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I extend my gratitude to the Belgian government that finances the Inter-University
Attraction Poles research project P5/34 (Computational electromagnetics for elec-
trical power applications and interactions with information technology devices), in
the frame of which this work has been carried out.
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Motivation

Computational electromagnetics is a discipline that connects physics, mathematics,
computer science and various application fields. Its purpose is the modelling of
electromagnetic systems, i.e. transposing the physical phenomena, completely char-
acterised by Maxwell’s equations and the constitutive relations, into a matrix system
that will be solved by means of a computer.

Maxwell’s theory is valid over a broad range of frequencies and large length scales.
There is a continuous quest of modelling techniques that allow to handle accurately
increasingly complex structures. These techniques can be roughly classified in two
big families:

X Partial differential equation (PDE) methods, such as the finite difference (FD)
method or the finite element (FE) method, solve directly the partial differential
equations (PDEs) associated to the electromagnetic problem. The differential
form of Maxwell’s equations are local relations that must be satisfied by the
electromagnetic field at every point in space.

X Integral equation (IE) methods, such as the boundary element (BE) method
or the Method of Moments (MoM), solve for the sources of an electromagnetic
field rather than the field itself. The starting point is therefore to obtain a
source-field relationship in the form of an integro-differential operator working
on the source terms. The integral equation is then obtained by enforcing the
appropriate boundary conditions.

The main advantage of differential-equation based methods is their ability to
handle arbitrary, inhomogeneous, and nonlinear materials. This ability stems from

1
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the fact that every point in space needs to be discretised. The FE method, con-
trary to the FD method, uses inherently unstructured meshes what makes it very
attractive for solving PDEs on complex geometries [Jonhson, 1987]. Furthermore,
automatic mesh adaptation is relatively straightforward [Babuska & Rheinboldt,
1979]. PDE methods yield a sparse system matrix with O(N) nonzero elements
where N is the number of degrees of freedom of the discretised problem at hand.
Explicit mechanisms are required to truncate the computational domain when these
methods are used for the analysis of open-region problems. Indeed, the magnetic
and electric field cannot be neglected far away from the structure under study. Sev-
eral techniques have been proposed by different authors. The simplest one consists
in approximating the infinite domain by a sufficiently large closed domain. In low
frequency problems it is frequent to use spatial transformations to reduce an open
infinite region to a closed one [Brunotte et al., 1992]. The application of absorb-
ing boundary conditions (ABCs) [Chew, 1995] or a perfectly matched layer (PML)
[Berenger, 1994; Fang & Wu, 1995] is more common in scattering problems. Of
course, all these truncation strategies constitute a source of errors. A natural choice
to rigorously account for the space extending to infinity would be the coupling with
an IE method [Zienkiewicz et al., 1977].

IE-based techniques usually involve a smaller number of unknowns than PDE
solvers because only the surfaces (contours) of the considered bodies must be discre-
tised. Moreover, boundary conditions at infinity are implicitly accounted for by the
Green function and the surrounding space extending to infinity is thus taken into
account exactly. BE methods are very popular for the numerical solution of electro-
static or magnetostatic problems with linear, homogeneous media embedded in free
space. They are less suitable for nonlinear analysis and eddy current problems. To
handle nonlinear material, the BE method can be extended with a volume integral
equation or coupled with the FE method. Hybrid FE-BE models are particularly
suited for solving open electromagnetic field problems that comprise nonlinear me-
dia and movement [Forsman & Kettunen, 1997; Kurz et al., 1998; Fetzer et al.,
1999; Barmada et al., 2000; Rischmüller et al., 2000; Fetzer et al., 2000]. They are
extensively used for quasi-stationary and scattering problems [Yuan et al., 1990; Jin
et al., 1991; Volakis et al., 1997].

However, IE techniques have one significant disadvantage: the matrix of the
system of equations is fully populated. The associated memory requirement is at
least O(N2). Additionally, the computational labour may be excessive when solving
the matrix either by a direct method (e.g. LU decomposition) or by an iterative
technique (e.g. conjugate gradient techniques (CG) or Krylov subspace techniques).
The LU decomposition requires O(N3) operations and O(N2) memory storage. An
iterative method requires O(N2) operations per iteration, and in general the number
of iterations grows with the size of the problem. This significantly limits the size of
the problem to be handled.

This disadvantage can be overcome if the linear system of equations is solved
iteratively, e.g. by means of GMRES [Saad & Schultz, 1986], in conjunction with
a so-called fast method. Methods that perform a matrix-vector multiplication in
O(Np) operations, with p significantly lower than 2, are called fast methods. In
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the literature, three main methods are defined to be fast in this sense: the fast
multipole method (FMM) [Rokhlin, 1985; Greengard & Rokhlin, 1987b; Rokhlin,
1990; Engheta et al., 1992; Rokhlin, 1993], the wavelet-based method [Beylkin et al.,
1991; Alpert et al., 1993; Kim et al., 1996] and the impedance matrix location
method (IML)[Canning, 1990; Canning, 1993].

The FMM, whose study, development and enhancement constitute the aim of
this work, is the most popular one. Originally developed for the evaluation of
fields in particle systems [Greengard & Rokhlin, 1987a], the FMM method was
adapted to the solution of integral equations, both the Laplace equation [Rokhlin,
1985; Greengard & Rokhlin, 1987b; Greengard & Rokhlin, 1988] and the Helmholtz
equation [Rokhlin, 1990; Rokhlin, 1993]. Besides reducing the computational cost in
every iteration, the FMM brings about a less costly assembly of the system matrix.

The FMM has been successfully and extensively applied to BE models in both
high frequency [Song & Chew, 1995; Burkholder & Kwon, 1996] and low frequency
problems [Nabors et al., 1992; Buchau et al., 2000]. With regard to hybrid FE-BE
models, the FMM had been solely used in scattering applications [Lu & Jin, 1996;
Bindiganavale & Volakis, 1997; Eibert et al., 2000; Sheng & Yung, 2002].

Goal of this work

This work contributes to the modelling of electromagnetic phenomena in two-
dimensional and three-dimensional structures by hybrid FE-BE or pure BE tech-
niques accelerated by the FMM. The application of the FMM to problems from low
frequency (electrostatics, magnetostatics, magnetodynamics, ...) to high frequency
(scattering, radiation, ...) in 2D and 3D dimensions is aimed at. With this purpose,
an important part of the time devoted to the realisation of this work has been spent
on implementing and testing a complete software package. The following strategy
has been followed:

X Conceive an efficient data structure specially adapted to the application of
the FMM and easy to integrate into a general software environment: GetDP
[GetDP, 1997–2004]. GetDP (a General environment for the treatment of Dis-
crete Problems) was developed by P. Dular and C. Geuzaine in the Department
of Electrical Engineering and Computer Sciences of the University the Liège.

X Implement the geometrical tools (grouping strategy, group centres, neighbour
and far groups, ...) and mathematical tools (Green functions and their mul-
tipole expansions, incorporation in the iterative solver) required for applying
the FMM to the solution of an electromagnetic problem.

X Design a new truncation method for the multipole expansions that further
reduces the computational cost and memory requirements.

X Analyse hybrid FE-BE problems that may comprise eddy currents, saturation,
movement and deformations.
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Outline

The present text is organised into five chapters. In Chapter 1, the equations govern-
ing electromagnetic phenomena are shortly reminded. The continuous mathematical
structure is presented, i.e. the function spaces to which the unknown fields and po-
tentials belong. Some electromagnetic models are studied. The general framework
required for the discretisation procedure of fields and potentials is introduced as
well.

Chapter 2 deals with the establishment of continuous formulations. Two sets
of weak formulations are elaborated. Special attention is paid to the coupling with
integral methods.

The bases of integral equations are established in Chapter 3. The developments
herein focus on high frequency problems.

Chapter 4 describes the Fast Multipole Method (FMM) for both the Laplace
and Helmholtz Green equations. Some aspects relative to the problems involving
movement are considered. An adaptive truncation scheme for the Laplace Green
function is introduced. Particular attention is paid to its application in conjunction
with an iterative method, and to the computational cost and memory requirements.

Some test problems are presented in Chapters 5 and 6. Hybrid FE-BE and pure
BE formulations are considered. Though software tools have been implemented for
both low and high frequency problems, the original contributions mainly concern
low frequency problems. The test cases illustrate the possibilities of the developed
software tools and lead to their validation.

Finally, some conclusions are drawn. The efficiency of the FMM is discussed.
Some future research lines are pointed out.

Original contributions

This work mainly contributes to the application of the FMM to low frequency prob-
lems. Our efforts have been focused on the analysis of different hybrid FE-BE models
comprising eddy currents, nonlinearities and movement.

The FMM has been extensively used in scattering applications. Hence, our
contribution herein is reduced. The multipole expansions of the Helmholtz Green
functions, required for scattering problems, are presented in an original way. Some
scattering test cases have been studied in Chapter 6.

Hereafter, a list of contributions that we believe original is drawn up. References
to papers published in the frame of this thesis are also cited.

X An adaptive truncation scheme for the 2D Laplace Green function is elabo-
rated (see Section 4.3.1). This scheme significantly contributes to the com-
putation time savings achieved with the fast multipole method, particularly
when dealing with moderate sized problems. To the best of our belief, the
FMM is applied for the first time to a hybrid FE-BE eddy current problem in
[Sabariego et al., 2004a].
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X The FMM taking movement into account in 2D is considered. Updating the
acceleration data (aggregation, disaggregation and translation) for every new
position of the moving parts is proved to be simple and computationally cheap
(see Section 4.3.1.4). The resolution of a 2D electromechanical problem by
means of a hybrid FE-BE model accelerated with the FMM is elaborated in
[Sabariego et al., 2003]. The mechanical equation, the saturation (nonlinearity
of the material) and the voltage supply (electrical coupling) are taken into
account. The application of the FMM to problems comprising movement
does not seem to appear in the literature so far. The first accelerated hybrid
models involving nonlinearities are reported in [Balasubramanian & Shanker,
2002; Mayergoyz et al., 2003; Sabariego et al., 2003].

X An adaptive truncation scheme for the 3D Laplace Green function is devel-
oped (see Section 4.3.1). The application of the FMM to a 3D problem with
movement is treated in Section 4.3.2.4. An electrodynamic levitation device
is modelled in [Sabariego et al., 2004d]. Results are compared with measure-
ments. To the best of our knowledge, it is the first time that a 3D hybrid
problem comprising movement is solved by applying FMM. A passive and ac-
tive shielding problem is studied in [Sabariego et al., 2004c] by means of an
accelerated 3D finite element-boundary element model. Results are compared
with measurements and with results obtained with a 2D FE model.

X The FMM is further tested on a microelectromechanical (MEMS) device. A
pure BE electrostatic problem coupled to a FE elasticity problem is considered
in [Sabariego et al., 2004b]. The results are compared with those obtained by
some commercial software.

The presented truncation scheme could be straightforwardly extended to the
high frequency case.
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Chapter 1

Electromagnetic models

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Constitutive relations . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 11

1.2 Continuous mathematical structure . . . . . . . . . . . . 13

1.2.1 Helmholtz decomposition . . . . . . . . . . . . . . . . . . 13

1.2.2 Tonti diagram . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Harmonic state . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Steady-state problems . . . . . . . . . . . . . . . . . . . . 17

1.3.2.1 Electrostatics . . . . . . . . . . . . . . . . . . . . 17

1.3.2.2 Magnetostatics . . . . . . . . . . . . . . . . . . . 18

1.3.3 Magnetodynamics: eddy current theory . . . . . . . . . . 21

1.4 Discrete mathematical structure . . . . . . . . . . . . . . 22

1.4.1 Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 The Whitney elements . . . . . . . . . . . . . . . . . . . . 23

1.4.3 The Whitney complex . . . . . . . . . . . . . . . . . . . . 24

1.1 Introduction

The equations governing macroscopic electromagnetic phenomena are Maxwell’s
equations [Stratton, 1941; Harrington, 1961; Balanis, 1988]. They consist of a set
of coupled first-order partial differential equations interrelating the various compo-
nents of electric and magnetic fields. The set of four equations can be written in the

7
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three-dimensional Euclidean space R3 as 1

curl h− ∂td = j, (1.1)

curl e + ∂tb = 0, (1.2)

div b = 0, (1.3)

div d = q, (1.4)

where the four vectors h, e, b, d are called the magnetic field (A/m), the electric
field (V/m), the magnetic flux density (T) and the electric flux density (C/m2),
respectively. The electric charge density q and the current density j are the source
terms in these equations. Note that the current density j is due to different sources
(e.g. in conductors the current density is considered to be proportional to the electric
field σe; in generators the source current density j

s
can be considered as imposed).

These equations have been written employing the SI units, the system of electro-
magnetic units used in this thesis.

Maxwell’s brilliant contribution in 1865 [Maxwell, 1891] was the addition of
the displacement current ∂td in Ampère’s law (curl h = j). The presence of this
term means that a changing electric field causes a magnetic field. This necessary
modification is crucial for rapidly fluctuating fields. Without it there would be no
electromagnetic radiation. The generalised Ampère law (1.1) is thus consistent for
time-dependent fields. It constitutes together with Faraday’s law (1.2) the elec-
tromagnetic coupling equations. Electric and magnetic Gauss’ laws (1.4)–(1.3) are
called equations of conservation. Implicit in Maxwell’s equations is the equation of
conservation of electric charge, indeed, (1.1) and (1.4) imply

div j + ∂tq = 0. (1.5)

If j is given for any time, the charge q can be obtained by integrating (1.5) with
respect to time. Analogously, Gauss’ law (1.3) can be deduced from (1.2) if an initial
zero divergence of the magnetic induction is assumed.

If the average electromagnetic properties of a medium are described by a macro-
scopic magnetisation m and electric polarisation p, the magnetic flux density b and
the electric flux density d are given by

b = µ0(h + m), (1.6)

d = ε0e + p, (1.7)

which are the magnetic and electric constitutive laws, respectively. Further discus-
sion on more general constitutive relations is found in the following section.

Given q, j, m, p and proper initial values for e and h at the initial time instant
t = t0, the system (1.1)–(1.7) determines h, e, b, d for any other time instant
t [Bossavit, 1993].

1See page i for the definition of symbols.



1.1. INTRODUCTION 9

1.1.1 Constitutive relations

In vacuum and media where the presence of applied electromagnetic field causes
no reaction, we have m = 0 and p = 0. These systems are thus described by the
constants µ0 = 4π 10−7 H/m and ε0 = 1/(µ0c

2) F/m, where c is the speed of light in
vacuum.

In all other media, when field-matter interaction occurs, the system (1.1)–(1.4)
can be solved if d and h are known in terms e and b. These connections are known
as constitutive relations,

h = h(e, b) , (1.8)

d = d(e, b) , (1.9)

and for conducting media, there is the generalised Ohm law,

j = j(e, b) . (1.10)

The connections are not necessarily simple and may be nonlinear, may depend on
past history (hysteresis), etc. Explicit forms can be found by experimentation or
deduced from atomic considerations. In most materials, the polarisation p and the
magnetisation m suffice to summarise the response of the media. This approxi-
mation often permits to describe very accurately the macroscopic behaviour of the
considered systems [Jackson, 1998]. There is a tremendous diversity in the electric
and magnetic properties of the matter, especially in crystalline solids, with ferro-
electric and ferromagnetic materials having nonzero p or m in the absence of applied
fields, as well as more ordinary dielectric, diamagnetic and paramagnetic substances.
The discipline that deals with the study of all these properties is solid-state physics
[Kittel, 1996].

The first constitutive law (1.8) expresses an approximate relation between the
magnetisation m and the magnetic field h in magnetic materials [Jiles, 1991].

Paramagnetic and diamagnetic materials are characterised by a linear law

m = χmh , b = µh (1.11 a,b)

with µ = (1 + χm)µ0, where the magnetic susceptibility χm is positive or negative,
respectively. It can be a tensor in the case of anisotropic materials. For most bodies,
χm is too small to matter in numerical simulations (χm v 10−4 for Al or Cu).

Ferromagnetic metals (such as Fe, Co, Ni) and their alloys are the exception
with susceptibilities up to 105. They present a nonlinear and hysteretic behaviour.
In practice, the linear law b = µh is often accepted as valid if |b| < 1 T.

For permanent magnets [Lacroux, 1989], a convenient law is

m = χmh + hm , (1.12)

which considers a nonzero permanent magnetic field hm supported by the magnet
and independent of the local magnetic field h. However, this law is limited to the
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normal working conditions of magnets, which means that h and b have opposite
direction and are not too large. Introducing (1.12) in (1.6), we get

b = µ0(h + χmh + hm)

= µ0(1 + χm)h + µ0hm

= µ0µrh + µ0hm

= µh + µ0hm, (1.13)

where µ and µr = 1 + χm are the magnetic permeability and the relative magnetic
permeability of the material, respectively.

The second constitutive law (1.9) refers to polarisable materials (dielectrics),
where charges are too strongly bound to move from their initial position, but loose
enough to be pulled a little off their equilibrium when the material is embedded in
a macroscopic electric field. It states a simple relation between the polarisation and
the electric field

p = χee + p
e
. (1.14)

Again, the electric susceptibility χe can be a tensor to describe an anisotropic be-
haviour. A permanent polarisation p

e
is considered for materials exhibiting a per-

manent polarisation independent of the electric field, such as electrets. Introducing
(1.14) in (1.7), we get

d = ε0e + χee + p
e

= (ε0 + χe)e + p
e

= ε0εre + p
e

= εe + p
e
, (1.15)

where ε and εr = 1 + χe/ε0 are the electric permittivity and the relative electric
permittivity of the material, respectively.

The last constitutive law (1.10), known as Ohm’s law, is valid for conductors
and generators. In the former, the current density is considered to be proportional
to the electric field. In the latter, the source current density j

s
can be taken as

imposed and independent of the local electromagnetic field. It reads

j = σe + j
s
. (1.16)

The conductivity σ is always positive (or equal to zero for insulators), and can be
a tensor, in order to take an anisotropic behaviour into account. Note that this
relation is only valid for nonmoving conductors; for a conductor moving at speed v,
(1.16) becomes j = σ(e + v × b) + j

s
.

In case of simple hysteresis models or when the material characteristics are fre-
quency dependent, it is useful to introduce a Fourier transform with respect to the
frequency. Constitutive laws thus appear in the form of convolution products. These
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n̂
Γ

γ

Ω

Figure 1.1 Orientation of the closed contour γ

kinds of problems are linear but they have memory, i.e. the value of a field at a given
instant depends on the values of another field at that given instant and at precedent
instants.

When the dependences in the constitutive equations cannot be considered as
linear (e.g. in ferromagnetic materials), or when it is necessary to consider other
physical parameters influencing the physical characteristics (e.g. thermal and me-
chanical effects [Henrotte, 2000]), one should consider σ, ε and µ as functions of the
fields, which leads to the resolution of a nonlinear problem, with or without memory.

Memoryless linear materials are characterised by constant values of µ, ε and σ in
(1.13), (1.15) and (1.16), respectively. All the test cases studied and solved belong
to this class (see Chapters 5 and 6).

1.1.2 Boundary conditions

Maxwell’s equations (1.1)–(1.4) are differential equations that apply locally at each
point in space-time. By means of the Stokes and divergence theorems, they can be
cast in an integral form. Applying the Stokes theorem to the generalised Ampère
law (1.1) and Faraday’s law (1.2) we get the corresponding integral equations,∮

γ

h dγ =

∫
Γ

(
j + ∂td

)
· n̂ dΓ , (1.17)∮

γ

e dγ = −
∫

Γ

∂tb · n̂ dΓ , (1.18)

with γ a closed contour, Γ an open surface spanning γ and n̂ the unit normal on
Γ pointing in the direction given by the right-hand side rule from the sense of the
integration around the contour γ (see Figure 1.1).

Let Ω be a finite volume in the three-dimensional Euclidean space R3, Γ the
closed surface bounding it, and n̂ the outward unit normal (see Figure 1.1). Then
the divergence theorem applied to (1.3) and (1.4) yields∮

Γ

b · n̂ dΓ = 0 , (1.19)∮
Γ

d · n̂ dΓ =

∫
Ω

ρv dΩ , (1.20)
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n̂

Γ

σΩ1

Ω2

Figure 1.2 Schematic diagram of boundary surface between different media. The
boundary region is assumed to carry idealised surface charge and current densities
ρs and js

where ρv is the volume charge density. Equation (1.19) implies that there is no net
flux of b through a closed surface Γ. Equation (1.20) indicates that the flux of d
through the surface Γ equals the charge contained inside.

Electromagnetic fields present a discontinuous behaviour at some material in-
terfaces. They are therefore no differentiable. The integral equations (1.17)–(1.20)
can be used for deducing the so-called boundary or transmission conditions, i.e. a
relationship of normal and tangential components of the fields on either side of an
interface between different media.

Let us consider the boundary surface Γ between two continuous media Ω1 and
Ω2 represented in Figure 1.2. The unit normal n̂ on Γ points from Ω1 to Ω2. Surface
charge and current densities ρs and j

s
can exist on Γ. The transmission conditions

can be written as

n̂× (h2 − h1)|Γ = j
s
, (1.21)

n̂× (e2 − e1)|Γ = 0 , (1.22)

n̂ · (b2 − b1)|Γ = 0 , (1.23)

n̂ · (d2 − d1)|Γ = ρs , (1.24)

where the subscripts 1 and 2 refer to fields on the side of the boundary surface in Ω1

and Ω2, respectively. These expressions are simply obtained by application of the
integral forms of Maxwell’s equations to particular surfaces and volumes crossing
the interface Γ. Details on their deduction can be found in [Bossavit, 1998a].

Equation (1.21) implies that the tangential component of h is discontinuous by
an amount equal to the magnitude of the surface current density and whose direction
is parallel to j

s
× n̂. From (1.22), we can see that the tangential component of e

across an interface is continuous.

The relation between the normal components of b and d on either side of the
interface is expressed by (1.23) and (1.24). The normal component of b is continuous
and the discontinuity of the normal component of d at any point is equal to the
surface charge density at that point.

The boundary or transmission conditions (1.21)–(1.24) are useful for solving
Maxwell’s equations in different regions and then connecting the solutions to obtain
the fields throughout all space.
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Ω

Γh

Γe

Figure 1.3 Bounded open domain Ω in R3 with boundary Γ = Γh ∪ Γe

1.2 Continuous mathematical structure

We consider a bounded open domain Ω in R3 with boundary Γ (see Figure 1.3).

Maxwell’s equations (1.1)–(1.7) govern the spatial distribution of vector fields
(magnetic field h, electric field e , magnetic vector potential a, ...) or scalar fields
(electric scalar potential v, magnetic scalar potential ϕ, ...) in Ω. These fields can be
expressed in terms of differential forms, e.g. h and e are 1-forms; b and j are 2-forms.
This means that the circulations of h and e along paths are physically meaningful
and that the fluxes of b and j through surfaces are physically meaningful as well.
Moreover, three differential operators grad, curl and div appear in (1.1)–(1.7).

A mathematical structure that can welcome partial differential equations must be
defined. More specifically, we shall precisely characterise the domains of definition
of the differential operators, which are function spaces of vector and scalar fields
defined in Ω.

1.2.1 Helmholtz decomposition

The solutions of (1.1)–(1.4) belong to spaces of square integrable scalar and vector
fields L2(Ω) and L2(Ω) (see Appendix A).

The Helmholtz decomposition of L2(Ω) into five mutually orthogonal subspaces,
widely treated in the literature [Bossavit, 1988a; Kettunen et al., 1998], is crucial
to establishing and discretising the continuous formulations.

Figure 1.4 represents the algebraic-differential structure known as the de Rham
complex. The horizontal axes represent the spaces L2(Ω) and L2(Ω) on four levels
(0, 1, 2 and 3 for L2(Ω), L2(Ω), L2(Ω) and L2(Ω), respectively). Subdivisions of
these axes represent their subspaces. Note that the axis on level 2 is exactly the
inverted axis on level 1 (i.e. levels 1 and 2 correspond to the same space L2(Ω)). The
arrows between the levels represent the application of the corresponding operators
grad, curl and div (i.e. the ends of two arrows determining a subspace and its image).

The subspaces H1(Ω) and H2(Ω) depicted in Figure 1.4 are used in the construc-
tion of the continuous formulations and posterior discretisation. H1(Ω) includes the
elements with a null curl that are not gradients. It has a finite dimension that equals
the number of loops if there exist cutting surfaces [Bossavit, 1988a] in a bounded
open set Ω of R3, the boundary of which is denoted ∂Ω = Γ. H2(Ω) is the set of
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Figure 1.4 De Rham complex in three dimensions over Ω – domain, range and
kernel of operators grad, curl and div

elements with a zero divergence which are not curls. The dimension of H2(Ω) is also
finite and equals the number of cavities in Ω. These subspaces are defined as

H1(Ω) =
{
u ∈ L2(Ω) : curl u = 0, div u = 0, n · u

∣∣
Γ

= 0
}

, (1.25)

H2(Ω) =
{
u ∈ L2(Ω) : curl u = 0, div u = 0, n× u

∣∣
Γ

= 0
}
. (1.26)

The domains of the differential operators (grad, curl and div) are defined in a
restrictive way, i.e. they are defined as subspaces of L2(Ω) and L2(Ω) satisfying
appropriate boundary conditions [Bossavit, 1989]. The domain, range and kernel
of these differential operators (see Appendix A.1.2) in (1.1)–(1.4) are also depicted
in Figure 1.4.

1.2.2 Tonti diagram

Let Γh and Γe denote two complementary parts of the boundary Γ of Ω (see Fig-
ure 1.3), so that

Γ = Γh ∪ Γe and Γh ∩ Γe = ∅, (1.27)

where scalar fields uh or ue, or the trace of vector fields uh or ue, are imposed,
respectively.

The basic continuous structure is formed by two dual de Rham complexes (see
Appendix A.1.3), put into correspondence in the following Tonti diagram [Bossavit,
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1988b; Bossavit, 1989]:

H1
h(Ω) oo //

gradh

��

L2(Ω)
OO

dive

Hh(curl; Ω) oo //

curlh
��

He(div; Ω)
OO

curle

Hh(div; Ω) oo //

divh

��

He(curl; Ω)
OO

grade

L2(Ω) oo // H1
e (Ω)

(1.28)

Both complexes (1.28) will be referred to as either primal or dual depending on
the formulation we are dealing with (e.g. the complex on the left is the primal com-
plex for magnetic field conforming formulations, but the dual complex for magnetic
flux density conforming formulations).

The domains of the operators gradh, curlh and divh are given by

H1
h(Ω) = {u ∈ L2(Ω) : grad u ∈ L2(Ω), u|Γh

= uh}, (1.29)

Hh(curl; Ω) = {u ∈ L2(Ω) : curl u ∈ L2(Ω), n× u|Γh
= n× uh}, (1.30)

Hh(div; Ω) = {u ∈ L2(Ω) : div u ∈ L2(Ω), n · u|Γh
= n · uh}, (1.31)

and the domains of the operators grade, curle and dive by

H1
e (Ω) = {u ∈ L2(Ω) : grad u ∈ L2(Ω), u|Γe = ue}, (1.32)

He(curl; Ω) = {u ∈ L2(Ω) : curl u ∈ L2(Ω), n× u|Γe = n× ue}, (1.33)

He(div; Ω) = {u ∈ L2(Ω) : div u ∈ L2(Ω), n · u|Γe = n · ue}. (1.34)

By applying Green’s formulae (see Appendix A.3), it is easy to prove the adjoint
operators of gradh, curlh and divh are grad∗h = −dive, curl∗h = curle and divh =
−grade, respectively. Assuming homogeneous boundary conditions (i.e. for which
the traces uh, n× uh, n · uh, ue, n× ue or n · ue vanish on Γh and Γe, respectively) ,
these adjoint operators verify

(gradh u, v) = (u, grad∗h v) = (u,−dive v), ∀u ∈ D(gradh),∀v ∈ D(grad∗h) , (1.35)

(curlh u, v) = (u, curl∗h v) = (u, curle v), ∀u ∈ D(curlh),∀v ∈ D(curl∗h) , (1.36)

(divh u, v) = (u, div∗h v) = (u,−grade v), ∀u ∈ D(divh),∀v ∈ D(div∗h) . (1.37)

Assuming homogeneous boundary conditions, we obtain spaces parallel to the
domains of the differential operators defined above, that will serve as function spaces
for the test functions used in weak formulations. For the sake of conciseness, these
spaces are denoted by H1

h
0(Ω), H0

h(curl; Ω), H0
h(div; Ω), H1

e
0(Ω), H0

e (curl; Ω) and
H0

e (div; Ω).

Maxwell’s equations (1.1)–(1.4) together with the constitutive relations (1.13),
(1.15) and (1.16) fit naturally in (1.28). Indeed, vector fields like the magnetic field h
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or the electric field e, for which it is physically meaningful to compute the circulation
along a contour, belong to H(curl; Ω) and correspond to differential forms of degree
one (1-forms). Vector fields like the magnetic flux density b or the current density j,
for which it is physically meaningful to compute the flux across a surface, belong to
H(div; Ω) and correspond to differential forms of degree two (2-forms). Similarly,
scalar fields like the electric potential ϕ ∈ H1(Ω) or the electric charge density
q ∈ L2(Ω), which are evaluated locally or integrated over a volume, correspond
to differential forms of degree zero and three (0-forms and 3-forms). The function
spaces appropriate to the fields h, d, j, e and b are thus:

h ∈ Hh(curl; Ω), d, j ∈ Hh(div; Ω),

e ∈ He(curl; Ω), and b ∈ He(div; Ω).

They constitute the domains of definition of the differential operators that can be
applied to these fields. These domains of definition account for the boundary con-
ditions; the physical constraint of finite energy is satisfied as well.

Considering the fields h, d, j, e and b and their respective function spaces,
the equations, the constitutive relations and the boundary conditions can thus be
summarised in a Tonti diagram (1.28). The equations appear vertically on both sides
of the diagram, and can be considered to have a purely geometrical character. The
constitutive relations appear horizontally, and have no associated geometrical notion.
What concerns the boundary conditions, they are directly taken into account in the
domains of definitions of the differential operators. Note that the Tonti diagram
(1.28) can be generalised for time-varying problems by adding a third dimension.
The electrostatic, magnetostatic and magnetodynamic models will be considered in
the following section. These three applications fit naturally in (1.28).

At the discrete level and for a given formulation, it is not possible to satisfy
exactly both sides of the Tonti diagram and the constitutive relations. Formula-
tions which respect the left-hand side of the Tonti diagram are called magnetic field
conforming (h-conforming); formulations which respect the right-hand side of the
Tonti diagram are called magnetic flux density conforming (b-conforming). Both
types of formulations have advantages and disadvantages. The h-conforming formu-
lations allow to satisfy exactly Ampère’s law. Using the b-conforming formulations,
Faraday’s law will be exactly satisfied.

A multiplicity of partial differential equation models [Bossavit, 1989; Henrotte,
2000; Meys, 1999] can be expressed by structures like (1.28).

1.3 Models

Concrete electromagnetic problems in electromagnetism rarely require the solution
of the general Maxwell equations (1.1)–(1.7). Different simplifications are possible
and generate different models. Among them, it is worth mentioning the following:

X harmonic state,
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X steady-state problems (electrostatics, magnetostatics...),

X eddy currents theory (magnetodynamics).

