
it was deemed necessary to randomize the steady state distribution of the load and
compensation levels, as well as the sensitivity coefficients of the active and reactive
load power to the MV voltage variations. From a practical point of view this should
lead to more robust voltage security criteria, in particular for emergency state detection.
From a methodological point of view it will allow us to illustrate and assess the ability
of the machine learning approach to account for the effect of modelling uncertainties.

In addition to the above main modifications, some adaptations have also been made for
the organization of the data base generation. In particular, on the basis of the experience
acquired in the Hydro-Qúebec project (see Fig. 13.17,x13.4), it was decided to trace
the random variants generated in an a priori data base, so as to enable the analysis
of possible causes of load flow divergence problems, which may become a practical
obstacle to the generation of representative data bases.

According to the above objectives a new data base generation software was developed
and applied to evaluate voltage stability of the Brittany region, in a very broad multicon-
tingency study, considering in parallel preventive security assessment and emergency
state detection. In the next section we will describe the latter data base briefly and
illustrate some of its information.

14.5.2 Summary of generated data bases

In order to make the study more easily accessible and appealing for the power system
engineers in charge of the operation of the Brittany system, it was decided to take into
account their expertise from the beginning. Thus, the scope of the data base generation,
the disturbances and the candidate attributes, were decided in collaboration with the
operators [WE 93g] .

Random generation specifications

With respect to the preceding data bases the main concern was to generate a more
diverse set of situations, while at the same time increasing the representativity of
important classes of configurations.

In terms of topology, this led us in particular to determine a more adapted set of simple
and double line pre-disturbance outages, taking into account information provided
by the expert on “interesting” classes of topology. Further, the “radial” operation
under high load conditions of the 225kV system, as well as changes in substation
configurations were taken into account.
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From the load level point of view the main changes consisted in randomizing the
proportion of MV load at individual HV busses, around their usual values as well as
their power factors.

On the other hand, major modifications were made concerning the active power gen-
eration schedule, including, in particular, situations where the generation units may
operate at intermediate or low active power levels. In addition, 50% of the states
were generated with gas turbines in operation in the pre-disturbance situation, so as to
evaluate their quantitative impact on voltage security limits. Similarly, the possibility
of having one or two of the region’s synchronous condensers out of operation was
considered.

A total number of 5000 normal pre-disturbance states were thus generated. Taking into
account load flow divergence and random sampling specifications, a total number of
13513 variants were required. Further analyses were carried out on the a priori data
base, so as to determine the physical or algorithmic reasons for this high percentage
(62%) of divergences.

Disturbances

The interest in carrying out systematic multicontingency studies was shown in the
transient stability context of the preceding chapter. To enable similar investigations, a
rather broad set of 26 different disturbances was considered in the present study.

They correspond to the following types of contingencies.

Generation unit trippings, of 1, 2 or all units in operation in a regional power plant,
or among the synchronous condensers (9 disturbances).

Busbar faults, in any of 5 important EHV substations of the study region.

Line trippings, of one or two circuits of 6 important EHV lines.

For each of the 26 disturbances, and for each of the 5000 pre-disturbance states a
mid-term voltage security simulation of about 5 minutes was carried out, and for the
stable scenarios a post-disturbance load power margin was determined, leading to
140,000 simulations and about 115,000 margin computations. The model used for
these simulations has been specified inx12.1.1; it is described in detail in [JA 93] .

Attributes

In terms of candidate attributes the experts proposed some key variables which are
often used to monitor the system state, such as important EHV power flows, some
representative 400kV voltages, the number of units in operation in plant 1 (see Fig.
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14.5), the total load demand and the reactive shunt compensation reserve in the study
region.

In addition to these, a set of complementary attributes were also included, such as
the reactive generation reserves and additional power flows and voltages, as well as
topological indicators.

Other variables, like HV voltages, various (EHV, zonal) active and reactive load levels,
and EHV transformer power flows were also computed. In addition, the pre-disturbance
load power margin was computed for each one of the 5000 states, providing a contin-
gency independent security index.

Generated data bases

All in all, 28 data bases were constructed, containing information about (i) the 5000
pre-disturbance states; (ii) the 26�5000 JAD states; (iii) the pre-disturbance, and
26 post-disturbance margins and security classifications. 460 Mbytes of data were
thus generated, stored in readily accessible ASCII files and made accessible to the
analysis on the basis of the statistical and graphical tools developed within the TDIDT
software. In particular, each one of the 5000 states may be selected and disturbances be
resimulated in a very flexible and efficient way, and key parameters may be analyzed
at variable time instants.

Also, histograms, scatter plots and correlation analyses may be systematically generated
so as to appraise the multitudinous information contained in these data bases. This
is illustrated below, where we merely show without discussion some of the security
margin types of information.

14.5.3 Illustrations of load power margins

To illustrate the improvement of the security information available we have displayed
in Fig. 14.12 the value of the pre-disturbance load power margin and its value in the
post-disturbance state of disturbance 1, studied above. Comparing these histograms
with those shown in Fig. 14.8 suggests that the new margin determination provides
more precise information, in particular because of thecontinuousspectrum of its values.
It is expected that this information may be exploited in various ways to improve the
reliability of derived security criteria.

To suggest a possible interesting use of these margins we have represented in Fig. 14.13
two scatter plots which show the correlation between the pre-disturbance load power
margin and the post-disturbance load power margins for two different disturbances.

On the one hand, the scatter plot of Fig. 14.13a illustrates a quite mild disturbance,



346 14. VOLTAGE SECURITY

0 250 500 750 1000 1250 1500

Post-d. margin (MW)
0

50

100

150

200

250

Nb.

0 250 500 750 1000 1250 1500 1750 2000

Pre-d. margin (MW)
0

50

100

150

200

Nb.

Figure 14.12 Pre- and post-disturbance active load power margin distributions
(the relevant 4041 states for disturbance number 1)
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Figure 14.13 Correlation of pre- and post-disturbance load power margins

corresponding to the tripping of one synchronous condenser. Of course, this scatter
plot considers only the 4527 relevant situations with respect to the contingency of
concern. They correspond to the states, among the 5000 states of the data base, where
there is actually a synchonous condenser in operation. As indicated in Fig. 14.13a, the
mean difference between the pre-disturbance and post-disturbance margins is of about
100MW. Further, as we see from the scatter plot and from the high correlation coefficient
� = 0:9933, the post-disturbance margin is strongly related to the pre-disturbance one.

