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On the circular polarisation of light
from axion-photon mixing
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Abstract. From the analysis of measurements of the linear polarisation of visible light coming from quasars, the existence of
large-scale coherent orientations of quasar polarisationvectors in some regions of the sky has been reported. Here, weshow
that this can be explained by the mixing of the incoming photons with nearly massless pseudoscalar (axion-like) particles in
extragalactic magnetic fields. We present a new treatment interms of wave packets and discuss its implications for the circular
polarisation.
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INTRODUCTION

In this work [1], we are looking at the effect that axion-photon mixing can have on the polarisation of light emitted
by distant astronomical sources. In particular, the observation of redshift-dependent large-scale coherent orientations
of AGN polarisation vectors [2] can, at least qualitatively, be reproduced as a result of such a mixing of incoming
photons with extremely light axion-like particles as they travel inside external magnetic fields. These observations
(see Figure 1) are based on good-quality measurements in visible light of the linear polarisation for a sample of 355
quasars from different groups, working on different instruments.

FIGURE 1. Maps of the same region of the sky in right ascension (x axis) and declination (y axis), both given in degrees, for
AGN characterised by different redshifts,z. These polarisation vectors are thus for objects approximately along the same line of
sight but at different distances from us. In the low-z case, the average direction isθ̄ ≈ 79◦ while at high-z, it would beθ̄ ≈ 8◦ (θ
being counted from North to East) [2].

This has been discussed in terms of axion-photon mixing by several authors, in the case of plane waves, and a
prediction from this mixing, in this particular case and in general, is a circular polarisation comparable to the linear
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one and, hence, observable [3, 4]. Here, we present a treatment in which light is described by wave packets and show
that the circular polarisation can be suppressed with respect to that which is predicted in the plane wave case.

AXION-PHOTON MIXING: THE BASICS

Although their existence is still hypothetical, from the theoretical point of view axions are well motivated [5, 6] and
many experiments —using lasers [7] in laboratories, or related to astrophysics [8]— are currently trying to detect them.
When one relaxes the relation predicted between their couplings to other particles and their mass, and thus allows the
consideration of the complete space of parameters, one thenoften talks about axion-like particles (ALPs). These ALPs
are then, in general, not related to the resolution of the strongCP problem but could appear for some other reason in
extensions of the Standard Model. In the following, we discuss such particles, focusing ourselves on extremely light
pseudoscalar axion-like particles.

As already mentioned, the reason why axions and ALPs could explain the observation of large-scale coherent
orientations of quasar polarisation vectors is their coupling to photons. This interaction is usually taken into account
in an effective way by using the following Lagrangian density:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − 1

4
FµνFµν − jµAµ +

1

4
gφFµν F̃µν , (1)

wherem is the mass of the axion field,φ, andg is its coupling constant with photons;Fµν is the electromagnetic
tensor and̃Fµν , its dual. Note that the Lagrangian written in (1) is for a pseudoscalar axion-like particle; in the case
of a scalar ALP, the coupling term14gφFµν F̃µν = −gφ~E · ~B is to be replaced by14gφFµνFµν = 1

2gφ( ~B2− ~E2).
The mixing of axion-like particles with photons is then usually discussed mathematically in terms of infinite plane

waves. Using that description, the Stokes parameters can becomputed; they are defined as:





I = E‖E
∗
‖ +E⊥E∗

⊥

Q = E‖E
∗
‖ −E⊥E∗

⊥

U = E∗
‖E⊥ +E‖E

∗
⊥

V = i(−E∗
‖E⊥ +E‖E

∗
⊥)

, (2)

whereI is the intensity and the other three are the unnormalised Stokes parameters:Q andU describe the linear
polarisation andV , the circular one. In (2), the indices parallel and perpendicular indicate the direction of polarisation
of the electromagnetic radiation with respect to some arbitrary direction. In the case of axion-photon mixing, this
direction is often chosen as that of the component of the external magnetic field transverse to the direction of
propagation. With these parameters, predictions of the polarisation of light from the interaction in external magnetic
fields can be given; the main properties of such a mixing beingdichroismandbirefringence(see [4] for a more detailed
review of the plane wave case).

~B

γ
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φ

FIGURE 2. Axion-photon mixing.