1.3.1 Harmonic state

Maxwell’s equations can be solved in the frequency domain when the excitation is
sinusoidal in time and if all the constitutive laws are linear [Schelkunoff, 1964; Ramo
et al., 1984]. In that case, any solution field can also be described by a sinusoidal
variation as

f(x, t) = fm(x) cos(ωt + ϕ(x)), (1.38)

where ω = 2πf is the angular frequency of the excitation, and ϕ(x) is a phase angle
(in radians) which can be position dependent.

The complex formalism consists in defining this physical field as the real part of
a complex field, i.e.:

f(x, t) = <(fm(x)eı(ωt+ϕ(x))) = <(fp(x)eıωt), (1.39)

where ı =
√
−1 denotes the imaginary unit and fp(x) = fm(x)eıϕ(x) = fr(x)+ ıfı(x)

is called a phasor having real and imaginary parts fr(x) and fi(x).

If all physical fields are assumed to be phasors as in (1.39), Maxwell’s equations
(1.1)–(1.4) in frequency domain read

curl h− ıωd = j, (1.40)

curl e + ıωb = 0, (1.41)

div b = 0, (1.42)

div d = q. (1.43)

Note that through (1.39), the time derivative operator becomes a product by the
factor ıω.

1.3.2 Steady-state problems

The electromagnetic phenomena are considered as time-independent, i.e. ∂td = 0
and ∂tb = 0. Maxwell’s equations and the constitutive relations (1.1)–(1.7) can be
decoupled into two independent systems that model electrostatic and magnetostatic
phenomena, respectively.

1.3.2.1 Electrostatics

Electrostatics refers to the phenomena involving time-independent distributions of
charges and fields. In this case, ∂tb = 0, and thus curl e = 0. The set of Maxwell’s
equations (1.1)–(1.4) together with the electric constitutive law (1.7) are reduced to

curl e = 0 , div d = q , d = ε e. (1.44 a–c)
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From equation (1.44 a) it follows that e is the gradient of a scalar function v, the
electric scalar potential:

e = −grad v . (1.45)

Combining (1.45) and (1.44 b), a Poisson equation is obtained:

−div (ε grad v) = q . (1.46)

In charge-free regions, the electric scalar potential v satisfies the Laplace equation:

−div (grad v) = −∆v = 0 . (1.47)

Appropriate boundary conditions are required to ensure a physically meaningful
solution for the Poisson (or Laplace) equation. The Dirichlet boundary condition
consists in specifying the potential on a surface. The Neumann boundary condition
specifies the electric field (normal derivative of the potential) on the surface.

When ε = ε0 throughout space, the electric scalar potential v in terms of the
electric charge density q is given by

v(x) =
1

4πε0

∫
R3

q(y)

|x− y|
dy . (1.48)

The electrostatic model fits naturally in the Tonti diagram (1.28). The unknown
fields d ∈ Hh(div; Ω) and e ∈ He(curl; Ω) solutions of (1.44) together with the
constitutive law (1.15), and the electric scalar potential v ∈ H1

e (Ω), which verifies
(1.45), can be introduced in (1.28). The electrostatic Tonti diagram is given by

0OO

curle

d oo d = εe //

divh

��

eOO
grade

q v

(1.49)

Note that the electric scalar potential v is placed at a level lower than the field it
originates.

1.3.2.2 Magnetostatics

In a similar way, considering ∂td = 0 in Maxwell’s equations (1.1)–(1.4) and the
magnetic constitutive law (1.6), we have for the magnetostatic case

curl h = j, div b = 0 and b = µh . (1.50 a–c)

The current density j = j
s

is given in some regions and determines b and h in
the whole space. Permanent magnets can be considered as another source if the
magnetic constitutive relation b = µh is rewritten as in (1.13).
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Figure 1.5 Toroidal domain Ω, a multiply connected domain

Under certain conditions, the magnetic field h and the magnetic flux density
b can be expressed in terms of a magnetic scalar potential ϕ and a magnetic vec-
tor potential a, respectively. The use of these auxiliaries reduces considerably the
computational cost.

If a field hs is defined in Ω as

curl hs = j
s
, (1.51)

and if the associated field hr is defined such as h = hs + hr, then this field hr can
be derived from a magnetic scalar potential ϕ, i.e.

hr = −grad ϕ. (1.52)

The source magnetic field obeying (1.51) is not unique. Assuming µ = µ0 every-
where in Ω (all magnetic materials are removed from the domain), the one calculated
by Biot-Savart law [Jackson, 1998] at any point x of Ω,

hs(x) =
1

4π

∫
R3

j
s
(y)× (x− y)

|x− y|3
dy , (1.53)

verifies div hs = 0. This condition is an implicit gauge.

In this case, the field hr is due to the magnetisation of the magnetic materials
and is called the reaction field (and ϕ is called the reaction potential).

Note that on account of (1.52), the continuity of the tangential component of
the magnetic field is ensured if the scalar potential is continuous. Equation (1.52)
implies that the line integral of hr along a curve γ from points x to y equals the
difference between the scalar potentials at the extremes of the curve, i.e.∫

γ

hr dγ =

∫
γ

−grad ϕ dγ = ϕx − ϕy . (1.54)

When the curve is closed, x ≡ y, the circulation of hr vanishes (ϕx = ϕy). This is
the case of a torus crossed by a wire carrying a current (see Figure 1.5).

By reason of Ampère’s law (1.1), this circulation (1.54) cannot be zero. Equa-
tion (1.52) is only valid if a cut Σ, on which a discontinuity of potential is imposed,
can be defined [Dautray & Lions, 1988; Bossavit, 1988a].
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The zero divergence ensured by (1.53) is not mandatory. In fact, a whole family
of hs verifying (1.51) exists. The field hs with div hs = 0 is the only physical field
of those. It can be useful to choose other fields in this family and impose a gauge.
The so-called generalised source magnetic fields have no physical meaning. The
generalised magnetic field hs will be chosen equal to zero everywhere outside the
conductors, except in the vicinity of their associated cuts [Dular et al., 1997].

Taking into account (1.50 b), the magnetic flux density b can be derived from a
vector potential a such that

b = curl a. (1.55)

However this vector potential is not unique. In fact, if a′ = a + grad f then
curl a′ = curl a (where f is an arbitrary function). A gauge is necessary to en-
sure the uniqueness of a. A possible gauge is the Coulomb gauge [Biró & Preis,
1989]

div a = 0 , (1.56)

which implies the continuity of the normal component of the vector potential a.
Other gauges can be envisaged. Let us consider the condition

a · w = 0 , (1.57)

where w is a vector field with open field lines that can connect any pair of points in
the domain under study [Albanese & Rubinacci, 1990]. If a1 and a2 verify curl a1 =
curl a2 and then curl δa = curl (a1 − a2) = 0. Moreover, if a1 and a2 satisfy also
(1.57), then δa · w = 0, and it holds∫

γxy

δa dγ =

∫
γxy

grad f dγ = f(y)− f(x) = 0, ∀y, x ∈ Ω , (1.58)

where γxy is a path along the field lines of w. This shows that the function f is
constant and that δa = grad f = 0, i.e. a1 = a2. Condition (1.57) is thus a gauge
condition.

If µ = µ0 throughout space, the magnetic vector potential a can be expressed as

a(x) =
µ0

4π

∫
R3

j(y)

|x− y|
dy . (1.59)

The magnetostatic model fits naturally in the Tonti diagram (1.28). The un-
known fields h ∈ Hh(curl; Ω), j ∈ Hh(div; Ω) and b ∈ He(div; Ω), solutions of
(1.50) together with the constitutive law (1.13), and the potentials ϕ ∈ H1

h(Ω) and
a ∈ He(curl; Ω), which verify (1.52) and (1.55), respectively, can be introduced in
(1.28). The magnetostatic Tonti diagram is presented in (1.60). Note that the po-
tentials are placed at a level lower than the field they originate. The function spaces
H1

h(Ω), Hh(curl; Ω), Hh(div; Ω), He(curl; Ω) and He(div; Ω) have been defined in
Section 1.2.2 and contain the boundary conditions applicable to the fields on the
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complementary parts Γh and Γe of the domain Ω (see Figure 1.3).

ϕ

gradh
��

0OO

dive

h, hs
ooµh = b //

curlh
��

bOO
curle

j

divh

��

a

0

(1.60)

1.3.3 Magnetodynamics: eddy current theory

In this model, the displacement currents ∂td in (1.1) are negligible. This approxima-
tion is valid when the wavelength λ = c/f is much greater than the characteristic
size of Ω. Maxwell’s equations (1.1)–(1.4) can thus be particularised to

curl e = −∂tb, curl h = j, div b = 0 . (1.61 a–c)

The system is then completed with the constitutive relations (1.13) and (1.16) in
conducting regions Ωc, i.e.

b = µh , j = σe . (1.62 a,b)

Given initial and boundary conditions, the magnetic field h, the current density
j, the electric field e and the magnetic flux density b suffice to characterise an
electromagnetic state. However, potentials help to reduce the computational cost
associated with the resolution of the magnetodynamic formulations.

In nonconducting regions ΩC
c , the magnetic field h is decomposed (since j = 0

in ΩC
c ) as

h = hs + hr, with curl hs = j
s

and curl hr = 0 , (1.63)

and the reaction field hr can be derived from a magnetic scalar potential ϕ,

hr = −grad ϕ. (1.64)

Considering (1.61 c), analogously to the magnetostatic case, the magnetic flux den-
sity b can be derived from a magnetic vector potential a that verifies

b = curl a. (1.65)

Equation (1.2) implies that curl (e + ∂ta) = 0, which leads to the definition of an
electric scalar potential v such that

e = −∂ta− grad v. (1.66)

As in the magnetostatic case, a gauge condition has to be defined in order to ensure
the uniqueness of the vector potential. Again the gauges (1.56) and (1.57), defined
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in Section 1.3.2.2, are valid [Biró & Preis, 1989; Albanese & Rubinacci, 1990]. An
implicit gauge in Ωc is provided by setting the electric scalar potential v to zero in
the conducting regions. This leads to the generalisation of the so-called modified
magnetic vector potential formulation [Emson & Simkin, 1983; Kameari, 1990].

The magnetodynamic model can also be fitted in the Tonti diagram (1.28) pre-
sented in Section 1.2.2. The unknown fields h ∈ Hh(curl; Ω), j ∈ Hh(div; Ω),
b ∈ He(div; Ω) and e ∈ He(curl; Ω) (solutions of the system constituted by
(1.61) and the constitutive laws (1.13) and (1.16)) and the potentials ϕ ∈ H1

h(Ω),
a ∈ He(curl; Ω) and v ∈ H1

e (Ω) (verifying (1.64), (1.65) and (1.66), respectively)
can be introduced in (1.28). The function spaces H1

h(Ω), Hh(curl; Ω), H1
e (Ω),

He(curl; Ω) and He(div; Ω), defined in Section 1.2.2, contain the boundary con-
ditions applicable to the fields on the complementary boundaries Γh and Γe of Ω.

The magnetodynamic Tonti diagram (where the time derivative has been ab-
stracted) is then

ϕ

gradh
��

0OO

dive

h oo µh = b //

curlh
��

bOO
curle

j, d oo
j = σe

//

divh

��

e, aOO

grade

q v

(1.67)

1.4 Discrete mathematical structure

The aim of this section is to present the general framework required for the discreti-
sation of the formulations presented in Chapter 2. The discretisation process consists
in replacing the continuous spaces H1(Ω), H(curl; Ω), H(div; Ω) and L2(Ω) by some
discrete subspaces. The structure of the complexes in (1.28) should be preserved. A
finite element (FE) method is a discretisation method in which discrete subspaces
with piecewise elements are defined on discretised domains [Jonhson, 1987].

The theory of mixed finite elements (curl-conforming and div-conforming finite
elements) has been extensively covered in the literature, e.g. for computational elec-
tromagnetics [Mur & de Hoop, 1985; Webb & Forghani, 1993].

The introduction of the Whitney elements by Bossavit in 1988 [Bossavit, 1988b]
was a great step forward. Whitney elements are the finite element interpolating
functions that correspond to the discrete differential forms, the Whitney forms.
Whitney forms are a family of differential forms on a mesh (e.g. a mesh of tetrahedra)
defined in such a way that p-forms are determined by their integrals on p-simplices
(p = 0 for nodes, 1 for edges, etc.).

The sequence of Whitney elements was originally developed for tetrahedra
[Bossavit, 1998b]. A generalisation for hexahedral basis functions has been pre-
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sented in [Welij, 1985; Kameari, 1990; Dular et al., 1994] and for prismatic basis
functions in [Dular et al., 1994]. The accuracy of interpolation has been increased
by introducing high order hierarchical finite elements [Webb & Forghani, 1993; Ren
& Ida, 2000; Geuzaine et al., 1999a].

1.4.1 Conformity

We assume scalar basis functions or vector basis functions whose components are
polynomials. We can define four types of finite elements depending on their class:

X Conforming finite elements (in H1(Ω)) interpolate scalar fields that are con-
tinuous across any interface. These elements are referred to as nodal elements
because their degrees of freedom are (commonly) associated with the nodes
of the element. This type of elements may be used to discretise the magnetic
scalar potential ϕ or the electric scalar potential v.

X Curl-conforming finite elements (in H(curl; Ω)) ensure the continuity of the
tangential component of the field. These elements are referred to as edge el-
ements, since their degrees of freedom are associated with the edges of the
element. Curl-conforming finite elements may be used to discretise the mag-
netic field h, the magnetic vector potential a or the electric field e.

X Div-conforming finite elements (in H(div; Ω)) ensure the continuity of the
normal component of the interpolated field. These elements are often referred
to as face elements, since their degrees of freedom are associated with the
faces of the element. Div-conforming elements may be used to discretise the
magnetic flux density b, the current density j or the electric flux density d.

X Finite elements in L2(Ω) do not impose any continuity between elements on
the interpolated field. These elements are often called volume elements, since
their degrees of freedom are always associated with the volume of the element.
They may be used to discretise the electric charge density ρ.

1.4.2 The Whitney elements

We consider a mesh of Ω formed by geometrical elements, e.g. a tetrahedral mesh.
The sets of nodes, edges, faces and elements are denoted N , E , F , V , respectively.
A geometrical element is denoted G. A node is identified by n or its index i. Analo-
gously, an edge is denoted by e or the indexes of its two nodes i, j; a face is denoted
by f or the indexes of its nodes i, j, k (tetrahedral mesh).

Consider a node i and a point u ∈ G sharing node i. Let ςi(u) be the barycentric
weight of u with respect to node i in G. With the convention that ςi(u) = 0 in other
cases, we obtain a continuous piecewise linear function ςi.

The Whitney elements of order p are expressed as [Bossavit, 1988b]

wi0,··· ,ip = p!

p∑
j=0

(−1)jςijgrad ςi0 ×· · ·× grad ςij−1
× grad ςij+1

×· · ·× grad ςip . (1.68)
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Now, we can define Whitney elements of degree p = 0, 1, 2, 3 (nodal elements,
edge elements, face elements and volume elements, respectively) as

X Nodal elements are piecewise linear continuous elements. They are well suited
for the discretisation of scalar fields. From (1.68), the nodal element reads

wn(u) = ςi(u) . (1.69)

The value of wn is 1 at node n, 0 at the other nodes of G. The function wn is
continuous across faces.

X Edge elements can approximate 1-forms such as h and e. Their degrees of
freedom are the circulations of the field along the edges of the mesh. From
(1.68), the edge element is defined by the vector field

we = ςi grad ςj − ςj grad ςi . (1.70)

The circulation of we is 1 along edge e, 0 along the other edges of G. The
tangential component of we is continuous across faces.

X Face elements are well suited for discretising 2-forms such as b and j (normal
component continuous across medium interfaces). Their degrees of freedom
are the fluxes of the field through the faces of the mesh. From (1.68), the face
element is given by the vector field

wf = 2 (ςi grad ςj × grad ςk − ςj grad ςi × grad ςk + ςk grad ςi × grad ςj) . (1.71)

The flux of wf is 1 across face f , 0 across the other faces of G. The normal
component of wf is continuous across faces.

X Volume elements are piecewise constant functions. Their degree of freedom
is the integration over its volume. They are suitable for the discretisation of
densities like the electric charge density q. From (1.68), the volume element is

wv = 6 (ςi grad ςj × grad ςk × grad ςl − ςj grad ςi × grad ςk × grad ςl+

ςk grad ςi × grad ςj × grad ςl − ςl grad ςi × grad ςj × grad ςk) . (1.72)

The sum of wv is 1 over the volumen of G , 0 over other volumes.

Note that Whitney elements are functions (if p = 0 or 3) or vector fields (if p = 1
or 2) associated with p-simplices.

1.4.3 The Whitney complex

We call W p(G) the finite dimensional subspace generated by taking linear combina-
tions of p-Whitney elements built on G. These finite dimensional subspaces satisfy
the property of conformity (see Section 1.4.3), i.e.

W 0(G) ⊂ H1(G), (1.73)
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Figure 1.6 The Whitney complex: de Rham complex for discrete subspaces

W 1(G) ⊂ H(curl;G), (1.74)

W 2(G) ⊂ H(div;G), (1.75)

W 3(G) ⊂ L2(G). (1.76)

Let S be the local function spaces for the four types of mixed elements (see
Section 1.4.2) built on a geometrical element G. Function spaces can be decomposed
into the kernel of the associated differential operator (grad, curl and div respectively)
and its orthogonal complement, i.e.:

W p(G) = KSp(G)⊕ Sp(G), p = 0, . . . , 2 .

By the Poincaré lemma [Dautray & Lions, 1988], the differential operators grad,
curl and div are isomorphisms of S1(G) onto KS1(G), S1(G) onto KS2(G) and S2(G)
onto KS3(G), respectively.

The fields whose curl or divergence vanishes in G can thus be expressed as the
gradient or the curl of some other fields. Therefore, the sequence

W 0(G)
grad // W 1(G)

curl // W 2(G)
div // W 3(G)

formed by the local spaces is exact (see Section A.1.3). The decomposition is
summed up on the de Rham complex shown in Figure 1.6, which should be com-
pared with Figure 1.4. The sequence in the continuous case is not exact due to the
loops and cavities in Ω.
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Continuous formulations,
coupling with integral equations
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2.1 Introduction

In the Chapter 1, the continuous electromagnetic field problems are cast in a contin-
uous mathematical structure. Then, the continuous spaces are replaced by discrete

27
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Figure 2.1 Bounded domain Ω with boundary Γ

spaces that allow for the discretisation of fields and potentials. In this chapter, we
express the continuous electromagnetic problems in continuous formulations suitable
for their discretisation thanks to these discrete spaces.

First we describe the general problem. Assumptions about its geometry and
electromagnetic properties are formulated. Then we establish the classical weak
formulations [Bossavit, 1998a]. The formulations that in the discrete case retain
the tangential continuity of the magnetic field h are called magnetic field conform-
ing formulations (h-conforming formulations), and those which imply the normal
continuity of the magnetic flux density b are referred to as magnetic flux density
conforming formulations (b-conforming formulations). The coupling of these con-
tinuous formulations with the integral equations is elaborated as well. The hybrid
b-conforming formulation is founded on [Bossavit & Vérité, 1982; Bossavit & Vérité,
1983]; the hybrid b-conforming formulation is based on [Ren et al., 1990; Ren et al.,
1992].

2.2 Description of a general problem

Our goal is solving Maxwell’s equations and the constitutive relations (1.1)–(1.7) in
a bounded open set Ω ∈ R3 with boundary Γ and characterised by σ ≥ 0, ε ≥ ε0

and µ > 0. The domain Ω can be split in a conducting region Ωc (σ > 0) and a
nonconducting one ΩC

c = Ω\Ωc. The outward normal unit vector is denoted n̂. Such
a configuration is depicted in Figure 2.1.

The boundary Γ may consist of c+1 closed surfaces Γi, i = 0, . . . , c, which implies
that there are c cavities in Ω. The region Ω may also contain l loops, if there exist
l cutting surfaces Σi (called cuts), i = 1, . . . , l, inside Ω that make Ω homologically
simple [Kotiuga, 1987; Bossavit, 1988a]. It should be noted that a homologically
simple domain is not necessarily simply connected [Bossavit et al., 1989].
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The sources of the electromagnetic field are inductors defined by local magnitudes
(current density) or global magnitudes (voltages and currents), and can be located
inside or outside Ω (see Figure 2.1).

Ωe denotes the set of all inductor domains Ωe,i, i = 1, . . . , e located outside Ω.
The field generated by these external sources is determined a priori.

The sources inside Ω are confined in Ωs and Ωg, which are subsets of Ω defined
in the two following sections.

2.2.1 Inductors Ωs

Ωs comprises the set of inductor domains Ωs,i, i = 1, . . . , s, carrying an imposed
current density j

s
. We assume Ωs ⊂ ΩC

c . Stranded inductors (winding of Ni turns)
belong to this class. Such inductors are modelled by defining a source magnetic field
hs that verifies {

curl hs = j
s

in Ωs

curl hs = 0 in ΩC
s

. (2.1)

The lack of uniqueness of hs allows for some flexibility for its computation (see
Section 1.3.2.2).

We consider now that the stranded inductor supply is a generator imposing a
global current or voltage. Hence, j

s
is a priori unknown. In this case, we have

independent source fields hs,i linked to each inductor Ωs,i that verify{
curl hs,i = j

s,i
in Ωs,i

curl hs,i = 0 in ΩC
s,i

, (2.2)

with j
s,i

the equivalent current density of a unit current flowing in the Ni turns of

the ith inductor in Ωs [Dular et al., 1999].

2.2.2 Generators Ωg

Ωg comprises the set of generators Ωg,i (sources of electromotive force) i = 1, . . . , g,
where either a global voltage Vi or a global current Ii is imposed. In case of circuit
coupling, Vi and Ii are a priori unknown. Each Ωg,i is either a subset of Ωc or ΩC

c .

An idealised generator Ωg,i is shown in Figure 2.3. It is actually a source of
electromotive force between two electrodes very close to each other.

Different kinds of inductors can be connected to these generators. We distinguish
Ωs ⊂ ΩC

c , Ωm ⊂ Ωc and Ωf ⊂ Ωc composed of stranded, massive and foil windings,
respectively.

Each Ωg,i has an associated voltage Vi and current Ii flowing through one of the
electrodes Γg,i (see Figure 2.3). For massive inductors Ωm, the electric field e in Ωg,i

is considered as known and its circulation along any path γg,i from one electrode to
the other in Ωg,i is thus the applied voltage Vi [Dular et al., 2000], i.e.∫

γg,i

e · dl = Vi and

∫
Γg,i

n̂ · j ds = Ii. (2.3 a,b)
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Figure 2.2 Cuts of a stranded, massive and foil inductor, Ωs,i, Ωm,i and Ωf,i
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Vi
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Figure 2.3 Model of an inductor with a source of electromotive force Ωg,i

For stranded inductors Ωs or foil windings Ωf , equation (2.3 a) becomes the sum
of the circulations of e for all the wires or foils, and the number of turns of the
winding Ni is incorporated into (2.3) as [Dular et al., 2000]

Ni∑
j=1

∫
γg,i,j

e · dl = Vi and

∫
Γg,i

n̂ · j ds = NiIi, (2.4 a,b)

where γg,i,j is a path in Ωg,i connecting the jth wire to the corresponding electrodes.
Moreover, for all kinds of inductors, the following local conditions must be satisfied

n̂× e
∣∣
∂Ωg,i

= 0 and n̂ · j
∣∣
∂Ω

m,i
s,i
f,i

= 0.

2.3 Magnetic field conforming formulations

2.3.1 Magnetodynamics

We consider the magnetodynamic problem in R3 that has been described in Sec-
tion 1.3.3 and represented in Figure 2.1. The particularised Maxwell’s equations
(1.61) together with the constitutive relations (1.13) and (1.16) establish the system
to be solved.

In order to satisfy Ampère’s law (1.61 b) in a strong sense, we take h ∈
Hh(curl; Ω) and j ∈ Hh(div; Ω). This is equivalent to verifying the left-hand side of
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the Tonti diagram (1.67) in a strong sense. Moreover, satisfying exactly the constitu-
tive relations (1.13) and (1.16) implies placing b ∈ He(div; Ω) and e ∈ He(curl; Ω).
Faraday’s law (1.61 a) can only be verified approximately. The h-conforming formu-
lation is obtained from the weak form (see Appendix A.3) of Faraday’s law (1.61 a)
as

∂t(b, h
′)Ω + (curl e, h′)Ω = 0, ∀h′ ∈ H0

h(curl; Ω), (2.5)

where h′ ∈ H0
h(curl; Ω) [Dular et al., 1999] is a field of test functions independent

of time (see Section 1.2.2 for the definition of the function spaces). Applying the
Green formula of type curl-curl (A.25) to the second term in (2.5), we have

∂t(b, h
′)Ω + (e, curl h′)Ω + 〈n̂× e, h′〉Γe = 0, ∀h′ ∈ H0

h(curl; Ω). (2.6)

Let us introduce now the magnetic constitutive relation (1.13) in (2.6) to obtain:

∂t(µh, h′)Ω + (e, curl h′)Ω + 〈n̂× e, h′〉Γe = 0, ∀h′ ∈ H0
h(curl; Ω). (2.7)

Ampére’s law can be also written in integral form with a test field j′ as

(curl h, j′)Ω = (j, j′)Ω, ∀j′ ∈ H0
h(div; Ω). (2.8)

Introducing Ohm’s law (1.16) in (2.8), we obtain

(curl h, j′)Ω = (σe, j′)Ωc + (j
s
, j′)Ωs , ∀j′ ∈ H0

h(div; Ω). (2.9)

Equations (2.7) and (2.9) constitute a mixed h-e formulation where only the
conformity of h is ensured. The numerical solution of this formulation is not obvious.

In order to obtain an expression that depends only on h, we combine Ohm’s law
(1.16) with Ampère’s law (1.61 b), curl h = j = σe in Ωc, and we have thus

∂t(µh, h′)Ω + (σ−1curl h, curl h′)Ωc + (e, curl h′)ΩC
c

+ 〈n̂× e, h′〉Γe = 0,

∀h′ ∈ H0
h(curl; Ω). (2.10)

The general expression of the magnetic field h in Ω is

h = hs + hr, (2.11)

with hs a source magnetic field in Ωs and hr the reaction magnetic field in Ωc, which
is indeed the unknown of our problem. Let us consider an imposed current density
j = j

s
in the inductors Ωs. A source magnetic field hs fulfils (2.1) (see Section 1.3.2.2

for discussion on the uniqueness of hs). Since{
curl h = j

s
in Ωs

curl h = 0 in ΩC
c \Ωs

, (2.12)

it reads
curl hr = 0 in ΩC

c . (2.13)
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The test field h′ in the weak form (2.6) has been chosen in a subspace of
H0

h(curl; Ω) for which curl h′r = 0 in ΩC
c , with h′ = h′s + h′r. The third term of

(2.10) is thus cancelled outside Ωs and equation (2.10) can be rewritten as

∂t(µh, h′)Ω + (σ−1curl h, curl h′)Ωc + (σ−1j
s
, curl h′)Ωs + 〈n̂× e, h′〉Γe = 0,

∀h′ ∈ H0
h(curl; Ω) with curl h′r = 0 in ΩC

c and h′ = h′s + h′r. (2.14)

Note that this formulation does not allow to determine the electric field in the
nonconducting regions ΩC

c . The trace of the electric field n̂×e is subject to a natural
boundary condition on the boundaries Γe of the domain Ω. This boundary condition
can adopt several forms:

X The trace of the electric field can be locally specified. For instance, when ap-
plying a homogeneous Neumann boundary condition the symmetry condition
of perpendicular current or zero magnetic flux is imposed, i.e. n̂ × e

∣∣
Γe

= 0

implies n̂ · b
∣∣
Γe

= 0.

X The trace of the electric field can appear in local implicit boundary conditions,
which is the case for the treatment of thin structures [Geuzaine et al., 1999b;
Geuzaine, 2001].

X The trace can be a field for which only associated global quantities are known
(i.e. a functional of n̂×e). This can be employed for the modelling of massive,
stranded and foil winding inductor [Dular et al., 1997; Dular et al., 1998; Dular
et al., 1999; Dular et al., 2000].

X The traces can appear in the definition of an integral operator for the cou-
pling with an integral formulation and they become the local unknowns of the
problem. This is developed in Section 2.6.1.

2.3.2 Magnetostatics

The magnetostatic problem can be seen as a simplification of the magnetodynamic
problem treated in the previous section. Herein all time dependent variation is
neglected. We study the magnetostatic problem in R3 that has been described in
Section 1.3.2.2. We have to solve the system (1.50).

In order to satisfy (1.50 a) in a strong sense, we take h ∈ Hh(curl; Ω) and j ∈
Hh(div; Ω). The left-hand side of the Tonti diagram (1.60) is consequently satisfied
in a strong sense.

The starting point is the weak form of (1.50 b), i.e.

(div b, ϕ′)Ω = 0, ∀ϕ′ ∈ H1
h

0(Ω). (2.15)

Let us consider the Green formula of type grad-div (A.23) in Ω applied to the fields
b and ϕ′, it reads

(b,−grad ϕ′)Ω + 〈n̂ · b, ϕ′〉Γe = 0, ∀ϕ′ ∈ H1
h

0(Ω). (2.16)
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In order to satisfy the left-hand side of the Tonti diagram (1.60) in a strong sense,
we first introduce (1.11 b) into (2.16) to obtain

(µh,−grad ϕ′)Ω + 〈n̂ · b, ϕ′〉Γe = 0, ∀ϕ′ ∈ H1
h

0(Ω). (2.17)

Then, decomposing h ∈ H(curl; Ω) by (2.11) in the same way as in Section 2.3.1,
we can derive the reaction field hr from a scalar potential ϕ such that hr = −grad ϕ
everywhere in Ω. Of course, if the domain Ω is multiply connected, the scalar po-
tential ϕ is a priory multivalued. Cuts must be introduced to avoid the multiplicity
of ϕ [Bossavit, 1988a]. The weak form (2.17) can then be written as

(µ (hs − grad ϕ),−grad ϕ′)Ω + 〈n̂ · b, ϕ′〉Γe = 0, ∀ϕ′ ∈ H1
h

0(Ω). (2.18)

2.4 Magnetic flux density conforming formula-

tions

2.4.1 Magnetodynamics

Let us consider the magnetodynamic problem in R3 defined in Section 1.3.3. We
want to solve the system formed by the particularised Maxwell’s equations (1.61)
and the constitutive relations (1.16) and (1.13).

In order to satisfy Faraday’s law (1.61 a) in a strong sense, we take b ∈ He(div; Ω)
and e ∈ He(curl; Ω). Both constitutive laws (1.16) and (1.13) are exactly verified
as well. The right-hand side of Tonti diagram (1.67) is then satisfied in a strong
sense. From a discrete point of view this is equivalent to placing h ∈ He(div; Ω)
and j ∈ He(curl; Ω), what implies that Ampère’s law (1.61 b) holds approximately.

