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a b s t r a c t

Breast cancer is a heterogeneous disease and its genomic characteristics have been widely studied in the
last years. Although several progresses have been made, metastatic disease is still incurable in the
majority of patients. Recent genomic studies have shown that a large number of candidate targets exist in
breast cancer. Currently only two drivers have been validated (ER and HER2), but several others seem to
be associated with objective response, such as PIK3CA mutations, FGFR1 amplifications, AKT1 mutations,
EGFR amplifications and ERBB2 mutations. Beside driver identification, many other applications can be
developed for genomics such as identification of lethal subclones, DNA repair defects or immune
response against tumor. Most of the precision medicine programs currently use targeted sequencing.
Nevertheless, whole exome sequencing, RNA sequencing, gene expression analysis, phosphoprotein
detection, SNP arrays and ctDNA sequencing have been also proposed in clinical trials.

© 2015 Elsevier Ltd. All rights reserved.
Introduction

Numerous models to explain cancer complexity have been
proposed up to now, such as that based on the principle of pro-
gressive accumulation of DNA mutations, responsible for initiation,
progression, dissemination, response and resistance to treatment
[1,2]. Somatic mutations are abundant in every cancer cells, but
most of them do not play a role in cancer progression. They are
classified in “passengers”, that have not a functional effect but are
associated with a clonal expansion; “drivers”, associated with a
selective advantage; “actionables”, that have diagnostic, prognostic
or therapeutic significance; and “druggables”, that are targets of
therapeutic development [3,4]. In this context, multigene diag-
nostic assays, such as next generation sequencing (NGS) technol-
ogies or comparative genomic hybridization arrays (CGH), assume
primary importance in cancer treatment development [5e7]. Thus
genomic technologies are relevant and their applications are
growing. Targeting oncogenic drivers can be a possible approach to
improve outcome in patient's refractory to standard treatments.
Therefore, new clinical trials are required to translate scientific
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innovations to clinical practice for patients selected according to
their molecular characteristics [8].

Breast cancer is the leading cause of cancer related death
worldwide, with about 232.340 new cases of invasive breast cancers
and 390.620 deaths in the USA in 2013 [9]. Although in the last years
advances have been made in breast cancer management, metastatic
disease is still incurable. The majority of progress has been done for
targeted therapies, for instance, therapies targeting HER2 with per-
tuzumab or trastuzumab-emtansine [10,11]. However, studies on
molecular characterization have shown that breast cancers present
many other genomic alterations, including AKT1, PIK3CA and FGFR1,
which can be targeted by new molecular drugs [6,12,13].

In this paper we will analyze different applications of high
throughput genomic assays in metastatic breast cancers and their
involvement in therapeutic development of several targeted agents.

Genomic tests to decipher cancer biology at the individual
level

Oncogenic drivers

Identification of drivers at the DNA level.
In the last years the concept of precision medicine has been

growing. The introduction of high throughput technologies, such as
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whole exome sequencing and copy number analyses has allowed to
identify tumor molecular characteristics. The introduction of these
techniques advantaged the discovery and update of oncogenic
drivers. Targeting drivers gene mutations can lead to oncogene de-
addiction and tumor shrinkage. The SAFIR-01 trial has been con-
ducted in this context: guide patients towards specific targeted
therapies according to their genetic characteristics [6].

