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Happy to be back to Supelec :)

Supelec 2007 (Gif 2004-06, Rennes 2006-07)
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PhD Thesis in Engineering Science, ULiege, 2011
Contributions to Batch Mode Reinforcement Learning
Inria Lille - Nord Europe - 2012-2013
Analysing the exploration/exploitation dilemma
Back to ULiege - 2013 - ...

Conciliating reinforcement learning with the energy transition



A few words about energy prosumer
communities

Tentative definition:

« Consumers/Prosumers that organise themselves in order to optimize how they
produce and consume energy in order to achieve an objective. »

Many types of energy prosumer communities:
 Physical communities, e.g. people living under the same low-voltage feeder,

* Mobile communities, e.g. people owning EV, able to adapt how and where
they charge / discharge their EV,

* Hybridation of these two types of communities.
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First story

Foreseeing New Control Challenges in
Electricity Prosumer Communities



The physical prosumer community




Modeling

N prosumers dynamically interacting with each other over a time horizon T:
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where 6D_Plp: is the difference between the power injected into the distribution

network and the sum of active power exchanges between the members of the
community.



Modeling
Conservation of reactive power at the prosumer’s location

Vti, Py, =LY, + Dy,

Other power-related constraints:
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Modeling

Network voltage
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Modeling

Losses « at the root of the community » :

N
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where D(C)P,t (resp. D(C)Q,t) is the active (resp. reactive) power measured at the
root of the community.



Modeling

Costs and revenues
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Controlling the prosumers community

Need for an optimisation criterion
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Centralised control without storage (P)
Optimising PV production
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Centralised control with storage

A centralised strategy

We use the forward backward sweep optimal power flow strategy
proposed in [Fortenbacher et al.]

We obtain both a sizing and centralised planning strategy, for a given load
and solar irradiance scenario

Optimal Sizing and Placement of Distributed Storage in Low Voltage Networks. Philipp
Fortenbacher Martin Zellner Géran Andersson. IEEE Power Systems Computation
Conference (PSCC), 2016.



Why going decentralised?

Technical challenges for building centralised strategies
1. Information gathering
2. Need for a centralised controller for processing information

3. Concretising computational results into applied actions



Learning a decentralised strategy

We propose a data-driven, « learning approach »:
1. Built a set of centralised solutions

2. Generate learning (input, output) samples, where the input is made
from local indicators, and the output is a decision that should be
applied locally

3. Learn a strategy from the samples

Imitative learning



Building a set of data

First, generate scenarios: a solar irradiance scenarios, a set of load scenarios
(for each prosumer).

Then, solve the pairs {solar irradiance, load profiles} (using, for instance, a
forward backward sweep power flow approach)
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Learning from data - Imitative learning

We propose to use a machine learning approach
Machine learning is about extracting pattern from data

. ~ N
From the sample of data L = (S(Z), a(z))izl

we learn a mapping state -> action
Here, we adopt a slightly indirect approach by learning 4 different regressors:
Active power
Reactive power
Charging battery

Discharging the battery



1st regressor: learning active power
production

Data set: £P — {(ant’)t,
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t

¢: : electricity price at time step t, considered as
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Pgi’max : maximal production potential at bus 4 at
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2nd regressor: learning reactive power
production
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3rd regressor: learning how to charge the
battery
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4th regressor: learning how to draw power
from the battery
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Then, post processing & evaluating solutions

Post-processing solutions

-> Ensure physical constraints are satisfied

For the active and reactive power production levels, ensure that the
production levels are compatible with production bounds, for each prosumer |

For the power injected into / drawn from the battery, ensure that both maximal
charging/discharging powers and of the level of charge evolution are feasible

Generating other scenarios to try the learned strategy

-> Evaluate the performance of learned policies in other environments



Test case

The number of buses is 15

The number of prosumers is 14
The number of branches is 14
Atis 1h

The time horizon T is 8760

The line resistance Rg1 = Rg2 = ... = RgL is 0.025 Q
The line reactance Xg1 = Xg2 = ... = XdL is 0.005 Q
The nominal voltage of the network is 400 V

The maximum admissible voltage v/1@X is 1.10 pu

The minimum admissible voltage v MM is 0.90 pu




Test case: prosumers characteristics

Id Number of occupants PV installed capacity Storage installed capacity

kW, kWh
1 1 2 2
2 1 2 2
3 2 3 2
4 2 3 2
5 2 3 2
6 3 3.5 5
7 3 3.5 5
8 3 3.5 5
9 4 5 6
10 4 5 6
11 4 5 6
12 4 5 6
13 5 7 8
14 5 7 8
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Learning scenarios

We generate two additional price
scenarios, S4 and S5.

