Study of aluminum rods

6. STUDY OF ALUMINIUM RODS

4

6.1 Introduction

The work presented here was performed by Anne Marie Habraken with the help of
Wang Xiao Chuan thanks to the Dynamic Forging Modeling project supported by the
Région Wallonne. Then Zhang Li Hong and Sylvie Castagne have brought their
collaboration to improve Bodner’s and Zhu’s models.

The manufacturing process of the studied aeronautic rod has been provided by
Technical Airborne Components industry; it consists in 3 stages of rotary forging:
preliminary round-round forging, round-rectangle pre-crushing and final rectangle-
rectangle forging as summarized by Figure 6-1. The rotary forging process is
described by Figure 6-2 showing longitudinal and transversal views and by Figure
6-3 presenting the hammer system of a forging machine.
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() tube after machining

(b) preliminary forging (round-round)

(c) pre-crushing (round-square)

(d) final forging (square-square)

Figure 6-1 Industrial aeronautic rod manufacturing process (adapted from Wang &
Habraken 1996).
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Figure 6-2 Studied rotary forging process (from Habraken & Wang 1996).

Figure 6-3 Hammer system of a forging machine (from Wang et al. 1995).

In fact, if relative rotation between rod and hammers exists, the circular shape of the
tube is retained; otherwise the hammer shape is progressively imposed on the tube.
Of course, the FE simulation requires the tools and the tube geometry and a kinetic
description of the process; however the difficulties concern general choices:

e Isothermal mechanical simulation or thermomechanical one?

e Static or dynamic analysis?

e Elasto-plastic or elasto-visco-plastic assumption?

®

Best strategy to rtepresent numerically the round-round forging by an
axisymmetric state?
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All these points were studied and details can be found in Wang et al. 1994a, Wang et
al. 1994b, Wang et al. 1995, Wang & Habraken 1996. The general automatic

simulating procedure is summarized by Figure 6-4, and FEM results are presented on
Figure 6-5.

AUTOMATIC SIMULATING PROCEDURE

START OF SIMULATION

¥
PREPARATION OF SIMULATION DATA

parameters introduction

automatic 2D meshing

Y
PRELIMINARY ROUND - ROUND FORGING

( 2D finite element simulation )

loading - unloading

\ 4
PRE - CRUSHING
( 3D finite element simulation )

3D remeshing
information transfer (2D /3D )

hammers system replacement

loading - unloading

\ 4
FINAL FORGING

( 3D finite element simulation )

hammers system replacement

loading - unloading

¥
END OF SIMULATION

Figure 6-4 Automatic simulation procedure (adapted from Wang et al. 1995)
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FINITE ELEMENT MESH (2D)

PRELIMINARY FORGING SIMULATION 2D

PRE-CRUSHING SIMULATION 30

FINAL FORGING SIMULATION 3D

FE MODELLING OF FABRICATION PHASES OF AERONAUTIC ROODS

Figure 6-5 Forged tube after different manufacturing steps, (adapted from Wang &
Habraken 1996)

The various heat treatments applied between the forging steps prevent to really stick
to the real process in this research, because the constitutive law was just identified
once on the annealed state, and not 3 times, after each heat treatment. Nevertheless, it
is interesting to note that Bodner’s damage model presented hereafter could predict
zones of maximum damage where the industry effectively observed cracks (Figure 6-

6). This model allows a parametrical study, which could help to decrease damage
according to process conditions.
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MAX=0.008270

FINAL FORGING

MAX=0.003710
PRE-CRUSHING

FRACTURE PREDICTION BY NUMERICAL DAMAGE MODELLING

PRELIMINARY FORGING

MAX=0 .000375

Figure 6-6 Damage distribution after different manufacturing steps (from Wang &
Habraken 1996).

Note that as described in Habraken & Wang 1996, for notch test experiments and
two cases of cylinder upsetting, 6 criteria from Chapter 4, table 4-1 (Freundenthal,
Cockroft, Brozo, Ghosh, Oyane, Mc Clintock) have been applied with the stress and
strain fields computed with Bodner’s damage model. The conclusion was that for this
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set of experiments it was not possible to find one criterion able to predict the right
location of fracture with a unique threshold value.

The goal of this thesis is not to summarize all this project results, they can be found
in the final project reports (Cescotto et al. 1993, Habraken et al. 1996). The thesis
provides the description of the two damage models that were applied on the annealed
state of the rod material (Aluminum alloy 2024). This material was only available in
form of tubes (see Figure 6-7), which explains the chosen shape of samples for
identification and validation experiments. A clear weakness of this research is the
lack of microscopic investigations on the material. This task was not in the Région
Wallonne project and the efforts to perform it after the end of the project have failed.

Present closer links with the metallurgical department should avoid such a mistake in
the future.

@

o

Figure 6-7 Description of the tube (Habraken & Wang 1996).

Respecting chronological order, the elasto-visco-plastic damage model of Bodner’s
type is first described (section 6.2) with its identification and validation, then the
damage elasto-plastic law of Zhu is applied on the same experimental data (section
6.3). All the simulations are performed with 2D and 3D finite elements of mixed type
(Zhu & Cescotto, 1994b, 1995b) implemented in the LAGAMINE code.
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6.2. An elastic-visco-pvlastic-damage model

6.2.1. The model choice

The literature review by Zhu & Cescotto 1991 about elasto-visco-plastic models
easily coupled with damage and able to represent material behavior in various
conditions of strain rates and temperatures has pointed out the qualities of the Bodner
& Partom’s 1975 model. The article of Zhu & Cescotto 1994 collects the parameters

of Bodner Partom’s model for a large number of metals and alloys which proves the
large application field of this law.

This literature analysis explains the choice of this model to be implemented in
LAGAMINE. The simulations of the process of aluminum rod forging have shown
that strain rate could reach 50 s'. The experimental tests demonstrate a low viscous
effect at room temperature. As one particularity of Bodner’s model is its application
to material with low viscosity, this law has been adopted. This low viscous aspect
help to regularize the problem and to prevent numerical strain localization (see
Chapter 5). This was effective as proved by the problems encountered further
(section 6.3) with the application of damage elasto-plastic model.

6.2.2. Bodner’'s constitutive law

The model is first described in its initial state without damage extension. The general
formulation of Bodner’s model (Bodner & Partom, 1975) is based on the additive
decomposition of & the total strain rate tensor, symmetric part of the velocity
gradient tensor, into £°elastic and £ inelastic components which are both non-
zero for all loading and unloading conditions:

E=¢°+¢° (6-1)
The elastic behavior follows the classical Young’s law, here written separately for
the deviatoric Cauchy's stress tensor & and the mean stress value dy,. As in previous
sections, hereafter the superscript * identifies a deviatoric tensor, the superscript v
the objective Jaumann’s rate and the subscript ,, a mean tensor value, G and ¥ are

respectively the elastic shear and bulk moduli, computed from Young’s modulus E
and Poisson’s ratio v.

(6-2)
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The generalized Prandtl-Reuss’ flow law is used together with the volume
conservation to establish a tensorial relation between deviatoric Cauchy's stress &

and inelastic strain rate £”:

ép—D"ex —lz—zn' J—ld"'é"
= ,JZ 2 3]2 with 2 2—— (6-3)

where D, is an assumed limit value of plastic strain rate in shear for large J>, n is the
rate sensitivity coefficient, Z is a total scalar hardening variable, sum of an isotropic
part K and a directional part Zp:

Z=K+Z,

(6-4)

The directional component Zp is computed by the projection of f, a directional
hardening symmetric tensor, on the direction u of the stress tensor :
When the stress direction u is strongly modified, the directional component Zp
undergoes large magnitude changes and affects material response. This is the
physical meaning of the scalar directional hardening component Zp. Let us note that

such concept is also used for hardening by Phillips et al. 1974, Basuroychowdhury &
Voyiadjis 1998.

The isotropic and directional hardening are both assumed to occur under the action of
two simultaneously competitive mechanisms: a hardening process due to
deformation (first term of relations 6-6 below) and a softening or recovery process

evolving with time and temperature (represented by the second term of relations 6-
6):

K-k,

K=m(K, -K)W?-AK,( )i (6-62)
B =my(Du~B W’ - AK, E:2 r—é +H2.p-BR2)

where W7 is the plastic work rate. The initial value of K at zero inelastic strain
isK,; K; is the maximum value of K, K, is the minimum value of K at a given

(6-6b)

temperature at which creep is occurring. The initial and minimum value of B is zero
corresponding to the isotropic state. mj, Aj, 71, my, Az, rp are material parameters
defining the hardening evolution laws. The last term of equation (6-6b) is due to
Jaumann’s objective correction used for large strains, where £ is the antisymmetric
part of the velocity gradient tensor.
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Bodner’s model is totally defined by 14 parameters : E, v, D,, K,, K, K3, Dj, m;, ma,
Aj, 11, Ay, 12 and n. At room temperature, the terms related to the thermal recovery
can be omitted and the number of parameters is reduced to 10.

6.2.3. Damage theory

Two scalar damage variables, called d the deviatoric component and 6 the volumetric
component, are used to represent the average material degradation which reflects the
various types of damage at the micro-scale (see section 3.2.1 for the definition of
damage variables). The damage due to nucleation, growth and coalescence of voids,
to micro-cracks and to other microscopic defects is globally represented by 4. And

§ . According to Ladevéze 1984, these two variables are necessary to modify both
elastic modulus and Poisson's ratio with damage growth.

As already presented in chapter 3, the continuum damage approach assumes the
existence of a "true" stress tensor g computed from macroscopic loading and area

measurements and an associated "effective" stress tensor ¢ theoretically closer to

the actual average microscopic stress state existing between defects. The equivalent
virgin state is related to the average material state, once the defects have been
dropped. It is represented by effective tensors indicated by the superscript —. The
developed model is a phenomenological one, not directly deduced from micro-macro
transition. So, contrary to Gurson 1977 or Perzyna 1986 models, a direct connection
between damage variables and void volume fraction is not assumed; other defect
types could be covered by these damage components. As usual, true and effective
stress tensors are related through the damage variables d and &

SH

= (o}

m

“(1-4d) o =1-6) 6-7)

19|

From the viewpoint of energy conservation (Cordebois & Sidoroff 1979), the energy
equivalence seems to be of more physical significance, so the following relation is
applied in the elastic part:

E=8(1-d)  em=6,(1-0) 6-8)
So one can check from (6-7) and (6-8) that elastic energy is equal in both states.
Concerning plasticity, the plastic work rate W” is conserved, this leads to:

&' =£"(1-d) (6-9)

The damage evolution law comes from the one proposed by Lemaitre 1985. It has
been adapted to a multiaxial state and a two damage variables model:

gt <F(g)—0'D>56_r
—2(1"(1) A(l_d) . eq (6-10)

Part C Habraken 2001 — Page 6.9.



Study of aluminum rods

with <x> = x if x > 0 and <x> = 0 if x <0 and where F(0) is a triaxiality function
necessary to transform a triaxial stress state to a reference uniaxial state, op is a
threshold value for damage increase, A, r, s are material constant. The chosen
triaxiality function is the following one which has the advantage to separate tensile,
compression and shear stress states and to introduce only one new parameter .

F(o)=(1-a)J3J, +3a0, (6-11)

One should notice that the so-called deviatoric damage component is not strictly

dependent on shear component J; as the triaxiality function is modified by the mean
Stress O

The volumic damage variable evolution is directly related to the deviatoric damage

component evolution and reflects the assumption of no volumic damage increase in
compression state :

o= éd in tensile state o, >0
£ (6-12)
=0 in compression state o, <0

It has been checked experimentally that the ratio % can be assumed constant in

tensile state for common materials (Gattoufi, 1984). This ratio is named 7, so finally
damage is characterized by 6 parameters : A, r, s, Op, @, 7. This model allows to
recover the well-known Kachanov’s creep law for 7= 1, s = op = 0.

6.2.4. Damage extension of Bodner’s model

According to damage theory, effective stress and strain tensors follow classical
behavior law. Consequently replacing @ by g and £ by & in Bodner's relations (6-

1) to (6-6) and using relations (6-7) to (6-9) between true and effective tensors, one
can get the final equations:

}1:20(1-d)2(§*_—§*”)—4G(1—d)(£—§” )d (6-13)

6, =3x(1- )%, —6x(1-)e,0 (6-14)

i D, 1{z*1-d )*\ |,
£ s———eap | 7 | £ (6-15)
NI, (1-d) 2 37,
Z hardening variable is assumed equal in the actual damaged state and in the

equivalent virgin state, since, its evolution is mainly defined by the plastic work rate
which is equal in both states.
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6.2.5. Numerical integration technique

The elasto-visco-plastic laws are well-known to be stiff and difficultt to integrate.
Another problem is related to the time consuming matrix inversions necessary to
perform iterations at the constitutive law level. The integration scheme proposed by
Zhu & Cescotto 1994 for their Bodner’s model version has been extended to the
present damage Bodner’s model. In fact, this scheme applies previous work from
Szabo 1985 and Dombrovsky 1992. The summary of the integration scheme has been
published in Habraken ef al. 1995; it will not be reproduced here.

6.2.6. Identification, general principle

The parameter identification procedure is summarized by Figure 6-8. The parameters
for the damage evolution laws and Bodner's parameters applied on effective behavior
in the equivalent virgin state are first computed separately thanks to different
experimental tests. Then the model defined by this parameter set is used to simulate
uniaxial tensile and compression states and to compare the model results to
experimental curves. The final parameters set is reached thanks to an optimization
process that modifies the less accurate experimentally defined parameters to reduce
the difference between simulated and experimental values.

STEP1 STEP2
a . ) . R
Quasi-static tensile Compression tests at
and compression tests constant strain rates
o \b _J \l, -
- . — ' T
Current elastic moduli Original stress strain
L measurement curves O - E
/ w,
damage _evolution
4 . . )
Experimental damage W Effective stress strain
evolution curves O = B
\_ \!I _/ \!/ J
s ™
Damage parameter set r Bodner’s parameter set J
\ _ s
STEP3
~
Optimization of the total parameters set to fit original G- ¢
curves in tensile and compression for different strain rates

Figure 6-8 Summary of parameter identification procedure for damage Bodner's
model (from Habraken et al. 2000).
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This approach has been preferred to a global inverse procedure in order to preserve
the physical meaning of each parameter.

¢
Each step of this parameters identification procedure is now described for the chosen

annealed aluminum. This material is only available under the form of tubes of
limited thickness (see Figure 6-7).

6.2.7. Damage parameters identification

A. Tensile tests
80000 E (Mpa) 30000 E(Mpa)
EQ G @
25000
60000 2z G(ol)
EJ 20000 + S
o
40000 + 15000 -
o measurements o measurements
- model 1 10000 + - model 1
20000 T -~ model 2 —=—model 2
" 5000 T 5
€ o € .
0 4 . — 0 : ; 1
0 0,05 0,1 0,15 0 0,05 0,1 0,15
a b

Figure 6-9 Moduli measurements and models versus plastic strain for quasi-static
tensile tests, a) apparent Young’s modulus, b) apparent shear modulus
(from Habraken et al. 2000).

Cyclic loading and unloading quasi-static tensile tests performed on the whole tube
allow to measure Young’s and shear moduli evolution. Figures 6-9a and b show the
experimental results and two possible representative analytical curves which neglect
or not the phenomena occurring at the beginning of plasticity. The two damage
variables are directly deduced from these measures:

I KR 7

where _)E is the bulk modulus computed by:
EG

P

Figure 6-10a and b show the experimental damage evolutions as well as reduced
curves used further as explained in part C. of this section.
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According to the classical macroscopic damage theory as described by Lemaitre &
Chaboche 1985, extrapolated value of Young’s and shear moduli E!",G'" (see
Figure 6-9) should be used. This ‘gives damage values growing in a monotonic way
from zero as represented by model 1 curves on Figure 6-10a and b. The difference
between the elastic moduli E(*/,G!* and their extrapolated values E',G!" is

assumed to be related to plasticity entrance and not to damage as specified by
Chevalier 1988 in his thesis.

03 Td |~ 1model 1 (experimental values) 057 §
025 | --- 2 model 1 (reduced values)
-=-3 mode! 2 (experimental values) 047 - model 1
02+ ——4 model 2 (reduced values) -+ model 2

0.3 1
0,15 +

027
o1+

0,05 - 011

£ p
€q
0 ; t { 0 f f —
0 0,05 0,1 0,15 ] 0,05 | 0,1 0,15

a B

Figure 6-10 Experimental damage evolutions in tensile state according to model 1 or
2, a) deviatoric damage d, b) volumic damage,  (from Habraken et al. 2000).

