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4 The geometri approximation in (n,C) networks 204.1 (n,C) networks and on�dene intervals . . . . . . . . . . . . . . 224.2 Simulation results and disussion . . . . . . . . . . . . . . . . . . 254.3 Approximation formula for the mean time spent in a basin of aNBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Method for the redution of a NBN 365.1 Disrete-time redution . . . . . . . . . . . . . . . . . . . . . . . 365.1.1 The low p regime . . . . . . . . . . . . . . . . . . . . . . . 365.1.2 Case p = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . 405.2 Continuous-time redution . . . . . . . . . . . . . . . . . . . . . . 406 Statistial �utuations in NBNs 427 Redution of a NBN to a two-state Markov hain 468 Conlusion 469 Note 4810 Aknowledgment 481 Noisy Boolean networks (NBNs)1.1 De�nitionBoolean networks (BNs) have been used for several deades as models of bio-hemial networks, mainly to predit their qualitative properties and, in thease of geneti regulatory networks, to infer the inputs and interation rules oftheir nodes from miroarray data (Kau�man, 1969; Glass and Kau�man, 1973;Kau�man, 1993; Li et al., 2004; Martin et al., 2007; Samal and Jain, 2008).An n-node BN model onsists of n interating nodes whih, in the ontextof biohemial networks, generally represent genes or moleular speies suh asproteins, RNAs or metabolites. Let Xi(k) denote the Boolean variable desrib-ing the state of node i at disrete time k = 0, 1, . . . If node i represents a protein,then we say that if the value of the node is 1, then the protein is present, in itsative form and its target (or substrate) present. Using De Morgan's law, thenegation of this onjuntion gives the interpretation for value 0: the protein isabsent or inative or its target (or substrate) absent.Remark 1 A more onise interpretation instead of �present� (resp. �absent�) is�present and not being degraded� (resp. �absent or being degraded�) or even �presentand prodution rate greater than degradation rate� (resp. �absent or degradation rategreater than prodution rate�).For an n-node synhronous BN, the interations between the nodes are mod-eled by a set of n Boolean interation funtions suh that:2



Xi(k + 1) = Fi[X1(k), X2(k), . . . , Xn(k)], i = 1, 2, . . . , n, (1)with Fi interation funtion of node i. If the state of node i at time (k + 1)depends on the state of node j at previous time k, then node j is said to bean input for node i. The number of inputs of a node is alled the onnetivityof that node. The network is said to be synhronous beause as expressed in(1) the n nodes are updated synhronously. Also from (1) the dynamis of thenetwork deterministi.Let us take an example to illustrate some essential properties of BNs. Con-sider the following BN:
X1(k + 1) = ¬X4(k)

X2(k + 1) = ¬X3(k)

X3(k + 1) = X1(k) ∨X2(k) ∨X4(k)

X4(k + 1) = X1(k) ∧X2(k) ∧X3(k), (2)where symbols ¬, ∨ and ∧ represent logial operators NOT, OR and ANDrespetively. The size of the state spae of this network, i.e. the number ofpossible states, is 2n = 16 sine n = 4 here. From (2), the next state for eahpossible state an be omputed to obtain the state table of the network. Usingthis state table then, the state diagram an be built. This is shown in Fig 1where it an be seen that the state spae has been partioned into two disjointsets. These sets are alled basins of attration and are denoted by B1 and B2 inthe �gure. Eah basin onsists of an attrator and some transient states. Theattrator of B1 is the �xed point 1010: whatever the initial state in B1, thenetwork will onverge to 1010 and stay there forever. Attrators may also beperiodi as is the ase for basin B2. The size of a basin or of an attrator is thenumber of states that onstitute it.Now suppose that, due to random perturbations, eah node of a BN hasprobability 0 < p < 1 to swith its state (0 to 1 or vie versa) between anytwo times k and (k + 1). Then we get a noisy BN (NBN)1. The introdutionof disorder p is supported by the stohasti nature of intraellular proessesoupled to the fat that, thermodynamially speaking, biohemial networksare open systems.One important di�erene between a BN and a NBN is that in the latter,transitions between the basins of the network are allowed. For example, in thestate diagram of Fig. 1, if we perturb simultaneously nodes 2 and 3 of attratorstate 1010 whih is in B1, then we go to transient state 1100 whih belongs toB2.1Here, for the sake of simpliity, perturbation probability p is supposed to be independentof time k and of the states of the nodes. If, for instane, for a partiular node, 0 to 1 randomswithing probability is set greater than 1 to 0 one, then it means that random perturbationstend to turn the node ON rather than OFF. 3



0110 1010010111010001 1001 1000 101111100010 010011000000 0011 01111111B1 B2Figure 1: State diagram of the four-node network de�ned by interation rules (2).Interations between the nodes lead to the partitioning of the state spae into twobasins B1 and B2 of respetive sizes 6 and 10.Remark 2 Flipping the value of single nodes has been envisaged by Kau�man (1993)in geneti Boolean networks to study their stability to what he alled minimal perturba-tions. Shmulevih et al. (2002) proposed a model for random gene perturbations basedon probabilisti Boolean networks (a lass of Boolean networks that enlosed the lassof synhronous Boolean networks by assigning more than one interation funtion toeah node) in whih any gene of the network may �ip with probability p independently ofother genes and interpreted the perturbation events as the in�uene of external stimulion the ativity of the genes.Let L(x;n, p) be the probability that exatly x nodes will be perturbedduring one time step. Then letting q = 1 − p:
L(x;n, p) =







(

n
x

)

pxqn−x if 0 < x < n,
qn if x = 0,
pn if x = n.

(3)This is the binomial probability distribution with parameters n and p. Onaverage, np nodes are perturbed at eah time step. The probability that atleast one node will be perturbed during one time step is therefore:
n

∑

x=1

L(x;n, p) = 1 − qn = r. (4)Sine we are mainly interested in the behaviour of the network as p varies, in thefollowing n and x will be onsidered as parameters while p will be onsideredas a variable. Thus we should write L(p;n, x) instead of L(x;n, p)2.2L(p;n, x) is a funtion of p with parameters n and x. It is not a probability density4



p0.002 0.02 0.2 0.5
L(p; 4, 1) 0.0080 0.0753 0.4096 0.2500
L(p; 4, 2) 0.0000 0.0023 0.1536 0.3750
L(p; 4, 3) 0.0000 0.0000 0.0256 0.2500
L(p; 4, 4) 0.0000 0.0000 0.0016 0.0625
L(p; 8, 1) 0.0158 0.1389 0.3355 0.0312
L(p; 8, 2) 0.0001 0.0099 0.2936 0.1094
L(p; 8, 3) 0.0000 0.0004 0.1468 0.2188
L(p; 8, 4) 0.0000 0.0000 0.0459 0.2734Table 1: Some values of the funtion L(p;n, x).For 0 < x < n, L(p;n, x) has a maximum at p = x/n and L(0;n, x) =

L(1;n, x) = 0.The Malaurin series of L(p;n, x) up to order 2 is:
L(p;n, x) =















1 − np+ n(n− 1)p2/2 + . . . if x = 0,
np− n(n− 1)p2 + . . . if x = 1,
n(n− 1)p2/2 + . . . if x = 2,
0 + . . . if 2 < x ≤ n.Thus one has:

L(p;n, x) =







1 − np+ o(p) if x = 0,
np+ o(p) if x = 1,
o(p) if 2 ≤ x ≤ n.

(5)This means that, n being �xed, for su�iently small p the probability that
2 ≤ x ≤ n nodes be perturbed during one time step is negligible ompared tothe probability that just one node be perturbed. Table 1 gives some values of
L(p;n, x) rounded to four deimal plaes. We see that at p = 0.002, L(p; 4, 1) =
0.0080 = 4p and L(p; 8, 1) = 0.0158 ≈ 8p.1.2 The mean spei� pathConsider a series of Bernoulli trials where eah time step de�nes one trial andwhere a suess means that at least one node has been perturbed. From (4),the probability that the �rst suess will our on trial i is:

pi = r(1 − r)i−1, i = 1, 2, . . . , (6)whih is a geometri distribution with parameter r. The �rst moment of thisdistribution (the mean time between two suesses) is:funtion. For �xed p, L(p;n, x) is a probability.5