Over the past few years, many other trials have emerged to
study genomic characteristics in breast cancer patients, with the
identification of about 10e20 candidate actionable drivers, most of
them occurring in less than 10% of patients [12e16]. Many clinical
trials have been focused on these new targets, but nowadays only
few of them are associated with objective response in clinical
studies. Among these we can mention PIK3CA mutations, observed
most commonly in hormone receptor positive breast cancers
(34,5%) respect to HER2 positive (22,7%) or basal-like tumor (8,3%)
[17]. In this setting of patients, specific treatment with BYL719, a
selective PI3Ka inhibitor, in combination with endocrine therapy
(letrozole or exemestane) has shown promising results in a phase I
study, associated with manageable adverse events [18]. FGFR1
amplifications, present in about 10% of breast cancer patients and
associated with a poor prognosis, showed encouraging results in
preclinical studies. There are nowadays several ongoing clinical
trials with different compounds, such as lucitanib, dovitinib,
AZD4547, nintedanib, BGJ398 and JNJ-42756493 [19e21]. Other
rarer gene alterations in breast cancer, such as AKT1 and ERBB2
mutation and EGFR amplification, are present. Mutations of AKT1
occur in about 4% of breast cancers. Targeting mTOR pathway with
specific inhibitors, such as everolimus, leads to promising results in
clinical trials [6,22]. ERBB2 mutation is an uncommon alternative
mechanism to activate HER2 in breast cancer and is currently
considered as a possible target of the HER2 inhibitor neratinib [23].
Finally, EGFR amplification, observed in 2% of the cases, can be the
target of specific EGFR inhibitors [6]. Unfortunately, other identified
gene alterations have not shown encouraging results in clinical
studies. For example, the amplification of CCND1 is not associated
with a better response in patients treated with palbociclib, a cyclin-
dependent kinases 4 and 6 inhibitor, compared to unselected pa-
tients. Nevertheless this targeted therapy can improve progression
free survival in advanced breast cancer, independently of the
CCND1 abnormality, explaining why a phase III trial is ongoing
(NCT01942135, www.clinicaltrials.gov) [24]. The presence of co-
existing mutations in the same tumor can be associated with
resistance to therapy. Hortobagyi and colleagues observed a better
response in patients with a mutation activating mTOR pathway,
such as PIK3CA, FGFR1 and CCND1, compared to patients not car-
rying gene mutations. Also a reduction of everolimus efficacy in
patients carrying multiple mutations was detected [25].

In summary, in advanced breast cancers, five gene alterations
have been associated with objective response: PI3KCA mutations,
FGFR1 amplifications, AKT1 mutations, EGFR amplifications and
ERBB2 mutations. Five to ten other genes are candidate drivers
based on preclinical studies.

Currently, the preferred approach for personalized medicine is
to use targeted sequencing and copy number analyses in order to
deliver the best treatment.

Targeting the pathways: identification of driver at the RNA/protein
level

While most of the current strategies of personalized medicine
aim to identify DNA alterations, other approaches could identify
pathway activation and dependency. PI3K/mTOR pathway activa-
tion is involved in resistance to hormonotherapy in ER-positive
breast cancer. The BOLERO-2 trial results highlight that targeting
mTOR pathway is an effective strategy to overcome resistance to a
previous endocrine therapy [26]. Loi and colleagues identified that
mTOR activation was associated with better response with mTOR
inhibitor treatment [27,28]. Gene expression could be useful to
identify drivers of cancer progression and pathway dependency.

Another pathway driving cancer progression is the CDK4/RB
pathway, associated with cell cycle progression, through tran-
scription activation of E2F-regulated genes. Abnormal RB pathway
is reported to be aberrant in about 20e35% of breast cancers and is
associated with poor outcome. It responds better to cytotoxic drugs
than to tamoxifen, due to the bypass of antiestrogen signaling.
Therefore, RB pathway can be studied as a biomarker to address the
therapeutic choice in ER-positive breast cancers [29].