On the other hand, the scatter plot of Fig. 14.13b illustrates a much severer disturbance,
corresponding to the busbar fault in substation 1. Here, the mean difference between the
pre-disturbance and post-disturbance margins is about 440MW. Further, the relatively
low correlation coefficient (� = 0:837) suggests that other factors influence the value
of this post-disturbance load power margin. This is also confirmed by the diffuse
and multi-modal shape of the scatter plot. In fact, the severity of this disturbance will

3� denotes the correlation coefficient of the pre-disturbance and post-distrubance margins, computed
according to eqn. (2.11) on the basis of the relevant data base states.
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depend for example on the number of EHV lines connected to the faulted busbar, which
varies from one operating state to another.

14.6 FUTURE PERSPECTIVES

During the last four years several breakthroughs have been made in the context of
machine learning approaches, as well as in terms of reliable and efficient stability
simulation software and hardware and in terms of methodologies and software for data
base generation and management.

Both voltage security and transient stability applications of the machine learning frame-
work will benefit in the future from these advances, and will hopefully lead to practical
implementation. The preceding two chapters aimed among other things at suggesting
the practicality of this approach, by providing in-depth discussions of past and future
research projects.

In the context of voltage security, we believe that the data base generation has by now
reached maturity, and the existing tools may be considered as prototypes of future
practical software packages. In particular, we believe that the main considerations,
relating to the choice of independent parameters for random sampling, and to the
randomization of the unknown “hidden” parameters such as load modelling, have been
solved. On the other hand, the generation of large enough data bases and the simulation
of the relevant disturbances, rely strongly on the existence of reliable and at the same
time efficient simulation techniques, which have been developed in parallel with the
present research project. In particular, the validation of the security criteria and of the
margin computations could be advantageously achieved on the basis of the very large
diversity of situations contained in our data bases. Finally, the used power system
model is certainly sufficiently detailed for making realistic voltage security studies.

In short, the feasibility of generating very large data bases for voltage security studies
has been demonstrated. On the other hand, the potential of decision trees was shown
in the preceding studies.

In our future research on voltage security, we will first come back to our early concern
of preventive wise assessment so as to appraise security information in terms of usual
prefault operating parameters. This will allow us to compare this information with
existing expertise and gain further confidence. In this context, we believe that the
proper exploitation of load power margins may provide very rich and powerful security
criteria [WE 94c] , and allow multitudinous multicontingency analyses.

The next research stage will then be to compare systematically the criteria obtained in
the context of emergency state detection with the preventive mode. A main issue will
be to determine how far variable time delays and uncertain load behavior may lead
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to a fuzzification of the emergency state security boundaries. These considerations
should be taken into account in the modelling process, so as to avoid overestimating
the derived criteria. Let us therefore recall that the possibility of taking such modelling
uncertainties into account while designing the security criteria is a very unique feature
of our machine learning approach.
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Conclusions

In this thesis we have attempted to survey potentials ofmachine learning approaches
for power system security assessment.

In the first part we have described machine learning and related statistical and neural
network methods. Our purpose was to provide insight into the possible complementary
uses of these various methods. We have therefore put the emphasis on illustrations and
discussions of issues related to their practical use, rather than on extensive theoretical
presentations already available in the specialized literature.

Being driven by the requirements of security problems more than by the features of a
particular subclass of learning methods, we have provided in the second part a synthetic
discussion of security problems and of the computer based learning framework to solve
them. Here also, we have purposely avoided the restatement of information about
modelling and simulation techniques already available in the power system literature.

To render credible machine learning approaches to power system security and to ap-
praise the current advancement of research, we have reported in the third part our results
obtained with extensive experimentations. Although the most interesting results corre-
spond to the real large-scale system applications, we found it interesting to recall our
early attempts with academic type systems. This has illustrated the successive phases
of research which have gradually led us to formulate the methodology.

One of the messages of this thesis is that to make learning methods really successful it
is important to include the human expert in the process of deriving security information.
For example, to guide the security studies it is necessary to exploit his prior expertise
and then to allow him to criticize, assimilate and accept the new information. The results
must therefore be provided in a form compatible with his own way of thinking. In the
general class of computer based learning approaches, the machine learning approaches
are presently the only ones able to meet this requirement. They are therefore a key
element in our framework.

349
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Clearly, machine learning as well as other learning methods can produce interesting
security information only when they exploit representative data bases. The data base
generation approaches that we have used, discussed and illustrated in our research
essentially rely on a pragmatic trial and error procedure. We believe that this method-
ology has reached some maturity and we note that while the initial investment, when
applying it to a new security problem is quite important, the subsequent data base
generation takes full advantage of the previous ones.

At the present stage of development, we believe that the credibility and the practical
feasibility of the proposed approach and its usefulness have already been shown. There
are however some aspects calling for additional research.

From the methodological viewpoint, there is a need for more systematic ways to
control the “false alarm vs non-detection” compromise of the derived security criteria,
so as to meet the different requirements of planning, normal operation and emergency
control. Some promising approaches have been identified and explored but need further
developments. In particular, we mention a decision tree threshold shifting algorithm
and hybrid DT-ANNor DT-NN techniques, which allow exploitation of the information
contained in security margins.

In the context of data base generation, on the other hand, parallel simulation envi-
ronments should be developed to exploit available computing powers, by enabling a
transparent allocation of simulations on virtual machines composed of large numbers
of elementary workstations connected by local or wide area networks.

Such computing environments would allow us to progress further in terms of practical
validations and assessments of the methodology within various security contexts. For
example, various compromises could be studied between very broad long-term studies
covering many different system configurations, and the determination of security limits
for a more restricted range of situations one day or one hour ahead.

After eight years of research, we deem that machine learning methods are indeed able
to provide interesting security information for various physical problems and practical
contexts. Actually, in their philosophy they are quite similar to existing practices in
power system security studies, where limits are derived from simulations, though in
a manual fashion. But machine learning approaches are more systematic, easier to
handle and master, in short more reliable and powerful.

Meanwhile, available computing powers have increased sufficiently to run with accept-
able response times the large amounts of simulation required by statistical machine
learning methods. We can go even further, by stating that the very rapidly growing
computing powers can no longer be satisfactorily exploited via manual approaches used
traditionally in security studies. In this respect, the presented methodology provides
a fully flexible way to exploit systematically parallelism. As we have indicated, with
presently or soon to be available computing environments, it indeed becomes possible
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to run hundreds of thousands of realistic security simulations within response times as
small as some days to some weeks.