τ =
1

r
=

1

1 − qn
. (7)We see that τ is a dereasing funtion of p and n, that tends to 1 as p→ 1 andto ∞ as p → 0. Sine time step is unity, τ equals the mean number d of statetransitions between two suesses. By analogy with the mean free path of apartile in physis3, d will be alled mean spei� path. The term �spei��is used to reall that between two suesses, the trajetory in the state spae isspei� to node interations, i.e., it is entirely determined by node interations.For su�iently small p one has r = 1 − qn ≈ np ≈ L(p;n, 1), where the lastapproximation omes from (5). Hene, for su�iently small p we may write:

pi ≈ np(1 − np)i−1, i = 1, 2, . . .Depending on the value of p, di�erent dynamial regimes are possible. For
p = 0, the network is trapped by an attrator where it stays forever. For
0 < p < 1, transitions between the basins of the network our. The more
p is lose to one, the shorter the times spent on the attrators, the more thenetwork su�ers from funtional instability. In the low p regime, the networkmay both maintain a spei� ativity for a long time period and hange itsativity: funtional stability and �exibility (or diversity) oexist.1.3 Time evolution equationA NBN is in fat a disrete-time Markov hain {Xk, k = 0, 1, . . .}, where Xk isthe random variable representing the state of the network at time k. The statespae of an n-node BN will be denoted by {1, 2, . . . , E}, with E = 2n and withstate i orresponding to binary representation of (i− 1).Let πij = Pr{Xk+1 = j|Xk = i} ≥ 0 be the onditional probability that thenetwork will be in state j at (k + 1) while in state i at k. The matrix of size Ewhose elements are the πij 's will be denoted by Π and is alled the transitionprobability matrix in Markov theory. The sum of elements in eah row of Π isunity. Let z(k)

i be the probability that the network will be in state i at time kand denote by z
(k) the vetor whose elements are the state probabilities z(k)

i .Given an initial state probability vetor z
(0), the vetors z

(1), z(2), . . . are foundfrom (Kleinrok, 1975):
z
(k+1) = z

(k)Π, k = 0, 1, . . . (8)Matrix Π is the sum of two matries:1. The perturbation matrix Π′, whose (i, j)th element is equal to
π′

ij =

{

phijqn−hij if i 6= j,
0 if i = j,3In kineti theory of gases, the mean free path of a gas moleule is the mean distanetraveled by the moleule between two suessive ollisions.6



where hij refers to (i, j)th element of Hamming distane matrix H , asymmetri matrix that depends only on n. Element hij is equal to thenumber of bits that di�er in the Boolean representations of states i and
j. Diagonal elements of H are therefore 0. For example, if n = 2, H takesthe form:

H =









0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0









. (9)Note that in eah row of H , integers x = 1, 2, . . . , n appear respetively
(

n
x

) times. Thus from (3) and (4), the sum of elements in eah row of Π′must be r.2. The interation matrix Π′′. If the node interations are suh that startingin state i the network is fored to transition to state j in one time step,then (i, j)th element of Π′′ equals qn = 1 − r, otherwise it is 0. Notiethat if ith diagonal element of Π′′ equals qn then state i is a �xed point(attrator of size 1).Therefore, for �xed n, any probability πij will be either 0 or a funtion of p.1.4 Stationary probability distributionSine p does not depend on k, the πij 's are independent of time. The hainis thus homogeneous. As shown by Shmulevih et al. (2002) for geneti proba-bilisti Boolean networks, for 0 < p < 1, the hain is irreduible and aperiodi.Consequently, for given p there is a unique stationary distribution z̄ whih isindependent of z
(0) (Kleinrok, 1975). The stationary distribution satis�es thetwo equations:

z = zΠ and ∑

i

zi = 1. (10)In addition, we have:
lim

k→∞
Πk = Π̄, (11)where eah row of Π̄ is equal to vetor z̄.Fig. 2 shows the stationary state probabilities z̄i for the network of Fig. 1and two p values. Blue points orrespond to p = 0.04 and red ones to p = 0.4.As an be seen in the �gure, when p = 0.04, the stationary probabilities of thetransient states are small ompared to those of the attrator states (attratorstates are represented in bold type in the �gure). Therefore in the low p regime,the ativity of the network in the long term is governed mostly by its attrators4.4Equivalently, in the low p regime, it is mostly attrators that determine the fate of theells. 7
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Figure 2: Stationary state probabilities for the network shown in Fig. 1 and two
p values. Blue points: p = 0.04; red points: p = 0.4. Attrator states are inbold type. The stationary probability of B1 (obtained by summing the stationaryprobabilities of the states of B1) is 0.3270 when p = 0.04 and 0.3708 when p = 0.4.Sine the size of B1 is 6, this probability onverges to 6/16 = 0.375 as p tends to
1.In fat, the stationary probabilities of the transient states tend to 0 as p tendsto 0. Also notie for p = 0.04 the stationary probabilities of the seond attratoralmost equal.As p tends to unity, the stationary probabilities tend to be uniform, i.e. as
p → 1 one has z̄i → 1/E = 1/16 = 0.0625 ∀i (see the ase p = 0.4). Thus for
p su�iently lose to unity, the stationary probabilities of the transient statesare not negligible ompared to those of the attrator states.Remark 3 For su�iently small p, the stationary probability of an attrator statemay be approximated by Z̄∗/A where Z̄∗ is the limit as p→ 0 of the stationary oupa-tion probability Z̄ of the basin ontaining the attrator and A the size of the attrator(see further 4.3). Thus in the ase of the network of Fig. 1, we get for attratorstate 11 (�xed point) that z̄11 ≈ 1/3 = limp→0 Z̄/1, and for the states of the seondattrator, that eah stationary state probability ≈ 1/6 = limp→0 Z̄/4.8



2 Method for the alulation of the sojourn timedistribution in a basin of a NBNConsider a BN having at least two basins. Consider a basin B of size B of thisnetwork and a �xed perturbation probability p. Let
Πb =

(

Q a

0 1

)

. (12)The square B × B sub-matrix Q ontains the one-step transition probabilities
πij between the states of B. For example, in the ase of basin B1 of Fig. 1,element (1, 4) of Q is equal to the one-step transition probability between state
2 (0001) and state 10 (1001). Element i of vetor a represents the one-steptransition probability between state i ∈ B and an absorbing state5 regroupingstates j /∈ B, i.e.

ai =
∑

j /∈B πij =
∑

j /∈B π′
ij =

∑

j /∈B phijqn−hij .

0 is a row vetor of length B with all elements zero and 1 is a salar.From matrix Q, we an alulate the probability W (k) that the network willbe in basin B at time k given an initial probability vetor b
(0) of length B withsum of elements 1:

b
(k+1) = b

(k)Q, k = 0, 1, . . . , (13)and by de�nition:
W (k) =

B
∑

i=1

b
(k)
i , k = 0, 1, . . . ,with W (0) = 1.Now we want the sojourn time distribution in B. We shall denote by S thedisrete random variable representing the sojourn time in B, with sample spae

s = 1, 2, . . ., and by ψs the probability distribution of S, i.e. ψs = Pr{S = s}.For a given basin, ψs depends on p and initial vetor b
(0). It is given by:

ψs = W (s−1) −W (s), s = 1, 2, . . . , (14)while the umulative distribution funtion of S is:
ψ̂s = Pr{S ≤ s} = 1 −W (s), s = 1, 2, . . . (15)Matrix Πb in (12) represents an absorbing Markov hain (Snell, 1959), i.e. ithas at least one absorbing state and from every non-absorbing state (every state

∈ B) one an reah an absorbing state (any state /∈ B). If the hain is initiallyin state i ∈ B, then the mean time spent in state j ∈ B before absorption is5A state suh that one reahed, it is not possible to esape from it.9



the (i, j)th element of fundamental matrix (I − Q)−1 (Snell, 1959). Thus if µdenotes the mean of ψs then:
µ = b

(0)(I −Q)−1
1. (16)Here 1 is a olumn vetor of length B with eah element 1.Also notie from the de�nitions of the mean of S and of ψs that µ an beexpressed as follows:

µ =

∞
∑

k=0

W (k) = 1 +W (1) +W (2) + . . .3 The problem of geometri approximationLet gs be a geometri distribution with parameter pµ = 1/µ, i.e. ψs and gshave same mean. Consider the maximum deviation between the umulativedistribution funtions (dfs) of these two distributions, namely:
δ∗ = max

s≥1
δ(s), (17)with δ(s) = |ψ̂s − ĝs| and ĝs the df of gs, i.e. ĝs = 1− (1− pµ)s, s = 1, 2, . . . Inprobability theory, δ∗ is alled the Kolmogorov metri. As ψs, δ∗ is not de�nedfor p = 0 and, for a given basin, depends on p and b

(0). It omes from (15)that:
δ(s) = |(1 − pµ)s −W (s)|, s = 1, 2, . . . (18)Thus δ(s) represents the absolute error between W (s) and its geometri approx-imation (1 − pµ)s. For basins of size B = 1 (one �xed point and no transientstates), ψs is given by (6) whih is geometri. Hene for suh basins δ(s) = 0

∀s, p and thus δ∗ = 0 ∀p. This is a partiular ase and in the following we shallstudy the behaviour of δ∗ as p tends to 0 without any assumptions on ψs.The probability to exit B during (k, k + 1) is:
pe(k, k + 1) = Pr{S = k + 1|S > k} = 1 −

W (k+1)

W (k)
, k = 0, 1, . . . (19)This probability depends on k, p and b

(0). In partiular, for B = 1, pe(k, k+ 1)is onstant and equal to r. When p > 0, any state i ∈ B ommuniates withany state j /∈ B, thus pe(k, k + 1) > 0 ∀k = 0, 1, . . . and therefore probability
W (k) is stritly dereasing.Inversely, sine W (0) = 1, we have:

W (s) =
s−1
∏

k=0

[1 − pe(k, k + 1)], s = 1, 2, . . . (20)10



and thus
δ(s) = |(1 − pµ)s −

s−1
∏

k=0

[1 − pe(k, k + 1)]|, s = 1, 2, . . . (21)We see that if pe(k, k + 1) = pµ ∀k then δ∗ = 0. Also note the following:1.
lim
p→0

µ = ∞ ∀b(0). (22)Whatever the initial onditions, as p beomes smaller, it takes on averagemore and more time to leave the basin. Also this means that ∀b(0): pµ → 0as p→ 0.2.
lim
p→0

pe(k, k + 1) = 0 ∀k,b(0). (23)Whatever k and the initial onditions, the probability to leave the basinduring (k, k+1) goes to 0 as p→ 0. Indeed, from equations (13) and (19),it omes that
pe(k, k + 1) =

∑

i∈B aib̂
(k)
i =

∑

i∈B n
∑

x=1

Γx
i p

xqn−xb̂
(k)
i , k = 0, 1, . . . , (24)with Γx

i ≥ 0 the number of ways of leaving B by perturbing x bits of state
i ∈ B6 and

b̂
(k)
i =

b
(k)
i

W (k)
,i.e.