However looking to the damage theory proposed by Gurson 1977 or one of its late
versions (Leblond et al. 1995), this fact could also be linked to a void nucleation rate
that increases the void volume fraction very quickly at plasticity entrance and is
followed by a smoother void growth rate. In the present aluminum 2024 alloy, optic
microscopy has demonstrated the presence of precipitates which show a matrix
decohesion after plasticity entrance. Such a phenomenon is not seldom. For instance
in Pardoen's thesis 1998, which is dedicated to copper and is based on numerous
electronic microscopic analyses, an initial void volume fraction is assumed to take
into account the precipitate decohesion, that appears after microscopic strain.

Here, as the present research has no real microscopic part and is based on a
macroscopic model, it has been decided to work with two assumptions: damage is

computed according to E!,G'" or E{*,G* . Of course this affects the numerical
modeling and leads to verify two models: Model 1, where damage evolution is

defined according to equations (6-10) and (6-12), and Model 2, where damage

follows a quick linear increase at plasticity entrance and, afterwards, respects
equations (6-10) and (6-12).

The constant damage ratio 7=38/d assumption is “reasonably” verified. Its
variation is [3.24, 4.12] for Model 1 and [1.37, 2.30] for Model 2.
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Figure 6-11 Experimental damage ratio in tensile state for model 1 and 2 (from
Habraken et al. 1999).

B. Compression tests

First, small cubes extracted from the tube wall were compressed in order to check the
isotropic behavior of the material. Then cyclic loading and unloading were
performed on small cylinders (diameter 7 mm, height 7 mm) and Young modulus
was deduced from the force measure and from the press table displacement corrected
by the press stiffness estimated from a test without sample. The table lubrication and
straightness were carefully checked to avoid barreling and non-uniform contact.

80000 g

E (Mpa) Wit d
égf’ 03T | « compression experiment (model 1)
60000 1
: 0,25 T | — compression experiment (model 2)
02+

40000 -

o measurements on ring ¢
o measurements on cylinders|
20000
-+ model 1
- model 2 g?
eq
0 T . . ,
0 0,2 04 0,6 0,8
a

Figure 6-12 Compression state, a) apparent Young’s modulus measurements versus
plastic strain, b) experimental deviatoric damage (from Habraken ef al. 2000).

The experimental results present however some dispersion (Figure 6-12a) even if the
decreasing character of the modulus is corroborated. To improve accuracy, cyclic
compression tests on a ring (slice of the tube) have been performed in the range of
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small plastic strains. Here the sample size allows the use of strain gages and a second
set of experimental points has been added on Figure 6-12a. Finally, the initial
Young’s modulus in compression test (78915 MPa) is slightly higher than in tensile
state (72250 MPa). It has been assumed that this variance is due to different presses
and different measurement techniques. To reach damage parameters in compression,
thanks to relations (6-16) and (6-17), effective shear modulus measurements should
be available. Practical problems, related to the sample geometry and the barreling for
large strain, prevent to measure this modulus accurately. Adding the assumption of
no volumic damage in compression (equation 6-12) yields the following relation:

EO
3G, ~3G,(1-D)* + E,(1-D )* (6-18)

d=1—(1—D)\/

where D is the classical damage parameter in a "one damage variable" model :

E
D :1‘\/E:0 (6-19)

So, the experimental deviatoric damage evolution is deduced from Figure 6-12a and
relations (6-18), (6-19). It is presented on Figure 6-12b.

C. Damage parameters identification

" Let o be the actual value of the stress in uniaxial tests, then F the triaxiality function
defined by relation (6-11) is straightforward:

F.(og)=(1-2a)0c (6-20)

with 6=0 in tensile state and 1 in compression state.

For model 1, the integration of the damage evolution law defined by equation (6-10)
results in the following relation:

(S+2)(1-2c)% f
245 0

if no strain rate effect on damage evolution (r=1) and no threshold value (0p=0) are
assumed. These additional hypotheses are related to the experimental damage
observations (Figure 6-10a and Figure 6-12b) and to the low viscosity effect
observed in section 6.2.8 for this aluminum. For model 2, the principle is identical

except that the damage evolution law is first linear until damage has reached a
transition value.

— 5 1/85+2
d=1-(1- o’del )

(6-21)

The problem is now reduced to a classical inverse method: knowing relation (6-21)
and experimental curves (Figure 6-10a and Figure 6-12b) find the best parameters set
(S, o, A), that minimizes differences between model and experiments. In fact for
tensile state, the reduced values (Figure 6-10a) and not the experimental ones have
been used as a target value. This choice, that slows down damage evolution in
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tension in the model, was imposed because, otherwise, it was impossible to reach an
effective reference curve O Ee compatible with tensile and compression

experimental curves (see Figure 6-13). Using a reduced damaged curve in traction
leads to doubts about both experimental works and theoretical assumptions. One
possible explanation is that, due to various thermal treatments applied to the
aeronautic rod, the sets of rods used for the tensile tests and for all other tests were
different. A posteriori microscopic investigation presents some variance according to
the sample origin. Another possibility is a severe lack of accuracy in the damage
measurements of tensile tests. However, this is unlikely because, as reported in Wang
1996 and Habraken, Zhang and Wauters 1997, the tests performed on the whole rod
have used different types of strain gages and extensometers that yield similar results.
A final possibility is the existence of a scale effect in the measurement devices or in
the material. Recall that the macroscopic length of all samples covers a quite large
scale as the rod diameter is 75 mm and its thickness varies from 9.4 to 2.9 mm.

Notch and small compression samples were cylinders of diameter 7 mm, when all
other samples were quite larger.

Model 1 | Model 2

S Stress function exponent in damage model 2,006 2,5274
A (MPa) |Stress function constant in damage model 256.74 250

Op Damage threshold stress 0 0

R Exponent of equivalent strain rate in damage | 1 1

model

o Triaxiality function parameter 0.216 0.2136
d, Transition deviatoric damage value (model 2) | 0 0,09

B Transition equivalent strain value (model 2) |0 0,0029

Table 6-1 Parameters sets for damage models 1 and 2 (from Habraken et al. 2000).

Table 6-1 summarizes the final damage parameter sets provided by the inverse
modeling method. One can check that tensile state is the driving mechanism for
damage increase, then comes shear state, and finally compression state. So a tensile

state coupled to a large triaxiality ratio leads to the fastest deviatoric damage
increase.

6.2.8. Bodner’s parameters identification

A. Quasi-static uniaxial tests

The damage evolution defined by the parameter sets from Table 6-1 and equations
(6-7) to (6-12) allows the computation of effective curves O —Ee, ONCE
experimental curves O.q-&4 are known.
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Applied to quasi-static uniaxial tensile and compression tests (& =0.004s7"), this
procedure provides an effective curve 0., — €., that models the actual microscopic

behavior of the material in both states (see Figure 6-13). This result was made
possible only by adopting reduced values for tensile damage.

o (MPa)

400 T 9
o (MPa)

300 1

200+

-— 1 effective curve in tension

g — 2 effective curve in compression
100 . : . -
- - - 3 experimental curve in tension 14

—— 4 experimental curve in compression

0 { L 1 ’ Il |

T T 1

0 0,1 0,2 03 04 05

Figure 6-13 Experimental and effective stress strain curves in compression and
tensile state for quasi-static experiment, Model 1 (from Habraken et al. 1999).

It must be noted that the plastic strain reached during tensile tests is much smaller
than in compression. The range 0 < ¢/ <0.12 covered by tensile tests (Figure 6-9a)

corresponds to the region of maximum scatter of the compression results (Figure 6-
12a). :

B. Compression tests at various strain rate

The experimental device being used is limited to cylindrical samples of 7 mm height
for a 20 s constant strain rate. This strain rate level already means an initial punch
velocity of 140 mm/s. For 20 s constant strain rate, an upsetting test stopped at a
strain of 70% is performed in 0.035 second. So, one cannot neglect the temperature
increase due to plastic dissipation during the test. Considering classical thermal
coefficient for an aluminum and using an adiabatic assumption lead to a temperature
increase of = 80°C. The temperature dependence of the material behavior has been

checked by quasi-static uniaxial compression tests at room temperature (16.5°C) and
at 100°C. '
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40 Umlawpa)

Figure 6-14 Stress strain curves for quasi-static compression tests performed
at 16.5°C and 100°C (from Habraken et al. 1999).

So using a temperature effect issued from precedmg tests, a quasi-adiabatic
assumption (for tests performed at € = 10 s T and 20 s7), as well as the damage
evolution law (model 1) defined in preceding sections, the effective stress strain
curves (Figure 6-15b) are deduced from experiments (Figure 6-15a).

== T o(Mpa) G(Mpa)

400

300
300 T

200 -
] - strain rate 0.004 ' - strain rate 0.004
100 + —strain rate 10 100 4 — strain rate 10
— strain rate 20 p — strain rate 20
€ eq €
0 : : } | 0 ! | !
0 0,2 04 0,6 08 0 0,2 0.4 0,6
a b

Figure 6-15 Compression at constant strain rates, a) experimental stress strain
curves, b) computed effective stress strain curves (from Habraken et al. 2000).

Even if the stability of the performed large strain rate tests is limited, Figure 6-15a
allows to verify that the viscous effect on this material is limited for the considered
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strain rates. The accuracy of computed effective curves (Figure 6-15b) is poor due to

the rough thermal correction and the low stability of experimental tests (Figure 6-
15a).

¥

C. Bodner’s parameters identification

The applied identification procedure of Bodner’s parameters partially comes from
Chan et al. 1988. Bodner’s law for a uniaxial test is expressed by the following scalar

relation:
-1/2n
o _lo; 2D o B
z | " Bel)| f ©22)

where o/ |0‘l =-1 for uniaxial compression and £” is constant for the selected tests.

As D,, assumed limit of plastic shear strain rate, is chosen by the user, the constant g
is easily computed for each experiment once n is known. At room temperature, the
thermal softening effect is negligible, so isotropic and directional hardening laws are
reduced to their first term (relations 6-6a and b). Additionally for uniaxial tests, S

the directional symmetric tensor is reduced to one non zero component equal to the '
directional parameter Zp. The hardening relations are then:

E=m(K, -KW? withK(0)=K,

(6-23)
Zp=my(D ~Z, W? withD(0)=0 (6-24)
Z=K+7Z, (6-25)

The function ¥ o), derivative of the stress with respect to plastic work, is then used to
find m; and my. Its definition and previous relations (6-22 to 6-25) lead to:

7(0')=%=g(m1(K1—K)+mz(Dl ~Zp)) (6-26)

Theoretically this function defines 2 linear parts:

for small plastic strain, isotropic hardening is equal to K, while directional
hardening is increasing:

o _ K, (6-27)
g

for large plastic strain, directional hardening has reached its saturation level D,
while isotropic hardening is increasing:

N
<
I
N
[
~
I
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K=Z-D =—-D, (6-28)

This theoretical approach is represented on Figure 6-16 which also defines saturation
stress o, and coefficient a. However, the function y issued from the effective stress

strain curves represented on Figure 6-15b is quite far from this theoretical shape,
which leaves quite a large range to chose m; and m.

The value of the saturation stress o, can be used to find n, the strain rate sensitivity
coefficient. Relation (6-22) and the definition of o; recalled on Figure 6-16, give :

Ino, =-——1—ln(2ln 2D, )+In(K, +D,)

o J3e? (6-29)
Y4\
1 \ increasing E
a
+
o
%
k=)
o~
E
X
o
X
AP
S
E| X
n | X
o |5
VE -
[0
Og=g(Kq+Dy) a

Figure 6-16 Function ¥ o) for an ideal theoretical case (Habraken et al. 2000).

Again the performed tests do not yield co-linear points, which leaves some freedom

to define the value of n. The hardening values are extracted from the stress strain
curves, relation (6-22) and g value:

o,=8k,
o

Dy ====K, (6-30a,b.¢)
g

K, 2&_1)1
g

where 0, is the yield stress value, o the stress at saturation of directional hardening
and o; the stress saturation value.

The preceding procedure helps to define the range of the different parameters. The
final parameters set is then obtained by optimization. At this level, Tables 6-1 and
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6-2 define the whole parameters set of the models 1 and 2 and one can check that
simulated curves by Bodner’s damage models (1 or 2) are near experimental ones on
Figures 6-17a and b representing respectively stress and damage evolution with
strain for uniaxial tests. The RR’ line defines the experimental rupture in tensile

state.
Damage model|Damage model
1 2
Parameter | Physical meaning Value set Value set
E (MPa) | Young's modulus 72250 65660
Vv Poisson's coefficient 0,31 0.31
D, (s’I) Assumed limit plastic shear strain rate 10° 10°
K, (MMPa) |Initial isotropic hardness 106.584 99.506
K; (MPa) | Maximum isotropic hardness 341.744 358.661
K, (MPa) | Minimum isotropic hardness 106.584 99.506
D; (MPa) | Maximum directional hardness 231.445 239.131
my Isotropic hardening parameter 0.091 0.0125
mp Directional hardening parameter 0.33 0.43
N Strain rate sensitivity coefficient 5.5126 6.8524

Table 6-1 Bodner's parameters sets to recover effective stress strain curves,
models 1 and 2 (from Habraken et al. 2000).

04714 —1 tensile experiment (model 1)
o(Mpe) 6 - 2, tensile FEM (rmdel 1)
==3 (rrent (qndd 1)
il - 4, oorrprass:on model
30 03+ ~—5 tensile experiment (model 2;
3 L 6, tensile FEM (model 2)
— — 7 commpression iment (mode! 2)
— 1, tensile experiment -=- 8, compression Eﬁ (model 2)
201 — 2, compression experiment 02t
- - 3, tensile FEM (model 1) 5
- 4, compression FEM (mode! 1) \«
100 - 5, tensile FEM (model 2) 01+
—— 6, compression FEM (model 2) ]
P
0 i ; € €q | 0 t f t f t
: R - } .
0 04 02 03 04 05 0 0,1 0,2 0,3 04 05 06
a b

Figure 6-17 Experimental and simulation results in quasi-static tensile and
compression state: a) stress-strain curves, b) deviatoric damage evolution with strain,
experimental reduced curve in tension (from Habraken et al. 2000).
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6.2.9 Definition of finite element size

As underlined in chapter 5, the size of the elements used in the mesh is important. So
a sensitivity analysis has been performed.

The simulated experiment consists in a tensile test on a cylindrical bar presenting a
narrow part in its middle. The geometrical details are given on Figure 6-18, the test is
driven by the displacement of one extremity at the constant velocity of 0.005 mm/s
while the elongation of the middle part is measured between points AA’.

7 mm AT
bl A T A N
<€ |$7mm o 5 mm ARGV -
<« . 3

| =

45 mm

B 25 mm J

gl

Figure 6-18 Sample description — Notch test (from Habraken ez al. 2000).

Figure 6-19 presents the experimental global force-displacement curve for each of
the four experimental tests. One can verify that the dispersion is quite low.

6000 " Force (N)
5000 +

4000 -

——measured curve 1

3000 - —e—measured curve 2

—=—measured curve 3

——measured curve 4

2000 1 £

1000

Relative displacement between A & A’ (mm)
) P "

0,00E+00 2,00E-01 4,00E-01 6,00E-01 8,00E-01 1,00E+00 1,20E+00 1,40E+00

Figure 6-19 Force-displacement curve for the 4 notch test experiments.
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The mesh dependence has been verified for the constitutive law using model 1 for
the damage evolution rule. The simulations are performed in axisymmetrical state on
one quarter of the sample by symmetry. Six different meshes (Figure 6-20) have

been used to verify the stability of the simulation results. They differ by the mesh
density at the notch level.

s
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S
[ 754 2508
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2
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S
'A’
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S
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5
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2
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3
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-

o5

9! 0%

85 8%05es

IS
ANR3388538
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b=2.43 % b=2.62 % b=10.4%

Figure 6-20 Mesh descriptions near the notch, b is the ratio between the diagonal
of the smallest element and the notch radius (7 mm), from Habraken et al. 1999.

Figure 6-21 collects some of the results of the numerical simulations and one
experimental curve since no significant experimental dispersion occurred. The RR’
line at relative displacement of 0.96 mm represents what is called "the first
experimental rupture”. Because the global fracture appears quite later, this initial
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rupture location could seem strange. However the force-time curve, not reproduced
here, allows detecting the necking beginning for this relative displacement of 0.96
mm. For all other validation tests, the RR’ line effectively identifies the moment
when the first small macroscopic crack appears. According to the type of the
structure, this happens nearly simultaneously or not with the global fracture. From
the 4 types of tests described in following sections, the notch test is the only one
presenting a clear "macroscopic" necking phase before rupture. As the present
Bodner’s damage model does not specifically simulate coalescence, necking
beginning has been chosen as "experimental rupture” for the notch test analysis.