These possibilities open up new perspectives to power system engineers to respond
to the challenge of planning and operating future power systems with an acceptable
level of security, in spite of increasing uncertainties (e.g. due to the deregulation of
transmission systems and fast technological changes) and increasing economical and
environmental pressures.
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Appendix - Uncertainty measures

A.1 MOTIVATION

The objective of this appendix is to provide a deeper insight into the uncertainty or
information criteria used in the context of decision tree induction, and more generally of
learning conditional class probability models. Our intention is to show the high degree
of similarity among two main families of criteria based respectively on the logarithmic
SHANNONentropy function and the quadraticGINI index.

We start by introducing a general family of entropy functions and then discuss some of
the interesting particular cases mentioned in chapter 2 or 3.

A.2 GENERALIZED INFORMATION FUNCTIONS

The concept of generalized information functions of type� was first introduced by
Daróczy [DA 70] and its use for pattern recognition problems was discussed by Devijver
[DE 76] .

The entropy of type� (� positive and different from 1) of a discrete probability
distribution(p1; : : : ; pm) is defined by

H�(p1; : : : ; pm)
4
=

mX
i=1

piu
�(pi); (A:1)

whereu�(pi) denotes the uncertainty measure (of type�) of classci and is defined by

u�(pi)
4
=

2��1

2��1� 1
(1� p��1

i ): (A:2)

The uncertainty measureu� is a strictly decreasing function ofpi.
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A.2.1 Properties of H�

H� satisfies the following properties [DA 70, DE 76, WE 90a] .

1. H�(p1; : : : ; pm) =
2��1

2��1�1

h
1�

Pm
i=1 p

�
i

i
;

2. H�(p1; : : : ; pm) is invariant w.r.t. the permutation of its arguments;

3. H�(p1; : : : ; pm) = H�(p1; : : : ; pm;0);

4. H�(1) = H�(0; : : :0;1;0; : : : ;0) = 0 andH�(1
2;

1
2) = 1;

5. H�(p1; : : : ; pm�1; pm) = H�(p1; : : : ; pm�1 + pm)
+(pm�1 + pm)

�H�(pm�1=(pm�1 + pm); pm=(pm�1 + pm))
(pseudo-additivity);

6. 0 � H�(p1; : : : ; pm) � H�( 1
m
; : : : ; 1

m
), i.e. the maximal expected uncertainty

corresponds to uniform distribution;

7. H�(p1; : : : ; pm) is a concave (\) function on the convexe set ofprobability distri-
butions, defined by the constraintspi � 0 et

Pm
i=1 pi = 1 :

8�j � 0; pij � 0; i = 1; : : : ;m; j = 1; : : : k; j
kX
j=1

�j = 1 et8j :
mX
i

pij = 1 :

H�(
kX
j=1

�jp1j; : : : ;
kX
j=1

�jpmj) �
kX
j=1

�jH
�(p1j ; : : : ; pmj):

The interested reader may refer to [WE 90a] for the proofs of the above properties, not
given here to save space.

Daróczy shows that properties 2, 4 and 5 provide a characterization of the entropy
functions of type�. In particular, if we impose simpleadditivity of entropies of
independent variables, or equivalently

H�(p1; : : : ; pm�1; pm) = H�(p1; : : : ; pm�1 + pm) +

(pm�1 + pm)H
�

 
pm�1

(pm�1 + pm)
;

pm
(pm�1 + pm)

!
;

it is necessary to let� converge towards 1, yielding the classical logarithmic entropy
used in thermodynamics and information theory. This is further discussed below.

To fix ideas about the effect of� on the shape of the entropy functions we have
reproduced in Fig. A.1 the graphs of these functions, in the two-class case (p1 =
p; p2 = 1� p), for various values of�. In particular, it is interesting to notice the
relatively small difference between the logarithmic (� �! 1) and the the� type
entropies, for� 2]1 : : :3]. Thus, considering these curves the logarithmic and the
quadratic entropies discussed further below appear to be quite similar.
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Figure A.1 Entropy functions for� 2 [0:01: : :100:0]

A.2.2 Conditional entropies

Let t andc denote two discrete random variables (e.g. a test at a tree node, and a classifi-
cation) of respective probability distribution(p(t1); : : : ; p(tk)) and(p(c1); : : : ; p(cm)).
We denote by

H�
C
4
= H�(p(c1); : : : ; p(cm)); (A:3)

the prior classification entropy of type� and the conditional type� entropy is defined
by

H�
Cjtj

4
= H�

C(p(c1 j tj); : : : ; p(cm j tj)); (A:4)

and the mean conditional type� entropy by

H�
CjT

4
=

kX
j=1

p(tj)H
�
Cjtj

: (A:5)

The concave nature ofH� implies the following fundamental monotonicity property
(see [WE 90a] )

H�
CjT � H�

C : (A:6)

Furthermore, due to the strictness of the concavity the following equality holds true

H�
CjT = H�

C , p(cijtj) = p(ci); 8 i; j; (A:7)

i.e. if and only if the class variablec andt are statisticallyindependent.

The conditional entropy is a measure of the mean residual uncertainty of the classes,
given full information about the random variablet.
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A.3 SHANNON ENTROPY

For� = 1 the above uncertainty measure is not defined anymore, but in the limit, for
� �! 1, we obtain the logarithmic or SHANNON entropy defined in chapter 2.

H
4
= lim

�!1
H� = �

mX
i=1

pi log2 pi; (A:8)

where by continuity we take 0 log2 0 = 0.

It may be easily checked that the properties of the� type entropies hold also for the
logarithmic entropy function. A fundamental property of this entropy function is its
additivity, expressing the fact that the uncertainty of two independent events is equal to
the sum of their respective uncertainties. In the context of probabilistic modelling this
leads to an interesting interpretation of the information provided by a model in terms of
the posterior likelihood of this model [WE 90a, RI 91, WE 94a] . It is not our intention
to discuss these interpretations here, but we merely note that they are certainly among
the main reasons of the high popularity of this particular uncertainty measure [GU 93] .

A.3.1 Conditional entropies and information

The mean conditional entropy becomes the following

HCjT = �
kX
j=1

mX
i=1

p(ci; tj) log2 p(ci j tj): (A:9)

The following quantities of interest are also defined.