∑

i∈B b̂(k)
i = 1, k = 0, 1, . . .In order to show that ∀b(0) any δ(s) tends to 0 as p tends to 0, we introduetwo propositions.Proposition 1 For any basin of a noisy Boolean network with �xed 0 < p < 1,the fundamental matrix (I −Q)−1 has a real simple eigenvalue λ∗ > 1 whih isgreater in modulus than any other eigenvalue modulus, that is λ∗ > |λ| for anyother eigenvalue λ of (I −Q)−1. We have:

lim
k→∞

pe(k, k + 1) =
1

λ∗
.6This number is equal to the number of elements in row i of the Hamming distane matrix

H that are equal to x and whose olumn index j is suh that j /∈ B.11



For a given basin, the rate of onvergene depends on p and b
(0) while the limit

1/λ∗ depends only on p.From that proposition, we see that if ψs is geometri then pµ = 1/λ∗. Forexample, if B = 1 then pµ = r = 1/λ∗.Demonstration.We have to show that:
lim

k→∞

W (k+1)

W (k)
= λb,with λb = 1 − 1/λ∗ a real simple eigenvalue of Q greater in modulus than anyother eigenvalue modulus and 0 < λb < 1.Matrix Q is nonnegative. It is irreduible and aperiodi thus primitive. Fromthe Perron-Frobenius theorem, we have that: (1) Q has a real eigenvalue λb > 0whih is greater in modulus than any other eigenvalue modulus. Sine Q issubstohasti, we have 0 < λb < 1. (2) λb is a simple root of the harateristiequation of Q. Moreover (Douglas and Brian, 1999):

lim
k→∞

Qk

λk
b

= vuT ,with v and u right and left eigenvetors assoiated with λb hosen in suh a waythat u > 0, v > 0 and uT v = 1. The greater k, the better the approximation
Qk ≈ λk

bvu
T . Thus:

W (k+1) = b
(0)Qk+1

1 ≈ b
(0)λk+1

b vuT
1 ≈ b

(0)λbQ
k
1 = λbW

(k).Therefore:
W (k+1)

W (k)
→ λb as k → ∞.Proposition 2 µ is asymptotially equivalent to λ∗:
lim
p→0

µ

λ∗
= 1.Sine λ∗ does not depend on b

(0), the last statement is equivalent to saythat as p tends to 0, µ is less and less dependent on b
(0). In other words, from(16), the elements of vetor (I −Q)−1

1 tends to be equal as p→ 0.Demonstration.If ψs is geometri then µ does not depend on b
(0). Thus from (16) it omesthat:

(I −Q)−1
1 = µ1,or equivalently

Q1 = (1 −
1

µ
)1. (25)12



This means that (1 − 1/µ) is an eigenvalue of Q with assoiated eigenvetor
1. Sine Q is nonnegative primitive, by the Perron-Frobenius theorem, (1 − 1

µ )must equal λb, whih implies µ > 1. Now λb = 1 − 1/λ∗. Thus µ = λ∗. From(25) we see that the sum of elements in any row of Q is a onstant. This isbeause when ψs is geometri, the probability to leave the basin from any stateis onstant.When Q is not geometri, the Perron-Frobenius theorem gives:
Qv = λbv, 0 < λb < 1.Now as p tends to 0, Q tends to a stohasti matrix (beause vetor a tends tovetor null). Therefore as p tends to 0, λb must tend to 1 and v must tend to

1. Thus for su�iently small p we may write:
Q1 ≈ λb1, (26)or equivalently

(I −Q)−1
1 ≈ λ∗1.Therefore

µ = b
(0)(I −Q)−1

1 ≈ b
(0)λ∗1 = λ∗.Thus as p → 0, µ will be less and less dependent on initial onditions and theerror in the above approximation will tend to 0. Note that sine λb → 1 as

p→ 0 we must have µ→ ∞ as p→ 0 whih is result (22).Remark 4 As will be disussed later, approximation µ ≈ λ∗ may be good in someneighborhood of some p (typially in the neighborhood of p = 0.5, see Fig. 13 in 4.3).From Proposition 2 now, (1 − pµ)s will tend to (1 − 1/µ)s = λs
b as p → 0.On the other hand, from (26), we get

Qs
1 ≈ λs

b1,and thus:
W (s) = b

(s)
1 = b

(0)Qs
1 ≈ λs

b.Hene from (18) any δ(s) will tend to 0 as p tends to 0, whatever b
(0). Thus themaximum will do so:

lim
p→0

δ∗ = 0 ∀b(0).Sine the maximum deviation between the two dfs of ψs and gs vanishes as
p → 0, these two dfs tend to oinide as p tends to 0. Also this means that
(1−pµ)s is a good approximation to within ±δ∗ of W (s) at any and every s andthat the error an be made arbitrarily small by taking p su�iently lose to 0(but not equal to 0). 13



In addition, from (22) we may write for su�iently small p:
ĝs = Pr{S ≤ s} = 1 − es ln(1−pµ) ≈ 1 − e−pµs.Yet the df of an exponential distribution with parameter γ is:

Pr{T ≤ t} = 1 − e−γt.For t = s and γ = pµ, the two probabilities are equal. Therefore, as p → 0 and
∀b(0), the df of ψs tends to oinide with the df of an exponential distribution.Sine µ is less and less dependent on b

(0) as p → 0 (see Proposition 2), onehas for su�iently small p that an exponential distribution an be used toapproximate the time spent in a basin of a NBN.Remark 5 Depending on b
(0), ψs may be very lose to a geometri distribution while

p is not small. See Examples 1 and 2 below.Suppose that for eah basin of a NBN the sojourn time S is su�ientlymemoryless. Then, under some additional assumptions that will be disussedin setion 5, one may de�ne another disrete-time homogeneous Markov hain
Ỹk whose states are the basins of the network. (1) This new stohasti proessis oarser than Xk sine only transitions between the basins of the network aredesribed. (2) The size of its state spae is in general muh smaller than E,the size of the state spae of the original proess. (3) It has to be viewed as anapproximation. The tilde symbol in Ỹk is used to reall that in general, a basindoes not retain the Markov property (i.e., ψs is not geometri).Example 1 Calulation of sojourn time distributions and illustration of the geo-metri approximation problem. Let us take basin B1 of Fig. 1 with p = 0.02 and
b
(0)
i = 1/6 ∀i = 1, 2, . . . , 6, and let us ompute ψs and gs. The two distributions areplotted in Fig. 3a. The irles stand for the probabilities ψs (µ = 13.3530), the pointsfor the probabilities gs (pµ = 1/µ = 0.0749). Fig. 3b shows W (k) and its geometriapproximation (1 − pµ)k versus time k. Maximum deviation δ∗ between the two is

2.3007%.Table 2 gives µ and δ∗ for di�erent p values and di�erent initial onditions for thetwo basins of Fig. 1. Eah of the four olumns below µ and δ∗ orresponds to one pvalue, from left to right: p = 0.002, 0.02, 0.2 and 0.8. The mean values of the olumnsare also given (see the rows with �Mean�). For the alulation of µ, we onsidered twotypes of initial onditions: (1) the network starts in one state of the basin (suessivelyeah state of the basin was taken as initial state) and (2) b(0)i = 1/B ∀i = 1, 2, . . . , B(see �Unif.� in the Table). We see that for the �rst three values of p the mean sojourtimes in B1 are smaller than those in B2 (see the �rst three olumns below µ). Thus B1is less stable than B2. Also alulated for eah basin and the four p values the variationoe�ient of the sojourn times obtained with the �rst type of initial onditions. Theresults are (olumns 1, 2, 3 and 4): 0.1876, 1.7880, 9.3454 and 15.9039% for B1; 0.1566,
1.3030, 2.5152 and 17.0044% for B2. Therefore µ is less and less sensitive to the initialstate as p dereases, whih is in aordane with Proposition 2.Another important observation in this table is that, depending on the initial ondi-tions, ψs may be lose to a geometri distribution while p is not small (see in the tablethe values of δ∗ when p = 0.2). Fig. 4 shows the funtions δ∗(p) for the two basins ofFig. 1 and the uniform initial ondition. We see that in both ases δ∗(p) → 0 when14



p→ 0, δ∗(0.5) = 0 (ψs is geometri at p = 0.5)7 and δ∗(p) tends to a global maximumas p → 1. For basin B1 (blue urve), there is one loal maximum at p = 0.112, whilefor basin B2 (green urve) there are two loal maxima, one at p = 0.0530 and theother at p = 0.3410, and one loal minimum at p = 0.2600 (0.0677%). As mentionedabove, funtion δ∗(p) depends on initial onditions. For example, if the network startsin state 0000, then B2 has still one loal minimum but this now ours at p = 0.3640(0.0830%).Example 2 In this example, we illustrate the fat that while p is not small, ψs maybe lose to a geometri distribution, depending on b
(0). We take basin B1 of Fig. 1and alulate ψs when initially the network is (a) in state 0101 and (b) in state 0110.Fig. 5 shows the results. As an be seen in the �gure, when the network starts in 0110,