The starting point is the weak form of Ampère’s law (1.61 b):

(curl h, a′)Ω = (j, a′)Ω, ∀a′ ∈ H0
e (curl; Ω) , (2.19)

where the field a′ is a field of test functions independent of time. Applying the Green
formula of type curl-curl (A.25) in Ω to the fields h and a′ in (2.19), we obtain

(h, curl a′)Ω + 〈n× h, a′〉Γh
= (j, a′)Ω, ∀a′ ∈ H0

e (curl; Ω) . (2.20)

We first introduce the constitutive relations (1.11 b) and (1.16) in the weak form
(2.20) in order to fulfil both Faraday’s and Gauss’s law in a strong sense, i.e. the
right-hand side of the Tonti diagram (1.67) is satisfied in a strong sense. The weak
form reads

(µ−1b, curl a′)Ω + 〈n× h, a′〉Γh
= (σe, a′)Ωc + (j

s
, a′)Ωs ,

∀a′ ∈ H0
e (curl; Ω). (2.21)

Let us introduce the magnetic vector potential a and the electric scalar potential v,
verifying (1.65) and (1.66), in (2.21). We get

(µ−1curl a, curl a′)Ω + (σ ∂ta, a′)Ωc + (σ grad v, a′)Ωc

+〈n× h, a′〉Γh
= (j

s
, a′)Ωs , ∀a′ ∈ H0

e (curl; Ω). (2.22)
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The electric scalar potential v is only defined in the conducting regions Ωc. The
magnetic vector potential a is solely defined as a single-valued field in the conducting
regions Ωc. A gauge condition has to be imposed everywhere else (see Sections 1.3.3
and 1.3.2.2).

The weak formulation (2.22) implies, by taking a′ = grad v′ as a test function,
that

(σ ∂ta, grad v′)Ωc + (σ grad v, grad v′)Ωc = 〈n · j, v′〉Γg , ∀v′ ∈ H1
e

0(Ωc), (2.23)

where Γg is the part of the boundary of Ωc carrying a current. In fact, the formulation
(2.23) is the weak form of div j = 0 in Ωc.

The trace of the magnetic field n×h is subject to an inherent boundary condition
on the boundaries Γh of the domain Ω . This boundary condition can take several
forms:

X The trace of the magnetic field can be locally specified. This is the case
for a homogeneous Neumann boundary condition, e.g. imposing a symmetry
condition of “zero crossing current” (n × h

∣∣
Γh

= 0 ⇒ n · curl h
∣∣
Γe

= 0 ⇒
n · j

∣∣
Γe

= 0).

X The trace of the magnetic field can appear in local implicit boundary condi-
tions, such as those established for the treatment of thin structures [Geuzaine
et al., 1999b; Geuzaine, 2001].

X The trace can be a field for which only associated global quantities are known.
This is employed in the modelling of the treatment of massive, stranded and
foil winding inductors [Dular et al., 2000].

X The traces can appear in the definition of an integral operator for the coupling
with an integral formulation and they constitute then local unknowns of the
problem. This is developed in Section 2.6.2.

2.4.2 Magnetostatics

As in Section 2.3, the magnetostatic problem can be seen as a particularisation
of the magnetodynamic problem for which all time dependent variation has been
neglected. We study the magnetostatic problem in R3 that has been described in
Section 1.3.2.2. We have to solve system (1.50).

In order to satisfy Faraday’s law (1.61 a) in a strong sense, we take b ∈
He(div; Ω). The constitutive law (1.11 b) is also exactly verified. The right-hand
side of Tonti diagram (1.60) is thus satisfied in a strong sense.

Let us start by writing a weak form of (1.50 a), i.e.

(curl h, a′)Ω = (j, a′)Ω, ∀a′ ∈ H0
e (curl; Ω). (2.24)

Considering the Green formula of type curl-curl (A.25) in Ω applied to the fields h
and a′ in (2.24), and taking into account that j = j

s
∈ Ωs, we obtain

(h, curl a′)Ω + 〈n̂× h, a′〉Γh
= (j

s
, a′)Ωs , ∀a′ ∈ H0

e (curl; Ω). (2.25)
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In order to satisfy the right-hand side of the Tonti diagram (1.60) in a strong sense,
we first introduce (1.11 b) into (2.25) to obtain

(µ−1b, curl a′)Ω + 〈n̂× h, a′〉Γh
= (j

s
, a′)Ωs , ∀a′ ∈ H0

e (curl; Ω). (2.26)

The field b ∈ H(div; Ω) can be derived from a vector potential a such that b = curl a
everywhere in Ω, the weak form (2.26) can be written as

(µ−1curl a, curl a′)Ω + 〈n̂× h, a′〉Γh
= (j

s
, a′)Ωs , ∀a′ ∈ H0

e (curl; Ω). (2.27)

2.5 2D magnetic flux density conforming formu-

lation

The two-dimensional magnetic flux density (b-) conforming formulations elaborated
hereafter will be employed in the numerical test cases of Chapter 5.

2.5.1 Magnetodynamics

We consider now the b-conforming formulation of a magnetodynamic problem in
R

2. Complex notation is adopted in this section for denoting the sinusoidal time
variation of frequency f and pulsation ω = 2πf (see Section 1.3.1).

In this 2D case, the z-component of the magnetic field vector h and the magnetic
flux density vector b vanish. The current density j = js(x, y)1z is given in a domain
Ωs and directed along the z-axis.

The problem is formulated in terms of the magnetic vector potential a =
a(x, y) 1z in Ω and the equivalent current layer q = q(ξ) 1z on Γh [Geuzaine et al.,
2001].

For any continuous potential a, (1.61 a) and (1.61 c) are fulfilled on account of

b = curl a = 1z × grad a , e = −ıωa . (2.28)

Ampère’s law (1.61 b) in the frequency domain is written in terms of a(x, y) as

curl h = −div
(
µ−1 grad a

)
1z + σıωa . (2.29)

The weak form of (2.29) is given by

(µ−1grad a, grad a′)Ω + (σ ıωa, a′)Ωc =

(js, a
′)Ωs + 〈µ−1∂na, a′〉Γh

, ∀a′ ∈ H1
e

0(Ω) (2.30)

where the test function a′ is independent of time. Note that the magnetodynamic
problem in R2 is reduced to a scalar problem.
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2.5.2 Magnetostatics

A magnetostatic problem in R2 can be seen as a particular case of the magne-
todynamic problem described in Section 2.5.1. Its treatment is analogous. The
b-conforming formulation of a two-dimensional magnetostatic problem is thus deter-
mined by the weak form of Ampère’s law.

The weak form of Ampère’s law (2.29) is now given by

(µ−1grad a, grad a′)Ω = (jsa, a′)Ωs + 〈µ−1∂na, a′〉Γh
, ∀a′ ∈ H1

e
0(Ω) (2.31)

where the test function a′ is independent of time.

2.6 Coupling with integral formulations

2.6.1 Hybrid h-conforming formulations

Let us consider the h-conforming formulation for the magnetodynamic case elabo-
rated in Section 2.6.1.

When dealing with open boundary problems, the surface term 〈n̂ × e, h′〉Γe in
(2.14) is not fixed a priori and constitutes an unknown of the problem. This surface
term can be reduced to ∂t〈n̂ · b, ϕ′〉Γe on account of

〈n̂× e, h′〉Γe = −〈n̂× e, grad ϕ′〉Γe =

= −〈n̂, ϕ curl e〉Γe + 〈n̂, curl (ϕ′e)〉Γe = 〈∂t(n̂ · b), ϕ′〉Γe . (2.32)

The coupling of the FE model with the BE model is actually done through
this surface integral (2.32). We choose an exterior hybrid formulation described in
[Geuzaine et al., 2001], i.e. the FE method is used in a domain Ω with boundary
Γe while the BE method takes into account the exterior space R3\Ω. A boundary
operator, that relates the trace of the magnetic flux density b on the boundary Γe and
a magnetic scalar potential ϕ in the domain R3\Ω, is defined. A classical magnetic
field conforming hybrid FE-BE method is thus obtained [Bossavit & Vérité, 1982;
Bossavit & Vérité, 1983].

Let us consider an exterior inductor domain Ωe in which a source current density
j

e
exists (see Section 2.2). The magnetic field h can thus be decomposed into a source

magnetic field he generated by the source current and a reduced magnetic field hr

derived from a scalar potential ϕ ∈ H1
h(Ω) as in (1.63), i.e.

h = he + hr = he − grad ϕ. (2.33)

The exterior domain R3\Ω may contain l loops. In this case, l cuts have to be
introduced in R3\Ω in order to make the scalar potential ϕ single-valued. Another
possibility consists in writing the FE-BE coupling directly in terms of the magnetic
field as presented in [Ren et al., 1992].

We define the following integral operator:

P(q) =

∫
Γe

q(y) G(x, y) dy with G(x, y) =
1

4π|x− y|
, (2.34 a,b)
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where q is an equivalent magnetic charge on Γe, and G is the three-dimensional
Laplace Green function. The normal derivative of (2.34 a) in a point x on Γe is
given by

n̂ · gradP(q) =
1

2
q +

∫
Γe

q n̂ · grad G(x, y) dy , (2.35)

where n̂ represents the exterior normal to R3\Ω (or the interior normal to Ω).

The scalar potential ϕ and its normal derivative in a point x on Γe can be
expressed as [Bossavit, 1998a]

ϕ(r) = µ−1P(q) , (2.36)

n̂ · grad ϕ(r) = µ−1n̂ · gradP(q) . (2.37)

There are different ways of establishing the FE-BE coupling [Ren et al., 1988].
Among all the possible schemes, it is worth mentioning the collocation method
[Brebbia & Walker, 1980] and the variational method [Bossavit & Vérité, 1982]
which is adopted in the present work.

The surface term in (2.14) thus becomes

∂t〈n̂ · b, ϕ′〉Γe = −∂t〈n̂ · gradP(q), ϕ′〉Γe + ∂t〈µn̂ · he, ϕ
′〉Γe . (2.38)

Introducing (2.38) in (2.14), we obtain the coupled expression

∂t(µh, h′)Ω + (σ−1curl h, curl h′)Ωc + (σ−1j
s
, curl h′)Ωs

− ∂t〈n̂ · gradP(q), ϕ′〉Γe + ∂t〈µn̂ · he, ϕ
′〉Γe = 0 ,

∀h′ ∈ H0
h(curl; Ω) with curl h′r = 0 in ΩC

c and h′ = h′s + h′r . (2.39)

Beware that now the normal n̂ points outward the domain Ω.

The weak form of (2.36) reads

〈ϕ, q′〉Γ = 〈µ−1P(q), q′〉Γ, ∀q′ ∈ H1
h

0(Γe) , (2.40)

where H1
h

0(Γe) is the function space defined on Γe which contains the basis functions
for q and the test function q′.

Applying the Galerkin method to the equations (2.39) and (2.40), the system of
equations of the hybrid model is obtained. Edge basis functions (1.70) are employed
for h, resulting in sparse blocks in the system matrix. The terms comprising the
integral operator P(q) (2.34) give dense blocks. Let us consider, e.g. , the fully
populated block M due to the right-hand side of (2.40).

On the basis of the discretisation of Γ, Nq interpolation functions βl(r) are defined
for the equivalent magnetic charge q and their coefficients ql are assembled in the
column matrix Q:

q(r) =

Nq∑
l=1

ql βl(r) and Q = q1 . . . qNq

T
. (2.41)
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The elements of M are therefore given by

Mk,l =
1

µ

∮
Γ

βk

(∮
Γ

βl G dΓ

)
dΓ . (2.42)

The double integration is a critical and time-consuming stage for the assembly
of the BE blocks, especially when numerical integration is used. The number of
Gauss integration points required for accurately evaluating the self-interactions is
high (see Section 3.5). If plane triangular elements and piecewise constant basis
functions (1.72) or linear basis functions (1.69) are used for q(r), the inner integral
in (2.42) can be evaluated analytically [Graglia, 1993]. The outer integration can
be performed adaptively with numerical Gauss integration.

When using the magnetostatic formulation in Section 2.3.2, integral operators for
the treatment of open boundary problems, taking (2.32) into account, are introduced
analogously.

2.6.2 Hybrid b-conforming formulations

We consider the b-conforming formulations for magnetodynamic case developed in
Section 2.4.1.

For open boundary problems, the surface term 〈n×h, a′〉Γh
in (2.22) is not fixed

a priori and constitutes an unknown of the problem. Using the exterior hybrid
approach as in Section 2.6.1, we introduce a boundary operator relating the trace
of the magnetic field on the boundary Γh and the magnetic vector potential a in
the exterior domain R3\Ω, which leads in a natural way to a classical magnetic flux
density hybrid finite element and boundary element method [Ren et al., 1990; Ren
et al., 1992].

The magnetic flux density b in R3\Ω can be decomposed as

b = be + br = be + curl a, (2.43)

where be is a source magnetic flux density (e.g. determined by the Biot-Savart law)
due to the source current j

e
in the exterior inductor domain Ωe, and br is a reduced

magnetic flux density derived from the magnetic vector potential a.

Let us define the integral operator A(q) as

A(q) =

∫
Γh

q(y) G(x, y) dy with G(x, y) =
1

4π|x− y|
, (2.44 a,b)

where the source q is an equivalent magnetisation current and G is the three-
dimensional Laplace Green function.

The normal derivative of (2.44 a) in a point x on Γh is given by

n̂× curlA(q) =
1

2
q(x) +

∫
Γh

n̂(x)× (grad G(x, y)× q(y)) dy . (2.45)
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The vector potential can then be expressed as

a(x) = µA(q) , (2.46)

and its derivative at a point x on Γh can be expressed as [Bossavit, 1998a]

n̂× curl a(x) = µ n̂× curlA(q) . (2.47)

The FE-BE coupling is achieved through the surface term 〈n̂×h, a′〉Γh
in (2.22).

A relation between n̂ × h and a on Γh must be found. We adopt a variational
formulation with q ∈ H0

e (div; Γh) and a ∈ H0
e (curl; Γh). The surface term in (2.22)

becomes

〈n̂×h, a′〉Γh
= 〈n̂× curlA(q), a′〉Γh

+ 〈µ−1n̂× be, a
′〉Γh

, ∀a′ ∈ H0
e (curl; Γh). (2.48)

Introducing (2.48) in (2.22) we get

(µ−1curl a, curl a′)Ω + (σ ∂ta, a′)Ωc + (σ grad v, a′)Ωc + 〈n̂× curlA(q), a′〉Γh

+〈µ−1n̂× be, a
′〉Γh

= (j
s
, a′)Ωs ∀a′ ∈ H0

e (curl; Ω). (2.49)

The system of equations of the hybrid model is completed with the weak form of
(2.46) that reads:

〈a, q′〉Γh
= 〈µA(q), q′〉Γh

, ∀q′ ∈ H0
e (div; Γh) , (2.50)

where H0
e (div; Γh) is the function space that contains the basis functions for both q

and q′.

It is important to note that the equivalent magnetisation current q, analogously
to a, is not unique and a gauge condition has to be applied (see Sections 1.3.3
and 1.3.2.2) in order to ensure its uniqueness. The source q should be gauged in the
same way as the vector potential a [Kettunen et al., 1999; Geuzaine, 2001].

When employing the magnetostatic case in Section 2.3.2, integral operators for
the treatment of unbounded domains are incorporated analogously.

2.6.3 2D Hybrid b-conforming formulations

We combine the BE method with the b-conforming formulation of a magnetodynamic
case described in Section 2.5.1.

The FE-BE coupling is done through the surface integral 〈µ−1∂na, a′〉Γh
in (2.30).

Note that the term µ−1∂na is the tangential component of the magnetic field ht =
µ−1bt = µ−1∂na = µ−1n̂ · grad a, where n̂ is the unit normal vector on Γh pointing
into Ω.

Let us introduce the two-dimensional integral operator A(q) as

A(q) =

∫
Γh

q(y) G(x, y) dy with G(x, y) = − 1

2π
ln |x− y|, (2.51 a,b)
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with x ∈ R2\Ω, y ∈ Γh, and the function G the two-dimensional Laplace Green
function. The equivalent magnetisation current q = q(ξ) 1z on Γh is directed along
the z-axis.

Particularising (2.45) for the two-dimensional case, one can show [Bossavit,
1998a; Geuzaine et al., 2001] that on the boundary Γh and within Ω, it holds that

∂nA(q) =
1

2
q +

∫
Γh

q(y) n̂ · grad G(x, y) dy . (2.52)

The magnetic potential a and its normal derivative can be expressed in terms of
the integral operator (2.51) and (2.52), respectively, as

a = µA(q) , ∂na = µ∂nA(q) . (2.53 a,b)

The weak form of (2.53 a) reads:

〈a, q′〉Γh
= 〈µA(q), q′〉Γh

, ∀q′ ∈ H1
e

0(Γh) . (2.54)

Introducing (2.53 b) in (2.30), we obtain

(µ−1grad a, grad a′)Ω + (σ ∂ta, a′)Ωc =

(jsa, a′)Ωs + 〈∂nA(q), a′〉Γh
, ∀a′ ∈ H1

e
0(Ω) . (2.55)

On the basis of the discretisation of Ω and Γh, Na real basis functions αj(x, y)
and Nq real basis functions βl(ξ) are defined for the vector potential a(x, y) and the
equivalent current layer q(ξ) respectively:

a(x, y) =
Na∑
j=1

aj αj(x, y) and q(ξ) =

Nq∑
l=1

ql βl(ξ) . (2.56)

The complex coefficients aj and ql are assembled in the column matrices A and Q:

A =
[
a1 . . . aNa

]T
and Q =

[
q1 . . . qNq

]T
. (2.57)

The complete hybrid system of algebraic equations is obtained by employing the
Na real basis functions αi(x, y) as test functions in (2.55) and the Nq real basis
functions βk(ξ) as test functions in (2.54). The resulting system of Na +Nq complex
equations of the hybrid model can thus be written as:[

S + ıwT C
DT M

] [
A
Q

]
=

[
J
0

]
, (2.58)

where S and T are sparse Na × Na FE matrices, C and D are partially dense
Na ×Nq matrices and M is a full Nq ×Nq BE matrix. Their elements are given by

Si,j =

∫
Ω

µ−1 grad αi · grad αj dΩ , (2.59)
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Ti,j =

∫
Ωc

σ αi αj dΩ , (2.60)

Ci,l =

∮
Γh

αi

(
1

2
βl +

∮
Γh

βl ∂nG dΓh

)
dΓh , (2.61)

Dj,k =

∮
Γh

αjβk dΓh , (2.62)

Mk,l = µ

∮
Γh

βk

(∮
Γh

βl G dΓh

)
dΓh . (2.63)

The Na × 1 column matrix J follows from the imposed current density in Ωs:

Ji =

∫
Ωs

js αi dΩ . (2.64)

For the magnetostatic counterpart described in Section 2.5.2, the introduction
of the integral operator for unbounded domains is done in the same way.

Introducing (2.53 b) in (2.31), we obtain

(µ−1grad a, grad a′)Ω = (jsa, a′)Ωs + 〈∂nA(q), a′〉Γh
, ∀a′ ∈ H1

e
0(Ω) . (2.65)

Applying the same discretisation scheme as for the magnetodynamic case de-
scribed above, the complete hybrid system of algebraic equations reads[

S C
DT M

] [
A
Q

]
=

[
J
0

]
, (2.66)

where S is a sparse Na × Na FE matrix, C and D are partially dense Na × Nq

matrices and M is a full Nq × Nq BE matrix. The definition of their elements is
given in (2.59), (2.61), (2.62) and (2.63). Note that as all time dependent variation
has been neglected, the resulting system is real.
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Chapter 3

Basic theory of Integral equations
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3.1 Introduction

Integral equation techniques solve for the sources of an electromagnetic field rather
than for the field itself. The starting point is therefore to obtain a source-field
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relationship in the form of an integro-differential operator working on the source
terms. Indeed, Maxwell’s equations (1.1)–(1.4) relate electromagnetic fields to their
electromagnetic sources, i.e. currents and charges. The integral equation is obtained
by enforcing the appropriate boundary conditions and a discretisation scheme is
used to solve the equation numerically.

The method of moments (MoM) [Harrington, 1993] is the most popular dis-
cretisation scheme for scattering and radiation problems. The unknown source is
expanded in terms of N known basis functions. A matrix system is then obtained
by choosing a set of N test functions and enforcing the residual to be orthogonal to
the test functions. All basis functions interact with all other basis functions and the
matrix produced by the MoM is thus a full matrix. The memory needed to store this
matrix scales as O(N2) and the CPU time as O(N3) or O(N2) with a direct and
an iterative equation solver, respectively. The MoM is particularly advantageous
for configurations involving homogeneous regions and open regions since only the
boundaries need to be discretised. However, the MoM is also used to solve volume
integral equations for inhomogeneous regions.

In the nineties, the fast multipole method (FMM) [Rokhlin, 1990; Coifman et al.,
1993] has been introduced to enhance the MoM scheme. The memory requirement
and CPU time scale as O(N1.5) for the single level case and as O(N log N) for
multilevel implementations. The FMM will be discussed in detail in Chapter 4.

This chapter is organised as follows. In Section 3.2, we discuss the way of es-
tablishing an integral equation by means of the equivalence principle and we derive
expressions of the electric and magnetic fields as a function of auxiliary potential
functions. The projection method known as the method of moments (MoM), very
popular for solving scattering problems, is presented in Section 3.3. Particular atten-
tion is paid to the Galerkin testing scheme and the choice of basis functions. Some
often encountered examples of integral equations are given in Section 3.4. Finally,
Section 3.5 briefly deals with the problem of singularities in IE methods.

3.2 Integral equations

The treatment presented hereafter illustrates some basic principles of integral for-
mulations. We deliberately omit any further details. A more extensive treatment
can be found in many works, e.g. those of [Balanis, 1988] and [Peterson et al., 1998].

3.2.1 The equivalence principle

The derivation of an integral equation begins with the application of an appropriate
equivalence principle [Harrington, 1961; Balanis, 1988]. This allows the problem
to be reduced to that of sources (currents or charges) radiating in a homogeneous
medium and the integral equation is derived by enforcing the appropriate boundary
conditions (see Section 1.1.2). This general principle is illustrated below by way of
two complementary examples.
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Assume that a homogeneous object Ω1 (ε1, µ1, σ1) is present in free space and
excited by an incident field. The unknown fields are e and h. The surface equivalence
principle can be used to establish an equivalent problems where e and h remain
unchanged outside Ω1 but become zero inside.

n̂

Ω1

Ω n̂

Ω1

Ω

(e, h) (e, h)

j
m

= e× n̂

Γ Γ

sources

j = n̂× h

zero field

(e, h)

Figure 3.1 The equivalence principle: the equivalent electric and magnetic cur-
rents, j and jm, produce the same field external to Γ as the original sources

The discontinuity of the fields must be offset by placing equivalent electric and
magnetic surface currents on the surface of the object (see Section 1.1.2). These
equivalent surface currents are

j = n̂× h , j
m

= e× n̂ , (3.1)

where n̂ is the outward unit normal (see Figure 3.1). The sources in (3.1) radiate in
a homogeneous medium.

We consider now the equivalent problem with unknown fields e and h inside Ω1

and zero field outside. Again it is required to place equivalent surface currents on
the surface Γ. These currents are the same as those in (3.1) except that n̂ is the
inward unit normal. Since the field is zero outside, the free space region can be filled
with a material characterised by ε1, µ1 and σ1.

The exterior and interior equivalent problems described above can be combined
by imposing tangential continuity of e and h on the surface of Ω1 which yields two
coupled integral equations with the unknown currents j and j

m
.

3.2.2 Source-field relationships

Integral equations in electromagnetics are derived by specifying the sources radi-
ating in a homogeneous medium and requiring the generated field. An alternative
approach consists in considering the scattered fields as derived from auxiliary func-
tions known as potentials. While it is possible to calculate the electric and magnetic
fields, e and h, directly from the electric and magnetic source current densities, j
and j

m
, it is often simpler to calculate the auxiliary magnetic and electric vector

potential functions first, a and f , and then determine e and h. The magnetic and
electric vector potentials a and f are, as it will be clear, generated by j and j

m
.

Let us consider a certain homogeneous volume Ω with boundary surface Γ char-
acterised by ε, µ, σ.
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We derive the expression of the fields as a function of a and f by considering
two complementary cases:

X j 6= 0 and j
m

= 0, we obtain ea and ha where the subscript a indicates the
field due to the magnetic vector potential a;

X j = 0 and j
m
6= 0, we obtain ef and hf where the subscript f indicates the

field due to the electric vector potential f .

The total fields are then obtained by the superposition of the individual fields due
to a and f , i.e.

e = ea + ef , (3.2)

h = ha + hf . (3.3)

3.2.2.1 Electric and magnetic fields due to an electric current source

We assume j 6= 0 and j
m

= 0. Since (1.42) is always true, we can introduce a
magnetic vector potential a verifying

ba = curl a . (3.4)

Substituting (3.4) in Faraday’s law (1.41), we obtain

curl (ea + ıωa) = 0 . (3.5)

From the vector identity
curl (−grad v) = 0

and (3.5), it follows that
ea = −grad v − ıωa , (3.6)

where v represents an electric scalar potential.

Taking the curl on both sides of (3.4), considering the magnetic constitutive
relation (1.11 b) and using the vector identity

curl curl a = grad div a−∆a ,

we can write for a homogeneous medium

µcurl ha = grad div a−∆a . (3.7)

Introducing Ampére’s law (1.40) and the electric constitutive relation (1.15) in
(3.7) leads to

µj + ıωµεea = grad div a−∆a . (3.8)

Substituting (3.6) into (3.8), we obtain

∆a + k2a = −µj + grad (div a + ıωµεv) , (3.9)
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where k = ω
√

µε = 2π/λ is referred to as the wavenumber; λ is the wavelength. In
order to simplify (3.9), we impose the so-called Lorentz condition, i.e.

div a = −ıωµεv . (3.10)

From (3.9) and (3.10), we obtain the inhomogeneous Helmholtz equation

∆a + k2a = −µj , (3.11)

whose solution Γ is the magnetic vector potential a. If j is confined within a surface
Γ, it reads

a(r) = µ

∫
Γ

j(r′) G(ρ) dΓ′ , (3.12)

where G(ρ) is the three-dimensional Helmholtz Green function,

G(ρ) =
e−ıkρ

4πρ
, (3.13)

which depends on the distance ρ = |r − r′| between the source point r′ and the
observation point r. For two-dimensional problems, the Helmholtz Green function
is given by

G2D(ρ) =
1

4ı
H

(2)
0 (kρ) , (3.14)

with H
(2)
0 is the Hankel function of second kind and order 0.

In addition, (3.6) reduces to

ea = −ıωa− ı

ωµε
grad (div a) . (3.15)

3.2.2.2 Electric and magnetic field due to a magnetic current source

The essential difference between electric and magnetic currents is the nonexistence of
magnetic charges in nature. There is thus no free magnetic charge and no magnetic
current. Equivalent magnetic currents j

m
arise when using the equivalence theorem.

This equivalent magnetic current is introduced in Faraday’s law (1.41) as

curl e + ıωb = −j
m

. (3.16)

The field generated by an equivalent magnetic current in a homogeneous region,
with j = 0 but j

m
6= 0, must satisfy from (1.43) div d = 0. Therefore, ef considering

(1.15) can be expressed as

ef = −1

ε
curl f . (3.17)

Introducing (3.17) in Ampére’s law (1.40), and taking into account the vector
identity

curl (−grad ϕ) = 0 ,
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it follows that
hf = −grad ϕ− ıωf , (3.18)

where ϕ represents a magnetic scalar potential.

Taking the curl of (3.17) and considering (3.16) leads to

−j
m
− ıωµhf =

1

ε
(grad div f −∆f) . (3.19)

The substitution of (3.18) into (3.19) reduces it to

∆f + k2f = −εj
m

+ grad (div f + ıωµεϕ) . (3.20)

In order to simplify (3.20), we choose

div f = −ıωµεϕ . (3.21)

From (3.20) and (3.21), we obtain thus the following inhomogeneous Helmholtz
equation

∆f + k2f = −εj
m

, (3.22)

whose solution is the electric vector potential f . If j
m

is confined within a surface
Γ, it reads

f(r) = ε

∫
Γ

j
m

(r′) G(ρ) dΓ′ . (3.23)

Besides, the expression of the magnetic field in function of f is

hf = −ıωf − ı

ωµε
grad (div f) . (3.24)

The total fields (3.2) and (3.3) are thus given by

e = ea + ef = −ıωa− ı

ωµε
grad (div a)− 1

ε
curl f , (3.25)

h = ha + hf = −ıωf − ı

ωµε
grad (div f) +

1

µ
curl a . (3.26)

Another useful representation is the mixed potential form in which both vector
and scalar potentials are used. The electric and magnetic scalar potentials, v and
ϕ, read

v(r) =
1

ε

∫
Γ

q(r′) G(ρ) dΓ′ , (3.27)

ϕ(r) =
1

µ

∫
Γ

qm(r′) G(ρ) dΓ′ , (3.28)

with q and qm the electric and magnetic surface charge density, respectively. Note
that the only unknowns are the currents j and j

m
which are related to the respec-

tive charge densities q and qm through the equation of conservation (1.5). In the
frequency domain, it is given by

div j = −ıωq . (3.29)
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The electric and magnetic fields, (3.25) and (3.26), can then be written as

e = −ıωa− grad v − 1

ε
curl f , (3.30)

h = −ıωf − grad ϕ +
1

µ
curl a . (3.31)

3.3 The method of moments (MoM)

The method of moments (MoM) [Harrington, 1993] is a discretisation scheme for
equations of the form

Lf = g , (3.32)

where L is a linear integro-differential operator, g is a known excitation function
and f is the unknown response function to be determined. Typical examples of
such equations are the EFIE (3.49), the MFIE (3.62) and the CFIE (3.66). The first
step in the MoM is to expand the unknown function f as a linear combination of N
basis functions fn, defined in the same domain as f . The approximation is

f =
N∑

n=1

cnfn , (3.33)

where cn are unknown coefficients. The basis functions fn are chosen so that each
Lfn can be conveniently evaluated (in closed form or numerically). The residual,
considering the linearity of L, is defined as

rN = g − L
N∑

n=1

cnfn = g −
N∑

n=1

cnLfn . (3.34)

The residual is forced to be orthogonal to another N -dimensional subspace spanned
by a set of functions wm, m = 1, 2, · · · , N . This condition is expressed as

〈wm, rN〉 = 0, m = 1, 2, · · · , N . (3.35)

The functions wn are known as test or weight functions.

Inserting (3.34) in (3.35), the following matrix equation is obtained:

M i = v , (3.36)

where the elements of the impedance matrix M and the excitation vector v are
given by

Mm,n =< wm,Lfn > , vm =< wm, g > . (3.37 a,b)

The elements in of i are the coefficients in (3.33). The MoM does not guarantee that
the coefficients in are optimal. If the test functions are poorly chosen, the residual
might have components outside the space spanned by the test functions. In general,
this is avoided if the test functions can accurately represent both g and

∑N
n=1 cnLfn.

This requires that wn is in the range of L [Sarkar, 1985].
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3.3.1 Galerkin method

The EFIE and MFIE operators presented in Sections 3.4.1 and 3.4.2 have the same
domain and range [Hsiao & Kleinman, 1997]. This suggests that the choice

wn = fn (3.38)

might be good. The orthogonality condition in (3.35) becomes

〈fm, rN〉 = 0, m = 1, 2, · · · , N . (3.39)

This special case, in which the basis functions coincide with the test functions, is
actually the Galerkin method.