� The entropy oft,

HT = �
kX
j=1

p(tj) log2 p(tj) (A:10)

� The mean conditional entropy oft givenc

HT jC = �
mX
i=1

kX
j=1

p(ci; tj) log2 p(tj j ci): (A:11)

� The joint entropy oft andc

HC;T = �
mX
i=1

kX
j=1

p(ci; tj) log2 p(ci; tj): (A:12)
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� The mutual informations

ITC
4
= HC �HCjT ; (A.13)

= �
mX
i=1

kX
j=1

p(ci; tj) log2

p(ci)

p(cijtj)
; (A.14)

ICT
4
= HT �HT jC ; (A.15)

= �
mX
i=1

kX
j=1

p(ci; tj) log2
p(tj)

p(tj jci)
: (A.16)

The following relationships are satisfied.

� Additivity of entropies

HC;T = HC +HT jC = HT +HCjT = HT;C: (A:17)

� And consequently reciprocity of the mutual information

ITC = HC �HCjT = HT +HC �HT;C = HT �HT jC = ICT : (A:18)

� Thus,

ICT = �
mX
i=1

kX
j=1

p(ci; tj) log2

p(ci)p(tj)

p(ci; tj)
: (A.19)

� Inequalities

HT jC � HT ; HCjT � HC ; ITC � HC ; ITC � HT ; ITC � HC;T ; ITC � 0: (A:20)

Further, under the necessary and sufficient condition of strict association betweent

andc (i.e. p(ci; tj) diagonalized by permutation of columns or lines) the following
equalities hold.

ITC = HT = HC = HC;T ; HT jC = HCjT = 0: (A:21)

Finally, under the necessary and sufficient condition of statistical independence the
following equalities hold.

HT = HT jC ; HC = HCjT ; HC;T = HC +HT ; ITC = 0: (A:22)
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A.3.2 Normalizations

The informationITC measures the reduction of the uncertainty of one of the variablest

or c, given the knowledge of the other one. In the context of decision tree induction it is
useful as an evaluation function of alternative tests at a tree node, in order to select the
one reducing most significantly the uncertainty about the unknown classification. More
generally, in the context of statistical modelling this measure may be used to assess
the information provided by alternative models, e.g. alternative sets of parameters of a
neural network.

Within this context, the fact that the information quantity is upper bounded by the prior
entropyHC renders the interpretation of its values difficult. The upper bound, and thus
the observed values of candidate models may indeed be highly variable according to
the number and distribution of classes.

Another frequently mentioned difficulty in the context of decision tree induction con-
cerns the bias of the information quantity which tends to favor tests at a tree node with
a larger number of outcomes [QU 86b, WE 90a, LO 91] .

To provide an improved “score” measure, various ways of normalizing the information
quantity have thus been proposed in the literature [QU 86b, KV 87, MI 89b, LO 91] .
We will present some of them briefly below and provide an illustration on the basis of
data related to our transient stability example.

Normalization by HC

We denote this score measure by

AT
C
4
=

ITC
HC

: (A:23)

In the context of decision tree building, at a given tree nodeHC is constant. Thus the
ranking provided byAT

C andITC are equivalent and the normalization has no effect at all
on the resulting tree. We have used it rather thanITC , merely for comparison purposes,
its values being closer to the values obtained by the other three measures described
below.

It is worth mentioning thatITC and consequentlyAT
C presents at least two interesting

properties which do not hold necessarily for the other measures presented below.

The first property concerns the location of optimal thresholds for ordered attributes.
One may indeed show that for ordered attributes, the optimal thresholds maximizing
ITC must lie at so-called cut-points, i.e. values where the class probabilities are not
stationary. (In the finite sample case, this excludes in particular all thresholds lying
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between states of identical classes.) Exploiting this property allows in general to reduce
significantly the computational burden of searching for the optimal thresholds.

The second property concerns the search for an optimal binary partition for a qualitative
attribute [BR 84, CH 91] . It allows to reduce the search from 2L�1 � 1 toL candidate
partitions (whereL denotes the number of different values assumed by the qualitative
attribute).

Normalization by HT

In order to reduce the bias towards many-valued splits, Quinlan introduced the so-called
“gain ratio”, which we denote by

BT
C
4
=

ITC
HT

: (A:24)

The division byHT allows of course to compensate the higher bias ofITC for tests with
a higher number of successors, which correspond generally to a higher value ofHT .

However, a possible problem with this measure lies in the fact that it may overestimate
the value of splits with very lowHT values, in particular splits corresponding to uneven
decompositions of a learning set into subsets. Thus, for ordered attributes the optimal
values ofBT

C often tend to be located closer to its extreme values; this is known in the
literature as the “end-cut” preference of the “gain ratio” criterion.

Normalization by 1
2(HC +HT )

The preceding normalizations yield asymmetrical “score” measures. While it has been
suggested that asymmetrical measures are natural in the context of pattern recogni-
tion applications, because the learning objective privileges the classification variable
[DE 76] , we believe that symmetrical measures are more appropriate. Indeed, in the
context of decision tree building a main objective is interpretation of correlation among
attributes and classifications, and also among various attributes. There is no reason that
the correlation of two attributes should depend on their order.

Thus, sharing the opinion of Kvålseth [KV 87] , we preferred to use the following
measure [WE 89b] .

CT
C

4
=

2ITC
HC +HT

; (A:25)

which is symmetrical inC andT .

Kvålseth shows that ifITC > 0, the sampling estimatêCT
C is asymptotically normally

distributed with meanCT
C and thus is unbiased. One of its main practical advantages

is that Kv̊alseth provides an explicit formulation of its variance (see eqn. (3.21)).
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This allows one to appraise the uncertainty of the sample estimate of the uncertainty
measure, thus the significance of score differences among various candidate partitions
may be assessed.

Normalization by HC;T

Another symmetrical and normalized measure recently proposed by López de Ḿantaras
is defined by [LO 91]

DT
C
4
=

ITC
HC;T

: (A:26)

This author shows formally thatDT
C is not biased towards many-valued splits, and

suggests also that it tends to provide simpler trees than the gain ratio measure. He
shows also that 1� DT

C is a proper distance measure of two probability distributions
(p(c1); : : : ; p(cm)) and(p(t1); : : : ; p(tk)), which satisfies the triangular inequality.

Let us show the equivalence of the last two measuresCT
C andDT

C .