Let us now recall that the selective absorption of one direction of polarisation which defines dichroism (see Figure 2)
will be different depending on the scalar or pseudoscalar character of the axion-like particle. Indeed, we have seen
before that the coupling, in the pseudoscalar case, is proportional togφ~E · ~B, and the magnetic field can be decomposed
as the sum of~B, the external transverse magnetic field light is travellingthrough1 and ~Br —~Er and ~Br being the fields

1 Here, we neglect the influence of the longitudinal componentof the electric field.
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FIGURE 3. Evolution as a function of the distance traveled inside an external magnetic field,B = 0.1 µG, of the circular
polarisation,v(x), and of one of the parameter describing linear polarisation, u(x), in the case of a initially fully linearly
polarised light (λ = 500 nm) described by a plane wave. Here, the plasma frequency,ωp = 3.7 10−14 eV, the mass of the ALP,
m = 4.5 10−14 eV, and its coupling constant to photons isg = 7 10−12 GeV−1.

of the radiation. We immediately see that the coupling between such ALPs and photons is proportional to~Er · ~B,
namely that only photons polarised parallely to the external magnetic field, i.e. with~Er parallel to~B, will be affected
by the existence of these pseudoscalar particles. If the ALPis scalar, on the other hand, its coupling to photons will
be proportional togφ( ~B2 − ~E2). The ~B2 operator contains~B · ~Br so that, in order to have a non-zero mixing, we
need~Br parallel to~B. Thus, as in an electromagnetic wave the electric field is perpendicular to the magnetic field, we
understand why only photons polarised perpendicularly to~B will mix in that case.

This being, while dichroism would be an interesting way to produce linear polarisation and, in particular, to explain
the observations concerning quasars, birefringence —which is linked to the creation of circular polarisation— would
give a very clear signature of the mixing. An illustration ofthis birefringence is given in Figure 3, which shows
the evolution of the Stokes parametersu = U

I
andv = V

I
of a plane wave radiation initially fully linearly polarised

(u(0) = 1, v = 0) as it travels inside an external magnetic field. What is shown in this figure is that —because of
axion-photon mixing—, as it propagates, the beam, being initially linearly polarised (pointA, u = 1, v = 0), develops
an ellipticity (u 6= 1, v 6= 0) up to the point where it is circularly polarised2 (pointB, u = 0, v = 1). As the propagation
continues, from circularly, it becomes once again linearlypolarised but with a plane of polarisation perpendicular to
the initial one (pointC, u = −1, v = 0), then elliptical again, then, circularly polarised (point D, u = 0, v = −1), etc.
This is completely equivalent to what one also obtains with abirefringent crystal.

This is related to the fact that, due to the interaction between photons and axions, the eigenstates of propagation
have different masses and do not travel at the same velocity anymore, leading to a phase-shift between what we have
called parallel and perpendicular polarisations of light.As the condition for linear polarisation is very strict —thetwo

2 At least if we do not take into account the evolution of the Stokes parameterq which is linked to dichroism and of no importance when we discuss
birefringence.



perpendicular polarisations have to be oscillating exactly in phase—, the creation of ellipticity is a generic featureof
the mixing mechanism.

An important result obtained in this formalism of plane waves is that, except in extremely specific cases3, the
circular polarisationpredictedcan be a priori as large as the linear polarisation.

AXION-PHOTON MIXING USING GAUSSIAN WAVE PACKETS

The idea is to send wave packets into a region of uniform magnetic field and to compute the Stokes parameters. Before
the magnetic field, the wave packets have the form:

E(x,t) =

∫ ∞

ωp

dω

N
e−

a
2

4
(ω−ω0)2ei

√
ω2−ω2

p(x−x0)e−iω(t−t0), (3)

whereωp is the plasma frequency of the medium anda controls the initial width of the packet (in the limita → +∞,
this reduces to the plane wave case).

The main motivation for considering this formalism comes from the measurement of the circular polarisation
of some of the quasars considered in [2]. While axion-photonmixing would be an attractive explanation of the
observations for linear polarisation, preliminary results indicate that circular polarisation of light from these AGN
is, in general,much smallerthan the linear polarisation [9]. This means that if the creation of circular polarisation was
really a smoking gun of ALP-photon mixing, no matter how refined the description, these new observations would
rule out the mixing mechanism and could only be used to constrain the existence of axion-like particles.