ER, mTOR and CDK4 pathways drive cancer progression in a
majority of ERþ/Her2- BC. Thus, there is a need to develop mo-
lecular tools to assess pathway activation and dependency by gene
expression arrays and phosphoprotein arrays.
Lethal subclones and intratumor heterogeneity

Profiling tumors emphasizes that genetic differences exist not
only between different tumors, but also in the same tumor. This
intra-tumor heterogeneity is related to genomic instability, causing
an additional challenge for developing drugs in presence of
different mutations [30,31]. Within the tumor multiple differences
at genetic and epigenetic levels exist, resulting in therapy resis-
tance. Indeed, Landau and colleagues worked on chronic lympho-
cytic leukemias and have shown different responses to treatment
based on DNAmethylation tumor profile at an epigenetic level [32].
However genomic instability results in dynamic alterations in
clonal and subclonal frequencies. Selective pressure, determined by
treatment and tumor microenvironment, leads to a selection of
specific subclones responsible of resistance to target therapy [33].
Lethal subclones can be present in a minority of cells in primary
tumor. Ultradeep sequencing could allow early identification and
provide the information for specific treatment [34]. Several studies
have shown that targets can be lost or gained during tumor evo-
lution, putting in evidence the need of a new biopsy at the time of
disease progression [35]. Currently the re-biopsy is not a clinical
practice due to the invasiveness of the procedure. Recent studies
have shown that genomic changes occurring during the course of
the disease can be detected with liquid biopsy, by sequencing
circulating DNA at baseline and at disease progression. Circulating
DNA could monitor the appearance of lethal clones, without inva-
sive procedures [36].

Several gene alterations such as ESR1, TSC1/2 and PTEN have
been associated with resistance genotype. To illustrate, Arnedos
et al. observed that metastatic breast cancers in comparison with
the primary tumors present higher level of genes involved in
migration processes or in resistance mechanisms, such as ESR1 or
TSC1 [37]. Toy and colleagues observed that the ESR1 was
frequently mutated at metastatic site, but not in primary tumor
samples. Overall the mutation was detected in less than 1% of early
breast cancer and in about 20% of aromatase inhibitor resistant
tumors and is associatedwith a poor prognosis. They identified that
the mutation involves the ligand binding domain of ESR1, which is
responsible of acquired resistance to endocrine therapy through
the activation independent to the ligand. However, drugs directly
targeting ER and inducing its proteasomal degradation, such as
fulvestrant, may be effective against the mutant forms of estrogen
receptor [38,39]. Moreover, PTEN mutations and deletions could be
a mechanism of resistance to PI3K inhibitors. Indeed, the progres-
sive decrease or loss of PTEN during treatment with BYL719 might
lead to PI3K/AKT pathway activation and consequently to tumor
growth [40].
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In conclusion, considering that some genes are associated with
resistant disease, identifying these lethal minor subclones by
ultradeep sequencing and ctDNA could be useful.

Mutagenesis processes and DNA repair defects

Somatic mutations in the cancer genome could be a conse-
quence of DNA replication error, exposure to mutagen or defective
DNA repair mechanisms. DNA repair defects are responsible of
cancer progression, through accumulation of multiple DNA alter-
ations. Less than 5% of breast cancers present mutations of BRCA1
and BRCA2 genes, correlated to hereditary breast cancer with 80%
of lifetime risk when one of the genes is mutated [41e43]. BRCA1
and 2 proteins are involved in double strand break (DBS) repair
mechanisms and their mutations are responsible of homologous
recombination deficiency (HRD). In BRCA1 or BRCA2 tumors, poly
(ADP-ribose) polymerase (PARP) inhibitors can lead to tumor
regression by a process known as synthetic lethality, a result of the
accumulation of un-repaired DNA DSB and an unsupportable in-
crease in genomic instability. The loss of PARP activity results in an
accumulation of new DNA damages, normally repaired by HR
mechanism, with consequent induction of cell death [44]. Acting on
synthetic lethality with DNA repair defect (PARP inhibitors and
BRCA defects) represents new targets on mutational process.
Genomic tests have been proposed to identify defects in DNA repair
pathways and the best model is with the BRCA genes. To illustrate, a
phase II clinical trial with olaparib, a PARP inhibitor has shown
promising results in metastatic breast cancer. 54 patients were
enrolled in two cohorts; the ones treated with 400 mg twice daily
have shown the majority objective response and stable disease
[45]. Currently a phase III trial is ongoing (NCT02000622, www.
clinicaltrials.gov). In the same field, an ongoing phase II study
ARIEL2 (NCT01891344, www.clinicaltrials.gov), is recruiting pa-
tients with platinum sensitive ovarian cancer, BRCA mutated or
wild type. Rucaparib, another PARP inhibitor, is administered. In
preliminary results, this study identified an HRD signature, char-
acterized by high tumor genomic loss of heterozygosis (LOH). This
signature could be present in both BRCA wild type and mutated
patients and is associated with a clinical benefit. In this trial HRD
status is assessed using NGS technique [46]. Furthermore, another
application of whole exome sequencing is to predict which DNA
repair defect is altered on the basis of the mutational signature
detected in each individual [47].