The FBS-OPF algorithm is run on
these two scenarios.

The resulting outputs of the FBS-OPF
are used to generate learning sets for
the regressors.
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Results

Overall costs (objective function)

Overall costs
Scenario S1 S2 S3
FBS-OPF algorithm | 1105.54 € | 2121.16 € | 1837.80 €
SL algorithm 271144 € | 783243 € | 5123.09 €
RT algorithm 5143.32 € | 6501.94 € | 5807.77 €
Energy outlook:
Curtailments over the year

Scenario S1 S2 S3

FBS-OPF algorithm | 7.01% | 11.20% | 9.69%

SL algorithm 11.13% | 32.78% | 14.80%

RT algorithm 11.91% | 13.46% | 15.12%




Second story

Deep reinforcement learning solutions for
energy microgrids management


http://orbi.ulg.ac.be/handle/2268/203831
http://orbi.ulg.ac.be/handle/2268/203831

Operating storage devices in microgrids

The context: imagine a microgrid (MG) featuring photovoltaic (PV) panels, with both
short and long terme storage devices.
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(c) Example of production in summer

W The problem: how to optimally active the storage devices so that to
= minimise the operating costs of the MG?



(Deep) Reinforcement Learning (RL)

Ingredients

1) An agent evolving within an environment

2) A reward function, assessing the Reward Action

Immediate quality of decision

3) A capacity of interacting with the
environment



(Deep) Reinforcement Learning (RL)
More formally...

Markov Decision Process M = (S, A, T, R)

S = {s(1>,...,s<”3)} A= {a(l),...,a(”«‘\)}
T(s¢,at, St+1) = P(S¢+1|St, at) re = R(s¢, at, St11)
Policy: 7:S8 — A

Vvse S, J'(s)=E ZWtR(St,W(St)aStH)‘SO = 8
t=0

v € 10,1)



(Deep) Reinforcement Learning (RL)
More formally...

Searching for optimality Vs € S, JW* (5) > JW(S)

Solving (or approximating) the Bellman equation:

Vs € 8,
J*(s) = max ZT s,a,8) (R(s,a,s") +~J"(s"))

Theoretically, one may just to behave optimally with respect to the optimal state-

action value function: V(S ) cSx A
Q" Sx AR  Q(s,a)=)» T(s,a,¢)[R(s,a,s)+yJ*(s)]
s’eS

In practice: partial observability, too many states / dimensions...



Formalising a RL problem

St = ::Ct_hc, ceey Ct_l]g [th—hpa RN ¢t_1]7 Sin}

::Ct—hca---act—l]a[gbt—hpa-- , Or-1], 8 Ks}

o State: s

St = ::Ct—hca SRR Ct—l]a [¢t—hpy sy th 1] 7CS) P24, 1048]

o Action: a; = [af%,aP] € A VteT: A =([-¢"sP ) x ([=¢s{ ooln[atts, 2 12])

B
e Battery dynamics: st = sP +nfaf if af > 0and sP, = sP + % otherwise.

H2

e Hydrogen dynamics: sﬁrl = st > 4 Hz o H2 if a; "2 > 0 and 5t+1 = s,{b -+ CH2 otherwise.

o Reward function: 7 = r(as, di) = r2(as, dy) + r~(ay, dy)

r~(as, dy) = kdy when & < 0

ri2(ay, dy) = kH2al!?



Using a deep neural network to approximate
the value function

Approximating a state-action value function using a deep neural network.

Fully con-
nected layers
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V. Francois-Lavet open source project: the
DeeR framework

DeeR (Deep Reinforcement) is a python library to train an agent how to behave
In a given environment so as to maximise a cumulative sum of rewards:

https://qgithub.com/VinF/deer



https://github.com/VinF/deer

As a conclusion...



(Ongoing) next steps

Many, many problems to (re)think regarding energy prosumer communities

We are currently working on the integration of (distributed) reinforcement
learning approaches for agents to cooperate within a community

Also, we are investigating how to take into account 3 phase unbalanced load
problems...
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