For these reasons, it can be interesting to work with wave packets, as new effects will be taken into account, including
dispersion, separation of packets and coherence; effects that might be of importance for the Stokes parameters. Note
that calculating the propagation of packets of the form (3) is numerically4 tricky, as the computation of the Stokes
parameters requires a spatial resolution of the order of thewidth of the wave packets after a propagation over huge
distances in the magnetic field (we will usually consider onemagnetic field zone of 10 Mpc [10] and initial wave
packets of width. 1µm).

Results with wave packets

In the plane transverse to the direction of propagation, we choose a basis of two orthogonal linear polarisations, the
same as the one used in the plane wave case, so that we will talkabout polarisation parallel or perpendicular to the
transverse external magnetic field~B. This being done, we next choose the electric fieldsE‖(x,t) andE⊥(x,t) both
initially described by a function of the form (3). Then, we propagate these using the equations of motion





(�+ω2
p)E⊥(x,t) = 0

(�+ω2
p)E‖(x,t)− gB∂2

t φ(x,t) = 0
(�+m2)φ(x,t)+ gBE‖(x,t) = 0

,

and find the expressions of the electric fields after a propagation, when axion-photon mixing is at work, inside a
step-like magnetic field region.

We can then use the expressions of the Stokes parameters (2) —which are observables built on intensities— that
can, for example, be plotted as functions ofx, the distance travelled inside the magnetic field, for a given propagation
time,T . This is what is represented in Figure 4 which shows what the two packets look like (respectivelyI‖(x,t = T )
andI⊥(x,t = T )) but also the total intensity (which is the sum of the two) andthe unnormalised circular polarisation,
V(x,t = T ). This is for a beam with a central wavelengthλ0 = 500 nm, initially 100% linearly polarised, with its

3 This is what one obtains if one does not assume very specific distributions of magnetic field orientations along the line ofsight.
4 We use Multiple-Precision Floating-point library with correct Rounding:www.mpfr.org.

www.mpfr.org
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FIGURE 4. Intensities and unnormalised Stokes parameterV(x) after a propagation timeT in an external magnetic field, in a
strong mixing case —here, the axion mass ism = 4 10−14 eV, ωp = 3.7 10−14 eV andgB = 3 10−29 eV. The initial width of the
wave packet has been chosen≃ λ0.

polarisation plane making a 45◦ angle initially with the magnetic field direction (i.e.u(0)= U(0)
I(0) =1; q(0)= v(0)= 0);

this angle is, in fact, the most favourable one for the creation of circular polarisation, due to birefringence. Note also
that the abscissa isdx, the position with respect to a frame moving at the speed of light c (namely, a maximum at
dx = 0 corresponds to|~v| = c).

From the observational point of view, there is then a macroscopic exposure time over which one should integrate
these functions to obtain, finally, the value of the observable Stokes parameters, e.g.:

V (x) =

∫

exposure time

dt V(x,t).

From the computation of these integrals, we obtain that the wave packet formalism leads to a circular polarisation,
v = V

I
, loweredwith respect to the plane wave case. Figure 5 illustrates theplane wave (a →∞) result: it shows the

amount of circular polarisation generated by the axion-photon mixing with different values of the couplinggB. In
that simpler case, it is known thatv = V

I
oscillates between−|u(0)| and|u(0)|, whereas in the wave packet case it is

shown that there is a damping of these oscillations. It follows from this observation thatv is no longer expected to be
as large as the linear polarisation in general.

CONCLUSION

We have reviewed axion-photon mixing in the case of plane waves and have briefly presented our new formalism in
terms of wave packets. The main consequence of this new treatment is the net decrease of circular polarisation with
respect to what is predicted using plane waves. From this we conclude that the lack of circular polarisation in the light
from AGN does not rule out the ALP-photon mixing.
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FIGURE 5. Circular polarisation for different values of the couplingin the case of initially partially linearly polarised light
with u(0) = 0.01. λ0, ωp —and a, for the wave packet— are the same as in Figure 4, other parameters are:T = 10 Mpc,
m = 4.7 10−14 eV.
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