ψs is lose to a geometri distribution whih is not the ase when the initial state is
0101.To ompare the two approximations, we omputed the varianes σ2 and σ2

g of ψsand gs respetively and the total variation distane dTV between ψs and gs (anotherprobability metri) whih is given by:
dTV =

1

2

X

s≥1

|ψs − gs|.The values of these parameters are given in Table 3. We see that the total variationdistane is about 10 times greater when the initial state is 0101 than when it is 0110.The more geometri ψs, the smaller dTV , the better the approximations σ2 ≈ σ2
g and

µ ≈ λ∗.Till now, we have assumed eah node of the network has the same probabil-ity of being perturbed. In Example 3 below, we look at how the network of Fig.1 behaves when one of its nodes is perturbed with a probability whih is highompared to the other nodes. Suppose nodes represent proteins. Within theell interior, some proteins may be more subjet to ompeting reations thanothers. These reations may be assumed to at randomly8, either negatively orpositively, on the state of the target proteins. For example, some reations maylead to protein unfolding while others, like those involving moleular haper-ones, may resue unfolded proteins (Dobson, 2003). On the other hand, someproteins may be more sensitive to physio-hemial fators, like temperature orpH, inreasing their probability to be perturbed.Example 3 In this example, it is assumed that one node is perturbed with a proba-bility whih is high ompared to the other nodes. The behaviour of the network when
p → 1 is omplex and will not be disussed here so we take p1 = p2 = p3 = 10−3(the �rst three nodes are rarely perturbed) and 0 < p4 ≤ 0.9. Fig. 6 shows z̄ for twovalues of p4. For p4 = 0.04 (the blue points) the network behaves as if all the nodeshad the same probability p = 0.04 of being perturbed (see Fig. 2, the blue points).Simulations have shown this to be true whatever the three rarely perturbed nodes.When p4 inreases in ]0, 0.9], the stationary state probabilities do not tend to be equal(see Fig. 6, the ase p4 = 0.9), rather, some transient states, typially state 0011 ofB2, tend to be more populated at the expense of attrator states (see attrator states7Whatever the initial onditions, at p = 0.5, µ = 8/5 for B1 and 8/3 for B2. See 5.1.2 foranalytial expression of µ when p = 0.5.8Due to the �utuating nature of intraellular proesses.15
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Figure 3: Sojourn time distribution and geometri approximation for basin B1of Fig. 1 with p = 0.02 and b
(0)
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Ini. ond. µ δ∗B1 0001 126.00 13.52 2.37 1.54 0.39 3.44 7.47 10.39
0101 126.00 13.52 2.39 2.07 0.39 3.47 8.49 4.09
0110 125.50 13.02 1.94 2.28 0.00 0.00 0.92 10.66
1001 126.00 13.52 2.39 2.07 0.39 3.47 8.49 4.09
1010 125.50 13.02 1.94 2.28 0.00 0.00 0.92 10.66
1101 126.00 13.52 2.37 1.54 0.39 3.44 7.47 10.39Mean 125.83 13.35 2.23 1.96 0.26 2.30 5.63 8.38Unif. 125.83 13.35 2.23 1.96 0.26 2.30 4.59 2.72B2 0000 252.85 27.68 4.27 3.77 0.39 2.96 2.31 5.40
0010 251.86 26.81 4.08 2.25 0.00 0.11 0.50 20.87
0011 252.36 27.26 4.22 3.77 0.20 1.63 2.59 5.42
0100 251.86 26.80 4.02 3.60 0.00 0.12 1.99 0.93
0111 251.86 26.80 4.02 3.60 0.00 0.12 1.99 0.93
1000 251.86 26.80 4.02 3.60 0.00 0.12 1.99 0.93
1011 251.86 26.80 4.02 3.60 0.00 0.12 1.99 0.93
1100 252.36 27.26 4.22 3.77 0.20 1.63 2.59 5.42
1110 251.86 26.81 4.08 2.25 0.00 0.11 0.50 20.87
1111 252.85 27.68 4.27 3.77 0.39 2.96 2.31 5.40Mean 252.16 27.07 4.12 3.40 0.12 0.99 1.88 6.71Unif. 252.16 27.07 4.12 3.40 0.12 0.81 0.24 2.81Table 2: Mean sojourn time µ and maximum deviation δ∗ (in %) for the two basinsof Fig. 1. Two types of initial onditions have been onsidered: (1) the networkstarts in one state of the basin (suessively eah state of the basin is taken as initialstate) and (2) eah element of b(0) is one divided by the size of the basin (see �Unif.�in the Table). The four olumns below a parameter (µ or δ∗) orrespond from leftto right to p = 0.002, 0.02, 0.2 and 0.8. The mean value for eah olumn is alsoindiated (see �Mean�). Attrator states are in bold type.

0101 0110

δ∗ (%) 8.49 0.92
dTV (%) 10.75 1.18
σ2 2.38 1.91
σ2

g 3.34 1.82
λ∗ 2.00 2.00
µ 2.39 1.94Table 3: Comparison between two geometri approximations. See Fig. 5 for details.18
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Figure 5: Comparison between two geometri approximations. Two di�erent initialstates are taken in basin B1 of Fig. 1 with p = 0.2 (see table 2). Cirles: probabil-ities ψs. Points: geometri approximation gs. (a) Initial state 0101. δ∗ = 8.49%,
µ = 2.39. (b) Initial state 0110. δ∗ = 0.92%, µ = 1.94.
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Figure 7: Sojourn time distribution and geometri approximation for basin B2 ofFig. 1. The �rst three nodes are rarely perturbed: p1 = p2 = p3 = 10−3; p4 = 0.1.Initially, the network is in state 0011. (a) Cirles: distribution ψs (with mean
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pµ = 0.0435). For the sake of larity, sojourn times s > 70 have been omitted. (b)Cirles: W (k); points: geometri approximation (1 − pµ)k. Maximum deviation δ∗is 8.2011%. 21



variation oe�ient as p beomes smaller, respetively in Table 2 and in thetext). As will be seen later, for this network, a two-state disrete-time (resp.ontinuous-time) homogeneous Markov hain may be used for approximatingbasin transitions in the low p regime, i.e., a oarse-grained desription of thisnetwork exists in the low p regime.Now we address the problem of geometri approximation in randomly on-struted (n,C) networks. A random (n,C) network is built by randomly hoos-ing for eah node C inputs and one interation funtion (Kau�man, 1993).4.1 (n, C) networks and on�dene intervalsSix (n,C) ensembles were examined taking n = 6, 8 or 10 (E = 64, 256 or 1024)and C = 2 or 5. Eah basin of a randomly onstruted network was perturbedwith p = 0.002, 0.01, 0.02, 0.1, 0.3, 0.5 and 0.8.Aording to the lassi�ation of Kau�man (1993), (n, 2) networks are om-plex while (n, 5) ones are haoti. One di�erene between these two ensemblesof networks, whih is of partiular interest here, is that in the former �If thestability of eah state yle attrator is probed by transient reversing of the a-tivity of eah element in eah state of the state yle, then for about 80 to 90perent of all suh perturbations, the system �ows bak to the same state yle.Thus state yles are inherently stable to most minimal transient perturbations.�(Kau�man, 1993, p. 201). In haoti networks, the stability of attrators tominimal perturbations is at best modest (Kau�man, 1993, p. 198).For eah (n,C) ensemble, we generated about 2500 basins (whih orre-sponds to about 700 to 800 networks depending on the ensemble). We es-tablished on�dene intervals for three statistial variables of whih two areprobabilities:1. Consider an n-node network. For eah of its basins, one an de�ne twoonditional probabilities: (1) the onditional probability α of leaving thebasin given that one attrator bit out of nA has been �ipped, with A thesize of the attrator, and (2) the onditional probability β of leaving thebasin given that one basin bit out of nB has been �ipped.In eah basin sample, a small proportion of basins having α = 0 werefound. The 25th perentile of the relative size B/E of α = 0 basins wasmore than 0.8 for C = 2 networks and 0.9 for C = 5 ones. Thus α = 0basins are most often big basins. We alulated 2 ratios: ratio κ̄ betweenthe median mean sojourn times of α = 0 and α > 0 basins and ratio
κ∗ between the maximum mean sojourn times of the two types of basins.These ratios are given in Table 4 for (n, 2) networks and four p values. Inthe ase of α = 0 basins, the omputation of ψs for p = 0.01 and stoppingriterion ψ̂s > 0.9999 varies between a few minutes to several days using aPowerEdge 2950 server with 2 Quad-Core Intel Xeon proessors running at3.0 GHz. As an be seen from this table, with p dereasing, the maximummean sojourn time of α = 0 basins inreases drastially ompared to that22



p0.03 0.05 0.1 0.5
κ̄ n = 6 30.1612 19.9012 12.1390 6.8534

n = 8 44.3541 26.0081 15.1438 11.9929
n = 10 35.5351 21.6376 14.5090 10.3930

κ∗ n = 6 122.3414 19.3446 3.6270 1.0000
n = 8 300.3482 32.4353 3.1643 1.0000
n = 10 542.8109 67.3100 4.9887 1.0000Table 4: Comparison between median mean sojourn times of α = 0 and α > 0basins (ratio κ̄) and between maximum mean sojourn times of both types of basins(ratio κ∗) for (n, 2) networks and four p values. Calulation of ψs: at time 0, thestates of the basin are equiprobable. The proportions of α = 0 basins for samples