Many authors have stated that the Galerkin method does not contribute to a
better performance of the MoM, and that basis and test functions can be chosen
independently, e.g. [Harrington, 1993]. However, it was shown in [Wandzura, 1991]
that the Galerkin method presents a better convergence for scattering computations.
Although the Galerkin approach is optimal for far field computations, other testing
schemes might perform equally well. Indeed, the error in the surface current depends
on the choice of the basis functions and not on the choice of the test functions
[Peterson et al., 1996]. Nevertheless, the error in scattering fields depends on both
the basis and test functions.

3.3.2 Basis functions

In the previous section, a testing scheme that relates the test functions to the basis
functions is presented. The discussion was general and nothing was said about the
specific choice of basis functions. In this section, we consider different kinds of basis
functions and their properties.

Basis functions can be classified into entire-domain or subsectional basis func-
tions. Entire-domain basis functions are defined on the entire-domain, e.g. the
surface Γ (3.50). This is generally not practical for 3D problems. They are rarely
used. An exception is a wire antenna where the domain is one-dimensional and a
Fourier expansion of the current has proved efficient [Sarkar et al., 1985].

Subsection basis functions are defined on a subdomain of the object. This sub-
domains are often referred to as patches and usually taken as triangles or quadri-
laterals. Well known examples of such subsectional basis functions are the rooftop
basis functions for triangles in [Rao et al., 1982] and the rooftop basis functions for
quadrilaterals in [Glisson & Wilton, 1980]. The rooftop basis functions for triangles
are often referred to as the Rao-Wilton-Glisson (RWG) basis functions. They pro-
vide a piecewise linear expansion of the surface current, i.e. the current is expanded
in terms of first order polynomials. High order basis functions are subsectional basis
functions that provide a piecewise polynomial expansion of second, third, or even
higher order. The high order expansion allows the size of the element to be increased
and the overall number of basis functions to be decreased in comparison with a first
order expansion [Graglia et al., 1997].
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Divergence-conforming basis functions impose normal continuity of a vector
quantity between neighbouring elements and are suitable for expansion of the surface
current in a MoM solution. The enforced continuity avoids buildup of line charges
at the boundary between adjacent patches.

Many authors have tried to find the most suitable basis functions for a specific
problem [Sarkar, 1985; Sarkar et al., 1985; Gürel et al., 1999; Aksun & Mittra,
1993]. These works illustrate that the choice of basis functions is always a trade-off
between different properties. The four factors mentioned in [Harrington, 1993] that
can be used to choose a suitable set of basis functions are:

X the accuracy of the solution desired,

X the ease of evaluation of the matrix elements,

X the size of the matrix that can be inverted,

X the condition number of the matrix.

It is worth noticing that the basis functions commonly used in the MoM commu-
nity can be directly related to the basis functions in the FEM community [Graglia
et al., 1997]. Recognising these relation has two main benefits:

X The high order basis functions for MoM computations are readily available
through the work done in FEM [Geuzaine et al., 1999a; Ren & Ida, 2000;
Bossavit, 2002; Geuzaine, 2001].

X The recently proposed loop-star basis functions [Vecchi, 1999; Lee et al., 2003]
are similar to the tree-cotree decomposition in the vector finite element meth-
ods. Analogously to the tree-cotree decomposition in FEM, the loop-star split-
ting allows to obtain reliable MoM solutions in the low frequency limit. This
low frequency instability also results in deteriorating the condition number
when smaller elements are used in MoM computations.

We consider in particular the RWG and the thin wire basis functions related to
edge element and nodal element basis functions, respectively.

3.3.2.1 Relation between RWG basis functions and edge element basis
functions

The usual description of the RWG basis functions for triangles is shown in Figure 3.2.
The RWG vector basis function associated with the common edge of triangles T+

and T− can be written as

fT

i,j
(r) = li,j


ρ+

2A+
, r ∈ T+

−ρ−

2A− , r ∈ T−

0 , elsewhere

, (3.40)
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A−

A+

T+

ρ+

l

i

j

T−

ρ−

k

Figure 3.2 Triangle pair and geometrical parameters for the RWG basis function

where A+ and A− are the area of triangles T+ and T−, respectively. The length of
the common edge is li,j and the local vectors ρ+ and ρ− are defined with regard to
the vertex opposite to the common edge as in Figure 3.2. Furthermore, we have

div fT

i,j
(r) = li,j


1

A+
, r ∈ T+

−1

A− , r ∈ T−

0 , elsewhere

. (3.41)

An edge is mostly shared by two triangles. Beware additional unknowns need to be
assigned when an edge is shared by more than two triangles.

The usual description of edge elements in FEM is shown in Figure 3.3. The edge

l

i

j

k +
−

Figure 3.3 Edge elements for triangular FEM

element basis function (1.70) associated with edge i, j is defined by

wi,j = ςi grad ςj − ςj grad ςi (3.42)

where ςi is the centroid coordinates of vertex i. The RWG basis function, fS

i,j
, and

the edge element basis function, wi,j, are related by

fT

i,j
(r) = li,j

{
n̂+ × wi,j(r) , r ∈ T+

n̂− × wi,j(r) , r ∈ T− , (3.43)

where n̂+, n̂− are the unit normals to triangles T+, T−, respectively.
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3.3.2.2 Relation between thin wire basis functions and nodal element
basis functions

Basis functions suitable for representing currents induced in thin wires (the surface
current density presents a dominant axial component [Balanis, 1997]) are given by

fS

i
(r) =


ρ+

l+
, r ∈ S+

−ρ−

l−
, r ∈ S−

0 , elsewhere

, (3.44)

where l+, l− are the lengths of the segments S+, S−, and the local vectors ρ+ and
ρ− are defined as in Figure 3.4. Note that they are associated with node i. The

i

S−

l+

l−
S+ ρ−

ρ+

Figure 3.4 Segment pair and geometrical parameters for thin wire basis functions

divergence of (3.44) is calculated analytically as

div fS

i
(r) =


1

l+
, r ∈ S+

−1

l−
, r ∈ S−

0 , elsewhere

. (3.45)

The nodal element basis functions wi (1.69) associated with node i are linear
basis functions with unit value at node i and zero elsewhere, i.e.

wi = ςi . (3.46)

It is easy to find a relation between the thin wire basis functions fS
i (3.44) and

the nodal element basis function wi associated with node i. This relation reads

fS

i
(r) =

{
t̂+ · wi(r) , r ∈ S+

t̂− · wi(r) , r ∈ S−
, (3.47)

where t̂+, t̂− are the unit tangent vectors on S+, S− and have the same origin as
ρ+, ρ−.
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3.4 Some examples of integral equations

3.4.1 Electric field integral equation (EFIE) for PEC

Following the equivalence principle (see Section 3.2.1), it is easy to derive the EFIE
for closed perfectly electric conductors (PEC) in free space. The surface equivalence
principle is applied to remove the PEC object, leaving only an electric surface current
j on its surface Γ radiating in free space. The field e is given by the sum of an incident
field ei, which exists at a given location independently of the PEC object, and a
scattered field es caused by the electric surface current on the PEC object. The
magnetic surface current j

m
is zero to satisfy n̂×e = 0, i.e. the tangential field must

vanish on Γ,
n̂× e(r) = n̂× (ei(r) + es(r)) = 0 , r ∈ Γ . (3.48)

It is useful to express the EFIE as

n̂×
(
ei + Lej

)
= 0 . (3.49)

The linear operator Lej can be derived by substituting (3.12) and (3.27) in (3.30)
and considering the equation of continuity div j = −ıωq. It reads

Lej = ıωµ

∫
Γ

j(r′) G(ρ) dΓ′ − 1

ıωε
grad

∫
Γ

(
div j(r′)

)
G(ρ) dΓ′ , r ∈ Γ . (3.50)

This form of the EFIE (3.49) is known as the mixed potential formulation. Integral
equations in the form of (3.49) are referred to as Fredholm integral equations of
the first kind since the unknown quantity only appears inside the integral [Delves &
Walsh, 1974].

The EFIE, derived above for a closed PEC object, is also valid for an open PEC
such as an infinitely thin plate. This can be seen by taking the limit as a closed
object with finite thickness collapses into an infinitely thin object. The electric
surface current is the average of the currents on the two sides of the infinitely thin
object. The current component orthogonal to the edge of a thin object must vanish
at the edge. The outward normal n̂ in (3.49) is not uniquely defined for an infinitely
thin object but can be chosen as either of the two normals on the surface Γ.

In order to discretise the EFIE for PEC (3.49), we express it as a function of the
magnetic vector potential (3.12) and the electric scalar potential (3.27) as

n̂× ei(r) = n̂× (ıωa + grad ϕ) , r ∈ Γ , (3.51)

or simply
ei,t(r) = (ıωa + grad ϕ)t , r ∈ Γ , (3.52)

where the subscript t denotes to the tangential component of the electric field.

Let us apply the Galerkin method to (3.52) with the RWG basis functions (3.40)
defined in the Section 3.3. It yields

ıω〈a, f
m
〉Γ + 〈grad ϕ, f

m
〉Γ = 〈ei, fm

〉Γ , 1≤m≤N. (3.53)
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Taking into account the divergence theorem on a closed surface,∫
Γ

grad ϕ · f
m

dΓ = −
∫

Γ

ϕ div f
m

dΓ , (3.54)

and approximating the fields and potentials at the triangle centroids rc±
m of each

basis function, (3.53) reduces to a linear system of equations, 1≤m, n≤N :

lm

[
ıω

(
ac+

mn ·
ρc+

m

2
− ac−

mn ·
ρc−

m

2

)
+ ϕc−

mn − ϕc+
mn

]
in =

lm

[
ei

(
rc+

m

)
·
ρc+

m

2
− ei

(
rc−

m

)
·
ρc−

m

2

]
, (3.55)

where for a pair of triangles T+
m , T−

m with a common edge lm, ρc+ and ρc− are local
position vectors with origin at the vertices of T+

m , T−
m opposite to lm (see Figure 3.2).

This system can be expressed as a matrix equation (3.36), where M is a complex
symmetric and dense N ×N matrix, v denotes the voltage vector and i contains the
currents (degrees of freedom) flowing across the inner edges of the triangles. i and
v are column vectors with N elements.

The elements of M and v are given by

Mm,n = lm

[
ıω

(
ac+

mn ·
ρc+

m

2
− ac−

mn ·
ρc−

m

2

)
+ ϕc−

mn − ϕc+
mn

]
, (3.56)

vm = lm

[
ei

(
rc+

m

)
·
ρc+

m

2
− ei

(
rc−

m

)
·
ρc−

m

2

]
, (3.57)

where the magnetic vector potential and the electric scalar potential on the centroids
are defined, respectively, as

ac±
mn =

µ

4π

∫
Γ

f
n
(r′)

e−ıkRc±
m

Rc±
m

dΓ′, (3.58)

ϕc±
mn = − 1

4πıωε

∫
Γ

div f
n
(r′)

e−ıkRc±
m

Rc±
m

dΓ′ , (3.59)

with Rc±
m = |rc±

m − r′| distance between the element centroid and a source point r′.

3.4.2 Magnetic field integral equation (MFIE) for PEC

The MFIE for PEC objects is derived analogously to the EFIE. The surface equiv-
alence principle (see Section 3.2.1) is used to remove the PEC object which leaves
only electric surface currents radiating in free space. These electric currents main-
tain the correct field source outside Γ and a zero field inside. Therefore, the MFIE
described below is referred to as the exterior MFIE. The boundary condition for the
magnetic field on Γ is

n̂× h(r) = n̂× (hi(r) + hs(r)) = 0 r ∈ Γ . (3.60)
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Using (3.12) and (3.26) in (3.60) yields

n̂× hi(r) = j(r)−n̂×
(

curl

∫
Γ

j(r′) G(ρ) dΓ′
)

, r ∈ Γ . (3.61)

The curl operator can be moved inside the integral by using the results in Ap-
pendix C. This leads to

n̂× hi(r) =
j(r)

2
+ n̂×

(
−
∫

Γ

j(r′)× grad G(ρ) dΓ′
)

, r ∈ Γ , (3.62)

where the bar across the integral sign indicates that the point r′ = r is excluded from
the integration. The expression in (3.62) is the most common form of the exterior

MFIE and is valid for a smooth surface. For more general surfaces, the term
j(r)

2

should be replaced by φ
4π

j(r) where φ is the exterior solid angle at r [Peterson et al.,

1998]. The interior MFIE differs from (3.62) by the sign of the term
j(r)

2
. When

implementing the MFIE, it is advantageous to use the following identity:

n̂×
(
j(r′)× grad G(ρ)

)
=

G(ρ)

ρ

(
1

ρ
+ ık

)[
n̂ · ρ j(r′)−

(
n̂ · j(r′) ρ

)]
. (3.63)

The expression (3.63) is weakly singular whereas the integrand in (3.62) is strongly
singular1. Note also that (3.63) vanishes if the observation point r is located in the
plane of the surface current.

The MFIE may be written in the shorter notation(
1

2
I + Lm

)
j = n̂× hi , (3.64)

where I is the identity operator and Lm is a compact operator [Peterson et al., 1998].
Integral equations that can be written as (3.64) are known as Fredholm equations of
the second kind. Getting a stable numerical solution from those equations is easier
than from integral equations of the first kind [Delves & Walsh, 1974].

The MFIE was derived for closed objects. Unfortunately, it is not applicable
to open surfaces unless the currents on each side of the open surface are left as
independent unknowns. This leads to a more complicated numerical solution and
doubles the number of unknowns in comparison to the EFIE.

3.4.3 Combined field integral equation (CFIE) for PEC

Unfortunately, for a closed object, the EFIE and the MFIE fail to provide a unique
solution for all frequencies [Chew, 1995; Peterson et al., 1998]. The nonuniqueness is
caused by homogeneous (also called spurious) solutions, i.e. solutions that fulfil the
boundary conditions with a zero incident field. Physically, the spurious solutions of

1Integrals with singularities can be classified as weakly singular, strongly singular or hypersin-
gular. For ρ → 0 the integrands behave as ρ−1, ρ−2 and ρ−3, respectively
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the EFIE are the resonant modes of a PEC cavity. A cavity made of a perfectly
magnetic conductor supports similar resonant magnetic surface currents. The spuri-
ous solutions of the MFIE can be interpreted as the electric currents induced by the
resonant magnetic currents. These solutions are nonphysical and radiate a nonzero
field outside the object. In [Peterson, 1990] the numerical consequences of spurious
solutions and some possible corrections are studied. The uniqueness of the solution
of the EFIE and MFIE is then not guaranteed at interior resonance frequencies. It
is particularly troublesome for large objects due to a large probability of hitting a
resonance frequency.

The most common method to deal with this problem is the combined field integral
equation (CFIE) which uses a linear combination of the MFIE and EFIE to provide
a unique stable solution [Mautz & Harrington, 1978]. This linear combination is
given by

CFIE = α EFIE + (1− α)η MFIE (3.65)

or in operator form

αLej + (1− α)η

(
1

2
I + Lm

)
j = α (n̂× ei) + (1− α)η (n̂× hi) , (3.66)

where α is a real number between 0 and 1 and η =
√

µ/ε is the intrinsic impedance
of the medium. Usually, 0.2 < α < 0.8 is a good choice. The EFIE and the MFIE
have the same resonance frequencies but their null spaces differ. The CFIE has no
spurious solutions and is a second kind integral equation [Rao & Wilton, 1990]. It
is easy to implement if the EFIE and MFIE solutions are already available.

3.4.4 Electrostatic scalar potential integral equation

In electrostatics (see Section 1.3.2.1), the electric field is time-independent and there
is no equivalent magnetic current. Equation (3.25) is reduced to

e = −grad v , (3.67)

where

v(r) =
1

ε

∫
Γ

q(r′) G(ρ) dΓ′ , G(ρ) =
1

4πρ
, (3.68)

with G(ρ) the three-dimensional Laplace Green function. Note that (3.68) is a
particularisation of (3.27) for the static case.

We consider an electrostatic problem in R3. A set of conductors are embedded
in multiple homogeneous isotropic dielectrics and set to fixed potentials.

The equivalence principle is applied so that the conductors can be replaced by
the electric charge density qc on their surfaces and the homogeneous dielectrics by
the polarisation charge qp. The total charge on the interface conductor-dielectric
ΓC is given by the sum of both types of charges. Analogously, on the surface ΓD

between two dielectrics the total charge is the sum of the polarisation charge due to
both dielectrics [Rao et al., 1984].
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The electrostatic scalar potential integral equation is established from the bound-
ary condition (1.24), which implies that the discontinuity of the normal component
of d at any point of the boundary equals the surface charge density at that point.

The electric field e as r approaches an interface between two media can be ex-
pressed as [Rao et al., 1984]:

e±(r) = ± n̂
q(r)

2ε0

+
1

4πε0

〈grad G(ρ), q(r′)〉Γ , (3.69)

where ± refers to both sides of the interface, n̂ points from the first to the second
media (i.e. from − to +).

When dealing with a conductor to dielectric interface, we have a particular case.
As inside the conductor e− = 0, considering (3.69), it follows that e+ on the surface
of the conductor is given by

e+(r) = n̂
q(r)

ε0

. (3.70)

The normal component of d must be continuous at a dielectric to dielectric
interface. Taking into account the dielectric constitutive relation (1.7) and the fact
that there is no electric charge at such interface, we can write

n̂ · ε1e
+(r) = n̂ · ε2e

−(r) . (3.71)

The surfaces of conductors and dielectrics Γ = ΓC∪ΓD are discretised with plane
triangles. The surface charge density q is assumed to be e.g. piecewise constant.

From (1.24) and (3.69), we obtain the following system of N linear equations

MQ = B, (3.72)

where Q =
[

q1 . . . qN

]T
contains the charge densities on the elements and B =[

b1 . . . bN

]T
depends on the boundary conditions. For an element on the surface

of a conductor ΓC , the entry in B is the imposed and fixed potential; for an element
on the interface between two dielectrics ΓD, the entry in B is zero. The elements of
the dense nonsymmetric matrix M when k is an element on a conductor are given
by

Mk,l =
1

ε0

∮
Γl

G(ρk) dΓ′ , (3.73)

with G the 3D Laplace Green function (2.34 b) and ρk the distance between a source
point r′ (on Γl ∈ Γ) and an observation point rk (on ΓC). Considering the continuity
of the normal component of the electric flux density (1.44 c) at the dielectric-to-
dielectric interface ΓD, the elements of M if k is an element on ΓD read:

Mk,l =


εk2 − εk1

ε0(εk1 + εk2)

∮
Γl

grad G(ρk) · n̂k dΓ′, k 6= l ,

1

2ε0

, k = l ,

(3.74)
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where n̂k is the outward normal unit vector pointing into the dielectric with permit-
tivity εk2. The integrals in (3.73) and (3.74) can be evaluated analytically [Graglia,
1993].

3.5 Singularities

IE techniques require the evaluation of double integrals having singular kernels.
Indeed, the Green functions (2.34 b), (2.51 b), (3.13) and (3.14), exhibit integrable
singularities when a source point coincides with an observation point, i.e. r = |x−
y| = 0. They depend on 1/r and their gradients on 1/r3.

To numerically solve surface (contour) integral equations by application of a BE
method, like the MoM (see Section 3.3), the geometry is usually divided into patches
(segments) of simple shape on which expansion functions for the scalar and/or vector
unknowns can be defined in a simple way.

The accuracy of the solution of an IE problem depends strongly on the integral
calculation [Fetzer et al., 1997]. Different approaches can be followed:

X Use a numerical scheme based on a big number of integration points, e.g.
Gauss quadrature scheme [Golub & Welsch, 1969]. Albeit employing many
integration points, the precision is not guaranteed.

X Use a singularity removal technique. For a given patch T , it consists in splitting
the integral over the patch T into two integrals over T−Tε and Tε. The integral
over T − Tε is evaluated numerically and the integral over Tε is evaluated at
the limit ε → 0 [Rao, 1980; Wilton et al., 1984].

X Use an analytical formula. The expressions can become quite lengthy to write
and evaluate, but benefit from the fact that they will be exact. In [Graglia,
1987; Graglia, 1993; Davey, 1989; Arcioni et al., 1997], the problem of inte-
grating on a plane triangle the constant or linear functions times the Green
functions and their gradients is treated. They proposed different analytical
expressions for the integral of 1/r over a plane triangle, i.e. a closed form for
the Laplace Green function is given.

For the Helmholtz Green function, the integrand is split into a well behaved
function with a defined value when r → 0 and the singular term 1/r, i.e.

eıkr

r
=

eıkr − 1

r
+

1

r
. (3.75)

The well behaved function can be numerically integrated while the singular
part is dealt analytically. Its gradient is treated analogously. We have imple-
mented the analytical integration of linear or constant basis functions times
the singular kernels 1/r and grad 1/r on a plane triangle proposed by Graglia
in [Graglia, 1993].
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4.1 Introduction

The number of unknowns N arising when discretising integral equations is relatively
small since only surface discretisation for 3D problems (contour discretisation for
2D problems) is required. But in return, since the kernels of the integral operators
are non-local, the discretisation leads to a dense system matrix M . Solving a dense
N × N matrix with a direct solver, such as the LU decomposition, is an O(N3)
procedure. The resolution can be performed by means of an iterative method, such
as a conjugate gradient type algorithm. Each iteration typically requires the compu-
tation of a couple of scalar products and at least one matrix-vector multiplication.
Since the matrix M is dense, the number of operations is O(N2) per iteration.

Using second kind integral equations and an appropriate preconditioner [Van der
Vorst & Dekker, 1988; Chen, 1998; Beatson et al., 1999], the number of iterations can
be controlled. But the major task in order to get an efficient electromagnetic solver
consists in implementing a fast matrix-vector multiplication routine. Methods that
perform the matrix-vector multiplication in O(Np) operations, with p significantly
lower than two, are called fast methods. In the literature three main methods are
reported to be fast in this sense. The fast multipole method (FMM) [Rokhlin, 1985;
Greengard & Rokhlin, 1987b; Rokhlin, 1990; Engheta et al., 1992; Rokhlin, 1993],
which constitutes the focus of this work, is the most popular one. The two others are
the wavelet-based method [Beylkin et al., 1991; Alpert et al., 1993; Kim et al., 1996]
and the impedance matrix location method [Canning, 1990; Canning, 1993]. The
two latter methods use special basis functions (e.g. wavelet-type basis functions)
which localise the important interactions to only a small number of elements within
the matrix M . Then, a threshold procedure (small elements are approximated by
zero) is applied in order to obtain a sparse approximation of M .

The FMM provides a nearly optimal reduction in the memory requirements
and computation time associated to those integral methods. The main feature of
the FMM is a special approximation of the fundamental solution to the Laplace
and Helmholtz equations. Originally developed for particle simulations involving
a large number of particles [Greengard & Rokhlin, 1987a], the method was then
adapted to the solution of boundary integral equations, both the Laplace equa-
tion [Rokhlin, 1985; Greengard & Rokhlin, 1987b; Greengard & Rokhlin, 1988] and
the Helmholtz equation [Rokhlin, 1990; Rokhlin, 1993]. It is applied repeatedly
to candidate solution vectors of an iterative method such as the conjugate gradi-
ent algorithm (CG) [Van der Vorst & Dekker, 1988] or the generalised minimum
residual (GMRES) algorithm [Saad & Schultz, 1986]. Convergence analyses are
provided in [Petersen et al., 1995a; Petersen et al., 1995b] for the Laplace equa-
tion and in [Labreuche, 1998; Koc et al., 1999; Song & Chew, 2001; Darve, 2000]
for the Helmholtz equation. The computational cost can be reduced with the best
algorithms down to O(N) and O(N log N) in the Laplace and Helmholtz cases,
respectively.

The layout of this chapter is as follows. In Section 4.2, we give a general de-
scription of the functioning of the method and comment briefly on some common
geometrical tools. The complex mathematics behind the FMM are discussed in Sec-
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tions 4.3 and 4.4 for the Laplace and Helmholtz Green equations, both two- and
three-dimensional cases are considered. We dwell on the mathematical trickery of
the FMM which is the matrix-vector multiplication. The application of this method
to problems with movement does not seem to appear in the literature so far. Some
aspects relative to the use of FMM in such cases are discussed.

4.2 Main ideas of the FMM

The complex mathematics behind the FMM is presented in detail in [Rokhlin, 1985;
Greengard & Rokhlin, 1987b] for the Laplace Green equation and in [Rokhlin, 1990;
Rokhlin, 1993] for the Helmholtz Green equation. Hereafter, a simplified version
with more physical intuition is presented.

neighbour

group

neighbour

group group
source

observation
group

Γs

co

cs

d > dfarΓo

Figure 4.1 Two-dimensional representation of a source FMM group Γs with centre
cs, its neighbour groups and a distant observation group Γo with centre co on Γ

The FMM reduces the computational cost by spatially decomposing the bound-
ary Γ (a surface in R3 and a contour in R2) of the electromagnetic domain Ω into
Ng groups of elements Γg, Γ =

⋃Ng

g=1 Γg, with Γg

⋂
Γi = ∅ if g 6= i. Note that the

groups Γg are indeed portions of the boundary Γ.

The key is to replace a group of elements characterised by a given source, cur-
rent or charge (distributed or not, equivalent or not), with another reference element
(referred to as centre) that embodies the sources of the whole group. The approx-
imation is valid for the so-called far or distant groups. In practice, this centre is
located roughly at the geometrical centre of the considered group Γg and may or not
be on the boundary Γ. A pair of groups (a source group Γs and an observation group
Γo) are said to be far or distant if the distance between their centres is greater than
a given distance dfar. Otherwise, they are referred to as neighbour groups. This is
illustrated in Figure 4.1. Mathematically, these sources are conveniently represented
by means of the multipole expansions of the Green functions.

The FMM comprises thus three fundamental operations:
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X Aggregation: The sources in each source group Γs are jointly treated as a single
clustered source, and the field of the equivalent source is approximated by a
multipole expansion at the centre of the group. This representation is only
valid outside the group.

X Translation: For each pair of sufficiently distant source and observation groups,
Γs and Γo, the aggregate multipole expansion at the centre of the source group
Γs can be represented as an analytical partial field expansion at the centre of
the observation group Γo, i.e. it consists in translating an aggregate multipole
expansion to an observation group Γo. The translation is only valid inside a
domain including all the elements of the observation group.

X Disaggregation: The aggregate and translated multipole representation of the
field is redistributed to all the elements of the observation group Γo, i.e. the
field is evaluated. This operation is valid inside a domain comprising all the
elements of the observation group Γo.

For neighbour groups the direct contribution must be calculated in the conventional
way to evaluate the field. Therefore, the field at any particular element is the
sum of the contributions of M multipoles of each of the far groups and the direct
contribution of the neighbour groups.

b.a.

Figure 4.2 a. N source elements and N observation elements interacting directly
with each other; b. N source elements and N observation elements interacting
thorough a three-stage process

Summarising, a multiplication is effected through three separate procedures:
from element source to source group centre, from centre of the source group to
that of the observation group and from the observation group center to the observa-
tion element. Therefore, the number of interactions is reduced with respect to the
normal procedure (see Figure 4.2).

4.2.1 Clustering algorithm

The division in groups of the problem is crucial for the successful and efficient
application of the FMM algorithm [Greengard & Rokhlin, 1987b; Buchau et al.,
2003; Barakat & Webb, 2004].
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The simplest way to achieve the FMM groups is to build a quadtree (2D) or
an octree (3D), i.e. to perform a hierarchical subdivision of the body. For the 3D
case, assume that the body to be analysed is enclosed in a fictitious cubical box
that is recursively divided into eight boxes. A box that is subdivided into smaller
boxes is termed the parent of the child boxes that result from the operation. Empty
subcubes are discarded. For an n+1 level scheme, this subdivision proceeds n times.
A quadtree structure is generated analogously. Figure 4.3 represents four levels of
a quadtree data structure.

Figure 4.3 Four level of quadtree structure

In addition, an existing quadtree/octree structure can be exploited to initialise
complicated block preconditioning techniques. It is possible to employ the small
decoupled matrix inverses as a preconditioner in the iterative solution of the entire
problem [Nabors et al., 1994; Forsman et al., 1995].

An alternative clustering algorithm is described in [Barakat & Webb, 2004]. The
concept is to merge groups that are closest to each other into higher level groups in
order to maximise the relative distance between the latter.

We adopt the last level of the quadtree/octree structure as group distribution.
This work is thus focused on the application of a so-called single level FMM. A
multilevel FMM takes advantage of the quadtree/octree clustering algorithm and
deals with groups of groups.

4.2.2 Fast matrix-vector product

The aim of the FMM is accelerating the multiplication of the system matrix M
(arising from a BE method) by a trial vector Q within an iterative process. With



66 CHAPTER 4. FAST MULTIPOLE METHOD

this purpose, the system matrix M can be formally approximated as

M ≈ Mnear + M far = Mnear +

Ng∑
o=1

Ng∑
s=1︸ ︷︷ ︸

Γo, Γs far

M far
o,s . (4.1)

The matrix Mnear comprises the near field interactions. It is computed following
the normal procedure in the BE method and stored with a sparse storage scheme.

The power of the FMM lies on the matrix M far which accounts for the far field
interactions. Indeed, the FMM speeds up the matrix-vector product M farQ.

For every distant pair of source and observation groups, Γs and Γo, we have a
matrix M far

o,s that can be further decomposed into the disaggregation data matrix
MD

o for a group Γo, the translation data matrix MT for a pair of groups Γo and Γs

and the aggregation data matrix MA
s for a group Γs, i.e.

Ng∑
o=1

Ng∑
s=1︸ ︷︷ ︸

Γo, Γs far

M far
o,s =

Ng∑
o=1

MD
o

Ng∑
s=1

Γo, Γs far

MT MA
s . (4.2)

Group by group, the field produced by the source in the considered group is ag-
gregated into its centre by MA

s . This aggregate field is then subsequently translated
to the centres of all the far groups by MT , and finally the aggregate and translated
field is disaggregated into the degrees of freedom of the far groups thanks to MD

o .

Note that the matrix M far itself is never built. During the FMM assembly stage,
the required complex matrices MD

o , MT and MA
s are calculated and stored. The

integrations appearing in the computation of MD
o and MA

s (this will be clear in the
following sections) can be performed numerically by means of a quadrature scheme,
e.g. a Gauss quadrature scheme. As we are dealing with far interactions, there is
no singularity problem (see Section 3.5) and a reduced number of integration points
suffices.

In practice, the FMM can be integrated in a computational software as an in-
dependent block. Its functioning in GetDP [GetDP, 1997–2004] is summarised in
the flow chart depicted in Figure 4.4. We denote the FMM block as FMM pre-
processing.

The first step in the FMM block is splitting the problem into groups and cal-
culating their centres. Then, the neighbour and far groups are determined for each
group. If the distance between the centres of two groups is greater than dfar, they
are said to be far groups, otherwise they are neighbour groups. Using information
from the conventional pre-processing (such as the basis functions, the degrees of
freedom (Dof), ...), the FMM data matrices are thus computed and stored: an ag-
gregation data matrix MA

s and a disaggregation data matrix MD
o for each group,

and a translation data matrix MT for every pair of far groups. Assuming a con-
stant number of degrees of freedom per group L, and a number of multipoles M ,
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(every group)
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FMM PRE-PROCESSING
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Translation

far groups)
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SOLVER

Basis functions
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(S + Mnear)Q

Dof

Grouping scheme

Neighbour & far groups

M T

Matrix-vector product

Preconditioner

S

Matrix assembly

MA
s MD

o

∑
MD

o M T ∑MA
s Q

Figure 4.4 Flow chart showing the integration and functioning of the FMM in the
computational software GetDP [GetDP, 1997–2004] (the discontinuous line indicates
an optional block)

the dimensions of the matrices MA
s , MT and MD

o are M ×L, M ×M and L×M ,
respectively.