Noting thatHC;T = HC +HT � ITC we find that

DT
C =

ITC
HC +HT � ITC

; (A:27)

or equivalently that

DT
C =

1
HC+HT

IT
C

� 1
(A:28)

Thus

DT
C =

1
2
CT
C

� 1
(A:29)

and the two measures are a monotonic transformation of each other, as shown in Fig.
A.2. Thus the two measures are equivalent as far as theranking of candidate tests
is concerned and the formal property of no bias towards multiple-valued splits ofDT

C

holds also forCT
C .
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Figure A.3 Variation of various scores for testTRBJ < THRESHOLD

Comparison

First of all we recall that in the context of experimental studies the predictive clas-
sification reliability of decision trees appears to be not much affected by the type of
attribute selection criteria used. We noted this when reporting the results of the Statlog
project, and this was observed by many researchers [BR 84, MI 89b, LO 91] including
ourselves.

However, the complexity of the trees and hence their interpretability which is one of
their main attractive features, does depend much more strongly on the type of measure
used. Further, since the complexity of the tree will influence the size of the learning
samples at the terminal nodes, it will influence strongly the accuracy of their class
probability estimates. Information about the tree complexity is however not so often
reported in experimental studies and the value of simplicity may depend on pragmatic
considerations which are difficult to take into account in systematic comparisons.

For the purpose of our illustration, Fig. A.3 represents the variation of the above four
measures as a function of the test threshold for the problem described inx3.4.3. To
minimize the effect of sampling, we have determined the scores on the basis of the
complete data base of 12497 states.

From the observation of these curves we make the following comments. First of all, all
four measures present two salient local maxima, one below 6000MW and one around
7300MW, which is also the global maximum. Actually, this translates the two different
statistical populations from which the data base samples where drawn [WE 93c] . In
addition to these dominant tendencies, there are small high frequency oscillations
translating the effect of the sampling of the probability distributions of classes. They
vanish however above 8700MW, where all four curves start decreasing monotonically.
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This is merely the consequence of the fact that above this threshold value all the states
of the data base belong to the same class, as is confirmed by Fig. 3.9.

Comparing the curve related to measureA with the three others, we observe that the
normalization ofB;C andD taking into accountHT , enhances indeed the scores
nearby the upper and lower bound of the threshold interval. In particular, the value of
the local maximum nearby 5700MW is enhanced, and pulled towards the lower values.
This effect is stronger for measureBT

C then for measuresCT
C andDT

C . Incidentally, we
note that the latter two measures are indeed equivalent, in terms of the location of all
the local maxima of their curve.

Finally, we may observe in this present example the odd behavior of measureBTC near
the extreme values of the threshold interval, whereHT � 0. In particular its limit value
is not equal to zero.

A.3.3 Hypothesis testing

We merely recall the already mentioned fact that under the hypothesis of statistical in-
dependence the finite sample estimate 2N ln 2ÎTC is distributed according to a��square
law of (m� 1)� (k � 1) degrees of freedom [KV 87] .

Thus the expected value ofÎTC will asume the following value

EfÎTCg =
(m� 1)(k � 1)

2N ln 2
: (A:30)

This confirms1 the fact thatITC is biased, and the higher the number of successors and
classes, the higher the bias. On the other hand, the bias decreases towards zero when
the sample sizeN increases.

A.4 QUADRATIC ENTROPY

The quadratic entropy is the� type entropy, for� = 2.

H2 = 2

"
1�

mX
i=1

p2
i

#
(A.31)

= 4
X
i6=j

pipj (A.32)

= 2
mX
i=1

pi(1� pi); (A.33)

1strictly speaking only under the independence hypothesis
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This is identical to the so-called “Gini” index [BR 84] , which may be interpreted
in the following way. Let us suppose that an object is classified randomly intoci,
with a probability equal topi, in order to mimic the observed random behavior of
the classification. Then the probability of misclassifying the object will be equal to
1� p(ci) and the expected misclassification probability is

Pe =
mX
i=1

p(ci)(1� p(ci)) =
H2
C

2
: (A:34)

Thus reducing the Gini index amounts to reducing the misclassification error associated
with a randomized classification. The Gini index is also equal to the variance of the
class-indicator regression variable (defined byyi(o) = 1 if c(o) = ci, andyi(o) = 0
otherwise). Thus, reducing the Gini index consists also of reducing the residual variance
of class indicator variables.

From the preceding discussion it follows also that the expected value of the quadratic
entropy conditioned on the attribute values is identical to the asymptotic error rate of
the nearest neighbor rule.

A.4.1 Conditional entropies and information

As above, the conditional quadratic classification entropy is defined by

H2
CjT

4
=

kX
j=1

p(tj)H
2
Cjtj

; (A.35)

= 1�
mX
i=1

kX
j=1

p2(ci; tj)

p(tj)
; (A.36)

and the quadratic information provided byt on c is defined by

I2T
C

4
= H2

C �H2
CjT : (A.37)

Similarly, one may define

H2
CjT

4
=

mX
i=1

p(ci)H
2
T jci

; (A.38)

= 1�
mX
i=1

kX
j=1

p2(ci; tj)

p(ci)
; (A.39)

and the quadratic information provided byc on t is defined by

I2C
T

4
= H2

T �H2
T jC: (A.40)

It is worth noting that in generalI2T
C 6= I2C

T .
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In the CART method, Breiman et al. useI2T
C as an attribute selection criterion [BR 84] .

Given the very similar behavior of quadratic and logarithmic entropies, this criterion
must admittedly suffer from similar difficulties than the logarithmic information crite-
rion of xA.3.2. In particular, it suffers from bias towards many-valued splits and makes
the comparison of scores for different values of the prior entropy difficult.

A.4.2 Normalizations

We are not surprised that the same normalization “medicine” has been applied to derive
from the quadratic entropy an appropriate optimal splitting criterion. We will merely
indicate the definition of the resultingsymmetrical� measure proposed by [ZH 91] ,

�
4
=
I2T

C + I2C
T

H2
T +H2

C

; (A:41)

which is the exact equivalent of our ownCT
C measure.

Of course the advantages of the latter measure are the same than those ofCTC , no more
no less.

A.4.3 Hypothesis testing

In the second part of their paper the authors of [ZH 91] present the use of an associated
��square hypothesis test. They note indeed that the quantities

(N � 1)(m � 1)
I2T

C

H2
C

or (N � 1)(k � 1)
I2C

T

H2
T

(A:42)

are distributed according to a��square law with(m� 1)(k � 1) degrees of freedom.