n = 6, 8 and 10 were found to be 4.0759, 3.1989 and 2.5971% respetively.of α > 0 basins10. The proportion of α = 0 basins varies in our samplesfrom 1.7 to 4.1% depending on the ensemble. For �xed C, it is a dereasingfuntion of n and for �xed n, it is smaller in the haoti regime than in theomplex one. Although we do believe that α = 0 basins have not to berejeted from a biologial interpretation perspetive, networks with at leastone α = 0 basin were omitted during the sampling proedure (essentiallybeause of the high omputational time that is needed to ompute ψswhen α = 0 and p is small).Fig. 8 shows the onditional probabilities α for sample (8, 2). For an
n-node network, one an de�ne n main probability levels 1, 2, . . . , n orre-sponding to probabilities 1/n, 2/n, . . . , 1. The perentage of data pointsloated in main probability levels are given in Table 5 for the six samplesand the two onditional probabilities α and β. It an be seen from thistable that whatever the onnetivity and the onditional probability, thisperentage dereases when n inreases. For a given onditional probabilityand any n, it is greater in the omplex regime than in the haoti one.The statistial analysis of the six data samples has shown the following.For C = 2, there is a lear quantization of α and a weak one of β. Alsothe histograms of α and β are symmetri (skewness equal to ∼ 0.2). For
C = 5, the quantization of α is weak and there is no obvious quantizationof β. The histograms of α and β are negatively skewed (skewness equal to
∼ −0.9) and the last two main probability levels (n−1) and n are stronglypopulated ompared to the other ones.10For α = 0 basins, the onditional probability αx of leaving the basin given that 2 ≤ x ≤ nbits of an attrator state have been perturbed may be non null. However L(p;n, x) = o(p) for

2 ≤ x ≤ n. On the other hand, for transient states and su�iently large k one has b̂
(k)
i → 0as p → 0. 23
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C n α β

2 6 78.6 52.0
8 73.9 45.9
10 70.2 35.3

5 6 56.6 31.5
8 50.8 23.5
10 43.6 15.4Table 5: Perentages of data points loated in main probability levels for the sixensembles (n,C) and the two onditional probabilities α > 0 and β > 0.
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α β

C n Mean Median Mean Median
2 6 0.5057 0.5000 0.4817 0.5000

8 0.4523 0.4375 0.4294 0.4144
10 0.4149 0.4000 0.3907 0.4000

5 6 0.6869 0.7917 0.6852 0.7778
8 0.7032 0.8125 0.7038 0.8219
10 0.7050 0.8125 0.7106 0.8375Table 6: Mean and median of onditional probabilities α > 0 and β > 0 for the sixensembles (n,C).Table 6 gives the mean and median of probabilities α and β for the sixensembles (n,C). For �xed n, the mean and median of both onditionalprobabilities are higher for haoti basins than for omplex ones. Addi-tionally, for C = 2 basins, the mean and median derease with n while for

C = 5, both inrease with n (exept for the median of α).2. The third statistial variable is the mean time spent in a basin, µ. For
C = 2 and any n, there is a lear quantization at p = 0.002 whih rapidlydisappears as p inreases. For C = 5 and any n, there are only two levelsof quantization at p = 0.002 and these rapidly vanish as p inreases. Alsonotie that the minimum of µ is equal to the mean spei� path d = τwhih, aording to (7), does not depend on C.Most of the limits of the 95% on�dene intervals ranged between 1.5 and

2.5% (for α and β: on�dene interval for the mean if C = 2, for the medianand for the trimmed mean if C = 5; for µ: on�dene interval for the trimmedmean)11.4.2 Simulation results and disussionMost of the basin variables (suh as µ or δ∗) were positively skewed. Thereforefor eah of these variables we alulated quartiles Q1, Q2 (the median) and Q3.For the alulation of µ, two types of initial onditions were onsidered:1. Eah element of b
(0) is equal to 1/B. We all this ondition the uniforminitial ondition.11Two methods were used: a nonparametri method based on the binomial distribution (forthe median only) and the bootstrap method (used for the median and the trimmed mean).For the trimmed mean, we averaged the sample data that were (1) between the 25th and 75thperentiles, (2) less than the 75th perentile and (3) less than the 90th perentile.25



2. We pik one state of the basin at random and plae initially the networkin that state (the elements of b
(0) are all 0 exept one whih is equal to

1). We all this ondition the random initial ondition.Let's start with the basin variable µ. First the uniform initial ondition.Coe�ients of skewness for µ distributions mostly ranged from 5 to 15 withmean of 10.0568 (strong skewness). For example, for sample (8, 5) with p = 0.01,we obtained a oe�ient of skewness of 10.2415, a mean of 44.7471, a medianof 15.7922, a 75th perentile of 26.0523, a 99th perentile of 608.4743 and amaximum of 3.0117 × 103. A small proportion of the mean sojourn times aretherefore very far from the median (taken here as the entral tendeny). Thethree quartiles of µ versus ln p are shown in Fig. 9 for the six ensembles (n,C).The blue squares orrespond to C = 2 and the red triangles to C = 5. Thesize of a symbol is proportional to n. For the sake of larity, the absissæ ofthe points orresponding to ensembles (6, C) and (10, C) have been translated(respetively to the left and to the right of the p values).It an be seen from Fig. 9 that: (1) for �xed p and any C, the median of µis a dereasing funtion of the size n of the network (not true at p = 0.5 and
0.8), although α dereases with n (see Table 6). (2) For �xed C and any n, themedian of µ is a dereasing funtion of p. (3) For �xed p and any n, median µ ofhaoti basins (C = 5) is less than that of omplex ones (C = 2). At p = 0.002,the medians of µ for C = 5 ensembles are respetively 1.58, 1.86 and 2.02 timessmaller than those for C = 2 ones. Similar but smaller values were found for
p = 0.01 and p = 0.02. We therefore on�rm the results of Kau�man (1993, p.198, 201 and 488-491) that haoti basins are less stable to node perturbationsthan omplex ones.We looked for the relationship between the median of µ and p. We foundthat for su�iently small p:

Q(2;µ) ≈
c2
p
, (27)i.e. the median of the mean sojourn time is inversely proportional to p. Theproportionality onstant c2 has been estimated by the least squares methodfor the six ensembles (n,C) and was found to derease when n inreases (onlythe �rst three data points were �tted, i.e. the points with absissa p = 0.002,

0.01 and 0.02). For C = 2, we obtained c2 = 0.3342, 0.2871 and 0.2510; for
C = 5, c2 = 0.2117, 0.1547 and 0.1242. Thus for �xed n, haoti basins are lesssensitive to a variation in p than omplex ones. The result of the least squares�t is presented in Fig. 10. Graph (a) shows the hyperboli relationship betweenthe median of µ and p for the six ensembles (n,C). For the sake of larity, thefuntions were drawn up to p = 0.05. When a logarithmi sale for eah axisis used, one obtains the graph (b) whih shows for the three ensembles (n, 2)a linear relationship between lnQ(2;µ) and ln p at low p (up to p = 0.02 onthe graph)12. The same rule applies to the three ensembles (n, 5). We will seefurther how to express c2 in funtion of n and median α probability.12The three straight lines in Fig. 10b were obtained by the least squares method applied to26
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With the random initial ondition, the quartiles of µ are very lose to thoseobtained with the uniform initial ondition.We then alulated for eah basin the relative error between the mean so-journ time obtained from the uniform initial ondition and that obtained fromthe random initial ondition. This error is null at p = 0.5 (as for the networkof Fig. 1, this is beause ψs is geometri at p = 0.5). The quartiles of the errortend to 0 as p→ 0 and they reah a maximum at p = 0.1 whatever the networkensemble. Thus the smaller p, the more µ is independent of initial onditions.To end, we turn to the maximum deviation δ∗. First the uniform initialondition. The results for the six (n,C) ensembles are presented in Fig. 11. At
p = 0.002 and for �xed C, the quartiles inrease linearly with n, exept the �rstquartile of C = 2 basins whih is onstant and approximately equal to 0.0005%(whatever n, 25% of C = 2 basins have a sojourn time that is geometri orlosely follows a geometri distribution).For both onnetivities, the funtions Q(2;δ∗)(p) and Q(3;δ∗)(p) have similar-ities with the funtions δ∗(p) of Fig. 4: they tend to 0 when p → 0, they haveat least one loal maximum in 0 < p < 0.5 and are null at p = 0.5.With the random initial ondition, the seond and third quartiles of δ∗ in-rease for most of the six ensembles (n,C) ompared to the uniform ase. Qual-itatively, the behaviour of the quartiles with respet to p is similar to the onefound with the uniform initial ondition.To summarize setions 3 and 4, we have the following proposition:Proposition 3 Consider a basin of a noisy Boolean network. As p tends to 0then:1. whatever the initial onditions, µ→ ∞.2. µ tends to be independent of the initial onditions: µ → λ∗ with λ∗ > 1the Perron-Frobenius eigenvalue of fundamental matrix (I −Q)−1.3. whatever the initial onditions, δ∗ → 0, where δ∗ is the Kolmogorov dis-tane between the umulative distribution funtion of the sojourn time Sin the basin and that of a geometri distribution gs having the same meanas S.4. gs onverges to an exponential distribution.Proposition 3 does not guarantee the existene of a oarser representationof a NBN in the low p regime. What an be said from this proposition is thatif suh a representation exists, then it is in general an approximation of theoriginal proess and it an always be expressed in a disrete or ontinuous timeframework. Thus we are lead to the proposition below that will be disussed inmore details in the next setion:the linearized problem: Y2 = a2 −X where Y2 = lnQ(2;µ), a2 = ln c2 and X = ln p. Only the�rst three data points were �tted. 29
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Proposition 4 Consider a noisy Boolean network and suppose there exists aoarser time-homogeneous representation of this network in the low p regime.Then the dynamis between the basins of the network may be approximated bya system of linear ordinary di�erential equations with size being equal to thenumber of attrators of the network.Reall that Proposition 3 does not mean that ψs an never be geometrinor be approximated by a geometri distribution when p is not su�iently loseto 0. For example we know ψs is geometri when p = 0.5 or when B = 1whatever 0 < p < 1. One di�erene between a strongly and a weakly perturbednetwork is that in the latter, sine the mean spei� path d is large ompared to
1, the network spends long periods on the attrators without being perturbed.Under normal onditions, biohemial networks are supposed to work in the low
p regime beause as explained in 1.2, this regime is assoiated with funtionalstability.4.3 Approximation formula for the mean time spent in abasin of a NBNFor su�iently small p, (i, j)th element of Π′ an be approximated by (i 6= j):