500 W Force (N) % R

450 +

400 t

350 1

30T —&—1, b=1.0%, model 1

250 + ——2, b=1.66%, model 1
——3, b=2.05%, model 1
200
—=—4, b=2.43%, model 1
——5, b=2.62%, model 1
05 ——6, b=10.4%, model 1

—7, b=2.05%, model 2

=38, experiment

Relative displacement (mm)

—

0 0.2 0.4 0.6 0.8 Rl 1.2 1.4 16 18

Figure 6-21 Experimental and simulation force-displacement curves,
meshes are defined on Figure 6-20 (from Habraken et al. 2000).

Figure 6-21 global force-displacement curves show that the hardening model is not
perfect, compared to the material behavior. This could have already been suspected
from experimental and simulated tensile curves of Figure 6-17. Without SErious
modifications of the hardening description of Bodner’s approach, it is not possible to
improve this result. A good point is that the curve maximum is well predicted no
matter model 1 or 2 is adopted for damage evolution. The mesh dependence of the
result is not observed until this maximum is passed. Then depending on the mesh, the
simulation stops because of non convergence, with or without noticeable slope
variation in the global force elongation curve. So if this slope variation is taken as
criterion for global rupture, simulation results are mesh dependent and not very
consistent with experiments.

It is interesting to note that Rousselier 1987 uses the “load-diametral contraction”
curve and more specifically its slope after crack initiation to determine accurately the
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required finite element size. He applies finite element simulations with an elasto-
plastic damaged law to notch tests. Then he argues that, numerically, the collapse of
the stress happens in the strongly damaged zone. So the growth rate of cracks
depends on the finite element size [, at the tip of the crack. In ductile fracture, a
classical size is the average distance between inclusions and Mudry 1982 proposes to
derive I, from the number of inclusions per unit of volume Ny :

lo =2 3N, 6-31)

In the present work, the different analyzed meshes have a typical finite element size
varying from 0.17 mm to 0.75 mm near the crack initiation. The number of
precipitates is unknown. The final experimental slope in the “force-displacement”
curve (Figure 6-19) is unavailable either due to the velocity of the breakdown related
to the small size of the sample. For the other experiments like the shear test (section
6.2.10 D), the bending test (section 6.2.10 C) and the tensile test of a perforated
specimen (section 6.2.10 B), the final slopes of the load displacement curve have
been registered and could be used to adjust [.. However experimental dispersion
does not provide accurate information. In conclusion, Rousselier’s approach to adjust
finite element size has not been applied here. As the goal of the research is the
rupture prediction and not the study of crack propagation, this is acceptable. Note
that 2 parameters are responsible for the final slope in numerical simulations: the
characteristic size I, and the damage rate during coalescence and even after as, in the
described approach, the elements still exist but with a vanishing stiffness.

Another other way to verify the mesh dependence of the results is to look at the
damage variable map. This approach is often far more sensitive than a global force
displacement curve. Figures 6-22a and b collect the deviatoric damage curves along r
and y axes (defined on Figure 6-18) near the maximum of the global curve.

0,08 0097 g
0,07 1Ll 0,08 - ~b=1%
0.05 4 T 0,07 4 ~b=1.66%
' 1 ~b=2.05%
0,05 - . 0,05
~b=1.66% - ~—b=2.43%
0,04 1 —b=2.05% 004 —b=2.62%
0,03 ~b=2.43% 0'03 ~b=10.4%
- — b=2.62% ’
—b=10.4% Gk
0,01 0,01
r (mm)
0 T T T T = 0 ' . Y
0 0,5 1, 18 2 25 5 ) 5 5

Figure 6-22 Deviatoric damage variable for an elongation of 0.65 mm
of the base AA": a) along r axis, b) along y axis (from Habraken et al. 2000).
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Figure 6-22a shows a small range of variation of the deviatoric damage value with
the mesh except for the center point and the coarser mesh. The effect is slightly
stronger on Figure 6-22b. Such local variations can explain why the simulation
convergence is lost at different moments when damage increases. However, if some
smoothing procedure is used to represent the deviatoric damage map, one will find

that the level and size of the localized damage zone is quite identical for each mesh
even the coarser one.

In conclusion, the damage map for this notch test simulation has a low mesh
dependence. The b ratio taking into account the radius of other samples geometry
will be used to have an idea of the mesh density in the following sections. In
practice, for the validation simulations, the mesh refinement has been applied when
the presence of discontinuities in the stress, strain or damage fields indicates errors
due to too coarse discretization. As proved by the simulation of the bending test
(section 6.2.10 C), the shape ratio of the element is also an important parameter.

6.2.10 Validation

The interest of a macroscopic damage approach consists in its application to

different type of material loading. So four different experiments have been
performed and simulated:

— tensile test of a notched specimen,
tensile test of a perforated specimen,
bending test,

shear test of a perforated specimen.

Each case is studied in following sections then a general discussion is proposed in
section 6.2.11.

A. Tensile test of a notched specimen

As presented on Figure 6-18, this axisymmetric tensile test has a large notch radius,
which means that the damage is maximum at the center of the neck leading to a cup-
cone fracture. This well-known fact (Needleman & Tvergaard, 1984) is reproduced
by the performed experiments. For this test as shown by Figure 6-23, the stress field

is characterized by a very high triaxiality value T of the order of 1.4. This
characteristic is computed by :

o

7266 (6-32)

Note that, with such triaxiality definition, the value for a uniaxial tensile experiment

is T =0.57. In the notch test, the high triaxiality zone covers the middle part of the
section at the neck center.
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a Triaxiality T.
i 0.19

b Equivalent strain &,

¢ Deviatoric damage d.

Figure 6-23 Notch simulation results (model 1) at RR” moment (partially published
in Habraken et al. 2000).

The strain field confirms this high triaxial state: for a total displacement of 1.46 mm,
an axial strain of 26 % and a radial strain of —12 % are reached in the neck center.
The mesh used for the analysis of finite element results is the fourth one shown on
Figure 6-20, characterized by a small b coefficient of 2.43.

Figures 6-23a, b and c respectively show the triaxiality factor, the equivalent strain
and the deviatoric damage distribution of the simulation results for model 1 at the
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moment identified as the “experimental rupture” (see Figure 6-21). Model 2 gives the
same distribution for these 3 variables. A difference exists only on the values. For
this reason, figures of results for model 2 will not be shown, neither for this example
nor for the following ones, but the values will be given in Table 6-6b.

B. Tensile test of a perforated specimen

20 118 20
] \ 1
4t T 1>
<« —
AL TA
Q——r A: 10 mm P —

\
10
34[12]
Y
12
5

Figure 6-24 Tensile test of a perforated specimen: geometry,
(from Habraken et al. 2000).

The sample geometry is shown on Figure 6-24. It is cut from the tube wall and is
perforated in its center. The hole is not exactly in the center in such a way that one
can predict on which side of the hole the fracture will begin and focus the camera on
this side. A gauge length AA’ is used for regulation: during the test, the extremity
displacements are controlled so that a constant relative velocity of 0.01 mm/sec
between A and A’ is maintained. This is a three-dimensional problem. The specimen
is discretized by 8-nodes 3D mixed finite elements (Figure 6-25). The ratio b
between the diagonal of the smallest element and the hole radius is 9%. The ratio ¢
between the maximal side and the minimal side of the smallest element is 2.3.

Numerically, it is difficult to keep a constant relative velocity between A and A’ by
loading. As the extremity displacements were not registered during the test, the
measured tensile force has been imposed at the ends of the specimen. The relative
displacement of A and A’ until the maximum of the load have been verified.
However to simulate the termination of the test, it has been necessary to change the

loading strategy: after the maximum, the displacements of the ends of the specimen
are imposed.
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Figure 6-25 Tensile test of a perforated specimen: 3D finite element mesh (from
Wang & Habraken 1996).
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Figure 6-26 Force-relative displacement of the base AA’ curves with time
references (from Habraken ez al. 2000).
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Figure 6-27 Force-time curves of the tensile test of a perforated specimen (from
Habraken et al. 2000).

The comparison between the experimental measurements and the finite element
calculations is given on Figure 6-26 for the force-displacement curves and on Figure
6-27 for the force-time curves. Generally speaking, model 2 is closer to the first test
in which fracture takes place earlier, while model 1 is closer to the second test in
which fracture happens later. The calculated force—time curves represent very well
the drop of the experimental curve both for model 1 and model 2. But for the force-
displacement curves, only model 2 follows this sudden drop trend, while model 1

shows only a little decrease of the force. This is due to a quick elongation developed
at the moment of fracture.

For these simulations, at the “experimental fracture moment” (time 793 sec defined
on Figure 6-26), the stress state is characterized by a relatively homogeneous
triaxiality value, from 0.6 to 1.0, in the zone where deformation and damage are
important. This value approaches the uniaxial tensile value “0.57".

Figures 6-28, 6-29 and 6-30 show respectively the triaxiality factor, the equivalent
strain and the deviatoric damage distributions for model 1 at RR’ moment. The
equivalent strain is strongly localized at the two sides of the hole root. The largest
equivalent strain reaches 26.3%. The largest axial strain, the largest radial strain and
the largest circumferential strain are, respectively, 38.8%, 19% (negative) and 18.9%
(negative). For the deviatoric damage, dy.x reaches 0.15, and all values of d greater
than 0.14 are located within 1.2mm from the hole root.
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Figure 6-28 Tensile test on a perforated specimen, simulation results (model 1) at
RR’ moment, triaxiality 7.

Figure 6-29 Tensile test on a perforated specimen, simulation results (model 1)
at RR’ moment, equivalent strain &,.
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Figure 6-30 Tensile test of a perforated specimen, simulation results (model 1) at RR’
moment, deviatoric damage d (from Habraken et al. 2000).

- C. Bending test
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Figure 6-31 Bending test: geometry and loading (from Habraken et al. 2000).

The third example is a bending test. The notched whole tube is loaded and supported
as a traditional three points bending, see Figure 6-31. The tube is discretized in 8-
nodes 3D mixed finite elements (Fig. 6-32). The ratio b between the diagonal of the
smallest element and the notch radius is about 12% and the ratio ¢ between the
maximal side and the minimal side of the smallest element is 9.5 for the first mesh
with one layer of elements through the thickness (Figure 6-33a). This relatively high
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c ratio leads to poorly shaped elements near the notch root. So a second mesh with
two layers of elements through the tube thickness was used, its c¢ ratio is 4.75, see
Figure 6-33b.

Figure 6-32 Bending test discretization, case of one element layer on the thickness,
(from Habraken & Wang 1996).

a. meshl b. mesh 2

Figure 6-33 Cross section in the bending test mesh: a) one layer , b) two layers.

The measured displacement of the middle section is imposed in the simulation which
takes into account the problem symmetry. The numerical result of force-
displacement in comparison with the experimental one is given in Figure 6-34.
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Figure 6-34 Force—displacement curves for the bending test for meshes with one and
two layers of element, definition of experimental rupture, from Habraken et al. 2000.

The drop of the simulation curves happens much later than in the experimental
breakdown. From the experimental observation, it has been checked that local
fracture appears earlier than the final rupture due to the high resistance of the tube
section. This fact explains why the “experimental local rupture” identified by RR’
line on Figure 6-34 seems far from real structure fracture. Figure 6-35 shows
deviatoric damage computed by model 1 with mesh 2. Strain and damage are
strongly localized above the notch. When the imposed displacement reaches 8.33mm
(the experimental rupture, presented by RR’ in Figure 6-34), Table 6-3 presents the
results for both simulations with one or two layers of elements. The shear strains are
very low and not presented in the table. Clearly mesh dependence affects the
simulation results. In fact in this case, the damage is highly concentrated and cannot
be represented with a coarse mesh. To simulate the high damage gradient the b and ¢
ratios should be even smaller than the smallest one used (b=12%, c=4.75%).
However CPU time and storage memory prevent to go on with finer meshes. A

strong damage variation between the internal layer and the external one demonstrates
the necessity of low c ratio.

simulation Ceqmax | Umax | & &y €,
mesh 1 (¢=9.5) |[16% 0.082 |-8.9% |20.3% |-11.1%
mesh 2 (c=4.75) [29.4% |0.156 |-9.6% |24.4% |-18.7%

Table 6-3 The results of bending test for mesh 1 and mesh 2 (model 1).
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Figure 6-35 Deviatoric damage d computed by mesh 2 and model 1
(from Habraken et al. 1999).

D. Shear test of perforated tube

The fourth validation test is a shear test. As shown on Figure 6-36 and 6-37, the end
of the tube is perforated for getting a shear-dominated loading. To simulate this test,
two finite element meshes are used. The first mesh is shown in Figure 6-38a. Its b
ratio is equal to 50% and its c ratio is equal to 2.5. As the b ratio is much larger than
the one discussed in section 6.2.9, to get poor results with a lot of strain or damage
discontinuities is not astonishing. In order to get reasonable results, a second mesh is
used, shown in Figure 6-38b. It has a b ratio of 15% and a c radio of 4.1, which
seems reasonable enough to analyze the results.
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Figure 6-36 Geometry and loading of the shear test (from Habraken ez al. 2000).
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Figure 6-37 Shear test, by symmetry only 1/4 is used in computation (from
Habraken & Wang 1996).

a. Shear test: mesh 1 b. Shear test: mesh 2

Figure 6-38 Finite element meshes.

Model 1 Displacement | dmax | €eqmax | €eqousside | Eeq intemal
Mesh 1 First test 7.0 0.15 | 42.4% | 14-42% | 29-36%
b=50% fracture
Second test 8.3 0.22 | 52.4% | 19-52% | 36-46%
fracture
Mesh 2 First test 7.0 0.18 | 39.6% | 14-39% | 21-36%
b=15% fracture
Second test 8.3 0.27 | 50.7% | 18-50% | 28-46%
fracture

Table 6-4 Results of two meshes for shear test (model 1).
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Figure 6-39 Force-displacement curves for the shear test ,
identification of the “experimental rupture” (from Habraken et al. 2000).

Figure 6-39 shows force-displacement curves of the experiments and the
calculations. The drop of the simulation curves happens later than in the experiments
except for the curves of model 2. Figures 40a to 40f show the triaxiality factor T, the
equivalent strain &, and the deviatoric damage d at the moment of “experimental
rupture” (imposed displacement of 7mm defined on Figure 6-39, line RR’) for the

two meshes. Some simulation results of the two meshes are summarized in Table 6-
4.

GO
CURE

u‘n%‘“\\\\&mv
‘&l‘ll%‘&l‘l

a. Triaxiality factor (mesh 1). b. Triaxiality factor (mesh 2).
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e. Deviatoric damage d (mesh 1). f. Deviatoric damg d (esh 2).

Figure 6-40 Simulation results with model 1 (part f from Habraken et al. 2000).

The global simulation results (force-displacement curve, Figure 6-39) are not
affected by the discretization, except for the curve drop as for the notch test with
large radius. Both meshes and damage models predict the maximum deviatoric
damage and the maximum equivalent strain at the experimental fracture location
(internal face, above the notch). No matter the chosen damage model, the finer mesh
simulates more accurately the damage or strain gradient; higher maxima are reached
and they are more localized. Distribution of shear stress shows a maximum above the
hole; however local hydrostatic stress concentration induces a strong gradient of the
triaxiality factor.
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6.2.11 Discussion

Four validation tests have been simulated. The characteristics of the used meshes are
summarized in Table 6-5. Then, Tables 6-6 a and b gather the strain and triaxiality
levels near the crack for each simulation.

Test description Problem | Smallest elements
description n>m>1 b=diagonal/ c=
Rgotch
Notch test 2D 2.4% /
axisymmetry | ™
problem
1
Hole test 3D problem 9% 2.3
Bending test mesh 1 | 3D problem 12% 9.5
m
Bending test mesh 2 | 3D problem n 12% 4.75
1
Shear test mesh 1 | 3D problem 50% 2.5
Shear test mesh 2 | 3D problem 15% 5.5

Table 6-5 Validation test simulations: Finite element discretizations (from Habraken

et al. 1999)
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Study of aluminum rods

From preceding validation simulations, one can check the following observations:

— The maximum damage zone detected by both models have the same
location, and correspond to experimental rupture initiation.

— Higher damage values and damage gradients are produced by model 2.

— The damage value affects the global results, so global force-displacement
or force-time curves from damage model 2 present dropping behavior
sooner than damage model 1, however before this decrease, the curves
from model 1 and model 2 are very close to each other.