A.5 OTHER LOSS AND DISTANCE FUNCTIONS

Many other criteria have been proposed and are used in various decision tree induction
algorithms. Not all use an as uniform approach as the two preceding ones, exploiting
the same measure for the selection and pruning criteria. A very interesting discussion
of general divergence measures and their algorithmic properties is given in [CH 91] .
Another approach to avoid overestimating the capabilities of multiple-valued tests (and
thus also of over complex trees) consists of “deconvexifying” the used information
measures by using modified estimates of relative frequencies such as

p̂i =
ni + �

n+m�
8 i = 1; : : : ;m: (A:43)
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Figure A.4 Kolmogorov-Smirnoff distance as a function ofTRBJ .

These have been proposed by various authors on the basis of various arguments and
for various purposes [QU 87b, BU 90, ZI 92] .

Below we will merely describe the Kolmogorov-Smirnoff criterion, which has been
proposed very early by Friedman [FR 77] as an attribute selection criterion, and was
extended afterwards by Rounds to provide also a stop-splitting criterion [RO 80] , on
the basis of a similar hypothesis testing approach than above.

A.5.1 Kolmogorov-Smirnoff distance

The basic method is restricted to the two-class case and to ordered (e.g. numerically
continuous) attributes.

Let us denote byFc1(ai) the (cumulative) probability distribution of an attribute, con-
ditioned to classc1 andFc2(ai) the same distribution in classc2. The Kolmogorov-
Smirnoff distance is defined as

DKS
C (a�i ) = max

ai
jFc1(ai)� Fc2(ai)j: (A:44)

The sampling distribution of this quantity has been determined by Kolmogorov, under
the hypothesis of independence, i.e. if the probability distribution of the attributeai is
independent of its class. Its nice property is that it is independent of the distribution
F (ai), and thus yields a non-parametric hypothesis test of the independence ofai and
c.

Note that the sampling distribution (and thus the levels of significance) depends on
the sample sizes of each class which are however constant at a given tree node and
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independent of the considered attribute. Thus the ranking ofDKS
C (a�) is equivalent

to the ranking of the significance levels, and the optimal splitting rule derived by
Friedman consists of splitting a node by the attributea� corresponding to the maximum
Kolmogorov-Smirnoff distance,

DKS
C (a��) = max

i
DKS
C (a�i ); (A:45)

together with its optimal thresholda��.

The stop-splitting rule associated with this criterion by Rounds consists merely of
checking that the significance level 1�� corresponding toD(a��) is larger than a given
a priori fixed threshold. It is a wonder to us that Friedman did not propose this rule
himself.

To appraise this criterion, we have applied it to the same problem corresponding
to Fig. A.3. The corresponding variation of the sample values ofFST (TRBJ),
FUNST (TRBJ) andDKS

C (TRBJ) are illustrated in Fig. A.4.

We note that the overall shape of theDKS
C curve is quite similar to the shape of the

curves in Fig. A.3. It reaches its maximum value at 7310.5MW, which is very close to
the 7308.5MW where the maximum of curvesCT

C andDT
C of Fig. A.3 is located. It is

interesting to observe that the behavior ofDKS
C is smoother than that of the latter two

measures, which suggests that its optimum threshold may be less sensitive to sampling
noise.
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[DA 70] Z. Daróczy,Generalized information functions, Information and Control16
(1970), 36–51.(76, 353, 354)

[DE 76] P. A. Devijver,Entropie quadratique et reconnaissance de formes, NATO
ASI Series, Computer Oriented Learning Processes (JC. Simon, ed.), No-
ordhoff, Leyden, 1976.(353, 354, 359)

[DE 82] P. A. Devijver and J. Kittler,Pattern recognition : A statistical approach,
Prentice-Hall International, 1982.(16, 20, 44, 45, 105, 113, 114, 119, 123,
126, 128, 156)

[DE 90] K. A. Dejong, Genetic algorithm based learning, Machine Learning III
(Y. Kodratoff and R. Michalski, eds.), Morgan Kaufman, 1990, pp. 611–
638.(98, 100)

[DE 92] F.P. de Mello, J. W. Feltes, T. F. Laskwski, and L. J. Oppel,Simulating fast
and slow dynamic effects in power systems, IEEE Computer applications in
power5 (1992), no. 3.(9)

[DO 86] J. C. Dodu and A. Merlin,New probabilistic approach taking into account
reliability and operation security in EHV power system planning at EDF,
IEEE Trans. on Power Syst.PWRS-1 (1986), 175–181.(210)



380 BIBLIOGRAPHY

[DU 73] R. O. Duda and P. E. Hart,Pattern classification and scene analysis, John
Wiley and Sons, 1973.(15, 16, 20, 37, 63, 104, 105, 106, 119, 122, 124,
126, 158)

[DY 67] T. E. DyLiacco, The adaptive reliability control system, IEEE Trans. on
power apparatus and systemsPAS-86 (1967), no. 5, 517–531.(3)

[DY 68] T. E. DyLiacco,Control of power systems via the multi-level concept, Ph.D.
thesis, Sys. Res. Center, Case Western Reserve Univ., 1968, Rep. SRC-68-
19.(2, 104)

[DY 93] T. E. DyLiacco,On the open road to enhancing the value of control centers
to system operation and the utility enterprise, Procs. of APSCOM-93, IEE
Int. conf. on advances in power system Control, Operation and Management
(Invited), December 1993, pp. 24–29.(216)

[ED 70] Edison Electric Institute,On-line stability analysis study, Tech. report, North
American Rockwell Information System Company, 1970.(2)

[EL 89] M. A. El-Sharkawi, R. J. Marks, M. E. Aggoune, D. C. Park, M. J. Damborg,
and L. E. Atlas,Dynamic security assessment of power systems using back
error propagation artificial neural networks, Procs. of the 2nd Symposium
on Expert Systems Application to power systems, 1989, pp. 366–370.(236,
238)

[EU 92] E. Euxibie, M. Goubin, B. Heilbronn, L. Wehenkel, Y. Xue, T. Van Cutsem,
and M. Pavella,Prospects of application to the French system of fast methods
for transient stability and voltage security assessment, CIGRE Report 38-
208, Paris, Aug.-Sept. 1992.(8, 276)

[FA 90] F.C. Fahlman and C. Lebière,The cascaded-correlation learning architec-
ture, Advances in Neural Information Processing Systems II (D. S. Touret-
zky, ed.), Morgan Kaufmann, 1990, pp. 524–532.(118)