π′
ij = phijqn−hij ≈

{

p if hij = 1,
0 if hij > 1.From (24) then we may write:

pe(k, k + 1) ≈ p
∑

i∈B Γ1
i b̂

(k)
i . (28)We see that in the low p regime, the probability pe(k, k + 1) depends on timeand initial onditions.Now for su�iently small p, we have the following:

µ ≈ 1/npα, (29)whih, from Proposition 2, is equivalent to:
lim
p→0

npαλ∗ = 1.To show approximation formula (29), we onsider two ases:1. Suppose for any given 0 < p < 1, the elements of vetor a are equal. Thenfrom (24) pe(k, k+ 1) is onstant whih means ψs geometri. Thus taking
p su�iently small, Γ1

i must be the same for all state i ∈ B and thereforefrom (28):
1/µ = pµ ≈ pΓ1 = npα, (30)with α = AΓ1/nA and A the size of the attrator.31



Note that: (1) if A = B = 1, it omes that pµ = r ≈ np and therefore
µ = τ ≈ 1/np. (2) If A = B = 2, then ψs is geometri sine in this ase
Q is a symmetri matrix of size 2. If one starts with probability 1 in oneof the two states, then eah probability b̂(k)

i will be periodi with period
2. (3) If ψs is geometri then the parameter of the distribution may bewritten:

pµ =

n
∑

x=1

L(p;n, x)αx,with α1 = α and α2, α3, . . . , αn onditional probabilities de�ned as αexept that rather than perturbing one bit we perturb 2, 3, . . . , n bitssimultaneously. Taking p su�iently small in this formula, we retrieveapproximation (30).2. If ψs is not geometri, then for su�iently small p it omes from (28) that
∀b(0) pe(k, k + 1) must tend to p∑

i∈A Γ1
i /A as k → ∞ sine b̂(k)

i musttend to a value whih is lose to 0 ∀i ∈ B \A and to a value whih is loseto 1/A ∀i ∈ A. From Propositions 1 and 2 then, we get (29) with:
α =

∑

i∈A Γ1
i /nA.Remark 6 We see from (29) that the quantization of µ observed at p = 0.002 for

(n, 2) ensembles (and to a lesser extent for haoti ensembles) is a diret onsequeneof the quantization of α for these ensembles (see Fig. 8 and point 2 of 4.1).From (7) and (29) we get for su�iently small p that:
µ ≈ τ/α, (31)Therefore, in the low p regime, the mean time spent in a basin of a NBN isapproximately proportional to the mean spei� path d = τ . As shown inFig. 12 for the six ensembles (n,C) (ln-ln plot), the relative error ǫr done inapproximation (31) dereases as p beomes smaller. It an also be seen in the�gure that in the low p regime, C being �xed, median ǫr inreases with n,and that while at �xed n the median error for haoti basins is smaller thanfor omplex ones, the interquartile range for the former is greater than for thelatter.The statistial basin variables in equation (29) are µ and α. Sine the hy-perboli funtion is stritly monotone dereasing, the median of 1/α is equal tothe inverse of the median of α. Thus the onstant c2 in equation (27) must beapproximately equal to c̃2 = 1/nQ(2;α), where Q(2;α) stands for the median of

α. For C = 2, the values of c̃2 were found to be (n = 6, 8 and 10) 0.3333, 0.2857and 0.2500; for C = 5, we found c̃2 = 0.2105, 0.1538 and 0.1231 respetively.These values of c̃2 are indeed very lose to the values of c2 that have been ob-tained by the least squares method in subsetion 4.2 (the relative error between
c2 and c̃2 ranges from 0.25 to 0.90%).The �rst and third quartiles of µ satisfy a relation of the same type as (27):32
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µ ≈ 1/nαp.Sine pµ = 1/µ, from (7) and (29) we an express pµ through some approx-imation formulas valid in the low p regime:
pµ ≈ npα. (32)Sine for su�iently small p, r ≈ np, we may write:34



pµ ≈ rα. (33)If α is in the ith main probability level (see 4.1), then:
pµ ≈ ip, i = 1, 2, . . . , n. (34)If ψs is geometri, then its parameter is equal to pµ. Only in this ase is theprobability of leaving the basin during one time step equal to the inverse of themean sojourn time µ. If ψs is lose to a geometri distribution (for some or all

b
(0)), then pe(k, k + 1) is approximately onstant, i.e. pe(k, k + 1) ≈ pµ = 1/µ.Let us mention another property. Let pe(k, k+A) =

∑A
j=1 pe(k+j−1, k+j).Then

lim
k→∞

pe(k, k +A) =
A

λ∗
.Equivalently, at �xed p, the mean probability of leaving a basin alulatedover a period A of the attrator tends to be onstant as time inreases. Theonvergene is muh more rapid than the one of pe(k, k+1) (see Proposition 1).Finally, we shall establish the general expression of the mean sojourn timewhen p = 0.5. The number of ways any state of an n-node NBN an be perturbedis:

n
∑

x=1

(

n

x

)

= 2n − 1, (35)where the last equality follows from the Binomial Theorem. This means thatwhatever the perturbed state, any of the (2n − 1) other states is reahable fromthat state by applying the appropriate perturbation ombination out of the
(2n − 1) possible perturbation ombinations (the hain is irreduible). Hene:

n
∑

x=1

Γx
i = 2n −B ∀i ∈ B,with, as before, B the size of basin B. For p = 0.5, we know that ψs is geometri,i.e. the probability pµ does not depend on k nor on the initial onditions. Thus:
pµ =

2n −B

2n

= 1 −
B

E
, (36)and thus

µ = λ∗ =
E

E −B
. (37)The bigger the basin, the smaller pµ, the higher µ. The Perron-Frobenius eigen-value of Q is B/E and that of (I − Q)−1 is E/(E − B). When B = 1 we get35



µ = τ = λ∗ = E/(E − 1). Notie that, sine formula (37) depends only on Eand B, it is also valid when α = 0.Another way to get (36) is to notie that when p = 0.5, eah element of Π′(and Π′′) is equal to (0.5)n = 1/E. This means that
ai =

E −B

E
∀i ∈ B.Sine ai does not depend on time nor on initial state i, ψs must be geometri.5 Method for the redution of a NBN5.1 Disrete-time redution5.1.1 The low p regimeConsider an R-basin NBN with state spae size E and Markov representationXkand suppose that the network has no α = 0 basin. We want to �nd a disrete-time homogeneous Markov hain {Ỹk, k = 0, 1, 2, . . .} with state i of the hainrepresenting basin i of the network, i.e. the state spae of Ỹk is {1, 2, 3, . . . , R}.In the theory of Markov proesses, Ỹk would be alled a redued hain oraggregated hain beause R < E. The problem of reduing a Markov hain to ahain with a smaller state spae, the so-alled �state spae explosion problem�,is not new (Kemeny and Snell, 1960; Fredkin and Rie, 1986) and is still anative �eld of researh in the theory of Markov proesses (Guédon et al., 2006;Grone et al., 2008; Weinan et al., 2008; Zhao et al., 2009). Here, we do notneed to aggregate Xk. The aggregation is �xed by the interations that ourbetween the omponents of the network.The expressions for the transition probabilities π̃ij = Pr{Ỹk+1 = j|Ỹk = i}between the basins of the network are found as follows. For onveniene, thevalidity of these formulas are disussed further below. From (32), we write:

π̃ii = 1 − npαi,where αi denotes the α probability of basin i (αi > 0, ∀i). Thus we have:
∑

j 6=i

π̃ij = npαi, i = 1, 2, . . . , R. (38)Probability αi an be expressed as a sum of probabilites:
αi =