In the processing step, the full system matrix is assembled. In the general case,
we can consider a sparse matrix S due to e.g. a FE model or/and to a circuit
coupling. The matrix Mnear accounts for solely the near field interactions of the
BE model. The computation of this latter matrix requires the neighbour groups
determined in the so-called FMM pre-processing.

Once the processing is finished, the solver (in our case [SPARSKIT, 1999]) starts
an iterative process that performs the multiplication of S+Mnear by a trial vector Q
in every iteration. The FMM intervenes adding the contribution of the far groups
given by

∑Ng

o=1 MD
o

∑Ng

s=1 MT MA
s in every iteration. The preconditioning of the

iterative solver is often required to reduce the number of iterations. In this case,
the preconditioning is based on the sparse matrix comprising only the BE near-
field interactions (and the FE contribution when dealing with hybrid formulations)
[Buchau & Rucker, 2002].

Note that in some coupled problems (e.g. problems with movement), the FMM
data may require to be totally or partially updated.
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4.3 FMM applied to Laplace equations

The FMM was applied to the solution of two-dimensional potential problems by
Rokhlin in [Rokhlin, 1985]. An extension to three-dimensional problems was pre-
sented in [Greengard & Rokhlin, 1987b].

An application of a multilevel FMM to solve electrostatic problems with Dirich-
let boundary conditions was reported in [Nabors & White, 1991]. Later the same
authors proposed an extension to compute problems with Neumann boundary condi-
tions as well [Nabors & White, 1992]. They numerically differentiated the potential
to compute the electric flux density at the boundaries with Neumann boundary
conditions. A more general approach with analytical differentiations is presented
in [Buchau et al., 2000]. The FMM has also been combined with the BE method
with higher order elements and the Galerkin method [Buchau et al., 2001]. A precon-
ditioner based on the near-field interactions matrix suitable for the iterative solution
of a FMM accelerated BE problem is proposed in [Nabors et al., 1994; Buchau &
Rucker, 2002]. In [Apalkov & Visscher, 2003] the FMM is applied to a periodic
system.

This section deals with the application of a single level FMM to Laplace equa-
tions.

4.3.1 Two-dimensional Laplace Green function

4.3.1.1 Multipole expansion

The 2D Laplace Green function is given by

G (ρ) = − 1

2π
ln ρ , (4.3)

with ρ = |ro − rs| the distance between a source point rs and an observation point
ro.

0

cs

Γo

r

r′
rsc

rs

ρ

rc

ro

roc

co

Γs

Figure 4.5 Two-dimensional representation of distant FMM groups Γs and Γo on
Γ with respective centres cs and co

Let rs be in a source group Γs with centre rsc and ro be in an observation group
source Γo with centre roc. We define the following vectors r = ro − roc = (r, φ),
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rc = roc − rsc = (rc, φc) and r′ = rsc − rs = (r′, φ′), as shown in Figure 4.5. Vectors
are expressed in cylindrical coordinates throughout. Omitting the factor −1/2π, the
2D Laplace Green function (4.3) is then expanded as [Rokhlin, 1985]1:

ln ρ = <

(
∞∑

u=0

∞∑
v=0

Du (r) Tu,v (rc)Av (r′)

)
(4.4)

with

Du (r) = ru eıuφ, (4.5)

Tu,v (rc) =

 ln (rc) if u = 0 and v = 0 ,
−(u + v − 1)!

u! v! ru+v
c eı(u+v)φc

if u 6= 0 or v 6= 0 ,
(4.6)

Av (r′) = r′v eıvφ′ . (4.7)

In practice, the multipole expansion (4.4) must be truncated by considering
0 ≤ u ≤ P and 0 ≤ v ≤ P , where the truncation number P is sufficiently large to
limit the error to a prescribed value ε:∣∣∣∣∣ln ρ−<

(
P∑

u=0

P∑
v=0

Du (r) Tu,v (rc)Av (r′)

)∣∣∣∣∣ < ε. (4.8)

The truncation number, introduced by Rokhlin in [Rokhlin, 1985] and commonly
adopted in the literature, is taken by P = log2(1/ε). However, as will be shown, if the
distance between the source point and its group centre and the distance between the
observation point and its group centre are small compared to the distance d between
the two group centres, a smaller number of terms suffices.

A more economic law takes those distances into account. Let us denote by Rs the
maximum distance between a source point in a source group and its centre, by Ro

the maximum distance between an observation point in an observation group and
its centre, by φs the local angle formed by r′ and the line joining the group centers
and by φo the local angle formed by r and the line joining the group centers (see
Figure 4.6). The truncation number depends on two angles, φs and φo, and three
distances Rs, Ro and d. We eliminate the angular dependency by considering the
most restrictive case (which implies a higher truncation number), i.e. φs = φo = 0.
This novel truncation method is referred to as the adaptive truncation scheme.

The value of P as a function of Ro/d and Rs/d for ε = 10−6 and ε = 10−9

is depicted in Figures 4.7 and 4.8, respectively. It can be seen that in both cases
P = log2(1/ε) corresponds to Ro/d = Rs/d = 0.35 .

In order to apply the FMM to (2.61), the expansion of grad G is necessary as
well. It can be straightforwardly obtained by deriving (4.5) with respect to the
coordinates of the observation point, i.e.

gradDu (r) = (∂xoDu (r) , ∂yoDu (r)) = (∂xDu (r) , ∂yDu (r)) = (4.9)

1Beware the complex expressions in the FMM expansions are not related to the harmonic regime
described in Section 1.3.1.
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dcs co Ro

r
r′ φs φo

Rs

Figure 4.6 Geometrical parameters that determine the truncation number: the
local angles φs and φo, the distances Rs, Ro and d

 0

 5

 10

 15

 20

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

0.05
0.15
0.25
0.30
0.35

P

Ro/d

log2(1/ε)

ε = 10−6

Rs/d

Figure 4.7 Truncation number P (Ro/d, Rs/d, ε) for ε = 10−6, 2D case

=
(
uru−1 eı(u−1)φ, uru−1 eı(u−1)φ+ıπ/2

)
. (4.10)

The process to follow is then analogous.

4.3.1.2 Fast matrix-vector product

Two groups Γs and Γo are said to be far groups if Rs/d < τ and Ro/d < τ , where
d is the distance between the group centres and where τ is sufficiently small (and
certainly τ < 1/2 ).

We analyse the particular two-dimensional hybrid b-formulation developed
in Section 2.6.3. The application to any other formulation is straightforward. The
approximation of the matrix M in (2.58) can be formally written as in (4.1), and
analogously for the matrix C.

Let us consider the degrees of freedom qk and ql of q(ξ) with associated basis
functions βk(ξ) and βl(ξ) that are nonzero on the respective far groups Γo and Γs.
Truncating and substituting (4.4) in (2.63), the contribution to the corresponding
element in M far is given by

(
M far

o,s

)
k,l

= <

(
P∑

u=0

MD
o,k,u

P∑
v=0

MT
u,v MA

s,l,v

)
, (4.11)
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Figure 4.8 Truncation number P (Ro/d, Rs/d, ε) for ε = 10−9, 2D case

with

MD
o,k,u =

∫
Γo

βkDu (r) dΓ , MA
s,l,v =

∫
Γs

βlAv (r′) dΓ , (4.12 a,b)

and MT
u,v = − 1

2πν0

Tu,v (rc) . (4.13)

As explained in Section 4.2.2, the goal of the formal decomposition (4.11) is
accelerating the multiplication of M far by a trial vector Q, required for the iterative
solution of the system of algebraic equations (2.58).

In case of straight line elements and piecewise constant basis functions, the in-
tegrals in (4.12) can be evaluated analytically considering∫ r2

r1

|rc − r|u eı(u+1)φrcrdr =
|rc − r1|

u+1 eı(u+1)φrcr1 − |rc − r2|
u+1 eı(u+1)φrcr2

u + 1
.

4.3.1.3 Operational count

The total operational count is estimated as follows. We assume that the total number
of unknowns N is divided evenly into Ng groups with L = N/Ng unknowns each and
that each group has n neighbour groups (a group is neighbour of itself). The number
of operations involved in finding the interactions within neighbour groups is nL2Ng.
The computation of (4.12 b) for multipole expansions truncated at order P and Ng

groups requires Ng(P + 1)L operations (see Figure 4.92). The translations (4.13)
for N2

g source-observation pairs of groups need N2
g (P + 1)2 operations. Finally, the

reconstruction of the fields at the receiving groups (4.12 a) amounts to Ng(P + 1)L

2In this flow chart, for the sake of simplicity, we have assumed that the number of unknowns
equals the number or elements per group. Usually, this is not the case
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operations (see Figure 4.10). The total operational count is thus

nL2Ng + 2Ng(P + 1)L + N2
g (P + 1)2 . (4.14)

Disaggregation

Aggregation

e + +e > Lg > Ng

P + 1 LNg

m > P m + +g + +

n n n

or

counter
e = 1m = 0g = 1

Group
counter

Multipole
counter

Element

y yy

End
Operations Operation count = Ng(P + 1)L

Figure 4.9 Sequence of operations to be performed for the computation of either
the aggregation or disaggregation data

Translation

m + +go + +

n

y
gs + +

n

y
m > P

n

Ng Ng (P + 1)2

End

Observation

m = 0

y

Operation count = N 2
g (P + 1)2Operations

Source Multipole

go = 1gs = 1
counter

go > Nggs > Ng

group counter group counter

Figure 4.10 Sequence of operations to be performed for the computation of the
translation data

Note that the computational cost depends on (P+1)2. Consequently, the product
M farQ is further accelerated by means of the adaptive truncation scheme following
the law P = P (Rs/d, Ro/d, ε) shown in Figures 4.7 and 4.8. For the MD and
MA data of a given group, the truncation number P considered during the FMM
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assembly stage is determined by its closest far group (the closer the group the higher
P ), P = Pmax . For the MT data, the truncation number P is determined by the
two groups Γs and Γo involved in the translation, P = Pso. During the iterative
process, the aggregation step for a given source group is carried out with P = Pmax ,
while P = Pso suffices for the translation and disaggregation steps.

4.3.1.4 Taking movement into account

The analysis is restricted to rigid bodies. In a hybrid FE-BE model, some blocks of
the complete system matrix may be time dependent due to the movement (BE part)
and magnetic saturation (FE part). Those blocks have to be recalculated every time
step.

When applying the FMM, the decomposition in groups Γ =
⋃Ng

g=1 Γg is preserved
during movement. Expressing the ratio of the new distance p between an element
in a group and its group centre (either observation or source) to the previous one
p− 1 as:

rp

rp−1
= eı(φp−φp−1) = eı∆φp

,
r′p

r′p−1
= eı(φ′p−φ′p−1) = eı∆φ′p , (4.15 a,b)

and the ratio of the new complex distance between two group centres to the previous
one as:

rp
c

rp−1
c

=
rp
c

rp−1
c

eı(φp
c−φp−1

c ) =
rp
c

rp−1
c

eı∆φp
c , (4.16)

it is easy to find the relations between the previous and the new FMM data. Indeed,
taking into account the relations (4.15) and (4.16), from (4.12) and (4.13), it follows:

MDp

o,k,u = MDp−1

o,k,u eıu∆φp

, MAp

s,l,v = MAp−1

s,l,v eıu∆φ′p , (4.17)

and MT p

u,v = MT p−1

u,v

(
rp−1
c

rp
c

)u+v

eı(u+v)∆φp
c . (4.18)

This way, the integrals (4.12) do not have to be reevaluated. For updating
the disaggregation, aggregation and translation data, a product of the previous
data with the corresponding exponential factor suffices. In the particular case of
purely translational movement, ∆φp = ∆φ′p = 0 for every p, the disaggregation and
aggregation data do not vary. Only the translation data have to be modified.

4.3.2 Three-dimensional Laplace Green function

4.3.2.1 Multipole expansion

The 3D Laplace Green function is given by

G (ρ) =
1

4πρ
, (4.19)

with ρ = |ro − rs| the distance between a source and an observation point.
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Let Γs be a source group with centre rsc and a source point rs, and Γo an
observation group with centre roc and an observation point ro. We define the vectors
in R3 r = ro−roc = (r, θ, φ), rc = roc−rsc = (rc, θc, φc) and r′ = rsc−rs = (r′, θ′, φ′)
as shown in Figure 4.5. Vectors are expressed in spherical coordinates throughout.
Omitting the factor 1/4π, the 3D Laplace Green function (4.19) is expanded as
[Rokhlin, 1985]:

1

ρ
= <

( ∞∑
m=0

m∑
n=−m

∞∑
u=0

u∑
v=−u

Dm,n (r) Tm+u,n+v (rc) Au,v (r′)
)

, (4.20)

with

Dm,n (r) =
rm Ln

m(θ,−φ)

(m + n)!
, (4.21)

Tm+u,n+v (rc) =
(m + u− (n + v))!

rm+u+1
c

Ln+v
m+u(θc, φc) , (4.22)

Au,v (r′) =
r′u Lv

u(θ
′,−φ′)

(u + v)!
, (4.23)

where Ln
m(θ, φ) = P n

m (cos θ) eınφ and P n
m is the Legendre function of degree m and

order n. Note that this expansion is based on the addition theorem for spherical
harmonics (see Appendix B.6.1).

In practice, the multipole expansion (4.20) must be truncated by taking 0 ≤
m ≤ P and 0 ≤ u ≤ P , where the truncation number P must be sufficiently large
to limit the error to a prescribed value ε:

∣∣∣∣∣1ρ −<
(

P∑
m=0

m∑
n=−m

P∑
u=0

u∑
v=−u

Dm,n (r) Tm+u,n+v (rc) Au,v (r′)

)∣∣∣∣∣ < ε. (4.24)

In most cases, the conventional choice P = log2(1/ε) [Rokhlin, 1985] is too
conservative. Indeed, if r′ � rc and r � rc, a smaller number of terms suffices.

A more economic law takes those distances into account. Strictly, also the local
spherical angles (θ′, φ′) and (θ, φ) intervene in the computation of the truncation
number. Analogously to the two-dimensional case, we consider the worst case in
which the observation and source points are closer to each other and aligned with
the group centers. Let us consider the radii of the source and observation groups,
Rs = maxΓs(r

′), Ro = maxΓo(r), and the distance between their centres d = rc. The
minimum value of P as a function of Ro/d and Rs/d for ε = 10−6 and ε = 10−9 is
depicted in Figures 4.11 and 4.12. This novel truncation method is referred to as
the adaptive truncation scheme.

The function grad G can be expanded in a similar way. It suffices to derive (4.21)
with respect to the coordinates of the observation point ro = (xo, yo, zo). Taking
into account that r = ro− roc = (xo−xoc, yo− yoc, zo− zoc) = (x, y, z), we can write

gradDm,n (r) = (∂xoDm,n, ∂yoDm,n, ∂zoDm,n) = (∂xDm,n, ∂yDm,n, ∂zDm,n) (4.25)



4.3. FMM APPLIED TO LAPLACE EQUATIONS 75

 0

 5

 10

 15

 20

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

0.05
0.15
0.20
0.25
0.30
0.35

P

Ro/d

log2(1/ε)

ε = 10−6

Rs/d

Figure 4.11 Truncation number P (Ro/d, Rs/d, ε) for ε = 10−6, 3D case
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Figure 4.12 Truncation number P (Ro/d, Rs/d, ε) for ε = 10−9, 3D case

with

∂xDm,n =
rm−2

(m + n)!

[
Ln

m(θ,−φ)

(
ınyr2

x2 + y2
+ mx

)
− ∂xP

n
m

xz sin θ e−ınφ√
x2 + y2

]
, (4.26)

∂yDm,n =
rm−2

(m + n)!

[
Ln

m(θ,−φ)

(
−ınxr2

x2 + y2
+ my

)
− ∂yP

n
m

yz sin θ e−ınφ√
x2 + y2

]
, (4.27)

∂zDm,n =
rm−2

(m + n)!

[
Ln

m(θ,−φ) mz + ∂zP
n
m

√
x2 + y2 sin θ e−ınφ

]
. (4.28)

The partial derivatives of P n
m are calculated by means of the recursive formula (B.35).

Other relations concerning the Legendre polynomials and functions are also defined
in Appendix B.
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4.3.2.2 Fast matrix-vector product

Analogously to the two-dimensional case studied in Section 4.3.1.2, two groups Γs

and Γo are said to be far groups if Rs/d < τ and Ro/d < τ , where d is the distance
between the group centres and where τ is sufficiently small (and certainly τ < 1/2).

We consider, e.g. the three-dimensional hybrid h-conforming formulation de-
scribed in Section 2.6.1. Any other formulation will be treated analogously. The
dense blocks due to the BE part and in particular M (2.42) can be formally written
as in (4.1).

Let us consider the degrees of freedom qk and ql of q with associated basis func-
tions βk(ro) and βl(rs) that are nonzero on the respective far groups Γo and Γs.
Truncating and substituting (4.20) in (2.42), the contribution to the corresponding
element

(
M far

o,s

)
k,l

in M far is given by

<

(
P∑

m=0

m∑
n=−m

MD
o,k,m,n

P∑
u=0

u∑
v=−u

MT
m+u,n+vM

A
s,l,u,v

)
, (4.29)

with

MD
o,k,m,n =

∫
Γo

βkDm,n dΓ , MA
s,l,u,v =

∫
Γs

βlAu,v dΓ , (4.30 a,b)

and

MT
m+u,n+v =

1

4πµ
Tm+u,n+v . (4.31)

The goal of formally splitting M (2.42) into Mnear and M far (4.29) is speeding
up the multiplication of M far by a trial vector Q, which is required for solving the
system of algebraic equations (2.39) and (2.40) (see Section 4.2.2).

4.3.2.3 Operational count

The total operational count is estimated as follows. We assume that the total number
of unknowns N is divided evenly into Ng groups with L = N/Ng unknowns each
and that each group has n neighbour groups (a group is neighbour of itself). The
number of operations involved in finding the interactions within neighbour groups
is nL2Ng. The numerical evaluation of the aggregation and disaggregation, (4.30 b)
and (4.30 a), for Ng groups and multipole expansions truncated at order P requires
2Ng(P + 1)(2P + 1)L operations. The translation (4.31) for N2

g source-observation
pairs of groups amounts to N2

g (P +1)2(2P +1)2. The total operational count is thus

nL2Ng + 2Ng(P + 1)(2P + 1)L + N2
g (P + 1)2(2P + 1)2 . (4.32)

The adaptive truncation scheme following the law P = P (Rs/d, Ro/d, ε) shown
in Figures 4.11 and 4.12 is clearly advantageous when examining (4.32). This way,
the matrix-vector product M farQ is further accelerated.

For the MD and MA data of a given group, the truncation number P considered
during the FMM assembly stage is determined by its closest far group, P = Pmax .
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For the MT data, the truncation number P is determined by the two groups Γs and
Γo involved in the translation, P = Pso. During the iterative process, the aggregation
step is carried out with P = Pmax , while P = Pso suffices for the translation and
disaggregation.

As a rule of thumb, the optimum value of τ lies in the interval [1/4, 1/5], i.e.
an observation group Γo is far from a source group Γs if it is outside the sphere of
radius Rfar ∈ [3Rs, 4Rs] with origin the centre of Γs. The upper limit corresponds to
τ ≤ 1/5, or, according to Figure 4.11, to a maximum truncation number Pmax = 10
for ε = 10−6, while the classical law leads to P = log2(1/ε) = 20.

4.3.2.4 Taking movement into account

The analysis is restricted to rigid bodies, the boundaries of which constitute the BE
domain. The decomposition in groups Γ =

⋃Ng

g=1 Γg is preserved during movement.

For a given position p, we define the vectors rp = rp
o − rp

oc = (r, θp, φp), rp
c =

rp
oc − rp

sc = (rp
c , θ

p
c , φ

p
c) and r′p = rp

sc − rp
s = (r′, θ′p, φ′p) analogously to those shown

in Figure 4.5. It is easy to find the relations between the previous p − 1- and the
new p- FMM data. Indeed, from (4.30) and (4.31), it follows:

MDp

o,k,m,n = MDp−1

o,k,m,n

Lm
n (θp,−φp)

Lm
n (θp−1,−φp−1)

, (4.33)

MT p

m+u,n+v = MT p−1

m+u,n+v

(
rp
c

rp−1
c

)m+u+1 Ln+v
m+u(θ

p
c , φ

p
c)

Ln+v
m+u(θ

p−1
c , φp−1

c )
, (4.34)

MAp

s,l,u,v = MAp−1

s,l,u,v

Lv
u(θ

′p,−φ′p)

Lv
u(θ

′p−1,−φ′p−1)
. (4.35)

This way, the integrals (4.30) do not have to be reevaluated. For updating the
disaggregation, aggregation and translation data, a multiplication of the previous
data with the corresponding factor suffices. In the particular case of purely transla-
tional movement, only the translation data have to be modified.

4.4 FMM applied to Helmholtz equations

The first application of the FMM to electromagnetic scattering problems was re-
ported in [Engheta et al., 1992] for two-dimensional problems and in [Coifman
et al., 1993] for three-dimensional cases. Improvements and variants have been con-
tributed in subsequent publications. The ray-propagation fast multipole algorithm
(RPFMA) [Wagner & Chew, 1994], the fast far-field approximation (FAFFA) [Lu
& Chew, 1995; Brennan & Cullen, 1998] and a high-frequency asymptotic ver-
sion [Burkholder & Kwon, 1996] introduce a windowed translation operator based on
geometrical optics (GO). Indeed, the translation operator has a strong ‘main beam’
in the direction from source to observation group, favouring plane waves which prop-
agate close to this direction. In [Lu & Chew, 1994; Song & Chew, 1995; Song et al.,
1997; Song & Chew, 1998; Sheng et al., 1998; Geng et al., 2001], the multilevel
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fast multipole algorithm (MLFMA) is presented, in which the operational count
is further reduced by nesting groups withing groups. An hybrid FAFFA-MLFMA
algorithm is proposed in [Chew et al., 2002]. An incomplete LU preconditioner for
FMM implementation is described in [Sertel & Volakis, 2000].

Our study concerns the single level FMM.

4.4.1 Two-dimensional Helmholtz Green function

4.4.1.1 Multipole expansion

The fundamental solution for the Helmholtz equation in two dimensions [Harrington,
1961] is given by

G(ρ) =
1

4ı
H

(2)
0 (kρ) , (4.36)

where k = 2π
λ

is the wavenumber, H
(2)
0 is the Hankel function of the second kind and

order 0, ρ = |ro − rs| is the distance between a source point rs and an observation
point ro. The distance ρ can be expressed in function of rc, r and r′ as ρ = |rc+r+r′|
(see Figure 4.5).

The addition theorem for Hankel functions [Harrington, 1961] (see Ap-
pendix B.6.2) is used to expand the Hankel function in (4.36) as

H
(2)
0 (kρ) = H

(2)
0 (k|rc + r + r′|) =

∞∑
m=−∞

Jm(k|r + r′|)H(2)
m (krc)e

ım(φc−φrr′ ) , (4.37)

where φc and φrr′ are the angles that rc and r+r′ form with the x-axis, respectively,
and is valid for rc > |r + r′|.

Next, we consider a Fourier integral form of the Bessel function,

Jm(k|r + r′|) =
1

2π

∫ 2π

0

e− k(r+r′)−ım(φ−φrr′+π/2)dφ , (4.38)

where k = k (cos φ, sin φ).

Omitting the factor 1/ı4 and applying (4.37) and (4.38), we can expand the 2D
Helmholtz Green function (4.36) as [Rokhlin, 1990; Burkholder & Kwon, 1996]:

H
(2)
0 (kρ) =

∞∑
m=−∞

∫ 2π

0

D (r) Tm (rc)A (r′) dφ , (4.39)

with

D (r) = e−ık r , Tm (rc) = H(2)
m (krc)e

−ım(φ−φc+π/2)) , A (r′) = e−ık r′ . (4.40 a–c)

The multipole expansion (4.39) is exact. It must be truncated to a finite num-
ber of terms. The truncation −M/2 ≤ m ≤ M/2 must be sufficient to achieve
the desired accuracy and convergence (the error decreases with M). In fact, once
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a sufficiently large number of multipoles M is considered, the accuracy of the ap-
proximation increases super-algebraically, i.e. faster than any negative power of M
[Rokhlin, 1990]. In this reference, an optimal and semi-empirical fit is given for the
case of two-dimensional scattering problems. The truncation is determined by the
maximum radius R of the circles enclosing the groups as

M/2 = kR . (4.41)

Obviously, the integral over [0, 2π] must be discretised. For this, we use the
trapezoidal rule, i.e. for any function f , we write

1

2π

∫ 2π

0

f(φ)dφ ≈ 1

Nd

Nd∑
n=1

f(φn), (4.42)

where φn = 2πn
Nd

, and Nd = M + 1. The choice of Nd follows from the sampling

theorem [Rokhlin, 1990; Lu & Chew, 1993].

Hence the discretised approximated form of (4.39) reads,

H
(2)
0 (kρ) ≈ 1

Nd

Nd∑
n=1

Dn (r) Tm,n (rc)An (r′) (4.43)

with

Dn (r) = e−ıkn r = e−ıkn (ro−roc) = e−ık r cos(φ−φn) , (4.44)

Tm,n (rc) =

M/2∑
m=−M/2

H(2)
m (krc)e

−ım(φn−φc+π/2)) =

=

M/2∑
m=−M/2

H(2)
m (k|roc − rsc|)e−ım(φn−φc+π/2)) , (4.45)

An (r′) = e−ıkn r′ = e−ıkn (rsc−rs) = e−ık r′ cos(φ′−φn) , (4.46)

and kn = k(cos φn, sin φn), n = 1, · · · , Nd, is the propagation vector of the nth plane
wave.

This multipole approximation (4.43) converges rapidly outside any circle with
diameter D containing all the sources (group) and separated from it by at least one
wavelength.

The plane wave expansion of (4.39) and its discretised version (4.43) incorporate
plane waves propagating in all directions with 360◦ coverage. However, for a given
pair of groups Γs and Γo and from a high frequency asymptotic point of view,
only plane waves propagating close to the direction of rc are expected to contribute
strongly to the fields in the observation group. This becomes particularly clear
when the groups are widely separated. Using the large argument form of the Hankel
function (see Appendix B.1), it is easy to show that for widely separated groups
(rc � 2R) equation (4.40 b) reduces to

T (rc) ∼
√

ı2

πkrc

e−ıkrc
sin[(M + 1)(φ− φc)/2]

sin[(φ− φc)]
. (4.47)



80 CHAPTER 4. FAST MULTIPOLE METHOD

This function clearly shows a strong main beam for φ close to φc and a highly oscil-
latory and slowly decaying sidelobe region [Wagner & Chew, 1994]. The translation
operator can thus be interpreted as a plane wave filter which selects plane wave com-
ponents propagating at angles close to rc and attenuates plane waves propagating
at wide angles. An interesting asymptotic evaluation of the translation operator is
presented in [Burkholder & Kwon, 1996]. Herein, a windowing function is defined
by identifying the geometrical optics lit region of the translator operator, which is
evaluated asymptotically using the method of steepest descents [Clemmow, 1950].

The function grad G can be expanded in a similar way. It suffices to derive (4.44)
with respect to the coordinates of the observation point ro = (xo, yo). Taking into
account that r = ro − roc = (xo − xoc, yo − yoc) = (x, y), we can write

gradDn (r) = (∂xoDn, ∂yoDn) = (∂xDn, ∂yDn) , (4.48)

with

∂xDn = −ık cos φn e−ıkr cos(φ−φn) , ∂yDn = −ık sin φn e−ıkr cos(φ−φn) . (4.49)

4.4.1.2 Fast matrix-vector product

Analogously to the Laplace cases treated in Sections 4.3.1.2 and 4.3.2.2 for the
Laplace Green equations, the system matrix (3.37 a) can be formally expressed as
in (4.1).

Let us consider the degrees of freedom j
k

and j
l
of j

s
associated with the basis

functions (3.44) β
k
(ro) and β

l
(rs) that are nonzero vectors on the respective far

groups Γo and Γs. For the sake of simplicity, we restrict the formal decomposition
hereafter to the EFIE case (3.49) and in particular to the term that depends on
(4.36). Its contribution to M far is denoted

(
M far

o,s

)
k,l

and obtained by applying

(4.43), it reads

<

(
Nd∑
n=1

MD
o,k,n

M/2∑
m=−M/2

MT
m,nM

A
s,l,n

)
, (4.50)

with

MD
o,k,n =

∫
Γo

β
k
Dn dΓ , MA

s,l,n =

∫
Γs

β
l
An dΓ , (4.51 a,b)

and
MT

m,n =
wµ

4
Tm,n . (4.52)

Note that contribution of the term in (3.49) with grad G would be obtained in a
similar way, and then added to (4.50).

The objective of (4.50) is again to speed up the product M farQ within an
iterative process (see Section 4.2.2).
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4.4.1.3 Operational count

The power of the FMM lies in the fact that there is a one-to-one correspondence
between the plane wave spectral components of the source group and the plane wave
coefficients of the observation group.

The total operational count involved in the FMM for one matrix-vector multi-
plication is estimated as follows. Let us assume that the total number of unknowns
N is equally distributed in Ng = N/L groups (L is then the number of unknowns
per group) and that there are n nearby groups (in general, two or more depending
on the geometry). A group is neighbour of itself. MT

m,n (4.52) translates the mth
plane wave of group Γs to the mth plane wave of group Γs.

The number of operations involved in finding the interactions within the source
group and between the n adjacent nearest-neighbour groups (see Figure 4.1) is
nL2Ng = nLN . To numerically evaluate (4.51 b) for Nd directions and Ng groups
requires NdLNg ≈ c1LN operations, where Nd ≈ c1L satisfies the sampling the-
orem (c1 constant) [Rokhlin, 1990; Bindiganavale & Volakis, 1996]. The num-
ber of plane wave translations (4.52) for N2

g source-observation pairs of groups is
NdN

2
g ≈ c1N

2/L. Finally, the plane wave reconstruction of the fields at the receiv-
ing groups (4.51 a) requires NdLNg ≈ c1LN . The total estimated operational count
is then

c1N
2/L + c2LN (4.53)

where c2 = n + (n − 1)c1. Minimising with respect to L yields to an operational
count of O(N1.5) for L ≈

√
N , what implies Ng =

√
N .

