BEECH PHENOLOGY AND PRODUCTIVITY AT THE VIELSALM TERRESTRIAL OBSERVATORY

Quentin Hurdebise⁽¹⁾, Caroline Vincke⁽²⁾, Anne De Ligne⁽¹⁾ and Marc Aubinet⁽¹⁾

(1) Université de Liège, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Belgium (2) Université catholique de Louvain, Earth and Life Institute, Forest Sciences, Belgium

Context

Understanding how temperate forests react and will react in a changing environment requires long-term monitoring of both forest productivity and phenology as well as of climate variables.

Content

- Determination of phenological and productivity indicators.
- Relations between indicators and between indicators and climate.

The Vielsalm Terrestrial Observatory

description ICOS candidate eddy covariance site located in a temperate mixed forest (beech, spruce, Douglas and silver fir) in East Belgium (alt. ~ 470m).

A median smoothing of **light trans**-

missivity (RLT) through the canopy

(8 sensors under the canopy).

S_{80%} : Start of the leaf out period

S_{20%} : End of the leaf out period

- Only the wind sector dominated by beech was considered (180 to 330°N).
- Site 17 years (from 1998 to 2014 except 2009) of gapfilled data were used. In early 2009, there was a tower change and no data were collected.

Phenological indicators

(Numbers refer to the Figures below)

- 1. The start of the leaf out period ($S_{80\%}$) is significantly related to,
- S_{F*} , the day of the year when the sum of above zero daily temperature from the 1st April reached *F** (202 °C . Day).
- 2. The leaf out duration ($S_{20\%}$ $S_{80\%}$) is shorter if the temperature during the leaf out period (T_{air}) is higher.
- 3. The start of the carbon uptake (S_{CUP}) is significantly related to the end of leaf out period ($S_{20\%}$), but not to $S_{80\%}$ (not presented).

NEP interannual variability

- 4. The beech annual NEP (NEP_v) is significantly related to length of the carbon uptake period (L_{CUP}) .
- 5. The residuals of this relation (NEP_{y,res}) are related to NEP₁₅₀₀, the</sub>value of the NEP at 1500 μ mol/(m².s), obtained from the modelled light response curve during the vegetation period.
- 6. A model (NEP_{mod}) combining these two parameters (L_{CUP} and NEP₁₅₀₀) explains two third of the variability observed in NEP_y. **Productivity indicators**
- 7. The beech stand annual Net Ecosystem Productivity (NEP_v) is significantly correlated to the growth index of the trees.
- 8. The more intense the masting of a current year is, the lower the

Phenological indicators derived from

A median smoothing of daily Net **Ecosystem Productivity** (NEP_s) (eddy covariance measurements). **S**_{CUP}: Start of the carbon uptake **E**_{CUP}: End of the carbon uptake **L**_{CUP}: Length of the carbon uptake

Method

Ø

Material

- Gapfilling and summation of half-hourly Net Ecosystem Productivity (eddy covariance measurements from the site)
- Double de-trended tree ring width series (Growth Index)
 - (cores in 24 dominant beeches from the site)

0

5

Ο

0

growth index is. NEP, was less sensitive to the masting intensity and only lower for the most intense masting events (++++).

Seed production (Masting intensity)

(records for Wallonia ("Comptoir Forestier Wallon"))

This research was funded by the "Service Public de Wallonie" (Convention 1217769).

Funding

Contact: <u>quentin.hurdebise@ulg.ac.be</u>

Temperature strongly explained the leaf out beginning $(S_{80\%})$ and duration $(S_{20\%} - S_{80\%})$.

- Highlights Phenological indicators obtained from different datasets are significantly related ($S_{20\%}$ and S_{CUP}).
 - Carbon uptake period length and Net Ecosystem Productivity at light saturation explain almost two third of the variability observed in beech annual Net Ecosystem Productivity.
 - There is a significant relation between the carbon net assimilation of the stand and the tree ring increment for a given year, but not with the masting intensity. This underlines the role of the carbon allocation regulation system.