— For both models, the dropping behavior of global curves is not an accurate
criterion to predict global rupture as there is a clear mesh dependence.
According to the validation test, the damage model and the discretization
chosen, simulations predict global rupture too early, too late or in time.

— Threshold value applied on deviatoric damage seems a good rupture
initiation criterion for mean to high triaxiality cases. If the mesh is
reasonably refined, a threshold value of d=0.16 for model 1 and of 0.5 for

model 2 should detect the rupture at the experimental moment or a little
earlier in case of large shear.

—  The threshold values of deviatoric damage (d=0.06 model 1; d=0.16 model
2), which could be deduced from an uniaxial tensile test, characterized by
a low triaxiality factor, are not adapted for mechanical state with a mean or
high triaxiality factor. The explanation of this experimental observation
must be a microscopic one. In fact the Figures 4-14 and 4-15 (section 4.4,
in Chapter 4) produced by Benzerga et al. 1999 demonstrate that such
macroscopic observation could be explained by the initial void fraction or
a void distribution effect. The lower critical damage value in tension could
be related to a different rupture mechanism in pure tensile test as reported
by Gologanu et al. 1994. However, as no intensive microscopic study has
been performed, this assumption has not been verified.

— From all equivalent strain maps and triaxiality maps, it can be checked that

simple threshold value of such variables does not allow the prediction of
rupture.

6.2.12 Conclusion about the use of damage extension of
Bodner’'s model

An extension of the elasto-visco-plastic Bodner’s model to classical damage
approach has been proposed. A parameter identification procedure has been
developed, however its application has been difficult because the experimental
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work was not straightforward and its accuracy is limited. Tensile and compression
tests lead to Young’s modulus of similar but not identical values. The damage
measurements result from different approaches: in tensile state, cyclic loading is
performed on the whole rod, while in compression state, one experiment set

considers large scale rings from the rod and the other one treats small cylinders from
the rod wall.

The simulations of validation experiments prove that fine meshes adapted to the
sample geometry must be used. Clearly the ratio between the element diagonal and
the radius defect must stay about 10 % or less and well-shaped elements with edge
ratio lower or equal to 5 are necessary. Generally, the use of finer meshes with b
ratio of 2 or 3% would have given results leading to better knowledge of actual
material fracture as, in this work, mesh independence of results has not been reached
for all the validation cases. However CPU time prevents to go on in such a direction.

As the experiments were filmed with a classical camera, this allows to roughly detect
the macrocrack appearance and its evolution. Comparisons of the simulation results
and the experiments show that damage is correctly localized. The analysis of the
results demonstrates that a simple deviatoric damage threshold value is not very
accurate to detect rupture but can be used. Staying on a macroscopic level, this
research did not try to link damage variable to ductile porosity or to use some
microscopic criteria like the ones proposed by Brown & Embury 1973 or Thomason
1993. The present goal to verify if this macroscopic approach is able to handle
different types of fracture is fulfilled. However, it is clear that this approach raises
many questions without answer. One would like to have a curve defining accurately
the damage threshold value according the triaxiality state. This would require for
instance:

-systematic notch test study on a macroscopic level;

-microscopic investigation to be able to use microscopic criteria;

-to perform cell models to deduce macroscopic behavior.

A microscopic study would also be necessary to define which damage model (1 or 2)
is closer to the reality; however from a macroscopic point of view both models are
validated. The nucleation, growth and coalescence events are represented by a unique
evolution law for model 1 and by 2 functions, assumed to model respectively
nucleation and both growth and coalescence for model 2. This reduces the problem
of fitting numerous parameters but prevents from describing accurately the fracture
development. In consequence, the experimental final slope from load-displacement
curve is not well reproduced. In this research, mesh dependence is strong in the
prediction of slope variation in the force-displacement curve. Some regularization
method as described in Chapter 5, using the actual material characteristic length,
would be better than just using finite elements of equal or smaller size than [. as
suggested by Rousselier.
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6.3. An elasto-plastic damage model

6.3.1. Model description

The initial version of this model was proposed by Zhu 1992. With the help of Sylvie
Castagne, this model has been applied to the experiments described in section 6.2.
The poor agreement between experiments and simulations leads to model
modifications described in Castagne 1998 and Castagne et al. (to appear). This

section 6.3. appears as a summary of Castagne et al. (to appear), however it takes
into account all the notations and principles already introduced in Chapter 3.

As in Bodner’s version of damage, two scalar damage variables are introduced in the
model: d, the deviatoric one and &, the volumic one. They represent the local material
degradation as explained in section 3.2.1. Contrarily to Gurson’s approach (see
Chapter 2), damage is not strictly connected to void volume fraction even if this is

the revealing phenomenon in ductile fracture. The damage variables d and o are not
quantitatively linked to void volume fraction.

Again the hypothesis of energy equivalence is assumed to replace the damaged
material state by a fictitious undamaged material state, which is characterized by
effective stresses and strains & and Z . These effective tensors are related to true

tensors through damage variables by identical functions as in the above Bodner’s
damage model:

o o)
6 =—— G =—=" 6-33
- 1-d " 1-4 ( )
2 =(1-d )& £ =(1-0 ), (6-34)

where o, is the mean value of the stress tensor, & its deviator, &° the elastic strain

tensor deviator and &, the mean value of the strain tensor. Equations (6-33) and (6-
34) imply the equality of the complementary elastic energy.

Following the thermodynamic formulation, to define a constitutive law, the first step
is to choose ¥, the expression of the Helmholtz specific free energy (see equation 6-
35). Zhu has applied the same proposal as Lemaitre 1985, who assumes that energies
related to elastic strains, plastic strains and damage growth are independent. A
second assumption, hidden in Zhu’s choice of ¥ expression, is that elastic properties
of the material depend only on the accumulated damage d and ¢ and not directly on
the dislocation density reflected in the variable ¢z and connected to plastic hardening.

w=y (e, do)+y’(a)+y’ () (6-35)
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where i °is the elastic strain energy, v ” the free energy due to plastic hardening and
w? the free energy due to damage hardening. The elastic strain energy can be divided
into the deviatoric $train energy ¥ ° and the volumic dilatation energy ', :

w(e,d,0)=y(&".d)+y,(£,6) (6-36)
with: we(e',d)=G(1-d )& : & (6-37)
_ 2
wi(e'8)= 220200 g (6-38)
The true stress tensor is obtained as derivative of the free energy, see relation (3-21):
6= P2t =26(1-d
ga (6392, b)
o, =p v =3x(1-6 )¢
30¢;

Using relations (6-33), (6-34) and (6-39a,b), one can check that effective stress and
strain tensors respect the classical Hooke’s law. As already presented by relation (3-

22), the thermodynamic forces Y, and Y associated to damage variables d and o are
given by:

y W 8:6 _ W Lldy
4 od 2G(1-d) 1-d 2 dd

oy ___ o, _ 2y, _ldy,
6  y1-6) 1-6 2 dS

(6-40a, b)

They are called “damage energy release rates”. G is the shear modulus and y is the
bulk modulus. The thermodynamic formulation approach (relations 3-7 to 3-9)
justifies the introduction of convex functions F, used as pseudo potentials, to satisfy
the Clausius Duhem inequality. As Lemaitre 1985 and Hayakawa & Murakami 1998
(relation 3-24), Zhu uses a potential decomposed into two independent components
F, and F, representing plastic and damage criteria:

P (6-7):(6-7)
? 4G(1-d )?

~R,-R(a) (6-41)

¢
m _B, — -42
—=—B,~B(B) (6-42)

where R is the force associated with plastic hardening variable ¢, 7 is the deviator of

2/«2
F,=-Y,—(t)Y;-B,-B(B)= 1K/d+<r>

the tensor ¥, which defines the center of the plastic yield surface. The yield stress is
determined by R + Ry with Ry the initial yield stress. B is the damage strengthening,
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depending on the internal variable B linked to the micro-voids state. This damage
strengthening is added to the initial threshold value By. <T> is defined by &d in
tensile state and 0 in compression state since the volumic damage parameter is not
affected by compression. This means it cannot decrease in compression state, it just

does not increase anymore. (T) is considered as a constant in the model implemented
by Zhu.

Classically plastic strains are deduced by a normality law and an identical
assumption is done for damage evolution. Such an hypothesis has been checked
experimentally by Hayakawa & Murakami 1998 (see Figure 3-3):

é." :j’ aFP ez lp(‘é—z) v
- P 1-4)Jcle-7):(6-7)
oF,
d=-d, ==X
aer (6-43a, b, c)
=4, —L=(1)],
§=—4Ay ¥ ()

where /ipAand /?',d are plastic and damage multipliers.

The isotropic and kinematic plastic hardening rules are expressed as follows:

R=(1- m)/l 511{_
Pda

=4G(1—d)2m§"-g£+_g_;/—@ (6-44a, b)

where m € [0,1] is a ratio specifying a combined isotropic-kinematic hardenmg rule,
Q is the spin tensor contributing to Jaumann’s derivative.

The damage hardening rule is given by :

JoF, .
.B“ ldﬁ'zﬂd

b=’

Finally, the plastic and the damage loading/unloading rules are expressed in Kuhn-
Tucker’s form by:

(6-45a, b)

F, <0, 4,20, AF,=0
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F,<0, 4,20, A,F, =0 - (6-46a,b)

These relations imply that no evolution of the plasticity or damage variable occurs if
F, or F, is negative, respectively. On the other hand, for plasticity or for damage

evolution, ﬂp >0 and F, = 0 or A, >0and F,; = 0 are respectively required. This

model proposed by Zhu is fully described in his thesis 1992 and can also be found in
the international publication Zhu et al. 1992, 1995.

6.3.2. Model identification

The identification consists in finding the model parameters with the help of
experiments, theory analysis, curve fitting and simulations reduced to one finite
element for homogeneous stress-strain states. Such simulations allow to verify the

adequacy between the experimental and simulated stress-strain and damage-strain
curves.

The principal data to be introduced in the model are the effective equivalent stress-
plastic strain curve (G, -€,) and the damage strengthening threshold versus

deviatoric damage curve B(f3)=B(d) for a uniaxial test. To compute these curves, the
evolution of the uniaxial stress and of the two damage variables versus strain must be
known. With the hypothesis of elastic energy equivalence, the deviatoric and
volumic damage parameters are linked to the elastic moduli by the same relations as
presented in Bodner’s damage model (see relations (6-16) and (6-17)). The
experimental results presented on Figure 6-9 and 6-12 are used. In fact, the approach
called model 1 with reduced values is assumed as damage evolution during an
uniaxial tensile test (Figure 6-10a) and an uniaxial compression test (Figure 6-12b).

The knowledge of these (d-£) curves as well as the availability of the (o-¢)

experimental curves for quasi-static tensile and compression tests (Figure 6-13)
allow to determine the useful data for the model.

The equivalent effective stress, used to compute (7, - €, ), is given for a uniaxial
test by :

1
Eeq —_ .3_;,9?” 2 = — (6-47)
2 1-d

where 07 is the stress in the loading direction.

As explained in Castagne 1998, the equivalent effective strain can be computed by
integrating the following equation:

i =(1-dcer))er (6-48)
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Finally a unique curve is retained taking the average between the compression and
the tensile cases (Figure 6-41).

500
]
400 -

300

0044 | Tensile sta?te
—— Compression state
—— Numerical data

Effective equivalent stress (Mpa)

0 T T T 1

0 0.2 0.4 0.6 0.8
Effective equivalent plastic strain

Figure 6-41 Effective equivalent stress versus effective equivalent plastic strain
(from Castagne et al. to appear).

The second curve to be introduced to characterize the material is the (B-d) curve.
Using equation (6-42), the following relation for a uniaxial test is obtained:

N S o (6-49)

1
B,+B(f)= 2
o +B(P) [3G0(1—d)3+(p)<r>9;(0(1—<r>d)3]

where G, and %, are initial elastic shear and bulk moduli, p is a weight factor
explained in section 6.3.3.A. B,, the damage threshold is given by:

1 1), ]
B, -(3@) + P)<f>%)ad (6-50)

with o the initial yield stress according to the hypothesis of simultaneous plasticity
and damage entrances (0; = 75 MPa).

Here two different curves are computed, one for the compression test and another
one for the tensile test. To model fracture in tensile state, a limit value dgogles 18
introduced, it indicates voids coalescence. As soon as this value is achieved, the
slope of the (B-d) curve is multiplied by the factor MP to increase the damage growth
(Figure 6-42) and consequently the stress reduction. Without this modification, the
curve is assumed to continue with the slope computed between the last two given

points. For the compression state, no modification is introduced as no coalescence
appears.

The damage ratio 7, also called tensile effect, is supposed to be a constant for the

model. Actually, it varies between 1.37 and 2.30 (Figure 6-43). The constant value
used in the simulations is 1.57.
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4
— Tensile state A
----- Compression state
) 37 | —Tensile state with MP
2
[}
2
S2
(-]
(=]
©
£
©
o
11 Slope multiplier : MP = 0.25
for d>dmales
0 Li T T T 1
0 0.05 0.1 0.15 0.2 0.25

Deviatoric damage

Figure 6-42 B(d) curve relative to tensile and compression states
(from Castagne et al. to appear).

Damage ratio
N

0 1 | (8 Il | | —
T T T T T T 1

0 0.02 004 006 008 01 0.12 0.14
Equivalent plastic strain

Figure 6-43 Tensile state : T versus equivalent plastic strain
(from Castagne et al. to appear).

Finally, the curves to be introduced in the data file are described by Figures 6-41 and
6-42. They are linearized to be written in the data file. A weight factor p will be
introduced in the model (see section 6.3.3.A.). Its value has been taken into account
in the calibration phase as it modifies the (B-d) curve in tensile state. MP, the slope
multiplier, and d_,,, the coalescence level, are not easily fitted as explained in

section 6.3.3. They have to be adapted according the validation experiment to obtain
a better visualization of the rupture event.

Table 6-7 summarizes the final set of scalar data for the analyzed aluminum. Remark
that the actual initial Young’s modulus of the material is not used in the simulations.
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Indeed, all the equations of the model are written using the extrapolated initial
Young’s modulus Ey introduced in section 6.2.7.A.

Symbol Description Value

E Material Young’s modulus (not used) 72505 MPa
Ey Extrapolated initial Young’s modulus 57852 MPa
1% Poisson's ratio 0.31

T Damage ratio 1.57

deoales Coalescence limit in tensile state 0.05

MP Slope multiplier of B(d) in tensile state 0.25

P Weight factor 0.1

Table 6-7 Material data (from Castagne et al. to appear).

After the model identification, the deviatoric damage variable and the equivalent
stress represented in Figure 6-44 are in correlation with the experimental results. The
rough slope modification for the damage variable in the tensile state takes account of
coalescence. In fact, the performed experiments are not accurate enough to precisely
analyze the damage increase during the coalescence events. The damage evolution
after the point of coalescence aims to reproduce the drastic decrease of stress (see
Figure 6-44b) in order to model the presence of rupture and the loss of rigidity of
elements representing these material points. Theoretically, the final slope of curves
describing macroscopic fracture experiments should help to define the end of damage
evolution defined by the MP factor (Figure 6-42). However, trials to enhance this
effect lead to numerical convergence problems. The compression state also shows a
stress decrease near the rupture state.

03 _ , 350
— Tensile state : experiment W ..—»""MW e
0254 " Tensile state : simulation » 300
i | e Compression state : experiment|
& » Compression state : sin’ulationJ @ 250 -
g 02 ya ]
3 S 2200
2 0.15 ¥ s
.g S 150 4 — Tensile state : experiment
> 3 = Tensile state : simulation
@ 0.1 =3
o w100 --- Compression state : experiment
0.05 - 50 + Compression state : simulation
0 - T T T T 0 - T T T T
0 0.2 04 0.6 0.8 0 0.2 0.4 0.6 0.8
Equivalent plastic strain Equivalent plastic strain
(a) Deviatoric damage variable (b) Equivalent stress

Figure 6-44 Comparison of model prediction and experiments
(from Castagne et al. to appear).
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6.3.3 Validation

This model is now applied to the same validation experiments as already presented in
Bodner’s damage model (section 6.2.10). The bending case is not reproduced here

because the simulations have not converged due to early numerical bifurcation
phenomena.

A. Tensile test of a notched specimen

First, tensile tests realized on notched cylindrical bars (Figure 6-18) are studied. The
relative displacement is measured on a 25 mm basis. Three different meshes are
tested in order to analyze the mesh sensitivity of the results. The experiment has been
reproduced several times with very close results, which explains why only one
experimental curve is presented on Figure 6-45a.