4.4.2 Three-dimensional Helmholtz Green function

4.4.2.1 Multipole expansion

The three-dimensional Helmholtz Green function

G(ρ) =
e−ıkρ

4πρ
, (4.54)

can be expanded by means of the addition theorems for spherical Bessel and Hankel
functions [Coifman et al., 1993] (see Appendix B.6.2). Omitting the factor 1/4π, we
have

e−ıkρ

ρ
= −ık

∞∑
m=0

(−1)m(2m + 1)jm(k|r + r′|)h(2)
m (krc)Pm((r + r′) · rc) , |r + r′| < ρ

(4.55)
where we have taken into account that the direct path source to observation point
can be decomposed as ρ = ro − rs = r′ + rc + r (see Figure 4.5), jm is the spherical

Bessel function of order m, h
(2)
m is the spherical Hankel function of the second kind

and order m and Pm is the Legendre polynomial of order m. These special functions
are defined in Appendix B.
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Let us consider the expansion of the product jm Pm appearing in equation (4.55)
as a surface integral over the unit sphere ΓSph of propagating plane waves (spectral
integral):

(−ı)m4πjm(k|r + r′|)Pm ((r + r′) · rc) =

∫
ΓSph

e−ık·(r+r′)Pm(k̂ · rc)ds , (4.56)

where k̂ is the unit position vector on ΓSph and k = kk̂

Using this identity and interchanging the orders of the summation and integra-
tion, the expansion (4.55) can be rewritten as

e−ıkρ

ρ
=

∫
ΓSph

D (r) Tm (rc)A (r′) ds , (4.57)

with

D (r) = e−ık r , (4.58)

Tm (rc) =
−ık

4π

∞∑
m=0

(−ı)m(2m + 1)h(2)
m (krc)Pm(k̂ · rc) , (4.59)

A (r′) = e−ık r′ . (4.60)

Again, the exact multipole expansion (4.57) must be truncated. The truncation
0 ≤ m ≤ M must be sufficient to achieve the desired accuracy and convergence.
An excellent empirical fit [Rokhlin, 1993; Coifman et al., 1993] for the number of
multipoles required for single precision (8 digit precision) is

M = kD + 5 ln (kD + π), (4.61)

where D is the maximum diameter of the circles enclosing the groups. For double
precision (16 digits) this is

M = kD + 10 ln (kD + π). (4.62)

Furthermore, the Nd directions k̂ on the unit sphere ΓSph must be sufficient to
give a quadrature rule that is exact for all spherical harmonics of order m < 2M .
A simple method [Rokhlin, 1993] for accomplishing this is to pick polar angles θ
that are zeros of PM(cos θ), and azimuthal angles φ to be 2M equally spaced points.
Thus, for this choice of k̂ = (sin θ cos φ, sin θ sin φ, cos θ), the number of directions
equals Nd = 2M2. If more efficient quadrature rules for the sphere (e.g. those
described in [McLaren, 1963]) are used, then Nd ≈ 4/3M2.

Applying the truncation to (4.57), we can expressed the approximated expansion
as

e−ıkρ

ρ
≈

Nd∑
n=1

Dn (r) Tm,n (rc)An (r′) , (4.63)

with

Dn (r) = e−ıkn r , (4.64)
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Tm,n (rc) =
−ık

4π

M∑
m=0

(−ı)m(2m + 1)h(2)
m (krc)Pm(k̂n · rc) , (4.65)

An (r′) = e−ıkn r′ . (4.66)

and k̂n = (sin θn cos φn, sin θn sin φn, cos θn), kn = kk̂n.

The solution of an integral equation requires the expansion of grad G as well. It
can be obtained by deriving (4.64) with respect to the coordinates of the observation
point ro = (xo, yo, zo). Considering that r = ro− roc = (xo−xoc, yo− yoc, zo− zoc) =
(x, y, z), it reads

gradDn (r) = (∂xoDn, ∂yoDn, ∂zoDn) = (∂xDn, ∂yDn, ∂zDn) , (4.67)

with

∂xDn = −ık sin θn cos φn e−ıknr , (4.68)

∂yDn = −ık sin θn sin φn e−ıknr , (4.69)

∂zDn = −ık cos θn e−ıknr . (4.70)

4.4.2.2 Fast matrix-vector product

Again, the system matrix (3.37 a) can be formally approximated as in (4.1).

Let us consider the degrees of freedom j
k

and j
l
of j

s
with associated the RWG

basis functions (3.40) β
k
(ro) and β

l
(rs) that are nonzero vectors on the respective

far groups Γo and Γs. For the sake of simplicity, we restrict the formal decomposition
hereafter to the EFIE case (3.49) and in particular to the term that depends on the
3D Helmholtz Green function (4.54). Its contribution to M far is denoted

(
M far

o,s

)
k,l

and obtained by applying (4.63), it reads

<

(
Nd∑
n=1

MD
o,k,n

M∑
m=0

MT
m,nM

A
s,l,n

)
, (4.71)

with

MD
o,k,n =

∫
Γo

β
k
Dn dΓ , MA

s,l,n =

∫
Γs

β
l
An dΓ , (4.72 a,b)

and
MT

m,n =
ıwµ

4π
Tm,n . (4.73)

Note that contribution of the term in (3.49) with grad G would be obtained in a
similar way, and then added to (4.71).

The goal of (4.71) is once again to accelerate the product M farQ within an
iterative process (see Section 4.2.2).
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4.4.2.3 Operational count

Let us estimate the total operational count involved in the solution of an EFIE
problem (Section 3.4.1) when applying FMM. For multipole expansions truncated
at order M and a number of directions Nd = 2M2 for k̂, the total number of coef-
ficients required to expand a and ϕ is 4Nd (aggregation and disaggregation). Let
us consider Ng groups with L = N/Ng unknowns each and a number of neighbour
groups n. The number of operations involved in the direct computation between
the source group and the n neighbour groups requires (n + 1)L2Ng = (n + 1)LN .
The numerical evaluation of (4.72 b), aggregation operation, for Nd directions and
Ng groups requires 4NgNdL = 4NdN . The number of plane wave translations (4.73)
for N2

g source-observation pairs of groups is 4N2
g N2

d . Finally, the plane wave recon-
struction of the fields at the receiving groups (4.72 a), disaggregation operation,
requires 4NgNdL = 4NdN . The total operational count is thus

(n + 1)LN + 8NdN + 4N2
g N2

d . (4.74)

Minimising with respect to Ng yields to Ng = cte (N/Nd)
2/3 and a computational

cost of O(N4/3).
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5.1 Introduction

In this chapter we present a series of low frequency (Laplace equation) numerical
tests performed to validate the theoretical developments described in Chapter 4 and
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their implementation. We consider several two-dimensional and three-dimensional
test cases that may be modelled by numerical and physical coupled systems. Either
a hybrid FE-BE analysis or a pure BE analysis is carried out for the electromagnetic
problem. The FMM is applied to the expansion of the 2D and 3D Laplace equation
to accelerate the solution of the BE part. The adaptive truncation scheme, elabo-
rated in Sections 4.3.1.1 and 4.3.2.1, is applied. In case of FMM acceleration, the
preconditioning (e.g. ILU decomposition) is based on the sparse matrix due to the
BE near-field interactions (and the complete FE contribution for hybrid analyses).

The efficiency of the FMM is demonstrated through the study of the different
numerical tests. Significant savings in computation time and storage requirements
are achieved.

The first numerical test (Section 5.2) consists in the hybrid FE-BE analysis
of a 2D eddy current problem. The aim of this test is to show that the adaptive
truncation scheme significantly contributes to the computation time savings achieved
with the FMM, particularly when dealing with moderate sized problems. The second
numerical test (Section 5.3) concerns the hybrid modelling of a linear actuator taking
into account saturation, the voltage supply and the mechanical equation. Updating
the FMM acceleration (aggregation, disaggregation and translation) data for every
new position of the moving part will prove to be simple and computationally cheap
(only the translation data have to be updated). The third application (Section 5.4)
considered deals with the hybrid FE-BE analysis of a 3D eddy current problem,
in particular, the TEAM workshop problem 28. The transient behaviour of the
electrodynamic levitation device is modelled taking into account the mechanical
equation. The fourth numerical test (Section 5.5) models a microelectromechanical
(MEM) switch by means of the FMM accelerated BE method. The results are
validated and compared with those given by two commercial software packages.

5.2 Shielding problem

A linear time harmonic eddy current problem in R2 is considered. The magnetic field
is computed using both a full FE model and a hybrid FE-BE model. We choose the
2D b-conforming formulation and the 2D hybrid b-conforming formulation described
in Sections 2.5.1 and 2.6.3, respectively.

The full FE model is applied in a domain Ω comprising a domain Ωs, a domain
Ωc, the surrounding air and a bounding ring to which a transformation method is
applied in order to account for the free space extending to infinity [Brunotte et al.,
1992]. A current density j = js(x, y) 1z, directed along the z-axis, is given in the
domain Ωs. The rest of the exterior domain is current free. Eddy currents may
appear in the domain Ωc (with conductivity σ).

In the hybrid FE-BE model, the FE method is used in a domain Ω comprising
solely the domains Ωs and Ωc. Its boundary is denoted Γ. The BE method accounts
for the free space exterior to Ω extending to infinity. The BE part is either accel-
erated by means of the FMM or not. The adaptive truncation scheme for the 2D
Laplace Green function is used (see Section 4.3.1.1).
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Figure 5.1 Three conductors Ωs and thin steel plate Ωc

Figure 5.2 Detail of the discretisation of the domain Ω of the hybrid model

5.2.1 Description of the problem

The problem comprises three conductors carrying a three-phase current and a thin
steel plate placed above the conductors. This is depicted in Figure 5.1. The plate
serves as a protective shield (see flux lines in Figure 5.4).

The three copper conductors with square cross-section (30mm × 30mm, µ = µ0)
carry imposed balanced sinusoidal currents of frequency f = 50Hz and r.m.s. value
2 kA. The horizontal distance between the centres of the conductors is 125mm. The
three conductors constitute the source domain Ωs.

The steel plate is 1mm thick and 1m wide. It is placed 100mm above the
conductors. Its relative permeability µr = µ/µ0 and electrical conductivity σ
are 1000 and 2 106 S/m, respectively. The penetration depth in the plate equals
1/
√

πfµσ =1.59mm at f = 50Hz.

Figure 5.2 shows a detail of the discretisation of the FE domain Ω in the hybrid
FE-BE model. It comprises the steel plate and a layer of air around the plate.
The plate Ωc is discretised into four layers of triangular elements. The number of
divisions along x is 500. Thanks to the three layers of air elements around the plate,
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Figure 5.3 Discretisation of the FE transformation domain

the number of line segments on the BE contour Γ is reduced to 104 while retaining
a large number of divisions in the plate. The air layer also allows to avoid the
oscillation problem that may occur when using piecewise constant basis functions
βk(ξ) on an air-iron interface [Henrotte, 2000; Geuzaine et al., 2001]. The hybrid
FE-BE discretisation yields 4316 complex unknowns for the harmonic analysis: 4212
for a and 104 for q.

In the full FE model, the plate, the three conductors and a portion of the sur-
rounding air are discretised by means of first order triangular elements. The dis-
cretisation of both the plate and the surrounding air layers coincides with the one in
the hybrid model. The FE model is bounded by a ring (see Figure 5.3). On its outer
boundary, the Dirichlet condition a = 0 is imposed. Two lines placed 0.5m and 1m
above the plate, where the computed induction will be shown, are also depicted in
Figure 5.3.

In order to allow a fair comparison of the hybrid model and the FE model with
regard to both accuracy and computational cost, a sufficiently fine discretisation
is adopted for the latter, resulting in 12844 complex unknowns for the harmonic
analysis with a piecewise linear interpolation of the magnetic vector potential a.

5.2.2 Calculation results

The harmonic field calculations are first carried out with the FE model and the
nonaccelerated hybrid FE-BE model. The flux pattern (real and imaginary part)
obtained with the FE model is represented in Figure 5.4.

In Figure 5.5 the real and imaginary part of the x-component of the magnetic
induction in the four layers of the plate are depicted for both resolution methods.
The agreement is very good. The discretisation of the plate in four layers proves to
be necessary: due to the eddy currents, the induction is seen to vary from one layer
to another.

The y-component of the magnetic induction (real and imaginary part) above the
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Figure 5.4 Real (left) and imaginary part (right) of the flux pattern

plate at the distances of 0.5 m and 1.0 m is depicted in Figure 5.6. As expected,
the curves achieved with the hybrid model are smoother due to the fact that in
the BE formulation free space is automatically and exactly considered, while in the
FE model the surrounded air is discretised and a transformation method is used to
account for its extension to infinity.
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Figure 5.5 Induction bx in the four layers (denoted l1, l2, l3, l4) in which the steel
plate is discretised

The FMM is now applied to speed up the BE part of the hybrid model. The
BE contour Γ is split up in 25 groups constituted by either 10 line segments (the
two groups on the left and right edge of the plate) or 8 line segments (all the other
groups). Two groups are considered to be far groups if there are at least two groups
in between. This corresponds to Rs/d ≤ 1/6 and Ro/d ≤ 1/6, or, according to
Figure 4.7 in Section 4.3.1, to a maximum truncation number Pmax = 8 for ε = 10−6.
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Figure 5.6 Induction by at 0.5m and 1.0m above the plate

The classical law P = log2(1/ε) leads to a truncation number of 20.

The error of the induction in and above the plate obtained with the accelerated
FE-BE hybrid model with respect to the nonaccelerated model is illustrated in
Figures 5.7 and 5.8 . It is lower than 0.3% in the plate, 0.06% at 0.5m above the
plate and 0.033% at 1.0m above the plate.
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Figure 5.7 Error on the induction bx in the steel plate due to the FMM acceleration

5.2.3 Computational cost

For all computations, the system of algebraic equations is solved by means of the
iterative solver GMRES [Saad & Schultz, 1986]. To ensure convergence, an ILU-
preconditioner is applied.
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Figure 5.8 Error on the induction by at 0.5m and 1.0m above the steel plate due
to the FMM acceleration

The total computation time on a 2 GHz Intel Pentium 4 Processor is 3.6 s for
the FE model and 7.6 s for the hybrid model without FMM acceleration. Using the
FMM with the adaptive truncation scheme (Pmax = 8 and Pav = 4 for ε = 10−6)
results in a calculation time of 3.2 s. This is mainly due to the reduced time for the
assembly (2.4 s vs 6.9 s), which constitutes approximately 75% and 90% of the total
computation time for the accelerated and nonaccelerated hybrid model, respectively.
When using a fixed truncation number P = 20, the application of the FMM to the
hybrid model does not prove useful: the computation time increases to 12.4 s. By
means of the adaptive truncation scheme, the solution of the system is thus achieved
4 times quicker.

The time spent on the iterative resolution of the system of algebraic equations
is 1.2 s for the FE model and only 0.6 s for the accelerated hybrid model.

5.3 Electromechanical device

The two-dimensional modelling of a linear actuator is studied in detail. The 2D hy-
brid b-conforming formulation developed in Section 2.6.3 is applied to the magneto-
static problem in R2. The FE method is used in a domain Ω comprising all saturable
parts of the model and a domain Ωs in which the current density j = js(x, y, t) 1z,
directed along the z-axis, is given. The BE method provides a rigorous treatment
for the free space exterior to Ω, the boundary of which is denoted Γ. Moreover, it
allows to take into account movement without remeshing. The permanent magnets
are considered as another source (see Section 1.3.2.2).

The transient phenomenon is characterised taking into account the nonlinear
behaviour of materials, the voltage supply and the mechanical equation.
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5.3.1 Electrical coupling of saturated hybrid models

We consider an electrical circuit which comprises a number of stranded conductors
(e.g. coils) in the FE domain and a number of lumped components, viz voltage
sources, resistive components and inductive components. By introducing loop cur-
rents associated with a set of independent current loops in the electrical circuit,
Kirchhoff’s current law automatically holds [Lombart & Meunier, 1993]. Adding
the electrical circuit equations to the hybrid FE-BE system (2.58) in time domain,
the coupled system of algebraic and differential equations can be written as S C K

DT M 0
0 0 R

  A
Q
Il

+

 T 0 0
0 0 0

K∗T 0 L

 dt

 A
Q
Il

 =

 Jpm

0
U

 , (5.1)

where S and T are sparse FE matrices, C and D are partially dense matrices, M
is a full BE matrix, A and Q are column matrices containing the coefficients of the
magnetic vector potential and the equivalent magnetic current layer, R and L are
square matrices that represent the resistive and inductive components respectively, Il

and U are vectors that contain the loop currents and the voltage sources respectively,
T accounts for the eddy currents in conducting parts of the FE domain, K and K∗

are due to the flux linkage of the conductors in the 2D FE model and Jpm contains
the equivalent nodal currents due to the permanent magnets [Tsukerman et al.,
1993]. The end-winding inductance of the FE conductors (3D effect) can be taken
into account by means of lumped elements in the electrical circuit.

For a given voltage excitation and given initial conditions, the system (5.1) can
be solved in the time domain. The time discretisation is commonly performed with
the so-called θ-method, which amounts to Crank-Nicholson method if θ = 1/2, and
to the backward Euler method if θ = 1.

When saturation is included in the analysis, time stepping the system of algebraic
and differential equations (5.1) produces a system of nonlinear equations for each
time step. These nonlinear systems can be easily solved by means of the Newton
Raphson (NR) method. The NR method linearises the nonlinear systems and an
iterative method, e.g. GMRES, is applied.

In case of FMM, for every NR iteration the multiplications of M far and C far

by the solution vector of the previous iteration Q are sped up when calculating the
residual. Then for every GMRES iteration, the multiplications of M far and C far by
a trial vector ∆Q are also accelerated.

5.3.2 Electromechanical modelling

We consider a rigid part that moves inside an airgap (as in the application example
below).

Some elements of the complete system matrix are time dependent due to the
movement (BE part) and magnetic saturation (FE part). These elements must be
recalculated for any new time step. Furthermore, for every time step, the nonlinear
contributions vary within the NR iterative loop. In order to reduce computation
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time, the whole system matrix is thus split up in three separate matrices. The
contributions that remain constant throughout the simulation are calculated and
stored. Those that are position dependent are recalculated and saved in a matrix
for every time step. Finally, those that are due to the nonlinear materials are
reevaluated for every time step and every NR iteration.

5.3.2.1 Mechanical equation

In the FE-BE simulation, the position of the moving body is either a given function
of time or follows from the magnetic and other forces exerted on it. In the latter
case, the mechanical equation has to be considered alongside the electromagnetic
equations (5.1). If the movement is purely translational, it reads:

mdtv(t) + ξv(t) + kx(t) = F (t), v(t) = dtx(t), (5.2)

where x(t) is the position, v(t) the speed, m the mass, ξ the viscous friction coeffi-
cient, k the elastic constant and F (t) the total applied force including the magnetic
forces.

If the time step for a dynamic analysis is sufficiently small the mechanical state
variables (e.g. the total magnetic force F ) can be regarded as constant for the
solution of the electromagnetic equations in the considered time step and vice versa.
Under this condition the electromagnetic and mechanical equations can be solved
alternatively rather than simultaneously. We adopt this strategy referred to as “weak
electromechanical coupling” [Henrotte et al., 1994].

5.3.2.2 Computation of the magnetic force

The total magnetic force F exerted on the moving part can be calculated by in-
tegrating the Maxwell stress tensor T along a contour enclosing it. This method
is mesh dependent [Ren & Razek, 1990]. The Arkkio method is a variant of the
Maxwell stress tensor method for torque calculation in rotating electrical machines
[Arkkio, 1987]. The result obtained by the Arkkio method can be seen as the mean
value of the torque calculated with the Maxwell stress tensor method over a family
of concentric contours in the moving band.

If the FE domain Ω comprises an air layer S around the moving piece as depicted
in Figure 5.12, a generalisation of the Arkkio method referred to as the eggshell
method can be used as well [Henrotte, 2000; Henrotte et al., 2003]. It amounts to a
surface integral on the air layer S:

F = lz

∫
S

1

δ
T n̂ ds with T =

1

µ0

(
b b− b2

2
1

)
, (5.3 a,b)

where lz is the axial length of the device, δ the local thickness of the FE air layer
and n̂ is the outward unitary normal vector.

When the FE-BE interface Γ coincides with a strong material discontinuity (i.e.
it is located between two materials with very different µ such as air and iron),
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unacceptable numerical oscillations may occur. The air layer required for the force
calculation by (5.3 a) also allows to avoid the oscillation problem [Henrotte, 2000;
Geuzaine et al., 2001].

5.3.3 Description of the problem

We study an actuator developed by the firm E.I.B. (Électricité industrielle de Bel-
gique). As shown in Figure 5.9, the actuator comprises a yoke, two permanent
magnets, two coils and a moving piece.

upper coil

permanent
magnets

lower coil

yoke

mover

Figure 5.9 2D model of a linear actuator, flux lines due to the permanent magnets

The airgaps above and below vary, depending on the position of the mover,
between 0.3mm and 15.7mm. The two lateral gaps equal 0.5mm. The permanent
magnets have a constant horizontal remanent induction of br = 0.8 T and a relative
permeability of µr = 1.03. The yoke and the mover are made of iron. Eddy currents
in the magnets and in the laminated yoke and mover are neglected.

The permanent magnets constitute a magnetic lock that keeps the mover either
in the upper or lower position tending to diminish the residual airgap. The mover is
moved up or down by applying a voltage pulse to one of the coils. The commutation
is facilitated by two springs. The vertical force they exert on the mover as well as
the force due to the magnets are shown in Figure 5.10 as a function of position.

Both linear and nonlinear dynamic simulations are performed. For the linear
analysis, the relative permeability of the iron is taken as µr = 1000. For the nonlinear
study, the nonlinear single-valued BH curve depicted in Figure 5.11 is adopted, and
the iterative NR method is applied for every time step. The computational cost for
both the nonaccelerated and the accelerated hybrid model will be discussed.

The FE domain Ω comprises the yoke, the mover, the permanent magnets and
the coils. On its outer boundary, the Dirichlet condition a = 0 is imposed. In order
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Figure 5.11 Nonlinear single-valued BH curve

to compute the magnetic force as mentioned in the previous section, an FE air layer
of uniform thickness δ = 0.2 mm is placed around the mover.

The BE domain is constituted by the outer contour of the air layer enclosing the
moving piece, denoted Γ1, and the outer boundary of the airgap, denoted Γ2 (see
Figure 5.12). The hybrid FE-BE discretisation, with 4083 triangular elements and
264 straight line segments, yields 2372 unknowns for the electromagnetic analysis
(2108 for a and 264 for q). We adopt piecewise constant basis functions for q and
evaluate the integrals (2.61) and (2.63) analytically.

When the single-level FMM is applied to speed up the BE part of the hybrid
model, the contour Γ1 (134 segments) and contour Γ2 (130 segments) are split up
in 26 and 21 groups respectively. This distribution was found to be optimal: using



96 CHAPTER 5. LOW FREQUENCY NUMERICAL TESTS

air layer

Γ2

Γ1

airgap

ai
rg

ap
Figure 5.12 Detail of the discretisation of the FE air layer surrounding the moving
piece. For the sake of visualisation, the airgap and the air layer have been scaled

more groups leads to a higher computation time for solving the system of equations
while using less groups increases the assembly time. Two groups (on either Γ1 or
Γ2) are considered to be far groups if there are at least two groups in between.
This corresponds to Rs/d ≤ 1/6 and Ro/d ≤ 1/6, or, according to Figure 4.7, to
a maximum truncation number Pmax = 8 for ε = 10−6. The classical law P =
log2(1/ε) leads to a truncation number of 20.

The voltage supply is included in the model by coupling a simple electrical circuit
with the FE part of the hybrid model.

The rigid moving piece has a purely translational movement. Hence, the FMM
disaggregation and aggregation integrals (4.12) are evaluated only once. As the BE
domain comprises two contours Γ1 and Γ2 whose relative position varies, the FMM
translation data (4.31) must be recalculated for every time step.

The system of algebraic and differential equations is time-stepped using the back-
ward Euler scheme. A time interval of 50 ms (sufficiently long for achieving the
commutation) has been studied with ∆t = 0.4 ms (125 time steps). The mechanical
equation and the electromagnetic system are solved alternatively obtaining the new
position and the new magnetic force respectively. A magnetostatic calculation with
only the permanent magnet excitation is carried out to supply the correct initial
condition for the dynamic simulation.

5.3.4 Calculation results

At t = 0, the mover is in the upper position (x = 7.7mm) and a 15 V 10 ms voltage
pulse is applied to the lower coil. The time evolution of the current in the lower
coil for both the linear and nonlinear analysis is depicted in Figure 5.13. If the
mover is maintained in the upper position, the coil behaves as an RL circuit and
an exponential evolution of the current is expected and also observed. This case for
both the linear and nonlinear analysis is also shown in Figure 5.13. The movement
affects considerably the time variation of the current.
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Figure 5.13 Evolution with time of the current in the lower coil when a 15 V 10
ms voltage pulse is applied (without and with movement)

Figures 5.14 and 5.15 show the position and speed of the mover in function of
time. The mover reaches the lower position after 33ms and 36ms in the linear and
nonlinear analysis respectively.
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Figure 5.14 Position (mm) of the mover in function of time (ms) for the linear and
nonlinear analysis with the FE-BE method (with or without FMM acceleration)

All results obtained with the accelerated FE-BE method present an excellent
agreement with those of the nonaccelerated FE-BE.

5.3.5 Computational cost

All computations have been carried out on a 400 MHz MIPS R12000 Processor.
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Figure 5.15 Speed (m/s) of the mover in function of time (ms) for the linear and
nonlinear analysis with the FE-BE method accelerated or not by the FMM

The systems of algebraic equations are solved by means of the iterative solver
GMRES [Saad & Schultz, 1986] with ILU-preconditioning. For the 2D problem at
hand, when applying FMM acceleration, the preconditioning (based only on the
sparse matrix comprising the FE contribution and the BE near field interactions)
results in an increase of the number of GMRES iterations for solving the linear or
linearised systems of equations, disadvantage which is largely outweighed by the fact
that M far and C far are not evaluated explicitly.

Indeed, the linear calculation takes 1420 s without FMM and 470 s with FMM
acceleration. For the nonlinear simulation, with 3 to 5 NR iterations per time step,
the computation times are 2266 s without FMM acceleration and 990 s with the
FMM acceleration. The reduction in computation time achieved by the FMM in
the linear and nonlinear case is thus 70% and 56% respectively.

5.4 TEAM Workshop problem 28

We consider an eddy current problem in R3. The hybrid magnetodynamic h–ϕ for-
mulation described in Section 2.6.1 is used. The FE method is used in a domain Ω
with boundary Γ while the BE method provides an exact treatment of the exterior
space R3\Ω and allows to consider movement without any tedious mesh manipula-
tions (remeshing). The eddy current conducting part of Ω is denoted Ωc and the
nonconducting one ΩC

c .

The transient behaviour is modelled taking into account the eddy currents and
the mechanical equation.
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5.4.1 Description of the problem

The electrodynamic levitation device of TEAM workshop problem 28 [Karl et al.,
1999] concerns a cylindrical aluminium plate (σ = 3.40 107 S/m, radius = 65mm,
thickness = 3mm, mass = 0.107 kg) located above two coaxial coils carrying im-
posed sinusoidal currents of amplitude 20A and frequency 50Hz (see Figure 5.16).
The inner and outer coils have w1 = 960 and w2 = 576 turns, respectively. The
dimensions of the device are shown in Figure 5.17. The levitation height z refers to
the distance between the lower circular end of the cylindrical plate and the upper
sides of the coils (z = 0).

Figure 5.16 Levitation device model: cylindrical plate above two coaxial coils

15 28 41 46.5

w1 w2

130

z

3
z = 0

Figure 5.17 Dimensions in mm of the electrodynamic levitation device

At t = 0 the plate rests above the coils at a distance of z = 3.8mm. For t ≥ 0,
sinusoidal currents flow in the coils in opposite directions.

The coils generate a time-varying magnetic field that induces eddy currents in
the conducting plate Ωc, which results in a vertical impulsive force Fmag on it.
After some damped oscillations the plate reaches a stationary levitation height of
z = 11.3mm (measured). Due to the symmetry of the problem, we assume that the
movement is purely translational.
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The source magnetic field hs is calculated by means of the Biot-Savart law (1.53).
To this end, the inner and outer coils are discretised in 192 and 160 hexahedra
respectively (see Figure 5.16). The FE domain Ω can be thus restricted to the
conducting plate Ωc. We adopt edge basis functions for h and piecewise linear basis
functions for q.

Different levels of mesh refinement are considered. When the FMM is applied,
the surface Γ is split up into 36, 45, 60 or 77 groups depending on the discretisation
(see Figure 5.18). Note that each group comprises elements on both sides of the
plate.

Figure 5.18 Distribution in 36 (right) and 60 (left) groups of the plate

The problem at hand deals with a purely translational movement of only one
BE surface Γ. Hence, the FMM integrals (4.30) and (4.31) are independent of the
position of the plate and are evaluated only once.

The system of algebraic and differential equations (2.39) and (2.40) is time-
stepped along with the mechanical equation (5.2) using the backward Euler scheme.
A time interval of [0, 600 ms] is studied with either ∆t = 0.2ms (3000 time steps)
and ∆t = 0.4ms (1500 time steps). We adopt the so-called weak electromechanical
coupling (see Section 5.3.2.1).

The magnetic force Fmag exerted on conductors Ωc can be calculated by means
of Lorentz law:

Fmag =

∫
Ωc

j × b dΩc . (5.4)

5.4.2 Calculation results

The transient behaviour of the levitation device is simulated using a hybrid FE-
BE discretisation consisting of 1280 tetrahedra and 1344 triangles, which yields
1993 unknowns: 1473 for h and 520 for q. This is the coarsest mesh in Table 5.1.
The optimal group distribution (for this particular mesh) is found to be 36 groups:
employing more groups yields a higher computation time for solving the system of
equations and more storage costs for the FMM data structures, while using less
groups increases the assembly time and the memory requirements for the near BE
part. The optimal number of FMM groups increases with the number of unknowns.
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The maximum and average truncation number are Pmax = 9 and Pav = 3 for Rfar =
0.04 and ε = 10−6.

Figure 5.19 presents a comparison between the measured levitation height vs
time according to [Karl et al., 1999] and computed results for ∆t = 0.2ms and
∆t = 0.4ms obtained by means of the FMM accelerated hybrid FE-BE technique .
A better agreement is observed as the time step diminishes. For a given time step,
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Figure 5.19 Measured and calculated levitation height vs time

a finer mesh is not observed to significantly improve the accuracy.

5.4.3 Computational cost

The system of algebraic equations is solved by means of the iterative solver GM-
RES [Saad & Schultz, 1986] with ILU-preconditioning on a 400 MHz MIPS R12000
Processor.

The CPU time per time step and the memory requirements for the different
discretisations (with Γ split up into 36, 45, 60, 60, 60, 77 and 77 groups, respectively)
are shown in Table 5.1. It illustrates the efficiency of the FMM as the number of
BE unknowns increases. With the fourth mesh, e.g., the accelerated FE-BE analysis
is roughly 16 times faster than the nonaccelerated one and the savings in memory
approach 67%. Furthermore, the use of the adaptive truncation scheme instead of
a fixed truncation number (P = 20 for ε = 10−6) speeds up the solution of the
electromagnetic system with roughly a factor two.

The grouping of the elements and the computation of the FMM data structures
is done in a preprocessing that takes a few seconds, which is negligible in comparison
to the total computational cost.
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Table 5.1 CPU time and memory requirements for different meshes

Unknowns FE-BE FE-BE + FMM
FE BE CPU mem CPU mem

(hours) (Mb) (hours) (Mb)

1473 520 0.41 21 0.15 18
2433 848 1.49 42 0.30 24
3633 1256 4.97 71 0.52 35
5073 1744 16.03 150 0.98 51
6753 2314 45.24 326 1.84 70
8673 2960 117.41 514 2.65 94
10833 3688 - - 4.53 158

5.5 A shunt capacitive MEM switch

The present test case has been considered in the frame of a collaboration with
the Katholieke Universiteit Leuven (KUL). The specifications of the MEM switch
together with some results obtained by means of different commercial software pack-
ages have been furnished by the departments ESAT-MICAS and ESAT-ELECTA.