In conclusion, to analyze DNA repair defects different tech-
niques are now available: the single gene sequencing, for example
for BRCA1 and BRCA2 genes; the whole exome sequencing, to
detect a HRD signature predicting response to PARP inhibition or to
identify a mutational signature suggesting a specific DNA repair
defect; and the SNP arrays to assess HRD status, through detection
of LOH.

Dialogue between cancer cells and immune system

Immunotherapy has led to outcome improvement in different
cancers, especially in melanoma. Several studies correlated
immunotherapy outcomes to peripheral-blood lymphocyte count,
tumor microenvironment, and maintenance of high-frequency T-
cell receptor clonotypes [48e50]. Also in connectionwith new tools
and technology, potential applications of genomics could be to
identify immune defects in individuals with metastatic breast
cancer. Interestingly, Snyder and colleagues have shown in mela-
nomas that a high mutational load has enabled to improve out-
comes with anti-CTLA-4 treatment. The authors has supplemented
on the fact that a high load alone is not sufficient to predict the
efficacy. In fact, certain cancers are highly mutated, but do not
respond to immunotherapy. Moreover, the presence of neoantigens
in the tumor could be involved in treatment response. This neo-
antigens burden, recognized by host immune system, appears to be
determinant for immunotherapy efficacy [51]. Furthermore, cancer
cells could release signal linked to cell death in order to trigger
immune response. Genetic analysis could evaluate whether the
host generate an immune response following cancer cells death.
For example, in breast cancer the detection of toll-like receptor 4
(TLR4) loss of function is related to a rapid relapse following
radiotherapy or chemotherapy [52]. Finally, metastatic site biopsies
analysis have shown a very low level of TILs, PD1 and PDL1, except
for HER2 positive metastatic breast cancers, suggesting the pres-
ence of an immune suppressive network in this stage of the disease
[37].

Conclusion

Breast cancer is a complex disease with a progressive genetic
evolution, responsible of different molecular characteristics in each
stage of the disease and of the acquired resistance to target ther-
apies. Only few targets are currently validated in breast cancer
treatment, such as ER and HER2, but several other oncogenic
drivers are being studied with encouraging results. In recent year,
the concept of personalized medicine has grown and the high
throughput genomic analysis became fundamental for treatment
decisions. Different techniques are used for genomic analysis and
they depend on what clinicians want to target in metastatic breast
cancer. NGS is used to detect oncogenic drivers (ERBB2 amplifica-
tion or mutations, PIK3CA mutations, AKT1 mutations). Gene
expression or phosphoproteine assays permit to analyze pathways
activity (ER expression, mTOR activation, CDK4/6 activation).
Moreover, ultradeep sequencing and circulating DNA could be
useful to highlight lethal subclones (ESR1 and PTEN mutations).
Targeted sequencing, whole exome sequencing and SNP arrays can
assess DNA repair defects (BRCA1/2 mutations or HRD assay). And
finally, whole exome sequencing and RNA-sequencing are
becoming interesting for tracking immune system (PDL1 over-
expression neoantigens, mutation load). Overall, significant prog-
ress has beenmade in understandingmetastatic breast cancers. It is
necessary to proceed with further studies to translate these recent
evidences into a clinical application and to provide patients new
therapeutic options.
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