In the first simulations, very local strong damage increases with loss of convergence
happened. A kinematic scalar indicator based on an idea proposed by Vilotte and
used in Pierry 1997 proved the appearance of bifurcations. These localization
phenomena were pointed out long before the rupture event. A viscous regularization
method to improve the numerical stability as well as the suppression of the slope

modification (MP) taking voids coalescence into account were introduced but this
did not solve the problem.

An analysis of the damage map shows that damage increases more in the zones
where triaxiality is very high. Compared to experiment, damage evolution is too
important and predicts high local damage value long before rupture. This effect is
enhanced when the slope of the (B-d) curve is reduced. To limit the damage growth
and to allow a better convergence of the simulation, a weight factor p limiting the
influence of the hydrostatic energy term y,, has been introduced in the model. This

is equivalent to a modification of the damage surface shape (6-42):

2y 2y

F,=—/—+p(t)—=-B,—-B 6-51
i =1 tp{e) 5~ B~ B(B) (6-51)
The weight factor obtained is p = 0.1. It gives a correct evolution of the damage and
maintains the difference of behavior between the tensile and the compression state.
The graphs of Figure 6-44 were in fact drawn taking into account this factor. Indeed,
the calibration has to be done with the final model.

The curve representing the force on Figure 6-45a is lower than the one obtained by
the experiment although the rupture by coalescence in tensile state has been removed
from the model for those simulations.

Figure 6-45b presents damage state at experimental fracture and not at the beginning
of necking event as on Figure 6-23. It shows that damage increases more in some
elements located at the middle of the specimen, where triaxiality is very high
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(Needleman and Tvergaard, 1984) and can reach

1.6 in this example. Introducing in

the model a d,,qes Would introduce a more important increase of the damage variable

that could induce greater convergence problems in this high triaxiality case.
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Figure 6-45 Results of model without dcoases and MP (from Castagne et al. to appear).

B. Tensile test of a perforated specimen
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Figure 6-46 Comparison of experimental measures and simulation results (from
Castagne et al. to appear).

The second experiment is a tensile test on a curved bar with a hole inside (Figure 6-
24). The first simulation on Figure 6-46a does not include the reduction of the (B-d)
slope when coalescence of voids happens. Otherwise the final simulation has been
realized with d.paes = 0.12 and MP = 0.25. One can observe that with the second
simulation, a weak decrease of the force appears at the moment corresponding to the
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experimental rupture. Figure 6-46b shows that the damage is maximum near the hole
but its value remains low compared to the values obtained with the notch tests.
Indeed, the maximum triaxiality here is 0.5 while it is 1.6 for the notch tests. The
state described on Figure 6-46b happens a little later than the one described on
Figure 6-30 and computed by Bodner’s model.

C. Shear test of perforated tube
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Figure 6-47 Comparison of experimental measures and simulation results (from
Castagne et al. to appear).

On Figure 6-47a, the first simulation corresponds to a case with no coalescence, the
second simulation has been computed with deoales = 0.15 and MP = 0.5 and the last
one with the same parameters as the second simulation from previous section (tensile
test of a perforated specimen). For this last simulation, a reduction of the force can be
observed at an imposed displacement of 7.7 mm, followed by oscillations. Figure 6-
47b shows that damage begins near the hole as checked by the experiment; again this
damage state is presented later-than for the Bodner’s damage model (Figure 6-40).
Triaxiality reaches 0.6, which implies damage values lower than for the notch tests
and similar to those observed during the perforated specimen test.

6.3.4 Damage criterion

The preceding experiment simulations show a strong dependence of damage level on
triaxiality. The instant of rupture does not simply correspond to reaching a threshold
value of the damage variable but must be linked to different factors.
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The initial Zhu’s model already contains the effect of triaxiality on damage through
the volumic energy term. This parameter induces a too important damage growth,
which leads to non convergence of the numerical simulations. The process followed
here consists in limiting the triaxiality effect in order to avoid convergence problems.
The coalescence damage level used in this model is a constant for the material. It is
achieved earlier in a simulation where triaxiality is high since this factor increases
the damage growth variable, even if the phenomenon is reduced with the modified
model. The prediction of rupture, from a slope variation of the global force
displacement curve, is not always possible : a too localized fracture can not be
detected on this curve. On the other hand, d.oues the coalescence limit allows the
detection of the micro-crack event and its consequences.

As it is not possible to define a unique threshold value of dcoates indicating a
macroscopic rupture event, a rupture criterion coupling damage and triaxiality for
instance should be determined. Nevertheless, the available tests are not numerous
and accurate enough to establish this threshold value of the damage as a function of
triaxiality. To get more data, new experiments on bars with various notch radii,
corresponding to different triaxiality values, are required.

It is interesting to note that the difficulty to define a damage threshold value is not
surprising, as, in reality, this limit depends on triaxiality. In fact Gurson's type model
faces an identical problem. The general study of Benzerga et al. 1999 presents curves
of the critical porosity f,, depending on triaxiality T. Depending on the initial
porosity value, f.,is quite constant or increases with low (= 0.5) to mean values of T
(0.8 — 1.2), then decreases for mean to high T values (>1.5), see Figure 4-14. This
result from Benzerga et al. 1999 helps to understand why, depending on cases they
study, authors like Needleman 1984, Koplik & Needleman 1988, Brocks et al. 1995,
Brethenoux ez al. 1997 have found various influences of T on critical porosity.

6.3.5 Conclusions

The initial Zhu’s model does not apply to the studied aluminum alloy because the
damage increases too rapidly in the zones where triaxiality is high. A modification of
the law, that induces a less important damage increase, provides a solution.

The cracks initiation site is correctly predicted by this model, as well as their
propagation directions. For shapes and loadings that correspond to a low triaxiality,
if the damage zone is not too localized, the modified model allows to predict the
sample rupture characterized by the drop in the force-displacement curve.

Additional experimental results are necessary for the establishment of a rupture

criterion. When known, this criterion should predict the crack evolution according to
damage and triaxiality.
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Finally, the opportunity to use a non constant damage ratio 7 should be investigated
instead of introducing the reduction parameter p in equation (6-51). Indeed, Figure 6-
43 shows the evolution of 7, which is not actually a constant for the studied material.
Most of all, the analysis of the effect of the parameter p in the second term of
equation (6-51) shows that it influences the value of 7 in a nonlinear way.

6.4. Conclusions on the applied damage models

Sections 6.2. and 6.3. summarize a work performed at various times and with various
co-workers, so it is not perfectly integrated. However, even if the damage figures are
not related to the same time, it can be observed that the adapted Zhu’s model is more
sensitive to triaxiality than Bodner’s damage version. This explains why it has not
been possible to define a simple damage threshold limit to detect microcrack events
for this model. As suspected, the numerical stability of the damage elasto-plastic

approach is lower than the damage elasto-visco-plastic version and numerical
bifurcations prevent an easy use of the model.

Different conclusions can be drawn from this work and the general literature review:

e Macroscopic damage approach can be applied to detect microcrack;
however simple damage threshold value is of limited use. A criterium
linking triaxiality and damage value is necessary. If one chooses to stay
on a macroscopic level, systematic axisymmetric notch tests with various
radii must be performed to define this limit curve, or to fit more elaborate
fracture criteria by inverse modeling. Such a systematic approach would
have allowed a better scientific work; however the available material
shape and the cost of these experiments prevent this research extension.

e Global criteria on force-displacement are mesh sensitive if no additional
regularization is applied. Non-local approaches with internal length seem
to be necessary to stabilize this global information. Such non-local or
gradient methods are required, if one wants to follow crack propagation.

e A microscopic material investigation, defining inclusion size and
distribution, would greatly help FEM and macroscopic model users. It is
necessary to be able to use rupture criteria as Thomason's or simply
Rice's. It helps to adapt FEM size as explained by Rousselier. To perform
a cell model analysis to define the macroscopic model parameters is not
possible without knowledge of inclusion size or repartition. Even if
inverse modeling based on macroscopic experiments allows fitting of
models like Gurson’s, a microscopic material study fixes physical
variables values as initial porosity and helps to keep the advantage of the
microscopic foundation of the model. In this research for instance, no
discussion about the choice of model 1 or 2 in Bodner’s damage approach
has been possible without further microscopic information.
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7. STUDY OF STEEL SHEETS

7.1. Introduction

This chapter presents in a unified way, compatible with the notations introduced in
Chapter 3, the work performed by numerous co-workers. Its goal is to give an
overview of the present state of the model as its theory, finite element
implementation and experimental identifications have been built by a lot of different
researchers: Zhu Yongyi, Raphaél Estevez, Jean-Frangois Charles, Serge Munhoven,
Anne-France Cambron, Michaél Wauters, with Anne-Marie Habraken acting as
“memory”, stimulator and coordinator. Zhu Yongyi has developed the first
theoretical model (Zhu 1992), which is described in section 7.2. The approach used
to follow the local axes is due to Munhoven 1995 and is described in section 7.3.
Raphaél Estevez has proposed a first approach of the identification method (Estevez
& Habraken 1996). Anne-France Cambron has tried to apply this approach on a Zinc
sheet (Cambron 1997). Jean-Francois Charles has performed and analyzed a first set
of experiments on RDCS steels (IF ULC Ti steel and SPXI steel) related to the model
identification (Charles & Habraken 1996). Finally, Micha&l Wauters (Wauters1997,
1998, 1999, 2000) has improved the model, the identification method (summarized
in section 7.4) and the experimental device. His experimental results are presented in
section 7.5. He has also made some steps towards a validation (Wauters 2000 and
Wauters et al 2000) that are presented in sections 7.6 and 7.7. The final simulation
on Nakazyma biaxial test is due to Charles et al. 1997.

In industry, simulations of sheet metal forming operations with FEM codes are
becoming a necessity during product and process development. However, researches

are still required to increase accuracy and correctly predict location and moment of
failure events.

The anisotropic behavior of steel sheets is well known. For instance a circular cup
drawn from a circular piece of metal sheet using axisymmetric tools often presents an
undulating rim called earring. The origin of such a behavior is the crystallographic
nature of the plastic metal deformation. The use of anisotropic elasto-plastic models
allows the description of such phenomena. Current cases of 4 ears can be predicted
by a classical Hill’s model (Hill 1948), but more singular cases of 6 ears request an
accurate yield locus shape based for instance, on texture measurements and
polycrystal plasticity (see Part B of this thesis).

An initial accurate yield locus is not sufficient to model difficult sheet metal forming
processes as complex strain paths induce size and shape modifications of the yield
locus. So, the work-hardening rate requires a particular attention, if one wants to
model Bauschinger’s effect and the cross effect. For instance, the physics based
work-hardening model proposed by Teodosiu & Hu 1995 is an interesting alternative
to conventional phenomenological models, as this model complexity is still

Part C Habraken 2001 — Page 7.1.



Study of steel sheets

reasonable to implement in a FEM code. Nevertheless, a macroscopic energetic
approach is considered hereafter.

As recalled in Chapter 2, damage models such as Gurson’s (Gurson 1977) or its
recent improvement proposed by Gologanu et al. 1994 require precise data to
describe accurately nucleation, growth and coalescence of voids. Such information is
difficult to get from macroscopic tests and must rely on microscopic measurements
of voids which consists in a very long investigation. The models proposed by
Lemaitre & Chaboche 1985 are perhaps less anchored in microscopic physics but
offer the advantage of being calibrated by macroscopic tests; this is the major reason
of MSM choice of such a type of models. Zhu’s anisotropic elasto-plastic model is an
attempt to extend such a model to anisotropic cases.

7.2.  Zhu's anisotropic elasto-plastic damage model

7.2.1. Model characteristics

A short literature review of anisotropic elasto-plastic damage models based on
thermodynamic approach can be found in Zhu 1992. The goals of the research
conducted after Zhu’s departure were the development of a calibration method for
his model, a better understanding of the effect of the model assumptions and finally a
validation step. In fact, Zhu's model is a modified version from previous constitutive

laws proposed by Cordebois & Sidoroff 1979 or Cordebois 1983. Its main features
are the following ones :

e three major anisotropies are taken into account: anisotropic elasticity,
anisotropic plasticity and anisotropic damage;

o the generalized damage effect tensor M proposed by Chow and Wang 1987 is
used;

e a new damage characteristic tensor J based on the hypothesis of damage
energy equivalence is proposed;

e an effective computational integration algorithm with two steps split
operators is proposed;

o as large displacements and strains happen, the definition of local axes fitted
on material principal axes is necessary, the local reference system proposed
by Munhoven et al. 1996 is used;

e Hill’s yield locus is adapted to describe plastic behavior; however the plastic
tensor H is not assumed to be constant during hardening; a plastic energy
equivalence rule is adopted;

e a very simple function is chosen to describe damage potential, the goal is to
describe damage evolution with a limited number of material parameters.
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As already presented in Chapter 3 concerning general thermodynamic approach, the
concept of effective stress is used. This basic assumption is translated by means of a

"damage effect tensor" M (D) applied to the stress tensor ¢, which defines the
effective stress tensor o :

c=M(D):g or o=M(D):c (7-1)

where the damage effect tensor is a second-order M(D) or a fourth-order
tensorM(D ) tensor, depending on the damage tensor order D. Note that four
fundamental variables of continuum damage mechanics have been introduced in
these assumptions, i.e. the damage tensor D, the damage effect tensor M (D), the
effective stress tensor __(_J': and effective strain tensor g

By simplicity, anisotropic damage is characterized by a symmetric second-order
tensor D. There is no uniquely defined mathematical formulation of M (D); Zhu’s
choice is the one proposed by Chow & Wang 1987, which offers the advantages of a

possible reduction to a scalar variable for isotropic damage and of having a simple
expression outside the stress tensor principle directions.

In the principal co-ordinate system of damage, which in the present formulation is

the material principal system where Hill yield locus is expressed, the effective stress
tensor is computed by:

[01020%050301]" = M[0,,65,0:305,0501, I’ (7-2)

with the fourth rank symmetric tensor :

M = diag

1 1 1 1 1 1
L—Dl '1-D,’1-D,  J(1-D, (1-D, ) J(1-D, 1-D,) \J(1- D, )(1—1)2)}

(7-3)

So no special computation is required to follow damage principal directions; damage
is simply defined by 3 scalars. This simple choice is of course poorer than Fichant’s
1996 model (see section 3.2.7) or Gallerneau’s 1995, where damage principal
directions can rotate. The approaches of Hayakawa & Murakami 1998 (see section
3.2.4) or Gelin & Danescu, 1992 also use a second rank symmetric damage tensor
that takes into account rotation of damage principal directions with stress or strain
evolution. However as verified by sections 7.5 and 7.6, this chosen simple damage
characterization is able to model anisotropic damage effect with a limited number of
experiments to define the damage parameters.
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Instead of the conventional postulate of strain or stress equivalence, an hypothesis of
energy equivalence is used. It states that the complementary elastic energy for a
damaged material has the same form as a fictitious undamaged material except that

the stress is replaced by the effective stress in the energy formulation.
Mathematically, this yields:

w(c.D)=y*(a.D) or %ET 7 ig=te":C g (7-4)

where ge and C*

are the stiffness tensors for the virgin and damaged elastic
material respectively. By recalling (7-1), it can be easily proved that :

C™=M(D):C"" :M(D) (7-5)

and, according to the hypothesis of energy equivalence, the effective elastic strain
vector 1S :

|t
Il

I<

It

(7-6)
where :
M " = diag

li-D,,1-D,,1- Dy, J(I=D, (1= D, (1= D, 1= D, ), {1~ D, (1-D, )|

(7-7)

7.2.2. General thermodynamic analysis

The internal variables used in the thermodynamic analysis are listed in Table 7-1
together with their associated thermodynamic forces. The general structure of the
constitutive equations is furnished by the well-established thermodynamic theory of

irreversible processes described in Chapter 3. Hereafter, isothermal condition is
assumed.

State variables Associated thermodynamic forces

Elastic strain £° Cauc}ly stress &

Accumulated plastic strain p Plastic hardening threshold R

Damage variable D = (D; D, D3) Damage energy release rate Y = (Y; Y2 ¥3)
Overall damage '3— Damage strengthening threshold B

Table 7-1 State variables and associated thermodynamic forces (from Zhu 1992).