Electrostatic parallel-plate actuators are widely used in many types of microelec-
tromechanical systems (MEMS). MEM switches can be used in series or shunt mode
and their contacts can be resistive or capacitive [Brown, 1998; Tilmans, 2002]. A
shunt capacitive MEM switch consists of a metal armature (bridge) suspended over
a bottom conductor, e.g. the centre conductor of a coplanar waveguide, mechanically
anchored and electrically connected to the ground. A thin dielectric film is deposited
on the bottom conductor (see Figure 5.20). When the bridge is up, the capacitance
of the switch is very small and the RF signal freely passes through (the RF switch is
on). By applying a bias voltage the switch is actuated: an electrostatic force occurs
between the top and bottom electrodes and the bridge is pulled down, the capac-
itance increases and causes an RF short to ground (the RF switch is off) [Brown,
1998; Tilmans, 2002]. These actuators can be treated, in first approximation, as
lumped spring-mass systems with a single mechanical degree of freedom [Tilmans,
2002]. This analysis is helpful for physical insight, but disregards important effects
such as the bending of the top plate and the stiction1 between the bridge and the
bottom contact [Brown, 1998]. The performance of RF MEM switches strongly de-
pends on the deformation of the top electrode. A detailed knowledge of the exact
deformation for an accurate estimate of the capacitance is thus crucial.

A BE approach is particularly suited for the analysis of the real electrostatic prob-
lem [Farina & Rozzi, 2001]. Indeed, the BE method provides a rigorous treatment
for open problems and allows to consider the deformation without any remeshing.
The elastic deformation of the top electrode (and the suspension beams) can be han-
dled by means of a FE model. It depends directly on the electrostatic force exerted

1Stiction is the force required to cause a body in contact with another to begin to move.
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Figure 5.20 Electrostatically actuated capacitive shunt switch implemented on a
CPW transmission line (side and top views)

on the bridge and the material properties. The electrostatic field induces a force
distribution, the value of which increases when the distance between the top and
bottom plate diminishes. This interaction between the electrostatic and mechanical
systems can be considered iteratively.

In this Section, we discuss the coupled mechanical-electrostatic analysis of a
capacitive MEM shunt switch. Simulated results obtained by means of different
software packages are briefly compared.

5.5.1 Description of the problem

The shunt capacitive MEM switch represented in Figure 5.21 is studied.

It concerns a perforated top electrode (thickness = 4µm) suspended by a set of
beams, and a bottom electrode (thickness = 0.5µm) coated with a thin dielectric
layer (thickness = 0.2µm, εr = 7). The beam suspension allows a vertical movement
with respect to the fixed bottom plate. The top plate is perforated to facilitate the
under-etching of the structure. The dimension of the holes is 25 µm× 25 µm, with a
pitch of 50 µm. The mechanical material constants of the top plate are E = 70 GPa
and ν = 0.3.

The BE method described in Section 3.4.4 with FMM acceleration is applied for
solving the electrostatic problem while the mechanical problem is handled by a FE
model. The behaviour of the switch is simulated using a discretisation consisting of
6544 triangles and 11151 tetrahedra, which yields 6544 degrees of freedom for the
piecewise element constant charge q and 56331 degrees of freedom for the second
order interpolation of the displacement u.

The optimal number of FMM groups (for this particular mesh) is found to be
35. The maximum and average truncation number are Pmax = 6 and Pav = 4 for
Rfar = 135 µm and ε = 10−6.

The electrostatic force F e distribution on the surface of the electrode can be
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Figure 5.21 Geometry of the shunt capacitive MEM switch: Lc = 475 µm, bc =
275 µm, Lin = 485 µm, bin = 285 µm, Ls = 625 µm, Lb = 205 µm, bb = 20 µm and
da = 80 µm

calculated as

F e(r) =
1

2
q(r) e(r) . (5.5)

Introducing the electric field e on the surface of a conductor (3.70) in (5.5), the
expression of F e as a function of the charge distribution q is given by

F e(r) =
1

2 ε0

q2(r) n̂ . (5.6)

The upper electrode is deformed by the electrostatic force exerted on it. The
elastic equation has to be considered alongside the electrostatic equations. For linear
elastic isotropic materials, it reads:

DT E D u + F = 0 , (5.7)

where D is the differential operator matrix

D =


∂x 0 0
0 ∂y 0
0 0 ∂z

∂y ∂x 0
∂z 0 ∂x

0 ∂z ∂y

 (5.8)

with transpose DT , E is the elasticity tensor, u is the displacement vector and F
is the total force exerted. The elasticity tensor E relates the stress tensor with the
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strain tensor. It depends on the Young modulus E and the Poisson ratio ν [Pilkey,
2002] and it reads

E =
E

(1 + ν)(1− 2ν)


1− ν ν ν

ν 1− ν ν
ν ν 1− ν

0

0

1−2ν
2

0 0
0 1−2ν

2
0

0 0 1−2ν
2

 . (5.9)

The electrostatic and mechanical systems, (3.72) and (5.7), are solved iteratively
obtaining the new electrostatic force distribution and the new displacement. The
number of iterations required for sufficient convergence of the results (e.g. the ca-
pacitance) increases as the applied bias voltage approaches the pull-in voltage and
the deformation of the top plate becomes greater.

5.5.2 Calculation results

The results obtained with GetDP [GetDP, 1997–2004] are compared with those given
by the commercial software packages Coventor [Coventor, Inc., 2003] and FemLab
[Femlab, 2003].

The zero-voltage capacitance CV =0 and pull-in voltage VIN calculated by GetDP
are 0.36 pF and 14.2V, respectively.

The deformation of the top electrode with a bias voltage of 11 V for the successive
iterations is shown in Figure 5.22. Convergence is achieved after 9 iterations.
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Figure 5.22 Convergence of the vertical displacement along a line through two
short suspension beams and the perforated plate for an applied bias voltage of 11 V

In the simulations performed with the commercial programs, only a quarter of
the geometry is considered. In the Coventor simulation, the electrostatic part is
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modelled by means of the BE method while the mechanical part is dealt with using
the FE method and second order elements. Symmetry boundary conditions are only
taken into account for the mechanical problem.

In the FemLab computation, the whole electromechanical problem is solved by
means of the FE method. Symmetry conditions are imposed for the electrostatic
problem. With regard to the mechanical part, the elastic behaviour of the suspension
(beams) is approximated by a stiffness constant [Brown, 1998; Tilmans, 2002]. For
the face of the top electrode that is coupled with the suspension, the displacement
is obtained by dividing the total electrostatic force by the stiffness constant.

The nominal capacitance CV =0 obtained by Coventor and Femlab is 0.4 pF and
0.37 pF, respectively. The pull-in calculated voltage is 14.24V for Coventor and
17.25V.
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Figure 5.23 Calculated capacitance vs the applied bias voltage

The computed value of the capacitance as a function of the applied voltage is
represented in Figure 5.23 for the three different solvers. The curves C−V obtained
with GetDP and FemLab agree well for low applied voltage, when the deformation
is small. As the applied voltage increases, an accurate estimate of the displacement
becomes critical, the approximation used in FemLab for the suspension does not
suffice. On the contrary, the agreement between the curves obtained with GetDP
and Coventor is better as the voltage increases. The influence of three quarters of
the device, disregarded for the electrostatic computation in Coventor, seems to be
more important for low applied voltages. However, the mechanical part is solved
accurately in this case and contributes to enhance the results as the applied voltage
increases.

Figure 5.24 shows the maximum vertical displacement of the top electrode as a
function of the applied bias voltage. A good agreement between the values obtained
by means of GetDP and Coventor is observed. The use of the approximation for
the mechanical problem with a stiffness constant for modelling the suspension in
the FemLab simulation explains again the divergence of the curves as the applied
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Chapter 6

High frequency numerical tests
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6.1 Introduction

In order to validate and evaluate the theoretical developments presented in Sec-
tion 4.4 of Chapter 4, a series of two-dimensional and three-dimensional high fre-
quency numerical tests are performed.

Sections 6.2 to 6.5 involve 2D and 3D scattering benchmark problems modelled
by field integral equations (EFIE, MFIE and CFIE, see Section 3). A harmonic-
time dependency is assumed and suppressed throughout. The complex formalism
described in Section 1.3.1 is adopted.

109
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The FMM is in all test cases applied to the expansion of either the 2D or 3D
Helmholtz equation in order to accelerate the solution of a pure boundary element
method. The grouping of the elements and the computation of the FMM data
structures is done in a preprocessing step, the CPU time of which is negligible in
comparison with the total computational cost.

In case of FMM, the preconditioning is based on the sparse matrix comprising
the near-field interactions.

The approximate calculation times give an indication of the computational ef-
ficiency of the FMM accelerated BE method compared to the nonaccelerated BE
method. Significant savings in storage requirements are also achieved.

In Sections 6.2 and 6.3, we consider a PEC cylinder and a PEC sphere illuminated
by an incident plane wave, respectively. Results are compared to the analytical
solution.

A thin wire placed in the vicinity of a perfectly electric conducting (PEC) square
plate and illuminated by a plane wave is treated in Section 6.4. The input impedance
of a dipole antenna located in front of a PEC sphere is calculated in Section 6.5.
The solutions presented in the two latter sections are compared with those found in
the literature.

6.2 Perfectly electric conducting cylinder

6.2.1 Description of the problem

A current source radiating in the presence of a PEC cylinder is one of the simplest 2D
scattering problems for which an analytical solution can be obtained. We consider
the scattering of a PEC cylinder of radius a illuminated by an incident plane wave
polarised transversely to z. The incident plane wave can be expressed as

a

φ

x̂

ŷ

rincident field

Figure 6.1 Plane wave incident on a perfectly electric conducting cylinder

hi
z = h0e

−ıkx = h0

∞∑
n=−∞

ı−nJn(kr) eınφ , ei
y = e0e

−ıkx (6.1)
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with h0 = 1A/m, e0 = η0h0 V/m, k the wavenumber, r = |r|, φ = arg r ∈ [0, 2π] as
depicted in Figure 6.1, and η0 = 120π Ω being the intrinsic impedance of free space.
The total field is given by the sum of the incident and scattered fields, i.e.

hz = hi
z + hs

z = h0

∞∑
n=−∞

ı−n
[
Jn(kr) + bnH

(2)
n (kr)

]
eınφ , (6.2)

with the coefficient bn =
−J ′n(ka)

H
(2)′
n (ka)

.

Hereafter we replicate some analytical results [Harrington, 1961, Chapter 5].
When the incident plane wave is polarised transversely to z, the surface current on
a PEC cylinder can be calculated analytically as

jφ =
ı2h0

πka

∞∑
−∞

ı−n eınφ

H
(2)′
n (ka)

, (6.3)

where H
(2)′
n is the derivative of H

(2)
n (see (B.1) in Appendix B). The radar cross

section (RCS) takes the form

RCS(dB) = 10 log
4π

λ2
lim
r→∞

(
r2 |h

s|2

|hi|2

)
, (6.4)

where the ratio of the scattered to incident field

|hs|
|hi|

=

√
2

πka

∣∣∣∣∣
∞∑

n=−∞

J ′n(ka)

H
(2)′(ka)
n ejnφ

∣∣∣∣∣ . (6.5)

The problem is modelled by means of three different integral formulations (see
Sections 3.4.1, 3.4.2 and 3.4.3). In any case, the current j is expanded in terms of
the thin wire basis functions (3.44).

6.2.2 Calculation results

The scattering of a PEC cylinder of radius a = 0.5λ illuminated by a plane wave
is simulated using a BE discretisation consisting of 60 segments, which yields 120
real unknowns for j 1. This is the coarsest mesh in Tables 6.1, 6.2 and 6.3. The
surface current density on the PEC cylinder (real and imaginary part), calculated
analytically and by means of the three integral equations (EFIE, MFIE and CFIE),
is depicted in Figure 6.2. The agreement between the analytical solution and the
numerical results is excellent.

The RCS of a PEC cylinder of radius a = 0.5λ is also calculated analytically
and using the three formulations mentioned above. A comparison of the results is
shown in Figure 6.3. Again, the exact solution and the numerical solutions agree
very well.

1As a rule of thumb, in high frequency problems, a suitable level of discretisation corresponds
to a mesh with elements of dimension λ/10. In this chapter, we consider finer meshes for validating
the efficiency of the FMM
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6.2.3 Computational cost

All computations have been carried out on a 400 MHz MIPS R12000 Processor. The
system of algebraic equations is solved by means of the iterative solver GMRES [Saad
& Schultz, 1986] with ILU-preconditioning.

Several levels of mesh refinement have been considered. The CPU time and
memory requirements for different discretisations and the EFIE, MFIE and CFIE
formulations with and without FMM are shown in Tables 6.1, 6.2 and 6.3, respec-
tively. The factor of reduction (in time and memory) attained with the FMM is
shown as well.

Particular attention is paid to the data corresponding to the coarsest and finest
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mesh, i.e. those arising the minimum and maximum number of unknowns, for every
integral formulation.

For N = 120, when applying FMM the CPU time gets reduced by a factor of
2.8, 2.2 and 2.6, respectively, with the EFIE, MFIE and CFIE formulations. With
respect to the memory requirements, they diminish in approximately 2 % for the
EFIE and MFIE cases. The CFIE requires more memory since (3.66) implies more
terms related to the Helmholtz equation and therefore more associated FMM data.
However, the FMM achieves a better performance also with the CFIE analysis when
a slightly increase in the number of unknowns occurs.

For N = 2512, the solution when applying FMM is achieved 26, 35.6 and 33 times
faster than with the classical EFIE, MFIE and CFIE respectively. Concerning the
memory needs, we obtain a 72 % reduction for all cases. This clearly illustrates the
efficiency of the FMM as the number of unknowns increases.

For the sake of a quick comparison, Figures 6.4 and 6.5 bring together all the
data in Tables 6.1, 6.2 and 6.3.

Table 6.1 CPU time (s) and memory requirements (Mb) – PEC cylinder case
modelled by the EFIE formulation

MoM MoM + FMM Reduction factor
Unknowns CPU mem CPU mem CPU mem

120 1.10 3.13 0.39 3.09 2.8 1
208 3.37 3.88 0.93 3.25 3.6 1.2
312 7.94 5.75 1.93 3.65 4.1 1.6
416 15.40 6.84 3.41 4.06 4.5 1.7
624 44.38 15.86 7.73 5.76 5.7 2.7
832 109.37 20.86 13.96 7.07 7.8 2.9
1256 430.31 38.06 35.79 11.53 12 3.3
1392 606.92 43.13 42.38 12.81 14.3 3.3
1568 917.39 76.13 55.62 23.17 16.5 3.3
1792 1478.14 89.34 75.58 26.53 19.5 3.4
2088 2516.94 108.11 112.51 31.33 22.3 3.5
2512 4943.74 137.20 189.79 38.70 26 3.6

6.3 Perfectly electric conducting sphere

6.3.1 Description of the problem

We consider a PEC sphere of radius a illuminated by an incident plane wave prop-
agating in the z direction. This is one of the simplest 3D scattering problems for
which an analytical solution can be obtained.

The incident plane wave propagating in the z direction can be written as follows
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Table 6.2 CPU time (s) and memory requirements (Mb) – PEC cylinder case
modelled by the MFIE formulation

MoM MoM + FMM Reduction factor
Unknowns CPU mem CPU mem CPU mem

120 0.60 3.11 0.27 3.07 2.2 1
208 1.90 3.83 0.57 3.20 3.3 1.2
312 4.53 5.73 1.12 3.67 4 1.6
416 9.44 7.01 1.95 3.98 4.8 1.7
624 31.97 13.84 4.39 5.78 7.3 2.4
832 85.68 20.87 7.88 7.06 10.8 3
1256 381.98 38.07 21.57 11.51 17.7 3.3
1392 539.70 43.14 25.71 12.79 21 3.4
1568 834.54 76.14 34.64 22.17 24 3.4
1792 1368.77 89.39 48.20 24.48 28.4 3.6
2088 2365.39 108.15 73.98 29.28 32 3.7
2512 4817.73 137.25 135.29 38.72 35.6 3.7

Table 6.3 CPU time (s) and memory requirements (Mb) – PEC cylinder case
modelled by the CFIE formulation

MoM MoM + FMM Reduction factor
Unknowns CPU mem CPU mem CPU mem

120 1.32 3.03 0.50 3.09 2.6 0.9
208 4.14 3.94 1.17 3.28 3.5 1.2
312 10.11 5.67 2.38 3.59 4.2 1.6
416 20.46 6.78 4.12 3.90 5 1.7
624 64.84 13.81 9.60 5.75 6.7 2.4
832 177.38 20.87 17.30 7.06 10.2 3
1256 767.95 38.06 48.13 11.47 16 3.3
1392 1116.35 58.06 56.41 17.59 19.7 3.3
1568 1685.43 76.13 73.76 23.12 22.8 3.3
1792 2753.16 89.37 103.69 26.50 26.5 3.4
2088 4771.52 108.08 157.78 31.26 30.2 3.5
2512 9513.41 137.19 287.66 38.68 33 3.5

ei
x = e0e

−ık0z , hi
y =

e0

η0

e−ık0z , (6.6)

with e0 = η0 V/m, η0 is the intrinsic impedance of free space.

The analytical solution of this problem can be found in [Harrington, 1961, Chap-
ter 6]. The formulae of the induced surface current and the scattered field are
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reproduced hereafter. The surface current induced on the PEC sphere is given by

jθ =
ı

η
e0

cos φ

ka

∞∑
n=1

an

[
sin θP 1′

n (cos θ)

Ĥ
(1)′
n (ka)

+
ıP 1

n(cos θ)

sin θĤ
(1)
n (ka)

]
, (6.7)

jφ =
ı

η
e0

sin φ

ka

∞∑
n=1

an

[
P 1′

n (cos θ)

sin θĤ
(1)′
n (ka)

− sin θP 1′
n (cos θ)

ıĤ
(1)
n (ka)

]
, (6.8)

with P 1
n the Legendre function of the first kind degree n and order 1, Ĥ

(1)
n the alterna-

tive Hankel function of first kind and order n and the coefficient an =
ı−n(2n + 1)

n(n + 1)
.

Note that the prime indicates the derivative of the corresponding Legendre and
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Hankel functions (see Appendix B). The scattered field reads

es
θ =

ıe0

kr
e−ıkr cos φ

∞∑
n=1

ın
[
bn sin θP 1′

n (cos θ)− cn
P 1

n(cos θ)

sin θ
)

]
, (6.9)

es
φ =

ıe0

kr
e−ıkr sin φ

∞∑
n=1

ın
[
bn

P 1
n(cos θ)

sin θ
− cn sin θP 1′

n (cos θ)

]
, (6.10)

where the coefficients bn and cn are given by

bn = −an
Ĵ ′n(ka)

Ĥ
(2)′
n (ka)

and cn = −an
Ĵn(ka)

Ĥ
(2)
n (ka)

. (6.11)

Beware that the subscripts θ and φ refer to the corresponding spherical coordinates.
The radar cross section (RCS) is calculated as follows

RCS(dB) = 10 log
4π

λ2
lim
r→∞

(
r2 |es|2

|ei|2

)
. (6.12)

The 3D scattering problem has been modelled by three different integral equation
formulations, the EFIE, MFIE and CFIE (Sections 3.4.1, 3.4.2 and 3.4.3). For all
three formulations, the PEC sphere is discretised with plane triangles. We adopt
RWG basis functions (3.40) for j.

Different levels of mesh refinement are considered.

6.3.2 Calculation results

The scattering of a PEC sphere of radius a = 0.2λ illuminated by a plane wave
is simulated using a BE discretisation consisting of 1104 triangular elements which
yields 2208 unknowns for j.
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Figure 6.7 represents a cut (0 ≤ θ < 2π, φ=0) of the surface current (real and
imaginary part) induced by an incident plane wave on the PEC sphere. A very good
agreement between the exact solution and the numerical results is observed.
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Figure 6.7 Real and imaginary part of the surface current (φ=0 ) on the perfectly
electric conducting sphere with a = 0.2λ

The analytical RCS of the PEC sphere is compared with the calculated RCS using
the EFIE, MFIE and CFIE formulations for 0 ≤ θ < π and φ = 0 in Figure 6.8,
and for 0 ≤ φ < π and θ = π/2 in Figure 6.9. Again, the exact solution and the
numerical solutions agree very well.
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Figure 6.8 RCS (φ = 0) of the perfectly electric conducting sphere with a = 0.2λ
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Figure 6.9 RCS (θ = π/2) of the perfectly electric conducting sphere with a = 0.2λ

6.3.3 Computational cost

All computations have been carried out on a 400 MHz MIPS R12000 Processor. The
system of algebraic equations is solved by means of the iterative solver GMRES [Saad
& Schultz, 1986] with ILU-preconditioning.

Different discretisations have been considered. Tables 6.4, 6.5 and 6.6 gather all
the data related to the CPU time and memory requirements for the different integral
equations applied with and without FMM. The factor of reduction achieved with
the FMM in both CPU time and memory is supplied as well.

We consider in particular the two extreme values of the number of unknowns
for every integral formulation. For N = 2208, the solution when applying FMM is
achieved 31, 26.3 and 38.6 times quicker than with the classical EFIE, MFIE and
CFIE, respectively. With regard to the memory requirements, the FMM attains a
reduction of 39 %, 43 % and 14 % for the EFIE, MFIE and CFIE cases respectively.

For N = 6660, the solution when applying FMM is achieved 42, 40.2 and 47.7
times quicker than with the classical EFIE, MFIE and CFIE respectively. Concern-
ing the memory needs, the savings amount to 82 %, 85 % and 77 % with the EFIE,
MFIE and CFIE cases respectively. This clearly indicates the efficiency of the FMM
as the number of unknowns increases.

Figures 6.10 and 6.11 bring together all the data in Tables 6.4, 6.5 and 6.6. A
comparison at a glance is then possible.
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Table 6.4 CPU time (hours) and memory requirements (Mb) – PEC sphere case
modelled by the EFIE formulation

MoM MoM + FMM Reduction factor
Unknowns CPU mem CPU mem CPU mem

2208 1.55 113.48 0.05 69.50 31 1.6
2880 3.69 164.81 0.11 84.87 34 2
4236 13.00 424.68 0.33 127.00 39 3.3
5076 22.71 540.45 0.57 156.34 40 3.4
6660 50.60 1230.48 1.22 220.09 42 5.6

Table 6.5 CPU time (hours) and memory requirements (Mb) – PEC sphere case
modelled by the MFIE formulation

MoM MoM + FMM Reduction factor
Unknowns CPU mem CPU mem CPU mem

2208 0.79 116.19 0.03 50.50 26.3 2.3
2880 1.86 164.84 0.06 64.47 31 2.6
4236 6.34 424.69 0.18 103.32 35.3 4
5076 11.10 540.45 0.29 130.68 38.2 4.1
6660 25.32 1230.48 0.62 190.14 40.2 6.5

6.4 Wire scatterer in the vicinity of a square plate

6.4.1 Description of the problem

We consider a scattering problem in R3. It consists of a thin wire and a PEC square
plate illuminated by a plane wave. The EFIE formulation described in Section 3.4.1
is chosen for modelling this problem.

Figure 6.12 shows the layout of the plate (0.5λ×0.5λ) and the wire (length = λ,
thickness a = 0.002λ) together with the direction and polarisation of the plane wave.
The wire is located perpendicular to and above the centre of one quadrant of the
square plate. For the configuration and excitation considered, the field illuminating
the wire is entirely due to scattering by the plate.

For simplicity, as the wire is sufficiently thin a � λ, we can adopt the thin wire
approximation [Balanis, 1997, Chapter 7]. It consists in assuming that the electric
field e produced on the surface of the wire by a surface current is the same as if the
current were concentrated along a filament placed along the axis of the wire. Then
the electric field on the surface of the wire would be obtained along a line parallel
to the wire at a distance a from its axis.
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Table 6.6 CPU time (hours) and memory requirements (Mb) – PEC sphere case
modelled by the CFIE formulation

MoM MoM + FMM Reduction factor
Unknowns CPU mem CPU mem CPU mem

2208 2.32 116.14 0.06 100.20 38.6 1.2
2880 5.55 164.81 0.13 119.82 42.6 1.4
4236 19.05 424.67 0.42 171.70 45.3 2.5
5076 33.32 540.45 0.73 206.98 45.6 2.6
6660 77.88 1230.50 1.63 282.20 47.7 4.4
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Figure 6.10 CPU time vs number of unknowns – PEC sphere case

6.4.2 Calculation results

The BE discretisation of the plate and the wire yields, with 392 triangles and 199
straight line segments, 1516 unknowns for j. We adopt RWG basis functions (3.40)
for the triangles and thin wire basis functions (3.44) for the segments. In order to
apply the FMM, the plate is split in 49 groups and the wire in 7 groups. This group
distribution was found to be optimal: using more groups leads to a higher compu-
tation time for solving the system of equations while using less groups increases the
assembly time. Two groups are considered to be far groups if there are at least two
groups in between, which leads to M = 7 and Nd = 98 (see Section 4.4.2).

Figure 6.13 shows the real and imaginary part of the calculated current induced
in the wire. For comparison and validation, the reference solution in [Rao, 1980, p.
125] is reproduced in Figure 6.14. Both results agree well.

The system of algebraic equations is solved by means of the iterative solver
GMRES [Saad & Schultz, 1986] with ILU-preconditioning on a 2 GHz Intel Pentium
4 Processor.

The calculation takes 420 s without FMM and only 21 s with FMM, i.e. the FMM
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Figure 6.11 Memory requirements vs number of unknowns – PEC sphere case
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Figure 6.12 Wire/plate configuration and incident illumination

makes the resolution of the system 20 times faster. The efficiency of applying the
FMM is also proved with respect to memory requirements: we need 38Mb for the
classical MoM calculation and 9Mb for the FMM accelerated MoM calculation.

6.5 Dipole antenna near a conducting sphere

6.5.1 Description of the problem

We consider a scattering problem in R3. The problem under study, depicted in
Figure 6.15, consists of a wire antenna (length L = 12 cm, radius a = 0.024765 cm)
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placed in the proximity of a PEC sphere (radius r = 5.32 cm). The antenna is
symmetrically located with respect to the equatorial plane of the sphere and driven
by a voltage source at its centre, i.e. the antenna is a dipole. The distance from the
centre of the sphere to the antenna is d = 6.32 cm.

We model the problem by means of the EFIE formulation developed in Sec-
tion 3.4.1. The FMM is then applied to the expansion of the 3D Helmholtz equation
(4.57). The voltage source is modelled as a so-called delta-gap (see Appendix D).

We calculate the input impedance2 of the dipole antenna for the range of fre-

2 An antenna can be represented by this equivalent impedance Z = R+ıX, with R the resistance
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ẑ

x̂

V ŷ
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Figure 6.15 Layout of the dipole antenna and the perfectly electric conducting
sphere

quencies [0.8, 1.9]GHz around the resonance frequency of the dipole. For this range
of frequencies, the thickness of the antenna a verifies a � λ and the thin wire
approximation [Balanis, 1997, Chapter 7] holds.

6.5.2 Calculation results

The problem is simulated using a BE discretisation of the dipole antenna and the
PEC sphere consisting of 1224 triangles and 39 segments which yields 3748 complex
unknowns for j. We adopt RWG basis functions (3.40) for the triangles and thin
wire basis functions (3.44) for the segments. When applying the FMM, the sphere
and the antenna are split into 9 and 56 groups respectively. This group distribution
was found to be optimal for the particular mesh described above: using more groups
leads to a higher computation time for solving the system of equations while using
less groups increases the assembly time. Again, two groups are considered to be
far groups if there are at least two groups in between, which leads to M = 7 and
Nd = 98 (see Section 4.4.2).

We calculate the conductance G and susceptance B (1/Z = G + ıB) of the
antenna dipole represented in Figure 6.15. The system of algebraic equations is then
solved for different frequencies in the range [0.8, 1.9]GHz. The obtained results have
been verified against published results.

Figure 6.16 shows the conductance and susceptance as a function of frequency.
In order to validate our solution, the results published in [Rao, 1980, p. 127] are
reproduced in Figure 6.17. Both results agree well.

The system of algebraic equations is solved by means of the iterative solver

and X the reactance. Knowing this parameter will allow to match the antenna to a transmission
line and other associated equipment only within a bandwidth.
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GMRES [Saad & Schultz, 1986] with ILU-preconditioning on a 2 GHz Intel Pentium
4 Processor.

The calculation for one frequency takes 184min without FMM and only 4.6min
with FMM. The system is then solved 40 times faster when the FMM acceleration is
applied. The efficiency of applying the FMM is also proved with regard to memory
requirements: we need 362Mb for the classical MoM calculation and 112Mb for the
accelerated MoM calculation. The reduction of storage requirements amounts to
69%.
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Fast solution methods have a definitive impact in the area of a computer-aided
design of many technologies that rely on electromagnetism. We have studied, de-
veloped and applied one of these methods: the fast multipole method (FMM). The
main achievements of this thesis are summarised hereafter, as well as the conclusions
that can be drawn from the numerical tests, and some important future prospects.

Fast multipole method

The dense matrices (blocks) arising from a boundary element (BE) method (or from
the BE part of a finite element-boundary element (FE-BE) hybrid method) in the
system of algebraic equations significantly limit the size of the problem to be han-
dled. The FMM permits to overcome this disadvantage by spatially decomposing
the problem into groups of elements and determining the interactions between dis-
tant groups by means of multipole expansions of the Green functions (either the
Laplace or Helmholtz Green function). This way the FMM allows to reduce the
computational account and to speed up the solution of linear systems of equations
resulting from the BE methods.

We have focused on low frequency problems (Laplace equation). The use of the
FMM in scattering applications (Helmholtz equation) has already been extensively
researched in the literature. Hence, we have not deliberately pursued to further
investigate this kind of problems. Our contribution herein is reduced.

The multipole expansions of both the Laplace and Helmholtz Green functions
have been presented in an original way, splitting them formally into matrices asso-
ciated with the so-called FMM operations: aggregation, disaggregation and trans-
lation. The analytical expansions of the gradient of the Green functions (required
in the formulations) have also been developed.

These expansions have to be truncated. In most cases, the conventional choice
for the truncation number is too conservative. Indeed, if the distance between the

125
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source point and its group centre and the distance between the observation point
and its group centre are small compared to the distance between the two group
centres, a smaller number of terms suffices. A novel adaptive truncation scheme
for both the 2D and 3D Laplace Green function which takes those distances into
account has been elaborated.

We have tackled some aspects relative to problems comprising moving parts. Up-
dating the acceleration data (aggregation, disaggregation and translation) for every
new position of the rigid moving parts has been proved to be simple and computa-
tionally cheap. Furthermore, the disaggregation and aggregation data do not vary
in the particular case of purely translational movement. Only the translation data
have to be modified.

Numerical tests

We have successfully tackled a range of numerical tests in both low and high fre-
quency, which illustrates the power and versatility of the FMM. We would like to
underline in particular the application of the FMM to the solution of 2D and 3D low
frequency FE-BE hybrid models of problems comprising eddy currents, nonlinear-
ities, movement and deformations. To the best of our knowledge, we have treated
with the FMM problems comprising eddy currents and movement for the first time.