[FI 78] L. H. Fink and K. Carlsen,Operating under stress and strain, IEEE Spec-
trum15 (1978), no. 3, 48–53.(4, 389)

[FI 89] D. H. Fisher and K. B. McKusick,An empirical comparison of ID3 and
back-propagation, Procs. of the IJCAI-89, 1989, pp. 788–793.(185)

[FO 92] M. Fombellida and J. Destiné, Méthodes heuristiques et méthodes
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[RI 90] L. Riverin, Activité établissement des limites de transits du réseau Hydro-
Québec, Personal communication, 1990.(8, 239, 243, 301)

[RI 91] M. D. Richard and R. P. Lippmann,Neural network classifiers estimate
Bayesian a posteriori probabilities, Neural Computation3 (1991), 461–
483.(146, 164, 356)

[RI 93] B. D. Ripley, Statistical aspects of neural networks, Proc. of SemStat,
Chapman & Hall, January 1993.(164)

[RO 63] F. Rosenblatt,Principles of neurodynamics, Spartan, 1963.(133)

[RO 80] E. M. Rounds,A combined nonparametric approach to feature selection
and binary decision tree design, Pattern recognition12 (1980), 313–317.
(59, 364)

[RO 93] S. Rovnyak, S. Kretsinger, J. Thorp, and D. Brown,Decision trees for
real-time transient stability prediction, Paper # 93 SM 530–6–PWRS.(8,
228)

[RU 86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,Learning representations
by back-propagating errors, Nature323 (1986), 533–536.(19, 133)

[SA 91a] S. R. Safavian and D. Landgrebe,A survey of decision tree classifier method-
ology, IEEE Trans. on. Syst., Man and Cybernetics21 (1991), no. 3, 660–
674.(17, 62)

[SA 91b] S. Salzberg,A nearest hyperrectangle learning method, Machine Learning
6 (1991), 251–276.(48, 94, 97)

[SA 91c] T. D. Sanger,A tree-structured algorithm for reducing computation in net-
works with seperable basis functions, Neural Computation3 (1991), 67–78.
(168)

[SC 93] C. Schaffer,Overfitting as bias, Machine Learning10 (1993), 153–178.(35)



388 BIBLIOGRAPHY

[SE 85] J. Segen,Learning concept descriptions from examples with errors, Procs.
of the IJCAI-85, 1985, pp. 634–636.(48)

[SE 90] I.K. Sethi,Entropy nets : from decision trees to neural networks, Proceed-
ings of the IEEE78 (1990), no. 10, 1605–1613.(169)

[SH 91] J. Shavlik, R. Mooney, and G. Towell,Symbolic and neural learning algo-
rithms : an experimental comparison, Machine Learning6 (1991), 111–143.
(185)

[SO 83] R. Sorkin,A quantitative Occam’s razor, Int. J. of Theoretical Physics22
(1983), 1091–1113.(48)

[ST 86] C. Stanfill and D. Waltz,Toward memory-based reasoning, Communications
of the ACM29 (1986), no. 12, 1213–1228.(48, 94, 95)

[ST 92] P. Stoa, S. N. Talukdar, R. D. Christie, L. Hou, and N. Papanikolopoulos,
Environments for security assessment and enhancement, Int. J. of Elec.
Power and Energy Syst.14 (1992), no. 2/3, 249–255.(13)

[ST 93] M. Stubbe, A. Bihain, and J. Deuse,Simulation of voltage collapse, Int. J.
of Elec. Power and Energy Syst.15 (1993), no. 4, 239–244.(11)

[TA 83] Y. Tamura, H. Mori, and S. Iwamoto,Relationship between voltage instabil-
ity and multiple load flow solutions in electric power systems, IEEE Trans.
on Power App. and Syst.PAS-102 (1983), no. 5, 1115–1125.(252)

[TA 94] C. Taylor (ed.),Machine learning, neural and statistical classification, Ellis
Horwood, To appear in 1994, Final rep. of ESPRIT project 5170 - Statlog.
(15, 48, 62, 92, 109, 153, 159, 160, 163, 185, 298, 299, 320, 391, 396)

[TO 74] G. T. Toussaint,Bibliography on estimation of misclassification, IEEE
Trans. on Information TheoryIT-20 (1974), no. 4, 472–479.(44)

[TO 93] G. G. Towell and J. W. Shavlik,Extracting refined rules from knowledge-
based neural networks, Machine Learning13 (1993), 71–101.(154)

[UT 88] P.E. Utgoff,Perceptron trees : a case study in hybrid concept representation,
AAAI-88. Procs. of the 7th Nat. Conf. on Artificial Intelligence, Morgan
Kaufman, 1988, pp. 601–606.(63, 168)

[UT 89] P. E. Utgoff,Incremental induction of decision trees, Machine Learning4
(1989).(65)

[VA 84] L. G. Valiant, A theory of the learnable, Communications of the ACM27
(1984), no. 11, 1134–1142.(48)



BIBLIOGRAPHY 389

[VA 91a] T. Van Cutsem,A method to compute reactive power margins with respect
to voltage collapse, IEEE Trans. on Power Syst.PWRS-6 (1991), no. 2,
145–156.(12, 198, 252)

[VA 91b] T. Van Cutsem, L. Wehenkel, M. Pavella, B. Heilbronn, and M. Goubin,
Decision trees for detecting emergency voltage conditions, Proc. of the 2nd
Int. NSF Workshop on Bulk Power System Voltage Phenomena - Voltage
Stability and Security, Deep Creek Lake, Ma, August 1991, pp. 229–240.
(201, 229, 230, 232, 391, 392)

[VA 93a] T. Van Cutsem, L. Wehenkel, M. Pavella, B. Heilbronn, and M. Goubin,
Decision tree approaches for voltage security assessment, IEE Proceedings
- Part C.140 (1993), no. 3, 189–198.(319, 324, 393)

[VA 93b] T. Van Cutsem,Analysis of emergency voltage situations, Proc. of the 11th
Power Systems Computation Conference, Aug-Sept 1993, pp. 323–330.
(12, 197, 201, 247, 326, 342, 391)

[VA 93c] T. Van Cutsem,An approach to corrective control of voltage instability
using simulation and sensitivity, Proc. of IEEE-NTUA Joint Int. Power
Conf. Athens Power Tech, September 1993, pp. 460–470.(12)