∑

j 6=i

αij , (39)with αij the onditional probability for a transition between basins i and j toour given that one bit of attrator i has been perturbed (αii = 0). If αij > 0(i 6= j), then transition probability π̃ij is taken to be:
π̃ij = npαij , i 6= j. (40)36



Therefore in the low p regime, π̃ij is the produt of two probabilities: the proba-bility that one node be perturbed during one time step, whih is approximatelyequal to np for small p, and the onditional probability αij .Now if αij = 0, one may transition to basin j by perturbing at least two bitsof an attrator state or at least one bit of a transient state. Sine in the low
p regime the network is rarely found in transient states and L(p;n, x) = o(p)for 2 ≤ x ≤ n, when αij = 0, transitions i → j are rare events ompared totransitions i→ j for whih αij > 0. Therefore we take π̃ij = 0.By supposing that the time spent in any basin B of a NBN is geometri withmean 1/npα, we neglet transitions of order 1 from transient states as well astransitions of order 2 or more (transitions from transient or attrator states dueto perturbations a�eting two or more nodes simultaneously). This means thatwhile the original hain is irreduible, the redued hain may not be irreduibleanymore. If this is the ase, the redution method may give inaurate results.Suppose that redution of a NBN gives two sets of basins, eah ontaining twobasins that ommuniate with eah other (eah basin is aessible from theother), and that those sets are losed (by perturbing any node of any attratorstate of any set, the other set annot be reahed). In Markov theory, suh setsare alled losed ommuniating lasses. If we start in one set with probabilityone, then the state probability in the other set alulated from the reduedmatrix will be 0 at any time. Now if we solve the original hain, this will not bethe ase. If the stationary probability for the initially empty set is not negligible,then it will take a long time to approah this probability with good auraybut it will. Another di�erene between these two hains is that the reduedone has an in�nity of stationary distributions while the original one a uniquestationary distribution.If, starting in any basin, one an reah any other basin by applying singlenode perturbations to attrator states, then the redued hain is irreduible.In this ase, the smaller p, the more aurate the redution method. If theredued hain is not irreduible, the redution method is not guaranteed towork properly.Remark 7 We investigated the ase of reduible hains. Let ψij be the probabilitydistribution of the time spent in basin i given b0 and arrival basin j. When αij = 0,the �rst moment µij of ψij may strongly depend on b0. We found some ases (somebasins with some b0) in the low p regime for whih µij was signi�antly smaller than
µ. To illustrate the hain redution method, we hose a randomly generated
(8, 2) network having R = 4 basins of size 72, 120, 36 and 28. The size of theorresponding attrators were 6, 6, 1 and 3. We onsidered two p values, namely
0.01 and 0.1. The redued matrix Π̃ when p = 0.01 was found to be:

Π̃ =









0.9633 0.0200 0 0.0167
0.0133 0.9700 0.0100 0.0067

0 0.0400 0.9600 0
0.0333 0.0200 0 0.9467









. (41)
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This matrix is irreduible, i.e. any basin is aessible from any other basinby applying single-node perturbations to attrator states13. Also note that theseond basin, whih is the biggest one (120 states), is the only state of Ỹk whihis reahable from any other state.The four basin oupation probabilities versus time are shown in Fig. 14.The probabilities alulated from the 256 × 256 matrix Π of the original hain
Xk, whih we denote by Z(k)

i , are represented in blue. At time 0, the networkwas put in state 1 (state 00000000) whih is in B1, so that z(0)
1 = Z

(0)
1 = 1. Thestate probabilities z̃(k)

i of the redued hain Ỹk, alulated from the 4×4 matrix
Π̃, are shown in green. It is seen in Fig. 14a that for p = 0.1 approximation Ỹkis not good, in partiular for basin B4. Results for p = 0.01 are presented inFig. 14b where it an be seen that the blue and green stairstep plots are almostidential, i.e. for p = 0.01, Ỹk is a faithful oarse-grained representation of theNBN.Also ompared the stationary probabilities alulated from Xk and Ỹk (see1.4). For Xk, we found (basins 1, 2, 3 and 4) 0.2856, 0.4577, 0.1259 and 0.1308when p = 0.1;0.2952, 0.4455, 0.1122 and 0.1472 when p = 0.01. For Ỹk, thestationary probabilites are independent of p (see below) and equal to 0.2963,
0.4444 0.1111 and 0.1481. The maximum of the relative error is 13.26% when
p = 0.1 and 0.94% when p = 0.01. Thus in the long run, the most populatedbasin is the one with the greatest size (120) and the smaller α probability (3/8).More generally, if hain Ỹk is irreduible and aperiodi then its stationarystate probability vetor satis�es:

z̃ = z̃Π̃
∑

i

z̃i = 1. (42)Rearranging the �rst equation in (42) we �nd:
Aαz̃ = 0, z̃1 + z̃2 + . . .+ z̃R = 1,where

Aα =















−α1 α21 α31 . . . αR1

α12 −α2 α32 . . . αR2

α13 α23 −α3 . . . αR3... ... ... . . . ...
α1R α2R α3R . . . −αR















. (43)From (39), matrix Aα is singular. The stationary state probability vetor of Ỹkis thus an eigenvetor of Aα and the orresponding eigenvalue is 0.In addition, the stationary state probability vetor an be obtained by al-ulating the limit13Notie that there is no α = 0 basin (αi > 0 ∀i). If αi was null for some i, we would have
0 everywhere in row i of Π̃ exept at position i where we would have 1. Thus the reduedhain would be absorbing. 38



0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (k)

B
as

in
o
cc

up
at

io
n

pr
ob

ab
ili
ti
es

(a)

B2 = 120

B1 = 72

B4 = 28

B3 = 36

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (k)

B
as

in
o
cc

up
at

io
n

pr
ob

ab
ili
ti
es

(b)

B2 = 120

B1 = 72

B4 = 28

B3 = 36Figure 14: Redution of a (8, 2) noisy Boolean network. In blue: basin oupationprobabilities Z(k)
i alulated from matrix Π when initially the network is in state

00000000 ∈ B1 (state 1 of Xk); in green: state probabilities z̃(k)
i of Ỹk alulatedfrom matrix Π̃ (initial onditions: the hain is in state 1 of Ỹk). Transition probabil-ities π̃ij are estimated from (40). (a) p=0.1 (for the sake of larity, the probabilitieswere interpolated linearly); (b) p=0.01 (stairstep plots and points omitted).39



lim
k→∞

(I +Aα)k, (44)where eah row of the limit matrix is equal to the transposed stationary stateprobability vetor.5.1.2 Case p = 0.5When p = 0.5, the redution is �exat�. From (36), the probability to leave abasin of size B is 1 − B/E. The probability to remain in suh a basin is thus
B/E. Sine ψs is geometri, one has:

π̃ij = (1 −
Bi

E
)wij if i 6= j, (45)with

wij =
Bj

∑

j 6=i

Bj

,and Bi/E otherwise. Hene:
π̃ij =

Bj

E
, i = 1, 2, . . . , R. (46)The rows of Π̃ are thus equal. In fat, when p = 0.5, the stationary stateis reahed in one step whatever the initial onditions so that eah row of Π̃gives the stationary state probabilities for the basins of the network. Note thatsine δ∗ → 0 as p → 0.5, these stationary state probabilities an be used toapproximate the stationary state probabilities in a neighborhood of p = 0.5.From Π̃, the mean sojourn time in basin i is expressed as:

µi =
1

1 − π̃ii
=

E

E −Bi
.5.2 Continuous-time redutionThe preeding setions deal with disrete-time homogeneous Markov hains. Forsuh hains, the sojourn time spent in any state is geometri and thus memo-ryless. The ontinuous analog of the geometri distribution is the exponentialdistribution, whih is also memoryless. Making the passage from geometri toexponential distribution leads to ontinuous-time homogeneous Markov hains.As we shall disuss, in the ontinuous-time representation of Markov proesses,the state probabilities satisfy a system of linear ordinary di�erential equations.A ontinuous-time Markov hain {Ỹt, t ≥ 0} is homogeneous if the transitionprobability from state i to state j in time interval (t, t + ∆t) depends only onthe length ∆t of the interval: π̃ij(t, t+ ∆t) = Pr{Ỹt+∆t = j|Ỹt = i} = π̃ij(∆t).In this ase (Kleinrok, 1975): 40



π̃ij(∆t) = uij∆t+ o(∆t) if i 6= j and
1 − π̃ii(∆t) = uii∆t+ o(∆t), (47)with uij ≥ 0 the rate of transition from state i to state j 6= i and