As it has been indicated in Lemaitre 1985, uncoupled plasticity and elasticity are
assumed so that the elastic properties depend only on damage variables and not on
the dislocation density represented by p. For practical purposes, another hypothesis is
introduced: energies involved in plastic flow and damage processes, dissipated by
heat or stored in the material, are independent. Consequently, in the present model,
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the Helmholtz free energy takes the following form, as proposed by Valliappan et al.
1976 or Hayakawa & Murakami 1998:

pu(e.D,p.B)=y (. D)+y"(p)+v(B) - (7-8)

where w°(€°,D) is the elastic strain energy, ¥’ ( p) the free energy due to plastic

hardening and w“(fB) the free energy due to damage hardening. The

complementary energy is obtained from the Legendre transformation of the free
energy with respect to strain, i.e.

pll(a,D,p,B)=0:€ —pw(e,D,p,B)=w(c.D)-y’(p)-v'(B) (79

According to the energy equivalence hypothesis, the elastic strain energy ¥ *( £,D)

and the complementary elastic energy W *(g,D) can be evaluated. Following the

rules of thermodynamics of irreversible processes, the associated thermodynamic
forces are given by :

Py

o= - =M_l ._Ce '_M—lge

def — = =
R:p%=3WP(P)

fp (7-10.a,b,c,d)

sza_v/:&w(ﬁ)

ap dap

(91// oIl al//e(O',D) T e-1 (9M_
Y= =- == == =-0g :M:C" :—:
Y ,082 '082 D o -M:C ED) g

The negative of Y can be considered as the elastic strain energy rate associated with a
unit damage increment, as it is easy to show that :

_y=lav’ (7-11)
B 2 d—D— at constant o

Y is often given the name of "damage energy release rate". For this model, the
Clausius-Duhem inequality recalled in Chapter 3 is written:

®=g:¢,-Rp-Y:D-B 20 (7-12)

Within the hypothesis of independence of energy dissipations between plastic flow
and damage process, equation (7-12) can be separated into two parts such that :

c:£,-Rp20 and -Y:D-B 20 (7-13a, b)

Equations (7-13a, b) show the existence of a plastic dissipative potential and a
damage dissipative potential, i.e.:

F,(c,D,R)=0 and F,(Y,B)=0 (7-14a, b)
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in which the former represents the plastic yield criterion; the latter is the damage
evolution criterion. In the case where the criteria F, =0 and F, =0 are satisfied,

the actual values of o, R, Y, B will make the dissipation power of equation (7-12) a

stationary value. If Lagrange multipliers /'{P and /?'.d are introduced, equation (7-12)
can be written:

®=0:¢ -Rp-Y:D-BB-A,F,-4,F, (7-15)

The final evolution rules are:

. dF . ;
@—=0:>§"’=/1 . éii:O::‘_D_=—/ld——aF"
do Pdo  JY Y (7.16a,b,c,d)
oD . JF od : . JF S
—=0=>p=4 s -—:O:>'B=_Ad._d
? oR JB oB

This approach finally recovers Hayakawa & Murakami’s 1998 proposals, as their
experiments certify the assumption of damage potential identical to the damage
surface and the corresponding normality rule for damage evolution equation.

7.2.3. Fully coupled anisotropic elasto-plastic damage model

A. Anisotropic elasticity and damage

When a material is damaged, its constitutive relation is:

‘g5 or g, =Q"’_1 :o (7-17)

g:

1]

The classical Hooke’s elastic tensor for orthotropic materials combined with equation
(7-5) yields the following expression :

(7-18)
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In order to guarantee the positive definiteness of ge , the following conditions should
be satisfied :
0<A Slwithd =1-V, V), —Vy Vi3 —VypVy —VoVpVy — Vo ViVy, (7-19)
0<l-vv,; <l(nosumoni,j), 0<D,;<1

G, >0 G, >0, G,>0, E >0, E,>0, E,>0

Orthotropic symmetry assumes also the following equalities expressed in the initial
state (D; =D, =D3; =0):

Vo _Ya Ya _Vs Vo _Vas (7-20)
E E, E E E

B. Anisotropic plastic yield surface

In the damage characterization of materials undergoing large plastic strains, Hill’s
yield criterion in stress space is expressed in the following form :

F,(a,D.R)=F,(0,R)=0r7 -0, ~R(p)=0 (7-21)
where o, is the initial plastic stress.

The effective equivalent stress oF is:

172
OF = {—I—er cH: Q} :{laT :
2 = 27

The effective plastic characteristic tensor Z is given by :

(B

: _o_'} (71-22)

H=M(D):H:M(D) (7-23)

The positive definite tensor H for orthotropic materials is represented by a 6x6
matrix in the material principal system (Hill 1948):

—

G+H -H -G 0 0 0}
-H H+F -F 0 0 0

- -G -F F+G 0 0 0 (724
= 0 0 0 N 0 O
0 0 0 0 L O
| 0 0 0 0 0 M

where F, G, H, L, M, N are parameters characterizing the current state of plastic
anisotropy. For a strain-hardening material, the uniaxial yield stress varies with
increasing plastic strain and, therefore, the anisotropic parameters should also vary,
since they are functions of the current yield stress (see Valliappan et al. 1976). For
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sheet metal forming, this can be easily verified experimentally by measuring the
well-known Lankford coefficient r, ratio of transversal and thickness strain rate
during a tensile test. This ratio depends on the angle between the tensile and the
rolling direction, its value is directly connected to F G H L M N parameters,
expression of the anisotropic property of the sheet. However, the Lankford
coefficient is not constant during every tensile test : it depends on plastic strain; this
leads to the conclusion that H tensor must vary. As this increases the model

complexity, a lot of implementations of Hill’s model neglect this fact and use a
constant H tensor.

vm "u

Figure 7-1 Equating plastic work for simple linear plastic behavior (from Zhu 1992).

o , = initial effective equivalent plastic stress,
o yi = initial effective plastic stress in direction i,

o r = effective equivalent stress corresponding to p,

o r = effective stress in direction i leading to the same plastic work as or,
E, = slope of effective equivalent stress plastic strain curve,
E,; = slope of effective stress plastic strain curve in direction i.

In Zhu's model, the evolution of the H tensor is based on the plastic work
equivalence in each direction (Figure 7-1). Practically, one direction is chosen as the
reference one (generally the rolling direction) and a uniaxial tensile test in this

1 & 5 o . ‘ D 4
direction gives the stress-plastic strain equivalent curve (o € )where for shortness

no equivalence or reference indice is noted. For any material state, the knowledge of
the internal variable p and equation (7-21) yield to the associate effective equivalent

stress Ep; then, with the help of ( oce ) curve, the equivalent plastic work is
estimated. Knowing ( oe ), curves in each direction i, the stress level Cr giving

the same plastic work in each direction can be found. The ratios between or and
o r, are directly connected to the anisotropic parameters of the sheet (7-27).

The simple case of a linear work hardening material described by Figure 7-1 gives:

WP = 22 (G2-52)= é_( G2 -5. )=plastic work (7-25)
ti f
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In this simple case, equating plastic work leads to following ratios :

i 2 —2
OF OF
@ == - —2 —2 _ —2 ‘ (7-26)
O Fi (E,/E,J(0CF—0y)t0y
withi=1,2, 3, 23, 31, 12.

The relations between a; and classical anisotropic parameters are listed hereafter:
G+H=2a, -H=-a,—a,+a; N=2a,
H+F=2a, -G=-a,+a,—a, L=2a, (7-27)
F+G=2a, -F=a,-a,—-a;, M=2a,

Obviously, if direction 1 is taken as reference direction, a, =1. This hardening
approach induces changes in yield shape and size.

As Zhu’s proposal of linear hardening was too limited to fit with any material
behavior, a multi-linear curve has been implemented by Wauters 1998. This choice
of multi-linear description was preferred to a classical analytical curve description in
order to retain generality. Note that the maximum number of linear segments is very

high so very smooth curves can be introduced and they can accurately reproduce a
large number of material behaviors.

The plastic constitutive equations incorporating material damage may be derived by
taking the yield criterion (7-21) as a potential function. By assuming an associated
flow rule, the plastic strain is characterized as follows :

P _ g P _—
g =14, PR A, (7-28)

( plastic flow rule)

OF, M:H:M:0o
F

. s+ dR
k=4 (7-29)
(isotropic hardening rule)
<0, 204 F =
F,<0,4,204,F,=0 (7-30)
(plastic loading/unloading rule)

C. Damage evolution law and damage surface

In a similar way to the arguments leading to plastic dissipative potential, one can
assume that there exists a surface F,=0, which separates the damaging domain from
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the undamaging domain. A damage criterion in the form of a quadratic homogeneous

function of the damage energy release rate Y was proposed by Cordebois & Sidoroff
1979 and Cordebois 1983:

FdZqu_Ba—B(ﬁ)ZO (7'31)

where the equivalent damage energy release rate Y, is defined by :

1/2
T
Y, = [EZ g 4 (7-32)

in which J is the damage characteristic tensor.

The determination of a suitable damage characteristic tensor J, which is simple

enough to be applied and still accurately describes the non-linear nature of damage
growth, is perhaps the most important aspect in the present formulation of
anisotropic damage evolution law. J should be a fourth order tensor as H . This has

been adopted by Hayakawa & Murakami 1998 (see tensor L equations (3-38) and

(3-39)). However, since Zhu’s model works in the principal co-ordinate system of
damage, J can be treated like a second order tensor J. The purpose of introducing a

damage characteristic tensor J (like the introduction of plastic characteristic tensor

H in the theory of plasticity) is to take into account the anisotropic nature of damage

growth. The damage characteristic tensor J proposed by Zhu is an extension of the
formulation due to Lu & Chow 1990; it is based on the damage energy equivalence

assumption.
J, NI, T,
I =2|f I Jsy NI 2T (7-33)
NI s 1/JZJ3 Iy

In the case of damage hardening materials, the equivalent damage energy release rate
Y., increases with the total damage growth and, hence, the anisotropic parameters
(J1, Jo, J3) in the above equation should also vary. Their evolution follows the same

principle as H tensor components except that plastic work is here replaced by

damage work. For the case of linear damage hardening and the choice of component
Y; as reference direction, J, and J3 are computed by relation (7-34) and J; = 1.

Y2
J;= L
' (D, /D, (Y =Yy )+ Y,
with i =2 or 3. Figure 7-2 recalls Y}, Y;, Y4, Yo, Dy, Dy significances.

(7-34)
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t1
Yq

Yot M Dy

\ A=)

D4 Dj

Figure 7-2 Equating damage work (from Zhu 1992).

As explained in section 7.4.4, the linear assumption of Y-D curves has strong effects
on the model properties. However, for simplicity in the numerical model
implementation and in the calibration method, this hypothesis is presently retained.

In the same way as the definition of plastic flow, the evolution law of anisotropic
damage is characterized below:

1 withY" = _LE (7-35)

(damage evolution rule)

L

(. . OF .
ﬂz_ld-agd:’ld
dB . dB ;
ey« Pl |
d,Bﬁ g’

(damage hardening rule)

{B= (7-36)

L

F,<0,4, 204,F, =0 (7-37)
(damage loading/unloading rule)

D. Final constitutive relations

The complete set of equations is available in Zhu 1992, Zhu & Cescotto 1995; here
the algebraic way to reach it and the final form of the result are presented. According
to the elastic constitutive relations and effective strain tensor definition (7-6):
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e -1 e

o= ‘€ (7-38)

16
B

Using the additive decomposition of strain rate into an elastic and plastic part as well
as the time derivative of the inverse of the damage effect tensor and the damage rate
equation (7-35), the objective rate form of equation (7-38) is obtained :

N

o=C:M":¢-CA,-D'A, (7-39)

* *® . . . v .
where C_ and D are explicitly defined in Zhu & Cescotto 1995 and, subscript

means objective rate. So, the objective rate of the stress tensor is easily computed as :

<

v —_ .
6=M":0-M":M:0o (7-40)

Concerning damage evolution, starting from the damage energy released rate ¥ in (7-
10d), its time derivative is computed :

Y=Jé+H A,+T 4, (7-41)

where J*, _H* and _Y_’* are second order tensors explicitly defined in Zhu & Cescotto

1995. The final set of equations is composed by equations (7-28, 7-29, 7-30, 7-35, 7-
36, 7-37, 7-40, 7-41). ‘

7.3. Computational algorithms for anisotropic damage
model

7.3.1. Local axis computation

As the anisotropic yield locus and the damage locus are defined according to material
principal axes, some local reference system must follow these material axes during
the large strains and rotations of the sheet. Real material axes attached to a deforming
body are subjected to distortion, while local axes remain cartesian. So, there is no
unique definition of a local frame, however the various possible choices differ only
through a spurious rigid body rotation. In Lagamine code, the method implemented
to follow material axes is due to Munhoven and details can be found in Munhoven
1995 or Munhoven ez al. 1995. As it is an important point for the present anisotropic
damage law, but also for the anisotropic laws related to texture analysis described in
Part B of this thesis, this approach is summarized here. Working in hypo-elastic
formulation, constitutive equations are not required for a plastic spin. This choice of
hypo-elastic formulation has different advantages and remains physically sound as
long as the elastic strains are small. A discussion on this choice can be found in
Hoferlin 2001. In Hoferlin 1999, this scientist also links the method proposed by
Munhoven to the one presented by Ponthot 1995.
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Let x= x(x0,t) be the mapping at time 7 of the solid initial configuration y%= }fp) onto the

current one )t) in the global frame. The Jacobian matrix also called the global
deformation gradient is:

DX
T 0x,

(742)

while the global velocity gradient with respect to the current configuration yis defined
as:

L=-==FF"

Q)|cv
ERIET

(7-43)-
The symmetric and skew-symmetric parts of L are D, the rate of deformation tensor,

and £, the spin tensor. The index ¢ (for cinematic) aims to differentiate the D° tensor
from the second order damage tensor D:

D =S(L+L) 2=
: 2 (7-44)

QC':DCT Q-_-_QT -L:QC'*'_Q
(7-45)
In the step by step procedure adopted in the nonlinear finite element LAGAMINE code,
a strain path has to be chosen between 2 consecutive configurations, y74) and Y1z ) with

tg=t4+At, in order to integrate the constitutive equations. Different assumptions are
possible in this context:

e velocity gradient based on constant velocities and with respect to the initial
configuration Y14);

e velocity gradient based on constant velocities and with respect to the final
configuration ),

e velocity gradient based on constant velocities and with respect to substepped
configuration; '

e constant velocity gradients.

This last possibility seems to be the most interesting assumption. As demonstrated by
Cescotto 1992, this path is incrementally objective which explains its accuracy for
steps including large rotations. First developed in two dimensions by Godinas &
Cescotto 1984, this approach has been extended to three dimensions by Charles &
Habraken 1998. Without computational details, this constant velocity gradient is
reached by the following approach. The matrix system of differential equations is:

L=FF'=C" (t,<t<ty)
(7-46)

which yields the following solution, with (¢, <7 <f, ):
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F(t)=exp(L(t—t,)F,

(7-47)
1
L=—In(F )
At (7-48)
Knowing that:
0 0x
F,=F(t,)==—2 =F(t, )=—%
E, (A)ao Fp=F(ty) 'y
F=F,F}
(7-49a, b, ¢)

The global incremental deformation gradient tensor Fyp is in general non-symmetric. In
fact, Munhoven’s idea is to require that the velocity gradient expressed in the local
frame and called L is symmetric, thus spin free and constant. This implicitly fixes the
rotations of the local frame relative to the global axes. In what follows, quantities with
reference to the local frame are identified by a . The constraints are:

L=L"=D L =C° t,<t<t,
(7-50)
As L is symmetric, F 'AB is also symmetric and easily computed:
Fay=exp(L(t-1,))=E
(7-51)

In general, the following relation holds between the global and local deformation
gradient tensors:

o2 _0X03 9% _prpr o  F=FFR,
dx, 0x 0x, 90X, (7-52a, b)

If, initially, global and local axes coincide, Ro= 1 and the above equations simplify to:

F=RF and F =R'F
(7-53a, b)

So the local incremental deformation gradient tensor F AB is related to the global one

F 4 by:

(7-54)

(7-55)
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According to equation (7-54), it appears that R and F :43 form the right polar
decomposition of F ;B :
_Etus =Rpg _F_‘AB
(7-56)
As relation (7-55) is known from global frame definition and incremental step from #4 to
tg, relation (7-56) allows to reach Rp defining the position of local axis at time 5. In

practice, this local frame choice implies the following procedure during the stress
integration scheme:

- Rotate the initial stress tensor from global to local axis:

' T
c,=R,0,R,

(7-57)
- Compute the constant symmetric velocity gradient L’ and the final rotationR , :
1
L'=—In(EuR, ) (F R
L=>4 (EpRy) (EgRy)) 2:58)
R, =(E R, )exp(-L 4t)
' (7-59)

- Integrate the local constitutive equations:

it
s q4 th fq' (7-60)

where g are state variables (scalars, vectors or tensors) , f o and fq. represent the set of

constitutive relations defining ¢ and g.