[VE 92] V. Venkatasubramanian, H. Schättler, and J. Zaborszky,A stability theory of
large differential algebraic systems - A taxonomy, Tech. Report SSM 9201
- Part I, Dept. of System Science and Math., Washington University, 1992.
(9)

[VI 86] M. Vincelette and D. Landry,Stability limit selection of the Hydro-Québec
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September 1991, In French.(220, 223, 270)

[WE 91e] L. Wehenkel,Evaluation de la stablilit́e transitoire. calcul des indicateurs
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Accuracy,34
Activation function, 137
Artificial neural networks, 18,133
Attributes, 13,30

candidate, 31
selected, 31
test, 31

Back-propagation algorithm, 19,142

Class probability tree,51
Classes,31
Classical model

for transient stability studies, 11,
261, 264

Classification,31
rule,33

Clustering,37
Clustering methods, 20
Complexity,34
Conceptual clustering, 20
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Corrective
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coefficients,38
Cost

of implementation, 34
of learning, 34

Cross-validation
reliability estimate,45, 263

Deadend : a terminal node correspond-
ing to a pruned subtree, 89

Decision

rule,33
tree,51

Dendrograms, 125
Deterministic,32
Diagnostic,32
Direct methods

for transient stability, 10, 195
Distances, 95

between objects,37
Disturbances, 3

Emergency
control, 3
state detection, 3

Entropy
criterion for back-propagation, 146
logarithmic,41

Examples
learning and test,34

Features, 13

Histogram,120
non-parametric estimation, 16

Hypothesis space,33

Instance based learning,93
ISODATA andK-means, 122

Kernel density estimation,119, 298, 319

Lateral fault, 261
Leaf : a terminal node of sufficiently

low apparent entropy, 89
Learning

classes of methods, 15
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supervised, 13
unsupervised, 20

Leave-one-out
reliability estimate,46, 263

Linear discriminant
Fisher, 105, 141, 298, 319
generalized, 111
logistic, 108, 298, 319
perceptron, 135

Load
dynamics, 6
voltage sensitivity, 6

Lyapunov methods, 10, 195

Machine learning
class of computer based learning

methods, 47
framework for security assessment,

1
methods, 16

Mode of instability, 10
Monitoring, 8
Multi-layer perceptrons,141

Naive Bayes classification method, 121
Nearest neighbor method,112, 171, 173,

298, 317, 319
Non-deterministic,32

On-line
operation, 8

Operation
on-line, 8

Operation planning, 7
Overfitting,58

and tree pruning, 57
in Bayesian clustering, 127
in decision trees, 56
in histograms, 120
in kernel density estimation, 119
in multi-layer perceptrons, 146
in nearest neighbor classifier, 113

Partitioning

tree,50
Pattern recognition, 15
Perceptron, 18,135
Planning

operation, 7
system, 7

Prediction,32
Preventive

control, 3
security assessment, 3

Prototypes, 20

Quality measure,33

Real-time, 6
monitoring, 8

Regression,35
models,36
tree,51

Reliability, 34, 42
Restoration, 4
Resubstitution

reliability estimate,45, 262

Security, 2
steady state, 6
voltage, 5,196

Similarity
of attributes,38

Stability
transient, 5,191
voltage, 5,196

Static security
tools, 12

Steady state security, 6
Synchronism

loss of, 5
System planning, 7

Test set
reliability estimate,45

Training, 9
Transient stability, 5,191

tools, 9
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Tree,49
growing, 56
pruning, 56

Universe of possible objects,30

Voltage stability, 5,196
tools, 11
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Glossary

3�SC : three-phase short-circuit, 261
Hm : maximal value of the entropy of a

leaf, 89
K�NN : nearest neighbor method, 16,

112, 171, 173, 298, 317, 319
M : number of test states, 35
N : number of learning states, 34
Pe : error probability (and its test set

estimate), 43
� : risk of not detecting the statistical

independence in stop-splitting
stop-splitting, 59

inf : lower bound of a set of numbers,
38

� :
for transient stability, CCT thresh-

old or fault clearing time, 285
or voltage security, post-disturbance

time of the JAD state, 326
m : number of classes, 31
n : number of attributes, 33
r : number of regression variables, 36
Ni : an interior or test node, 49
Nt : a terminaltree node, 49
N : a tree node, 49
#N : total number of nodes of a tree, 73
LS : learning set, 34
PS : pruning set, 60
TS : test set, 35
U : universe of possible objects, 30
�ij : (Kronecker)�ij if i = j and 0 if

i 6= j, 42
#A : number of different DT test at-

tributes, 265

AC : alternating current, 12
ANN : artificial neural networks, 18
AutoClass : clustering method, 126
AVR : automatic voltage regulator of

synchronous machines, 5

BFGS : Broyden-Fletcher-Goldfarb-Shannon
algorithm, 148,148, 149

CCT : critical clearing time,193
CPU : central processing unit of a com-

puter, 10

DC : direct current, 5
DE : dangerous errors, 285
DT-ANN : Decision Tree - Artificial

Neural Network,169, 225, 232
DTSA : decision tree based security as-

sessment, 189
DTTS : decision tree based transient sta-

bility assessment, 269, 285
DT : decision tree, 17

EHV : extra high voltage, 9
EMS : energy management system, 6

FACTS : flexible alternative current trans-
mission systems, 5

FA : false alarms, 285

HV : high voltage, 199

IBL : instance based learning, 48, 93

JAD : just after disturbance state, 23
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LTU : linear threshold unit, 18,135
LVQ : learning vector quantization,163,

298, 319

MLP : multi-layer perceptrons, 19,141,
298, 316, 319

MSE :
generalization, 146
mean square error function, 19
perceptron, 137
projection pursuit, 116
regularization, 146

MV : medium voltage, 199

ND : non-detections, 285
NE : normal errors, 285

OLTC : on load tap changer, 5
OMIB : One-Machine-Infinite-Bus sys-

tem, 260
OPF : optimal power flow, 6
OS : operating state, 274

PI : performance index for contingency
filtering, 12

SBS : step-by-step time-domain simu-
lation method, 9

SMART : projection pursuit method,
118, 298, 319

SMES : superconducting magnetic en-
ergy storage devices, 5

SOM : self organizing feature map,156,
298, 319

SVC : static var compensator, 5

TDIDT : top down induction of decision
trees, 17, 55

TSA : transient stability assessment, 5

UHV : ultra high voltage, 301
ULTC : under load tap changer, 5

VSA : voltage security assessment, 11