We have satisfactorily compared the results obtained by an accelerated FE-BE
model (or a pure BE model) to those achieved by means of either a FE model
or a nonaccelerated FE-BE model, to measurements found in the literature or to
an analytical solution. In all considered cases, a very good agreement has been
observed. The comparison of the results obtained by means of an accelerated FE-
BE model and its nonaccelerated counterpart has shown the high accuracy of the
method.

The considered applications have also demonstrated the effectiveness of the FMM
with regard to memory requirements and computation time. Significant savings in
those resources have been achieved. The grouping of the elements and the compu-
tation of the FMM data structures have been done in a preprocessing that takes
a few seconds, which can be neglected in comparison with the total computational
cost. We have observed an increase of the number of iterations with the application
of the FMM. This is mainly due to the fact that the preconditioning disregards the
far field interactions. It is worth mentioning that this rise is largely outweighed by
the fact the so-called far matrices are never evaluated explicitly.

We would like to point out that the truncation scheme has proved to be spe-
cially useful when dealing with moderate sized problems. The use of a conventional
truncation scheme would lead to computation costs similar to those required for
a traditional BE computation. We have observed that the efficiency of the FMM
increases considerably with the number of unknowns.

All the implemented tools are freely available on the Internet for further
tests [GetDP, 1997–2004].



CONCLUSIONS 127

Future research

Many interesting prospects still remain. Several suggestions for future research lines
are enumerated below:

X The extension of the truncation scheme developed for low frequency problems
to high frequency cases would enhance the performance of the method. This
extension could be straightforwardly undertaken.

X The implementation of a multilevel FMM would contribute to further acceler-
ate the solution of the linear system of algebraic equations [Lu & Chew, 1994;
Buchau et al., 2000].

X The implementation of a parallelised FMM would lead to significantly im-
prove its capabilities. The solution of the linear system of algebraic equations
would be further speed up as well [Donepudi et al., 2001]. Indeed, starting
from the grouping scheme of the FMM it is obvious to compute the near-field
interactions for each group separately and the parallelisation of the matrix-
vector-product could be straightforwardly performed.

X The current implementation of boundary element methods does not allow to
take advantage of possible symmetries. Moreover, the treatment of multiply
connected domains by introducing cuts when applying a BE model has not
yet been tackled. Including these features and accordingly adapting the FMM
could also be carried out.

X We have tested the preconditioners available in [SPARSKIT, 1999]. Designing
a better suited preconditioning technique would allow a better control of the
number of iterations needed for a certain accuracy. In fact, when applying
FMM the CPU time for each iteration step is relatively large in comparison
to the total CPU time. Therefore, the reduction of the number of iteration
steps reduces the computational costs noticeably. Furthermore, we have been
confronted to the lack convergence of the iterative solver, specially when solv-
ing problems with small structures. A better preconditioning algorithm would
help to ensure the convergence.

X The field computation in arbitrary points involves a postprocessing that can
be accelerated by means of the FMM. Even though this postprocessing is not
as cumbersome as finding the solution of the system, the application of the
FMM could be very useful when dealing with a large number of field points.
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Appendix A

Mathematical framework

A.1 Function spaces

Scalar and vector fields are defined at any point x = (x, y, z) ∈ R3 and at any time
instant t ∈ R. For the sake of simplicity, the space-time dependence of the fields is
generally omitted throughout this work, i.e. the scalar field f(x, t) = f(x, y, z, t) and
the vector field f(x, t) = f(x, y, z, t) is thus often denoted by f and f . In Cartesian

coordinates, the vector field is denoted by f = (fx, fy, fz)
T where fx, fy and fz

represent, respectively, its three components.

The domain of study is an open set Ω of R3, whose boundary is a closed surface
Γ with exterior unit normal n̂.

A.1.1 Square integrable field spaces

The spaces L2(Ω) and L2(Ω) of square integrable scalar and vector fields on Ω,
respectively, are defined by [Wait & Mitchell, 1985; Fowler, 1997]

L2(Ω) =
{

u :

∫
Ω

u2(x) dx < ∞
}

, (A.1)

L2(Ω) =
{

u :

∫
Ω

‖u(x)‖2 dx < ∞
}

, (A.2)

where x is a point of space, dx a volume element and ‖u(x)‖ represents the Euclidean
norm of u(x). The scalar product of two elements u, v ∈ L2(Ω) and u, v ∈ L2(Ω) is
defined by

(u, v)Ω =

∫
Ω

u(x) v(x) dx and (u, v)Ω =

∫
Ω

u(x) · v(x) dx. (A.3)

The norm of an element u ∈ L2(Ω) and u ∈ L2(Ω) is defined by

‖u‖L2(Ω) = (u, u)
1/2
Ω =

[ ∫
Ω

u2(x) dx
]1/2

, (A.4)

‖u‖L2(Ω) = (u, u)
1/2
Ω =

[ ∫
Ω

‖u(x)‖2 dx
]1/2

. (A.5)
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If a space is normed, the distance between two elements u, v ∈ L2(Ω) and u, v ∈
L2(Ω) is the norm of their difference, respectively, d(u, v) = ‖u− v‖ and d(u, v) =
‖u− v‖.

Two elements u, v ∈ L2(Ω) (u, v ∈ L2(Ω)) are said to be orthogonal if their
scalar product is (u, v)Ω = 0 ((u, v)Ω = 0). Two functional spaces are said to be
orthogonal if all their elements are orthogonal.

Let E be a normed vector space. A sequence {un} is called a Cauchy sequence
if

∀ε > 0, ∃N ∈ Z ⇒ d(um, un) < ε if m, n > N. (A.6)

E is complete if every Cauchy sequence converges towards an element of E.

If E is a vector space equipped with a scalar product and if E is complete for
the norm derived from this scalar product, then E is a Hilbert space.

The spaces L2(Ω) and L2(Ω) are Hilbert spaces and can welcome physical fields,
characterised by a finite energy.

The subspaces of L2(Ω) and L2(Ω) for which all first order partial derivatives
are also square integrable are known as the Sobolev spaces of scalar fields H1(Ω) and
vector fields H1(Ω), respectively. They are defined as

H1(Ω) =
{

u ∈ L2(Ω) : ∂xu, ∂yu, ∂zu ∈ L2(Ω)
}

, (A.7)

H1(Ω) =
{

u ∈ L2(Ω) : ∂xu, ∂yu, ∂zu ∈ L2(Ω)
}

. (A.8)

Analogously, the Sobolev spaces Hp(Ω) and Hp(Ω), ∀p > 1 are given by

Hp(Ω) =
{

u ∈ Hp−1(Ω) : ∂xu, ∂yu, ∂zu ∈ Hp−1(Ω)
}

, (A.9)

Hp(Ω) =
{

u ∈ Hp−1(Ω) : ∂xu, ∂yu, ∂zu ∈ Hp−1(Ω)
}

. (A.10)

The Sobolev spaces are well adapted to variational problems.

For the sake of simplicity, the following notation is adopted for the integrals over
a surface Γ of the scalar product of two functions:

〈u, v〉Γ =

∫
Γ

u(x) v(x) dx and 〈u, v〉Γ =

∫
Γ

u(x) · v(x) dx. (A.11)

A.1.2 Differential operators

The differential operators gradient, divergence and curl are of importance in many
physical problems, and in particular for Maxwell’s equations.

The grad operator in Cartesian coordinates for scalar fields f is classically defined
as

grad f = (∂xf, ∂yf, ∂zf)T . (A.12)



A.2. GREEN FORMULAE 131

The Sobolev space that corresponds to the grad is thus

H(grad; Ω) =
{
u ∈ L2(Ω) : grad u ∈ L2(Ω)

}
. (A.13)

Note that H(grad; Ω) = H1(Ω)

The classical definition of the curl and div operators for vector fields f =

(fx, fy, fz)
T are:

curl f = (∂yfz − ∂zfy, ∂zfx − ∂xfz, ∂xfy − ∂yfx)
T , (A.14)

div f = ∂xfx + ∂yfy + ∂zfz. (A.15)

Based on the concepts of weak curl and div, we define the Hilbert spaces of stream
functions and fluxes:

H(curl; Ω) =
{
u ∈ L2(Ω) : curl u ∈ L2(Ω)

}
, (A.16)

H(div; Ω) =
{
u ∈ L2(Ω) : div u ∈ L2(Ω)

}
. (A.17)

We define the laplacian operator as well:

∆f = ∇2f = ∂2
xfx + ∂2

yfy + ∂2
zfz , (A.18)

∆f = ∇2f = (∇2fx,∇2fy,∇2fz) . (A.19)

A.1.3 de Rham complexes

The domains of the differential operators are built to satisfy R(grad) ⊂ D(curl),
R(curl) ⊂ D(div), and R(div) ⊂ L2(Ω), or, equivalently, grad H1(Ω) ⊂ H(curl; Ω),
curl H(curl; Ω) ⊂ H(div; Ω) and div H(div; Ω) ⊂ L2(Ω). Therefore, the spaces
H1(Ω), H(curl; Ω), H(div; Ω) and L2(Ω) form an algebraic structure called complex:

H1(Ω)
grad // H(curl; Ω) curl // H(div; Ω) div // L2(Ω) (A.20)

If Ω = R
3, the sequence (A.20) is said to be exact since R(grad) = K(curl)

and R(curl) = K(div). In this case, the image of H1(R3) in H(curl;R3) by the
grad operator is exactly the kernel of the curl operator, which means that all curl-
free fields are gradients. Analogously, the image of H(curl;R3) in H(div;R3) by
the curl operator is exactly the kernel of the div operator, which means that all
divergence-free fields can be expressed as the curl of some other fields.

If Ω is a bounded set of R3, the sequence is not exact any more, except for trivial
topologies (for example if Ω is simply connected).

A.2 Green formulae

The generalised Green relation is given by

(Lu, v)Ω − (u,L∗v)Ω =

∫
Γ

Q(u, v)ds, ∀u ∈ D(L) and ∀v ∈ D(L∗) (A.21)
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where L is a differential operator of order n defined on Ω, L∗ is the adjoint of L,
and Q is a bilinear function of u and v and in their derivatives up to the order n−1.

The extensively used grad-div and curl-curl Green formulae are two particular
cases of the the generalised Green relation (A.21). Let u be a function of Ω 7→ R

and v a function of Ω 7→ R
3.

Integrating the following vector analysis formula

v · grad u + u div v = div (uv) (A.22)

over Ω, and applying the divergence theorem, the Green formula of type grad-div is
obtained:

(v, grad u)Ω + (div v, u)Ω = 〈u, n̂ · v〉Γ, ∀v ∈ H1(Ω) and∀u ∈ H1(Ω). (A.23)

Let w be a function of Ω 7→ R
3. Integrating the following vector analysis formula

v · curl w − w · curl v = div (w × v), (A.24)

over Ω, and applying the divergence theorem, the Green formula of type curl-curl is
obtained:

(v, curl w)Ω − (curl v, w)Ω = 〈v × n̂, w〉Γ ∀v, w ∈ H1(Ω). (A.25)

A.3 Strong and weak solutions

Let us consider the partial derivative problem

Lu = f in Ω, (A.26)

Bu = g on Γ, (A.27)

where L is a differential operator of order n, B is a differential operator that im-
poses a boundary condition, the two functions f and g are defined in Ω and on Γ,
respectively, and u is an unknown function defined on Ω̄. The system (A.26)-(A.27)
constitutes a strong formulation. A function u that verifies (A.26)-(A.27) is called
a strong solution.

A weak formulation of the same problem is given by

(u,L∗v)Ω − (f, v)Ω +

∫
Γ

Qg(v) ds = 0, ∀v ∈ V (Ω), (A.28)

where L∗ is defined by the generalised Green formula (A.21), Qg is a linear form in
v which depends on g and V (Ω) is a space of test functions (defined in relation with
L∗ and with the boundary condition (A.27)). A function u that satisfies (A.28) for
all test functions v ∈ V (Ω) is called a weak solution.

The generalised Green formula (A.21) can be applied to (A.28) in order to switch
from L∗ to L, which is in general equivalent to performing an integration by parts.
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It is easy to verify that a strong solution is also a weak solution. On the other
hand, proving that a weak solution is also a strong solution is not immediate because
it has to be regular enough in order to be defined in a classical way. Weak formula-
tions allow to prove the existence of a solution more easily than strong formulations
and they are well adapted to finite element discretisations [Jonhson, 1987].
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Appendix B

Some special functions

The following sections constitute a short reminder on some mathematical functions.
For further details, see [Abramowitz & Stegun, 1970; Chew, 1995; Harrington, 1961].

B.1 Bessel functions

The Bessel equation of order m is given by

x2 d2y

dx2
+ x

dy

dx
+ (x2 −m2) y = 0 . (B.1)

Solutions are the Bessel functions of the first kind Jm(x), of the second kind Ym(x)

(also called Weber’s function) and of the third kind H
(1)
m (x), H

(2)
m (x) (also called

Hankel functions). Each is a regular function of x throughout the x-plane cut along
the negative real axis, and for fixed x 6= 0 each is an entire integral function of m.

Important features of the various solutions are: Jm(x) (<(m) ≥ 0) is bounded as
x → 0 in any bounded range of arg(x). Jm(x) and J−m(x) are linearly independent
except when m is an integer. Jm(x) and Ym(x) are linearly independent for all values

of m. H1
m(x) tends to zero as |x| → ∞ in the sector 0 < arg(x) < π. H

(2)
m (x) tends

to zero as |x| → ∞ in the sector −π < arg x < 0. For all values of m, H
(1)
m (x) and

H
(2)
m (x) are linearly independent.

The Hankel functions are related to the Bessel functions of the first and second
kind as

H(1)
m (x) = Jm(x) + ı Ym(x) , (B.2)

H(2)
m (x) = Jm(x)− ı Ym(x) . (B.3)

Let us give the following important relations

J−m(x) = (−1)mJm(x), Y−m(x) = (−1)mYm(x) (B.4)

and
H

(1)
−m(x) = (−1)mH(1)

m (x), H
(2)
−m(x) = (−1)mH(2)

m (x) . (B.5)
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The Bessel function Jm can be put into an integral form. From formula
[Abramowitz & Stegun, 1970, (9.1.21)], one can easily show that

Jm(x) =
1

2π

∫ 2π

0

eıx cos θeım(θ−π/2)dθ . (B.6)

The asymptotic behaviour of Bessel functions for large arguments is given by

Jm(x) −−−→
x→∞

√
2

πx
cos
(
x− π

4
− mπ

2

)
, (B.7)

Ym(x) −−−→
x→∞

√
2

πx
sin
(
x− π

4
− mπ

2

)
, (B.8)

H(1)
m (x) −−−→

x→∞

√
2

ıπx
ı−m eıx , (B.9)

H(2)
m (x) −−−→

x→∞

√
2ı

πx
ım e−ıx , (B.10)

which place into evidence the wave character of the Hankel functions.

B.2 Spherical Bessel functions

The spherical Bessel functions are solutions of the differential equation

x2 d2y

dx2
+ 2x

dy

dx
+ [x2 −m(m + 1)] y = 0 , m = 0,±1,±2, · · · . (B.11)

Particular solutions are the spherical Bessel functions of the first kind,

jm(x) =

√
π

2x
Jm+ 1

2
(x) , (B.12)

the spherical Bessel functions of the second kind,

ym(x) =

√
π

2x
Ym+ 1

2
(x) , (B.13)

and the spherical Hankel functions of the third kind,

h(1)
m (x) = jm(x) + ı ym(x) =

√
π

2x
H

(1)

m+ 1
2

(x) , (B.14)

h(2)
m (x) = jm(x)− ı ym(x) =

√
π

2x
H

(2)

m+ 1
2

(x) . (B.15)

It is worth mentioning the relations known as Rayleigh’s formulae:

jm(x) = xm

(
−1

x

d

dx

)m
sin x

x
, (B.16)
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ym(x) = (−x)m

(
−1

x

d

dx

)m
cos x

x
. (B.17)

The asymptotic behaviour of the functions jm, ym, h
(1)
m and h

(2)
m for large m is directly

obtained from the asymptotic behaviour of Jm (B.7), Ym (B.8), H
(1)
m (B.9) and H

(2)
m

(B.10).

In some electromagnetic field problems, it is convenient to define the alternative
spherical Bessel functions:

B̂m(x) =

√
πx

2
Bm+1/2(x) , (B.18)

where B̂m(x) is given the same name and symbol as the corresponding arbitrary
Bessel function Bm+1/2.

Some derivative and recurrence formulae are given by

dBm(x)

dx
= Bm−1(x)− m

x
Bm(x) , (B.19)

dBm(x)

dx
= −Bm+1(x) +

m

x
Bm(x) , (B.20)

where Bm(x) denotes an arbitrary solution to the Bessel equation (B.1).

B.3 Legendre polynomials

The Legendre polynomials Pl(x) are real functions (polynomials of order l) defined
in the interval −1 ≤ x ≤ 1. They arise from a power-series solution of the following
second order differential equation, known as the Legendre equation:

d

dx

[
(1− x2)

d

dx
P

]
+ l (l + 1)P = 0 . (B.21)

Some of the lower-degree Legendre polynomials are:

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3). (B.22)

Note that they verify:

Pl(x) = (−1)l Pl(−x) and Pl(1) = 1 . (B.23)
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An alternative and sometimes convenient expression for the Legendre polynomials
is given by Rodrigues’ formula

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l. (B.24)

By convention, these polynomials are normalised to have the value unity at x = 1.
They form a complete orthogonal set of functions on the interval −1 ≤ x ≤ 1 . The
orthogonality condition can be expressed as∫ 1

−1

Pl(x)Pm(x)dx =
2

2l + 1
δl,m . (B.25)

Since the Legendre polynomials form a complete set of orthogonal functions, any
function f(x) on the interval −1 ≤ x ≤ 1 can be expanded in terms of them. The
Legendre series representation is:

f(x) =
∞∑
l=0

αlPl(x) where αl =

∫ 1

−1

f(x)Pl(x)dx . (B.26)

Certain recurrence relations among Legendre polynomials of different order are
useful in evaluating integrals, generating higher order polynomials from lower order
ones, etc. From Rodrigues’ formula it is a straightforward matter to show that

dPl+1

dx
− dPl−1

dx
− (2l + 1)Pl = 0 . (B.27)

This result combined with Legendre differential equation (B.21) yields various re-
currence relations:

(l + 1)Pl+1 − (2l + 1)xPl + lPl−1 = 0 , (B.28)

(x2 − 1)
dPl

dx
− lxPl + lPl−1 = 0 , (B.29)

dPl+1

dx
− x

dPl

dx
− (l + 1)Pl = 0 . (B.30)

B.4 Associated Legendre functions

Let us consider the second order differential equation known as associated Legendre
equation

d

dx

[
(1− x2)

d

dx
P

]
+

[
l (l + 1)− m2

1− x2

]
P = 0 , (B.31)

which has a finite solution on the interval −1 ≤ x ≤ 1 only if the parameter l equals
zero or a positive integer and m takes the values −l,−l− 1, · · · , 0, · · · , l− 1, l. The
solution of (B.31) is the so-called associated Legendre function of the first kind,
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degree l and order m, Pm
l (x). For positive m, it can be expressed as a function of

the Legendre polynomials Pl(x) as

Pm
l (x) = (−1)m(1− x2)m/2 dm

dxm
Pl(x) . (B.32)

Note that Pm
l (x) = 0 for m > l.

A definition valid for both positive and negative m is obtained by substituting
Pl(x) given by (B.24) in (B.32):

Pm
l (x) =

(−1)m

2ll!
(1− x2)m/2 dl+m

dxl+m
(x2 − 1)l . (B.33)

Since the differential equation (B.31) depends only on m2 and m is an integer,
P−m

l (x) and Pm
l (x) are proportional. It can be shown that

P−m
l (x) = (−1)m (l −m)!

(l + m)!
Pm

l (x) . (B.34)

The derivative of Pm
l (x) can be calculated by means the following recursive

relation [Abramowitz & Stegun, 1970, (8.5.2)]

(x2 − 1)
dPm

l (x)

dx
= (l + m)(l −m + 1)(x2 − 1)Pm−1

l (x)−mxPm
l (x) . (B.35)

For fixed m the functions Pm
l (x) form an orthogonal set in the index l on the

interval −1 ≤ x ≤ 1. The orthogonality relation is given by∫ 1

−1

Pm
l′ (x)Pm

l (x)dx =
2

2l + 1

(l + m)!

(l −m)!
δl′,l . (B.36)

B.5 Spherical Harmonics

The functions eımφ constitute a set of complete orthogonal functions on the interval
φ ∈ [0, 2π]. The functions Pm

l (cos θ), for each m, form a set of complete orthog-
onal functions in the index l on the interval θ ∈ [0, π]. Therefore their product
Pm

l (cos θ)eımφ form a complete orthogonal set on the surface of the unit sphere in
the two indices l,m.

The spherical harmonics are thus defined for all θ ∈ [0, π] and φ ∈ [0, 2π] as

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l + m)!
Pm

l (cos θ) eımφ , (B.37)

verifying Y −m
l (θ, φ) = (−1)mY ∗m

l (θ, φ), where ∗ denotes the complex conjugate.
Note that, for m = 0,

Y 0
l (θ, φ) =

√
2l + 1

4π
Pl(cos θ) . (B.38)

An arbitrary function f(θ, φ) can be expanded in spherical harmonics:

f(θ, φ) =
∞∑
l=0

l∑
m=−l

αm
l Y m

l (θ, φ) with αm
l =

∫
Y ∗m

l (θ, φ) f(θ, φ)dΩ (B.39)
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B.6 Addition theorems

B.6.1 Addition theorem for spherical harmonics

The addition theorem for spherical harmonics is the main analytical tool for gen-
erating the multipole expansions of the Laplace Green functions employed by the
FMM.

Let us consider two arbitrary vectors r and r′ with spherical coordinates (r, θ, φ)
and (r′, θ′, φ′), respectively, forming an angle ϕ as shown in Figure B.1. The addition

φ′

φ

ẑ

θ

θ′

ŷ

x̂

ϕ r

r′

Figure B.1 Spherical coordinate system

theorem for spherical harmonics expresses a Legendre polynomial of order l and angle
ϕ in terms of products of the spherical harmonics of the angles θ, φ and θ′, φ′. It
states that

Pl(cos ϕ) =
4π

(2l + 1)

l∑
m=−l

Y m
l (θ, φ) Y ∗m

l (θ′, φ′) , (B.40)

where cos ϕ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′).

The potential at r due to a unit charge at r′ can be expanded as

1

|r − r′|
=

∞∑
l=0

rl
<

rl+1
>

Pl(cos ϕ) , (B.41)

with r< (r>) the smaller (larger) of |r| and |r′|. Introducing (B.40) in (B.41), the
potential can be expressed in a completely factorised form as

1

|r − r′|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl
<

rl+1
>

Y m
l (θ, φ) Y ∗m

l (θ′, φ′) . (B.42)
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B.6.2 Addition theorems for (spherical) Bessel functions

The use of addition theorems arises in a number of solutions of scattering problems.
They express wave functions in one coordinate system in terms of the wave functions
of another coordinate system which is linearly translated from the first one. The
addition theorems for (spherical) Bessel and Hankel functions are the main analyt-
ical tools for generating the multipole expansions of the Helmholtz Green functions
employed by the FMM.

ϕ

x̂

û

v̂

ŷ

r − r′

r

r′

φ

φ′

Figure B.2 Translation in the cylindrical coordinate system

The Graf formula [Abramowitz & Stegun, 1970, (9.1.79)] is the addition theorem
for Bessel functions required for the expansion of the 2D Helmholtz Green function.
It is given by

Hm (k |r − r′|) eımϕ =


+∞∑

n=−∞
Jn−m (kr′) Hn (kr) eınφ−ı(n−m)φ′ , r > r′ ,

+∞∑
n=−∞

Hn−m (kr′) Jn (kr) eınφ−ı(n−m)φ′ , r < r′ ,
(B.43)

where r = (r, φ), r′ = (r′, φ′) are two vectors in cylindrical coordinates and ϕ =
arg(r − r′) is defined with respect to the new coordinate system (see Figure B.2).
The conditions r < r′ and r > r′ imply the convergence of the expansions in the
right-hand side of (B.43) 1.

The addition theorems for spherical Bessel and Hankel functions are required for
expanding of the 3D Helmholtz Green function. The following identity, expressed
in spherical coordinates (r, θ, φ) (see Figure B.1), is derived directly from these the-
orems [Abramowitz & Stegun, 1970, (10.1.45), (10.1.46)] and it serves as a starting
point,

e−ıkR

R
=


−4πık

∞∑
l=0

l∑
m=−l

jl(kr′) Y m
l (θ′, φ′) hl(kr) Y m

l (θ, φ)∗ , r > r′

−4πık
∞∑
l=0

l∑
m=−l

hl(kr′) Y m
l (θ′, φ′) jl(kr) Y m

l (θ, φ)∗ , r < r′
, (B.44)

1Equation (B.43) is satisfied for Hankel functions of the first kind H
(1)
m and of the second kind

H
(2)
m . The same applies to all the expressions in this appendix. The superscript indicating the

kind is omitted.
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with R = |r − r′|.



Appendix C

Limiting value of EFIE and MFIE

C.1 Integral in EFIE

This appendix deals with the value of the integral

I = grad

∫
Γ

q(r′) G(ρ) dΓ′ , (C.1)

as the observation point r approaches the smooth surface Γ, ρ = |r − r′| is the
distance from the source r′ to the observation point r. This integral appears in
some forms of the EFIE considered in Section 3.4.1. It is safe to move the grad
operator inside the integral when the observation point is not on Γ. The charge
density q(r′) is constant with regard to the unprimed coordinates which implies

grad (q(r′)G(ρ)) = q(r′) · grad G(ρ) . (C.2)

The integral is split into two integrals I = IΓ\δΓ + IδΓ as

IΓ\δΓ =

∫
Γ\δΓ

q(r′) grad G(ρ) dΓ′ , r 6∈ Γ , (C.3)

IδΓ =

∫
δΓ

q(r′) grad G(ρ) dΓ′ , r 6∈ Γ . (C.4)

Herein, δΓ is a differential circular area with radius δ0 and centred at r0 ∈ δΓ
(see Figure C.1). Let us consider that the observation point r is located at an
infinitesimal distance from Γ, i.e. r = r0 +εn̂, ε � 1. Introducing a local cylindrical
coordinate system, we can express the source point as r′ = r0+δ cos φ x̂+δ sin φ ŷ and
ρ = |r − r′| =

√
δ2 + ε2. If δ0 is sufficiently small, the approximation q(r′) ≈ q(r0)

is reasonable. Evaluating grad G and using dΓ′ = δdφdδ, the integral IδΓ reads

IδΓ ≈ −q(r0)

4π

∫ δ0

δ=0

∫ 2π

φ=0

(
1

ρ
+ ık

)
ρ

e−ıkρ

ρ2
δdφdδ . (C.5)

Considering kρ � 1 and r − r′ = εn̂− δ cos φ x̂− δ sin φ ŷ leads to

IδΓ ≈ −q(r0)

4π

∫ δ0

δ=0

∫ 2π

φ=0

εn̂− δ cos φ x̂− δ sin φ ŷ

(δ2 + ε2)
3
2

δdφdδ . (C.6)
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r0
δ0

n̂

δΓ

Γ

Figure C.1 Surface Γ with differential circular area δΓ

The integral along φ over the x̂ and ŷ components evaluate to zero. We get

IδΓ ≈ −n̂
q(r0)

2

∫ δ0

δ=0

εδ

(δ2 + ε2)
3
2

dδ = n̂
q(r0)

2
ε

(
1√

δ2
0 + ε2

− 1

ε

)
. (C.7)

For ε → 0, r → r0, and the above equation reduces to

IδΓ ≈ −n̂
q(r0)

2
. (C.8)

For δ → 0, δΓ tends to a single point. For an observation point on the surface, (C.1)
can thus be written as

I = −n̂
q(r)

2
+−
∫

Γ

q(r′)grad G(ρ) dΓ′ , r ∈ Γ , (C.9)

where the bar on the integral sign indicates that the point r = r′ is excluded from
the integration.

C.2 Integral in MFIE

This appendix deals with the limiting value of the integral

I = n̂×
(

curl

∫
Γ

j(r′) G(ρ) dΓ′
)

, (C.10)

as the observation point r approaches the surface Γ. The derivation hereafter closely
follows the one in Section C.1, the same definitions hold. It is safe to move the curl
inside the integral when the observation point r is not on Γ. The current density
j(r′) is constant with respect to the unprimed coordinates which implies

curl
(
j(r′)G(ρ)

)
= −j(r′)× grad G(ρ) . (C.11)
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The integral is separated into two integrals I = IΓ\δΓ + IδΓ as

IΓ\δΓ = −n̂×
∫

Γ\δΓ
j(r′)× grad G(ρ) dΓ′ , r 6∈ Γ , (C.12)

IδΓ = −n̂×
∫

δΓ

j(r′)× grad G(ρ) dΓ′ , r 6∈ Γ . (C.13)

The integral IδΓ is now considered further. When δ0 is sufficiently small the approx-
imation j(r′) ≈ j(r0) is reasonable. Evaluating grad G and using dΓ′ = δdφdδ yields

IδΓ ≈ n̂×
(

j(r0)

4π
×
∫ δ0

δ=0

∫ 2π

φ=0

(
1

ρ
+ ık

)
ρ

e−ıkρ

ρ2
δdφdδ

)
. (C.14)

The integral in this expression was already treated in (C.5). Under the same sup-
positions, we obtain

IδΓ ≈ n̂×
(

j(r0)

2
× n̂

)
=

j(r0)

2
. (C.15)

For δ → 0, δΓ tends to a single point. For an observation point on the surface,
(C.10) can thus be written as

I =
j(r)

2
− n̂×−

∫
Γ

j(r′)× grad G(ρ) dΓ′ , r ∈ Γ , (C.16)

where the bar on the integral sign indicates that the point r = r′ is excluded from
the integration.
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Appendix D

Source modelling

There are two main types of source models: the delta-gap voltage source [Balanis,
1997; Junker et al., 1995] and the frill generator [Balanis, 1997; Fikioris et al., 2003].
Both are depicted in Figure D.1.

δV

ẑ

a
b

m

Figure D.1 Source modelling: delta-gap voltage source (left) and frill generator
(right)

The delta-gap voltage source model assumes that the field generated within the
gap is uniform. It is a good approximation for small spacings. The impressed field
at the gap of the dipole is given by

ei = −V

δ
ẑ . (D.1)

The source can be also modelled by an equivalent magnetic ring current which
is usually referred to as frill generator. The frill generator model was introduced
to calculate the fields from coaxial apertures [Tsai, 1972]. To use this model, the
aperture is replaced with a circumferentially directed magnetic current:

m = −n̂× ei = −V

δ
φ̂ . (D.2)
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The fields generated on the surface of the wire (which can be approximated by
those along its axis) can be computed using simple analytical expressions [Tsai,
1972; Balanis, 1997]. The inner radius a of the annular ring is usually the radius
of the dipole wire. Since the dipole is fed by transmission lines, the outer radius
b of the equivalent annular ring is found using the expression for the characteristic
impedance of the transmission line. The field along the axis is given by

ei|axis ≈ − V

2 ln(b/a)

[
e−ik

√
z2+a2

√
z2 + a2

+
e−ik

√
z2+b2

√
z2 + b2

]
ẑ . (D.3)
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dans des structures quelconques, Ph.D. thesis 201, University of Liège, Belgium,
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