- Rotate back the final stress tensor from local to global axes:

05 =Ry Q‘B Eg
(7-61)
This approach has the advantage of requiring only limited additional storage for the
rotation R. In moderate tension and shear tests with superimposed large rigid-body
rotations, this procedure performs quite well. Even if no explicit link with objective
Jaumann stress rate is done, &2 =0 involves 2 = RR" . In consequence, under very

large shear deformations, meaningless oscillating results are found (Szabo & Balla
1989).
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7.3.2 Time integration procedure

The return mapping algorithrhs with the operator splitting methodology proposed by
Simo and Ortiz (1985) is applied to Zhu’s anisotropic elasto-plastic damage model.
This results in a fully coupled integration scheme with a two-step procedure: elastic
predictor and coupled plastic-damage corrector. There exists two coupled surfaces,

and, for every iteration, the plastic surface and damage surface are both corrected.
The details can be found in Zhu & Cescotto 1995.

7.4. Identification method of Zhu's anisotropic elastoplastic
damage model

7.4.1. Description of the tests

As implemented in LAGAMINE code, Zhu’s model requires the following data:

e the effective stress strain curves o € in each tensile and shear direction (11, 22,
33, 23, 31, 12) in the material reference frame;

e the initial damage energy release rate Y; versus associated damage component
D; in each material principal direction 1, 2, 3;

o the initial material reference frame position (1,2,3) expressed according to

global axis (x,,z) used for finite element mesh as shown on Figure 7-3.

; 2 | Transversal
Yo direction

3|z Rolling
direction

Figure 7-3 Definition of reference axes.

Considering a sheet, where rolling direction is assumed to be direction 1, three different
sets of experiments are performed:

e Normalized tensile tests in directions 11, 22 and in direction x with o = 45°

(Figure 7-3 defines a angle) with accurate measurements in the field of small
strains allow to reach anisotropic elastic parameters.
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e Normalized tensile tests in direction x with different values of angle o and
accurate measurements in the field of large strains provide anisotropic plastic
parameters. As explained by section 7.4.4 the damage parameters can also be
deduced from these experiments and no specific damage tests are necessary if a
linear assumption of (¥; D;) curves is chosen.

e In order to validate damage evolution law, non classical tensile tests with
numerous loading and unloading cycles in directions 11 and 22 have been
performed with sample shape adapted to localize necking position.

The sample geometry used for elastic and plastic measurements is deduced from
European standard and adapted to the limits of available extensometers. It is presented
on Figure 7-4.

14,5

120

40 Zone A 24

96

- Figure 7-4 Description of the sample shape used for elastic and plastic measurements
(from Wauters 2000).

Tensile tests out of orthotropic material directions require some care as principal stress
and strain directions do not coincide (Boehler er al. 1987). If classical clamped
boundary conditions are imposed, the sample tends to take a “S shape”, characteristic of
anisotropic solids and the homogeneity of stress and strain fields is lost. Figure 7-5
describes the grip developed by Ph. D. student Wauters to prevent this “S-shape”. At
one extremity, it allows the grip to rotate relative to the press by means of a kneecap
piece, so the load will be well centered and applied longitudinally. At the other
extremity, the grip presents 2 ball bearings, which allow a cylinder bar connected to the
sample to rotate freely. Figure 7-6 defines A and B zones used in the FEM simulations
and identifies points D, C, E required to define boundary conditions.

Figures 7-7a and b show the transversal displacement distribution produced by
simulations of tensile test for an angle « of 45°. The material is the SPXI steel sheet
studied in section 7.5. The boundary conditions are either imposed axial displacement
of point C (see Figure 7-6), to model the grip described by Figure 7-5, or fixed
transversal displacement and imposed axial displacement of segment DCE, to model a
clamped test. Zone A is simulated by an elasto-plastic law and zone B by an elastic
material to take into account the effect of the plate screwed tight on the sample. One can
observe the “S shape” on Figure 7-7a computed with a clamped model, while the
kneecap model leads to a more symmetric distribution (see Figure 7-7b).
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Kneecaps
system

Press

§o
®

Ball - bearing

Figure 7-5 Description of the grip adapted to perform tensile tests out of material axes,

(from Wauters 2000).

Zone A

Figure 7-6. FEM model of the sample (from Wauters 2000).
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* 1.000E-04

a) clamped model,

* 1.000E-04

b) kneecap grip model

Figure 7-7 Simulations of tensile test with o= 45°, transversal displacement distribution
for an imposed axial displacement of 2mm,SPXT steel sheet (from Wauters 2000).

To determine the elastic parameters, the measurement device is a bi-directional MTS
extensometer leading to longitudinal and lateral displacement measurements. The

reference bases are respectively 25 and 24 mm. The thickness variation is measured by
a thickness extensometer (Sadner).

For plastic parameters, the large strains domain prevents the use of the above bi-
directional extensometer. The longitudinal extensometer of the press, with a reference
basis of 50 mm, is used as well as a transversal extensometer, with a 24 mm reference
basis. The same thickness extensometer as for elastic parameters is applied. The results
are more accurate since the displacements are larger.

For the damage tests, cyclic loading-unloading tests are performed in order to measure
the evolution of elastic moduli. Two sample geometries were deduced using an
optimization shape process based on FEM simulations (Wauters 1999). A reduced
section leads to localize the damage event, where measurements are performed.
Computed with the damage-elasto-plastic model, the FEM simulations verify the
homogeneity of stress, strain, and damage fields, which depends on the sample
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geometry. As large strains are targeted, the same extensometer could not accurately
cover all the tests. So sample 1 (Figure 7-8) is fitted for strain from 0 to 20 % with an
extensometer of reference basis of 25 mm. Sample 2 (Figure 7-9) covers the near
rupture zone; small extensometers with reference bases of 10 mm are used until 20%
strain, then strain gages are pasted on the sample and used until rupture. These samples

will also provide the material required for texture measurements after 5, 10, 20 and 30%
of deformation

.40 40 |
Q | ; k — 10
O 28 |24 C).
o7 A 10

Figure 7-8 Sample geometry used for damage measures for strains less than 20% (from

Wauters 2000).
| 40 40 i '
o | — 0
O |k = O]
O 1 .’ S O

Figure 7-9 Sample geometry used for damage measure for strains greater than 20%
(from Wauters 2000).

All the tensile tests have been performed on a 60 T Schenk press piloted by
displacement and, for statistical reasons, repeated 5 times. The detailed procedure to
deduce model parameters from these tests is described hereafter.

7.4.2. Identification of the initial anisotropic elastic properties

Tensile tests in direction x with @ = 0, 45 and 90° are performed with accurate
measurements of longitudinal &, transversal & and thickness & strains. Figure 7-3
defines local axes during tensile experiment (x,y,z) and material reference frame (1, 2,
3). Recalling classical rotation equations, local stress and strain components (O Oy Oxy
&, &, &) are directly related to stress and strain components in material axes (07;, Oz,
O12, E11, €2, &3).
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&, cos* & sin® o —2cosasina |[ &,
E, =] sina cos> a 2cosasina R &
&, cosasina —cosasina cos* a—sin’ @ ||Exy (7-62)

where & can be replaced by oor &

Equation (7-18), written in material reference axes, describes the stress-strain relation in
the elastic field. When damage has not yet occurred (D, D3, D3 = 0), one finds:

-for tensile test @ =0°:

o, —-Ee -Ege,
E =— Vip = —2 13- —
€y o, 0, (7-63)
-for tensile test & =90°:
o, -E.e -E,¢g,
E,= Vo = — 5=
€p o, O, (7-64)
-for tensile test @ =45°:
% _, %= _Euté,
11 12
E, E, 2
0.22 o-ll 8“ + 8)’}’
Ep = “Va =
E, E, 2
€ O _Ex Cw (7-65)
?2G, 2 2
O-XX
0,=0,p=0=
which yields to:
1 _4e, 1-v, 1-v,
G, o0, E, E, (7-66)

With such an identification procedure E3; G»; and Gz are still missing and the
following assumptions have been done:
G, =Gy = Gy

_ E +E, (7-67)
2

3

In the present research, a collaboration with professor van Houtte from Katholieke
Universiteit Leuven provides elastic parameters deduced from texture measurements
and physical crystal metallurgy for the two studied steel sheets. These values (see
Table 7-3) help to choose the final elastic moduli. The nine independent coefficients
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defining the elasticity of an orthotropic material are reduced to three (Gallerneau 95)

in case of cubic anisotropy (additional symmetry of order 3 along the diagonal of the
cube). For such a material, relation (7-67a) has a physical meaning. So, the

assumption of a unique shear modulus is an extension of a cubic crystal property to
textured polycrystal cubic material.

7.4.3. Identification of a classical Hill’'s matrix for plastic behavior

As described in section 7.4.5, this intermediate step is necessary in order to reach the
required effective (o €), curves. So forgetting the frame of damage approach, the

classical Hill’s parameters must be adjusted from tensile experiments. The method
proposed by Noat et al. 1995 has been chosen. The computed plastic parameters take
into account both stress and strain measurements in a nice weighted way. However, this

method was modified according to the plastic work equivalence assumption in each
direction.

The classical Hill’'s model can be retrieved from (7-22, 7-23, 7-24) equations where no
damage is assumed. This leads to the following expression:

F(6,-04) +G(0,, ~0, ) +H(0,, -0, )" +2No}, +2Loy; + 2Mc? =20}

(7-68)

Using axes transformation relation (7-62) and Hill’s formula (7-68), the plastic stress
for a tensile test in the @ direction can be expressed by:

20,
(H+G)+(F -G )sin*(a)+(2N —-2H -G )sin*(a )cos*(a)

or(a)=

(7-69)
Lankford’s coefficient can be expressed by means of the normality rule applied to Hill’s
criterion. This gives the final result:
H-(F+G+4H -2N )sin*(a)cos*(a)

(@)= Fsin’(t)+Geos’(a)

(7-70)
In relations (7-69) and (7-70), H index means: value deduced from Hill’s plasticity, and
in the following functional ¢, exp index identifies values deduced from experiments:

2
p= 2(1_77'{0'51(07,")_0'@(“;)} +77[r,,(0!,-)—re,q,(05,- )]2

i=1,j Or,,

(7-71)
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where j gives the total number of different directions ¢; explored by experiments, 77 isa

weighting factor defining the weight of stress and strain measurements and Of ey 1S the
stress measurement average.

L1

The set of parameters F, G, H, N is determined by minimizing the functional ¢ by a
classical least square method for k different material states. Each material state k is
characterized by its internal variable (p)r and by its plastic work ( WP )y, estimated from
the reference stress-strain curve. The experimental stress O, i 0;) in each direction o4
giving the same plastic work ( WP)i is selected and introduced in relation (7-71). Such a
procedure leads to one set of (F G H N), parameters for each studied plastic work (WP ).
From the general Hill’s formula (7-68) and the knowledge of plastic work level, the
required multi-linear stress-strain curves (07 €11 ), (022 &2), (033 €3), (012 €12) can be
produced. As no information on (073 &3) and (023, &3) curves are available, they are
assumed to be equal to (0y2 &3) curve or, equivalently, N=L=M can be used. As the
physical reality of the material concerns stress and strain, 7 is chosen equal to 0,5,
which means an equal weight for stress and strain prediction.

7.4.4. Identification of the damage model

stress-strain curve for alpha = 0° (SPXI 250 steel)
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. -—qr‘"‘"— m-l ’-W
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0 5 10 15 20 25 30 35
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Figure 7-10 Loading-unloading cycles, tensile test in Rolling Direction, SPXIT steel
sheet (from Wauters 2000).

The required curves are the “damage energy release rate-damage” ones : Y; D;. From
equation (7-10d) applied on a tensile test in direction Z, one gets:

o?

Ey(1-D;) (7-72)
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By means of loading-unloading cycles (Figure 7-10), the evolution of the effective
Young’s modulus E;( €, ) is measured. This curve, associated with equation (7-18),

give$ the damage component evolution D,( €; ):

D(g;)=1- M
d E, (7-73)

where Ey; is the initial value of the Young’s modulus. This evolution is clear in Figure
7-11.

Evolution of the Young modulus E1 according to the
plastic strain - test for alpha = 0° (SPXI 250 steel)
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0 5 10 15 20 - 25
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Figure 7-11 Decrease of Young’s modulus measured by 2 sets of experiments, SPXI
steel sheet (from Wauters 2000).

Evolution of the damage energy release rate Y1
according to the damage D1 - test for alpha = 0°
(SPXI 250 steel)
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Figure 7-12 Linear description of the “damage energy release rate curve-damage”
Y(N/mm?) -D for SPXI steel (from Wauters 2000).
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As o0,(€, ) is known by measurement and D,( €, ) is defined by equation (7-73),
using equation (7-72), it is easily possible to produce points of Y; D; curves for i equal 1

and 2. The experimental results shown in Figure 7-12 allow adjusting a simple linear
model as proposed by Zhu 1992.

Concerning the thickness direction, such a direct approach cannot be applied because it
is not possible to perform cyclic tensile test in this direction. However, the Yp; value
can be directly deduced from equation (7-72), where D; is assumed to be equal 0 until
plasticity entrance. For Dy value, a direct algebraic transformation of equation (7-18)
and the thickness measurement during the performed tensile tests give:
Dy(&, ) =1+—24
(1-D( ¢, )E €5,

(7-74)
Knowing the damage work associated to £; and assuming damage work equivalence in

each direction, Dy can be obtained. As accuracy of thickness measurements is poor, Dy
is really difficult to reach by this way.

In fact, the final approach to define Y; D; curves is not the one described here above.
The simplicity of the assumption of linear behavior reduces the free parameters to two
per curve: Yy and Dy. The first one is imposed by the hypothesis that damage begins at
plasticity entrance. In consequence, Yy; is directly given in uniaxial state by relation (7-
72) with D;=0 and o = 0 ;. The second parameter Dy is fixed by the knowledge of

o, maximal stress in direction i in case of uniaxial state. Replacing Y; by its linear

expression (Dy D; + Yp;) in relation (7-72) yields a non linear equation o,( D, ). For
instance in direction I:
2
—”&"_3' =D,D, +¥,
E01(1"D1 ) (7-75)
The maximum of this non linear relation must coincide witho,,,,, s0 Dy 18 computed
by the following relation:

o-lmax = 27E013 (Dtl +Y‘10 )2
\/ 256D> (7-76)

As the 3 values o, can be deduced from Hill’s yield locus determined on section

7.4.3, the damage parameters do not require any additional specific tests. This is of
course very convenient but strongly limits the damage evolution that this model can
reproduce. Consequently, the above described damage test provides the first validation

of the model. Figure 7-12 compares experimental points to the linear behavior of (Y-D)
curve.
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7.45 Computation of effective stress-strain curves

The previous experiments, analytical analysis and hypothesis give: )

-(c,€,;) multi-linear curves fori = 11, 22, 33, 13, 32, 12 (see sections 7.4.2 and 7.4.3) ;
-Y; D; linear curves fori =11, 22, 33 (see section 7.4.4).

Using relation (7-75) describing a uniaxial test in one direction allows computing
damage evolution. Then( 0 ; £ ) curves are easily obtained for directions 11, 22, 33 by

means of relations (7-2) and (7-3). For shear curves 23, 31, 12, analytical work provides
damage evolution. Relation (7-10d) gives, in case of pure shear in 12 direction:

2 2
0-12 0-12

' 2GY(1-D, F(1-D,) * 7 2G%(1-D, )(1-D, )?

7-77)

Then, the equivalent damage energy release rate Ye, is computed by relation (7-32):

qu :Yl +'\/—j;Y2

(7-78)
where J, is defined by (7-34).
The damage surface (7-31) imposes a first constraint:
qu (DD, +Y, )=0 (779

and the second relation required to solve D; D; is the equivalence of damage work
(Figure 7-2):

D(Y,+Y,) _Dy(Y,+Yy)
2 2 (7-80)

Y, =D,D,+Y, and Y,=D,D,+Y, 781
The resolution of the system (7-79; 7-80), with the additional assumption of increasing
damage, provides the damage evolution D; D; in pure shear state. This approach is
repeated for each shear direction and the effective shear curves (c;€5) are easily
obtained for directions 23, 31, 12 using relations (7-2) and (7-3).

