

Relationships between methane emissions from dairy cows and farm technico-economic results

P. Delhez^{1,2}, B.Wyzen³, A.-C. Dalcq¹, F. G. Colinet¹, E. Reding³, A. Vanlierde⁴, F. Dehareng⁴, N. Gengler¹ & H. Soyeurt¹

¹ University of Liège, Gembloux Agro-Bio Tech, AGROBIOCHEM Department, Gembloux – Belgium ²National Fund for Scientific Research (F.R.S-FNRS), Brussels – Belgium ³ Walloon Breeding Association (AWE), Ciney – Belgium ⁴ Walloon Agricultural Research Center, Gembloux – Belgium

Contact: pauline.delhez@ulg.ac.be

GEMBLOUX AGRO

- Interest in mitigating enteric methane (CH₄) emissions from cows because of:
 - contribution to climate change
 - loss of 2-12% of gross energy
- Many studies on CH₄ determining factors but few studies on a large scale and with on-farm data
- Few studies linking enteric CH₄ to profitability

Investigating relationships between enteric CH_4 (g/day) and :

- technical practices
- economic results
 on commercial dairy farms

Materials and Methods

- 525,697 individual CH₄ records predicted from milk mid-infrared spectra → herd*year based CH₄ proxy (g/day)
- 1,024 accounting sheets (technical and economic data)

Conclusion:

- Large variability in technical and management practices for herds with similar CH₄ emissions
- Tendency to less optimal technical

1,024 herd*year records from 2007 to 2015

 Correlations and ANOVA to identify variables associated with CH₄ practices and lower economic results for herds producing less CH₄

Results

Correlations (r) between CH₄ and some relevant technical variables (p-value < 0.05)

Variable	r
Size of the forage area (ha)	-0.14
Nitrogen applied on grasslands (kg/ha)	0.15
Number of livestock unit per ha (LU/ha)	0.07
Milk fat content (%)	0.38
Milk protein content (%)	0.33
Fat and protein corrected milk yield (L/cow*year)	0.18
Milk solids (kg/cow*year)	0.20
Milk produced from forages (L/cow*year)	0.12
Milk produced from fresh grass (L/cow*year)	0.09
Replacement rate (%)	-0.15
Calving interval (day)	-0.21
Age at first calving (day)	-0.09

Gross margin per cow VS. CH_4 (red dots represent the gross margin LS-means for 6 groups of herds based on CH_4)