∑

j 6=i

uij = uii. (48)The time spent in state i is exponentially distributed with parameter uii.Now if Ỹt is viewed as the ontinuous-time oarse-grained representation ofan R-basin NBN, then the state probabilities z̃i(t) of Ỹt satisfy the followingMaster equation (Kleinrok, 1975):
d

dt
z̃i(t) = −uiiz̃i(t) +

∑

j 6=i

ujiz̃j(t), i = 1, 2, . . . , R. (49)As stated in Proposition 3, to allow the passage from disrete to ontinuousrepresentation, only one needs p to be su�iently small. In other words, forsu�iently small p, one may use Ỹt instead of Ỹk. A small p implies that themean spei� path d = τ is large ompared to 1. Sine µ ≥ τ , a small p alsoimplies that µ is large ompared to 1. As an example, ompare Figs. 14a and14b. In the �rst ase, d = 1.7558 and µ ≈ 3 whatever the basin, while in theseond ase, d = 12.9441 and µ is between 20 and 30 depending on the basin.Example 4 Let us illustrate the passage from disrete-time hain Xk to ontinuous-time redued hain Ỹt with the state diagram of Fig. 1. The redued hain inthis example has only two states so that from (48) we get: u11 = u12 = u1 and
u22 = u21 = u2. The equations for the redued hain are thus:

dz̃1
dt

= −u1z̃1 + u2z̃2

dz̃2
dt

= u1z̃1 − u2z̃2. (50)The expressions for the transition rates are found from (40) and (47): taking ∆t = 1,we get u1 = π̃12/∆t = npα12 = np and u2 = π̃21/∆t = npα21 = np/2.Figs. 15a and 15b show B1 oupation probability versus time when p = 0.02and p = 0.002 respetively. The blue points represent the solutions of equation (8)when initially the states of B1 are equiprobable and B2 is empty (for the sake oflarity, the points were interpolated linearly) while the green ontinuous urves arethe solutions of system (50) when z̃1(0) = 1 and z̃2(0) = 0. For p = 0.002 (µ =
125.3756), the probability alulated from Π dereases by small amounts and seems tovary ontinuously with time (see the enlarged portion in Fig. 15b) so that ontinuous-time hain Ỹt may be used instead of Ỹk. Thus for su�iently small p, system ofdi�erential equations (50) may be used as a oarse-grained representation of the NBN.To end this example, let us estimate the relative error between the inverse of themean sojourn time pµ = 1/µ and its approximation nαp. The mean sojourn timefor both basins and both p values are given in Table 2. For p = 0.02 one �nds
1/µ1 = 0.0749 and 1/µ2 = 0.0369, to be ompared to np = 0.08 and np/2 = 0.04,41



whih gives relative errors of 6.81 and 8.40%. For p = 0.002 one gets 1/µ1 = 0.0079and 1/µ2 = 0.0040, to be ompared to np = 0.008 and np/2 = 0.004, whih givesrelative errors of 0.66 and 0%.6 Statistial �utuations in NBNsConsider N replias of a given BN, i.e. N ells expressing the same biohemialnetwork, and suppose that eah node of eah replia may be perturbed withprobability 0 < p < 1 independently of time, of the other nodes and of the otherreplias14.The Markov hain model Xk is a probabilisti model. Knowing the urrentstate of a replia, this model allows to ompute the probability of �nding thereplia in any given state of the network at any subsequent time. Therefore,even if the initial state of the replia is known with ertainty, its trajetory inthe state spae of the network annot be predited with ertainty. The sameapplies to the predition of the number of replias in eah state of the networkat any time.In order to illustrate the random behaviour of an ensemble of replias, ran-dom trajetories were simulated in the state spae of the network of Fig. 1 bythe Monte Carlo method. At time 0, N replias were put in state 0010 ∈ A2 thenthe number of replias in eah basin of the network at disrete times k = 1, 2, . . .omputed. The relative number of replias in B2 versus time is shown in Fig. 16for p = 0.02 and two values of N . Graph (a) orresponds to N = 103 whilegraph (b) to N = 104. Eah blue stairstep plot results from N Monte Carlosimulations (one simulation is one trajetory of one replia), while eah red onerepresents the mean solution alulated from (8). As an be seen from the twographs, the unertainty on the long-term behaviour of the ensemble is quite lowin both ases (oe�ient of variation: ≈ 2% when N = 103 and ≈ 0.7% when
N = 104).Remark 8 It is assumed that the total number of ells is onserved (ells do notproliferate and they are not lost): N (k)

1 +N
(k)
2 = N ∀k = 0, 1, . . .Also alulated was the probability distribution of the time spent in basinB2. The relative frequenies obtained from the Monte Carlo method are shownin blue in Fig. 17 for N = 103 and N = 104 ases. The red points represent theexat frequenies alulated from matrix Q as explained in setion 2 (Markovmethod). For the sake of larity, frequenies were interpolated linearly. Supposethat eah Monte Carlo distribution in Fig. 17 results from the measurement of

N individual sojourn times. What would be the unertainty on the mean timespent in B2 for eah ensemble of ells ? The 95% on�dene interval wouldbe 27.2760 ± 5.8877% with the N = 103 ase and 26.9015 ± 1.9153% with the
N = 104 one. The exat mean sojourn time is 26.8067 (Markov method, seeTable 2).14Statistial independene between the replias means that whether at time (k+1) a repliahas been perturbed or not does not depend on whether between 0 and k other replias havebeen perturbed or not. 42
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Figure 17: Statistial �utuations in noisy Boolean networks. Probability distri-bution of the time spent in basin B2 of Fig. 1 when p = 0.02 and initially the
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When N is �xed and p inreases, the amplitude of the �utuations in ψsdereases as more and more replias have a short sojourn time. By omparisonof the graph of Fig. 16a and the two graphs of Fig. 18, the amplitude of the �u-tuations in the relative number of replias is not very sensitive to p15. There is,however, a striking di�erene between Fig. 18a and Fig. 18b. When p is small,the relative number of replias in B2 remains above or below its stationary valuefor long periods, i.e. the width of the �utuations inreases when p dereases.This means that in the low p regime, the long-term behaviour of the network isharaterized by slow transitions between two states: one that orresponds toan �overpopulated� attrator and the other to an �underpopulated� one. Theprobability of rossing the stationary value during one time step was found tobe 0.3111 when p = 0.1 and 0.0494 when p = 0.002 (0.1613 when p = 0.02).The maximum number of time steps the attrator remains overpopulated was
16 when p = 0.1 and 318 when p = 0.002 (54 when p = 0.02). Similar valueswere found for the underpopulated ase.Remark 9 (1) Sine the number of replias is onserved, when an attrator is over-populated, the other is underpopulated and vie versa. (2) These slow transitions o-uring in the low p regime annot be dedued from the Markov hain model.7 Redution of a NBN to a two-state MarkovhainWe addressed the problem of reduing a hain Xk to a two-state homogeneoushain by aggregating basins of attration.Only (8, 2) networks with R ≥ 4 were studied. The aggregation proess on-sisted in the following. When R was pair, R/2 basins were piked at random andaggregated, while when R was odd (R− 1)/2 basins were aggregated randomly.In both ases the remaining basins were aggregated, onstituting the seondstate of the two-state hain. For eah aggregated state then, we alulated themean sojourn time µ with both types of initial onditions (the uniform and therandom type) as well as the maximum deviation δ∗. Results indiate that as
p → 0, µ does not tend to be independent of initial onditions neither does δ∗tend to 0. Notie, however, that the redution of Xk worked well in some ases(some networks with some basin aggregations).8 ConlusionThe redution method for NBNs presented in this paper raises the impor-tant question whether biohemial networks an be redued to (approximating)oarse-grained networks funtionally equivalent to the original ones. Redu-ing the omplexity of biohemial networks ould help in the analysis of ell15Neither is the long-term B2 oupation probability: 0.6672, 0.6709 and 0.6711 when
p = 0.002, 0.02 and 0.1 respetively. 46
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Figure 18: Statistial �utuations in noisy Boolean networks. Idem Fig. 16a exeptthat (a) p = 0.1 and (b) p = 0.002. In the low p regime, ells are trapped byattrators for a substantial time. Eah attrator is alternatively overpopulated andunderpopulated with regard to the stationary mean ell number.
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responses to inputs (or ell fates) by negleting moleular interations whilefousing on the higher-level proesses that emerge from those interations. Aformally equivalent and very useful redution theorem exists in eletrial iruittheory whih is Thevenin's theorem.9 NoteThis work is part of a manusript entitled �Mathematial modeling of ellu-lar proesses: from moleular networks to epithelial strutures� written by F.Fourré. The omplete manusript ontains �ve hapters. The �rst hapter isdevoted to NBNs. The aim of the projet is to propose a physial frameworkfor desribing ellular proesses. Sine 1st Deember 2008, F. Fourré has beenworking on a PhD thesis that is funded by the University of Luxembourg andsupervised by Prof. Thomas Sauter. The thesis deals with qualitative modelingof signaling networks.D. Baurain is a Postdotoral Researher of the FNRS.10 AknowledgmentF. Fourré gratefully thanks Prof. T. Sauter for having enourage him to writethis paper and for the position of Assistant/PhD student at the Systems BiologyGroup of the University of Luxembourg.ReferenesDobson, C. M. (2003). Protein folding and misfolding. Nature, 426:884�890.Douglas, L. and Brian, M. (1999). An introdution to symboli dynamis andoding. Cambridge University Press, New York.Fredkin, D. R. and Rie, J. A. (1986). On aggregated Markov proesses. Journalof Applied Probability, 23:208�214.Glass, L. and Kau�man, S. A. (1973). The logial analysis of ontinuous non-linear biohemial ontrol networks. J Theor Biol., 39:103�129.Grone, R., Ho�mann, K. H., and Salamon, P. (2008). An interlaing theoremfor reversible Markov hains. J. Phys. A: Math. Theor., 41:212002.Guédon, Y., d'Aubenton Carafa, Y., and Thermes, C. (2006). Analysing group-ing of nuleotides in DNA sequenes using lumped proesses onstruted fromMarkov hains. J Math Biol., 52:343�372.Kau�man, S. A. (1969). Metaboli stability and epigenesis in randomly on-neted nets. J Theor Biol., 22:437�467.48
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