7.5 Model identification for two different steel sheets

The above procedure has been applied on a classical deep drawing steel sheet (IF ULC
Ti) and a “high-tensile” steel sheet (SPXI), both 0,8 mm thick. Microscopic
investigations about these two materials are not discussed here. They are part of
Wauters’ Ph. D. thesis, which is still in progress. Table 7-3 gives the final set of elastic
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parameters (called “experiment”) issued from the various experiments described in
section 7.4. A comparison is proposed with the values (called “texture”) computed by
professor van Houtte’s team from texture measurements of non deformed samples.
Repeating the computation of elastic parameters from texture measurements performed
on deformed samples, it has been verified that, for these two steels and for tensile tests
performed in rolling and transversal direction, texture evolution does not modify these
computed “texture” elastic values (see Figure 7-13). One can conclude that damage is
responsible for Young’s modulus decrease observed for instance on Figure 7-11.

SPXI steel

E; Ey E; G2 Gis Gy
Texture 205834 204256 196748 80385 85220 86231
Experiment | 203407 209274 206341 77268 77268 77268
Gap (%) 1.19 2.4 4.65 4.03 10.29 11.6

V12 Va1 Vi3 V31 V23 V32
Texture 0.2748 0.2727 0.3135 0.2995 0.3188 0.3070
Experiment | 0.2884 0.2967 0.3135 0.3180 0.3188 0.3143
Gap(%) 4.7 8.09 0.00 5.81 0.00 2.33

IF ULC Ti steel

E, Ep E; G Gi3 Gn
Texture 207954 206048 201789 80796 80796 80796
Experiment | 204129 185016 194573 82993 82993 82993
Gap (%) 1.87 11.37 371 2.65 0.57 2.01

Viz Va1 Vi3 V31 V23 V32
Texture 0.2813 0.2787 0.3028 0.2937 0.3092 0.3027
Experiment | 0.3371 0.3055 0.3028 0.2884 0.3092 0.3251
Gap(%) 16.55 8.78 0.00 1.77 0.00 6.90

Table 7.3 Elastic material parameters, Young’s moduli in N/mm” (from Wauters 2000).

Evolution of E4 according to the plastic strain ( SPXI 250 steel )
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Figure 7-13 Young’s modulus of SPXI steel from loading-unloading cyclic tensile
tests or deduced from texture measurements (from Wauters 2000).
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Evolution of E4 according to the plastic strain ( ULC Ti steel )
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Figure 7-14 Young’s modulus evolution during tensile test in Rolling Direction, IF
ULC Ti steel (from Wauters 2000).

The decrease of Young’s modulus at plasticity entrance and with damage has already
been discussed in Chapter 3, section 3.2.1. Such results have also been presented in
Chapter 6, section 6.2.7 for an aluminum alloy.

The identification of Hill’s parameters has been performed by means of tensile tests
in large strains in seven directions (& = 0, 15, 30, 45, 60, 75, 90) and with the
weighting coefficient 77 equal to 0,5. The four resulting stress strain-curves in 1, 2, 3
directions and in 12 shear state are given in Wauters’ 2000 DEA thesis for both steel
sheets. The shear behaviors in 23, 13 directions are assumed identical to 12 direction.

SPXI steel
Yio Y20 Y30 DT, DT, DT;
0.3055 0.2989 0.2914 10.802 10.885 12.265
IF ULC Ti steel
Yo Yo Y30 DT, DT, DT;
0.0623 0.0649 0.0647 7.96 8.33 15.769
Table 7.4 Linear data describing “damage energy release rate-damage” curves (from
Wauters 2000).

The results of damage identification are summarized in Table 7.4. Figure 7-14 shows
Young’s modulus evolution for the IF ULC TI steel. The decrease of Young's
modulus for this IF steel is not as clear as the one of SPXI steel but still exists.
Figure 7-15 presents the result of damage computation during a simulated tensile test
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and the value computed using relation (7-18) and experimental observations. The
latter value is directly computed with the initial Young’s modulus and not with

Young’s modulus after plasticity. The possible choices have already been discussed
in section 6.2.7.

Evolution of D; according to the plastic strain (SPXI 250 steel)
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el %

~ Figure 7-15 Simulated and measured damage component 1, during a tensile test,
SPXI steel (from Wauters 2000).

With these final sets of parameters, a uniaxial tensile test in Rolling direction is
simulated for each studied steel. Figure 7-16 and 7-17 compare experimental and
simulated true stress-strain curves and present effective stress-strain curves.
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Figure 7-16 Stress-strain curves for a uniaxial tensile test, SPXI steel (from Wauters
et al. 2000).

Part C Habraken 2001- Page 7.29.



Study of steel sheets

700 g
600
)
’ 500 - . ¢
& ®
E 400 - o ° a Experience
Z ° e Effective curve
= 300 — Model
=
«
200 -
100 A
0 T T T "
0 10 20 30 40
epsll (%)

Figure 7-17 Stress-strain curves for a uniaxial tensile test, IF ULC TI steel (figure
provided by Wauters, not yet published).

The model accurately reproduces the experimental tests.

7.6. Yield locus

Figure 7-18 shows the evolution of the global yield locus shape and size due to the
damage and plastic processes during a tensile test in Rolling Direction. The
assumption of energy equivalence in each direction to define hardening behavior
induces a slight shape modification superposed with a strong increase of the yield
locus size. If one looks at the “yield locus without damage”, the perfect symmetry
around the diagonal line present in the “initial yield locus” has been lost. When the
coupled elasto-plastic-damage model is used, one can observe an additional change
of shape as well as a decrease of the yield locus due to damage.

section of yield surfaces in the sig1-sig2 domain (SPXI 250 steel)
Influence of the damage (epseq = 10%)
25

1 A e
> 05 : f—| e
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¥ oo z’A |==yield locus with damage
% / i w=eyield locus without damage
05 // g /i
i \ . /| 7
15 £
h g
2
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25 2 15 -1 05 0 05 1 15 2 25
slgi/sigly

Figure 7-18 Initial and predicted yield loci of SPXI steel (from Wauters et al. 2000).
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7.7 Validation

7.7.1 FLD prediction

The Forming Limit Diagram and Marciniak-Kuczynski’s approach have already

been presented in Chapter 4. The first validation is the prediction of FLD diagram
with the developed model.

As shown on Figure 7-19, the application of the model with the parameters defined
on section 7.5 is quite far from the reality. A modification (Figure 7-20) of the slope
of ¥, — D, curve provides a better correlation. This fact demonstrates how difficult it
is to define this slope. The best solution should result from the inverse analysis of a
set of experiments. The linear choice for ¥, — D, curve is perhaps very simple but too
poor to give accurate predictions.

FLD for the SPXI 250 steel

89 —x a
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RN ¥@éf"¢ P — Damage model
Ba \ &\\// ¢ ‘/"‘ ‘/"
02 A S - Damage model -
' SN adapted slope |
N/
. /
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Figure 7-19 FLD predictions and measurements for SPXIT steel (from Wauters et al.
2000).
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Evolution of the damage energy release rate Y1
according to the damage D1 - test for alpha = 0° .
(SPXI 250 steel)
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Figure 7-20 Damage energy release curves (Wauters et al. 2000).

7.7.2 Finite element simulations

Zhu’s thesis 1992 already presented experiments and simulations such as
hemispherical punch stretching or deep drawing by cylindrical and square punches,
where data were adjusted on literature. Biaxial Nakazyma's tests performed on the

studied steel sheets have been simulated. These tests can be described by the
following features:

initial rectangular blank 0.8 mm thick;

spherical punch with a radius of 80 mm;

Coulomb’s friction coefficient of 0,05;

blankholder shape and die shape are defined on Figure 7-21.

The simulations are computed with the LAGAMINE code. The volume finite
element discretization consists in one layer of 705 8-nodes mixed elements. The
tools are modeled by a spherical segment for the punch and two sets of 20 and 140
triangles respectively for the blankholder and die. The contact problem is treated by
1410 surface contact elements based on a penalty approach with a penalty coefficient
of 500 Mpa/mm3. The simulation is driven by the vertical punch displacement and is
stopped for a punch depth of 32 mm. By symmetry only one quarter of the
experiment is simulated. Figure 7-22 presents the equivalent strain at the punch
depth of 30 mm; the material dependence is clearly illustrated. The IF ULC Ti steel
shows a large distribution of the strain while the SPXI steel has a more localised
strained zone with higher strain level. The equivalent damage component is very
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interesting; again a different behavior can be verified for each steel (Figure 7-23).
The rupture localization predicted by the higher value of damage is in good
concordance with the experimental crack (Figure 7-24).

As underlined by experimenters, Marciniak’s tests are very sensitive to friction.
Some scientists doubt that the different material behaviors induce the crack
localization. As great care has been given to the material surface state and

lubrication, some confidence is given to this validation. However, it is clear that
additional validations would be welcome.

80

i A

le
o

D 121
Figure 7-21 Description of Nakazyma biaxial test (from Habraken 1999).
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SPXT steel

0.013

IF ULC Ti steel

Figure 7-22. Equivalent strain distribution for a punch depth of 30 mm (from Charles
et al. 1997).
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SPXI steel

0.004

IF ULC Ti steel

Figure 7-23 Equivalent damage distribution for a punch depth of 30 mm (from
Charles et al. 1997)
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Ti steel

Figure 7-24 Nakazyma’s tests, punch displacement 69 mm
(from Habraken 1999).
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7.8 Conclusion

To conclude, one can tell that the anisotropic model developed by Zhu 1992 has
been improved. Now, this constitutive law proposes multiple linear segments to
describe the hardening plastic curve. An experimental approach has been defined to
determine the material parameters. The simple choice of a linear description of the
damage energy release rate-damage curve has been proposed. It allows a quick
identification process of the anisotropic elasto-plastic-damage model, without
damage experiment. However, the performed damage experiments and the
validation simulations (section 7.7.1) show that this choice has a limited range of
applications. The slope curve is not easy to determine (section 7.4.4) and should
result from a compromise between tensile stress-strain curves and FLD prediction.
To increase the flexibility and accuracy of the model, one possibility is to use multi
linear curves for damage energy release rate—damage curve.

An interesting result of this study consists in the fact that both studied steel sheets
present Young’s modulus decrease, which cannot be attributed to texture evolution.
This damage effect, that is not well known, was interesting to verify.

Further experimental validations of the assumption of energy equivalence in each
direction are required. Simulation of deep drawing processes, where cracks occur,
should also be done to go on with the damage validation step. This work is still in
progress.
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8. CONCLUSIONS

An overview of damage models applied to ductile rupture has been proposed to the

reader, providing background for the macroscopic models developed in MSM and
described in Chapters 6 and 7.

Concerning rupture during sheet metal processes, Chapter 4 enhances the interest of
criteria, such as those developed by Hora-Brunet or Boudeau-Gelin. The advantage of
Thomason’s criterion, based on microscopic roots and coupled with macroscopic
results, has also been demonstrated. However, this latter criterion requires microscopic
data. So it can only be applied if mechanical and metallurgical teams work together to
study a material. The last investigated direction is rupture criteria based on energy
consideration, as in fracture mechanics. Damage models developed by MSM have not

yet been coupled with these criteria. This could be included in a possible extension of
this work.

The thesis is limited to rupture detection, and the implemented models do not apply to
the study of crack propagation as explained in chapter 5. Even for rupture detection,
some mesh dependency problems appear when damage elasto-plastic models are used
(see section 6.3). This problem also provides a development direction for further study.

This research on macroscopic models will go on. For instance, the validation of the
anisotropic damage-elasto-plastic model is clearly not achieved.

The purely macroscopic mechanical experimental approach has prevented the use of
interesting parameters such as the material characteristic length to define finite element
sizes or apply Thomason’s criterion. So for future research, collaborations with the
metallurgy service are foreseen to provide such information.

Microscopic aspects are very important and a micro-macro approach such as that of
Chaboche & Feyel 2001 seems very interesting from a scientific point of view. These
authors use, at each integration point of the FE macroscopic mesh, another finite
element mesh to study the material behavior on a microscopic scale with an
elastoviscoplastic and damage constitutive law. Such research provides basic
understanding of rupture and this will probably give new components to include in
macroscopic models. However, even if parallel computation opens new dreams,
macroscopic approaches (Gurson’s model or Lemaitre’s law) retain their interest. They
cover different types of loading and can provide a reliable prediction of rupture. They
are easily included into a forming process optimization where free parameters are tool
shape, sheet thickness and low value of damage parameters. To conclude, even if the
micro—macro link is important to investigate and can provide new trends to develop

new materials, the classical macroscopic approach still has a role to play in practical
industrial problems.
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Part D

CONCLUSIONS AND PERSPECTIVES

Two types Of material constitutive laws for finite element models have been
investigated: micro-macro approaches based on texture analysis and damage models. In

each case, the proposed literature review helps to understand the context of the models
developed by the MSM team.

In the texture field, this thesis summarizes in a first step the results of the MSM
collaboration with Professor van Houtte: the implementation of a 6™ order yield locus in
the stress space and the use of his Taylor’s software. In a second step, original proposals
are described. The hyperplane method was developed; however its stability and
convergence were not sufficient. Consequently, a second idea, in which more attention
is given to continuity requirements, has been proposed. It consists in a new interpolation
method, rather than an additional yield locus function. This interpolation approach can
be considered as an extension to the five dimensional deviatoric stress space of the
concept of isoparametric finite elements. The interest of this yield locus local
description is linked to the goal of following texture evolution during FE computation.
It is clear that if this evolution can be neglected, an accurate global yield locus function
requires less CPU time. Validation of this method as well as optimization of its

parameters to provide low CPU time is currently in progress with Laurent Duchéne’s
Ph. D. thesis.

In the damage field, the summarized research is characterized by the fact that new
models are not only proposed but also applied to a large set of different loading states.
Their numerical implementation, the identification of their parameters as well as their
validation have been conducted. The damage extension of Bodner’s elasto-visco-plastic
law is able to localize a rupture event with simple damage criteria such as the threshold
value of the damage parameter in a limited range of triaxiality value. The limits of an
isotropic damage elasto-plastic model applied to the same experimental set as above
Bodner's model have been demonstrated. Improvements of the anisotropic elasto-
plastic model proposed by Zhu have been implemented. A method to identify these
model parameters has been proposed; a simple choice can even ignore damage
measurements. New skills have been developed in the MSM laboratory to provide
accurate Young’s modulus measurements and to perform tensile tests away from
material anisotropy axes. An optimization of the sample shape according to the
measurement devices has been performed. These results are available for next
experiments to identify the parameters of the anisotropic damage model applied to
sheet. For a classical deep drawing steel and a high tensile steel, the decrease of
Young’s modulus with plastic strain has been verified. The advantages and limitations
of macroscopic damage models are defined.

The important state-of-the-art study performed for this thesis allows using it as material
for third cycle courses and provides perspectives for further work. Some possible
extensions or new fields connected to this research are as follows:
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Development of parallel computation adapted to the MSM micro-macro model
based on texture analysis;

L4

Further investigation to find criteria telling when a texture updating is required,;

Implementation of a more sophisticated hardening rule in the MSM micro-
macro model based on texture analysis;

Development of experiments to identify this sophisticated hardening rule;
= Investigation of the variational multi-scale approach;

* Implementation of new criteria to detect damage;

Development of non-local or gradient formulation of damage elasto-plastic
laws;

Mesh adaptation: the idea is to study an industrial process with a macroscopic

damage model, then where possible rupture is detected, to remesh and provide a
finer analysis of microscopic event;

= Specific development of finite elements able to model crack propagation;

Robust inverse models to identify model parameters thanks to finite element
simulations of experiment.

At the beginning of the thesis, applications of both anisotropic models developed for
metal sheets (texture-based model described in Chapter 6, part B, and damage model

described in Chapter 7, part C) were planned on both studied steel sheets (high tensile
steel sheet or classical deep drawing steel sheet):

= FLD prediction;
= complete finite element simulations of biaxial Marciniak test.

However, as such results are not yet ready, they should be included in Duchéne’s thesis
(2001, 20027). Note that, for a very large set of steel grades, Cayssials’s approach
provides an efficient way to predict FLD. Thus, FLD prediction is no longer such an
important goal to save time and money, but rather becomes a validation step of a
constitutive law. If Marciniak’s approach is used, the result also depends on the size of

the imposed defect; thus the constitutive law is not the only factor defining the
reliability of the prediction.

A set of cup drawing experiments are available for the two steel grades studied; the
prediction of their accurate final shape and final texture will therefore provide an
additional validation of the developed constitutive laws.
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To summarize, parts B and C of this thesis describe Habraken’s scientific involvement
in two fields: micro-macro models and damage models. Appendices 1 and 2 give an
idea of the thermo-metallurgical-mechanical laws developed to simulate hot forming
processes and to study recrystallization phenomena. One model of contact between two
deformable bodies is proposed in the third appendix.
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