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Introduction
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The Earth’s cryosphere

� The cryosphere includes:
• Sea ice
• Glaciers
• Ice sheets
• Ice caps
• Permafrost
• River ice
• Lake ice

[NASA/GSFC Scientific Visualization Studio]
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Why modelling large ice sheets?

� Simulating the evolution of ice sheets
during the last glacial periods.

Simulation of the last glacial period [Hughes et al.,2016]

Projected sea-level rise [IPCC, 2013]

� Simulating the future response of
present-day ice sheets under climate
changes.
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Dynamics of ice sheets
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How to model ice-sheet flow?

� The motion of an ice sheet is driven by creep deformation induced by the
force of gravity and possibly basal sliding.

� On large temporal scales relevant in glaciology, ice motion is usually
described as the flow of a highly viscous fluid.

Elephant-foot glacier (Roman Lake, Greenland) Glacier flow through narrow valleys (Axel Heiberg Island)
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The full Stokes flow problem
� Ice motion is described as a quasistationary Stokes flow:

−∇xp+ 2divx(ηD) + ρg = 0 in Ω(t) for 0 < t < τ,

divxv = 0 in Ω(t) for 0 < t < τ,

−pn+ 2ηD(n) = 0 on Γs(t) for 0 < t < τ,

−pn+ 2ηD(n) =−pwn on Γw (t)∪Γc(t) for 0 < t < τ,{
vt =−αb‖tt‖m−1tt
(w−v) ·n = 0

on Γb(t) for 0 < t < τ.

� The free surfaces evolve due to ice dynamics, snow accumulation, ablation, basal
melting and calving.

∗∗ ∗∗

Ω(t)

Γs(t)

Γb(t) Γw (t)
Γc(t)

Γu(t)
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Ice rheology
� Ice is described as a shear-thinning material whose effective viscosity is

given as a power law (Glen’s power law):

η(T ′,de) =
1

2
A(T ′)−1/nd

−(1−1/n)
e with de =

√
1

2
Tr(D2)

� Ice viscosity is highly temperature-dependent (one needs to solve a thermal
problem).
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Common approximations for large-scale dynamics
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Shallow approximation for ice-sheet flow

� Solving the full Stokes problem is computationally and mathematically
challenging.

� Ice flow over large ice sheets is essentially a thin-film flow (aspect ratio
ε∼ 10−3 for Antarctica).

� Simplified ice dynamical models are derived from the Stokes equations by
dropping higher-order terms in ε.

0 2000 4000

0

2000

4000

Horizontal distance [km]

El
ev
at
io
n
[m

]

Transect along the Antarctic ice sheet

Fluid Meeting, ULiège, Belgium 11 / 25



The first-order approximation (Blatter-Pattyn model)

� The FOA model is an approximation to the Stokes equations accurate to
O(ε2).

� Vertical normal stress is hydrostatic⇒ the pressure is decoupled from the
velocity.

� ∂vz
∂x �

∂vx
∂z and ∂vz

∂y �
∂vy
∂z ⇒ the vertical velocity is decoupled from the

horizontal velocity.

� FOA model:
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The shallow-ice approximation (SIA model)

� The SIA model is a lubrication flow model (shearing across the film
thickness balances the pressure gradient). It approximates the FOA model
under slow sliding conditions.

� Vertical normal stress is hydrostatic⇒ the pressure is decoupled from the
velocity.

� ∂vz
∂x �

∂vx
∂z and ∂vz

∂y �
∂vy
∂z ⇒ the vertical velocity is decoupled from the

horizontal velocity.

� Ice flow is dominated by shearing. Only p, σD
xz and σD

yz are non-negligible
in the stress tensor.

� SIA model:

v = vb−2(ρg)n‖∇xs‖n−1
∫ z

b(x,t)
A(T ′)(s− z ′)dz ′∇xs.
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The shallow-shelf approximation (SSA model)
� The SSA model is a thin-film model with wall slip. It approximates the

FOA model under fast sliding conditions. It is mostly relevant for ice
streams and ice shelves.

� Vertical normal stress is hydrostatic⇒ the pressure is decoupled from the
velocity.

� ∂vz
∂x �

∂vx
∂z and ∂vz

∂y �
∂vy
∂z ⇒ the vertical velocity is decoupled from the

horizontal velocity.

� Ice flow is dominated by sliding. The horizontal velocity is constant over
the ice thickness⇒ Equations are integrated over the ice thickness.

� SSA model:
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Essential mechanisms for large-scale dynamics
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Essential feedback mechanisms

� Whatever its level of approximation, an appropriate ice-sheet model should
be able to reproduce the essential mechanisms that govern ice-sheet
dynamics:

(1) Melt-elevation feedback: A lowering of the ice-sheet surface induces a
positive feedback on ablation [Dijkstra,2013].

(2) Marine ice-sheet instability (MISI): Marine ice sheets on retrograde
slope are instable [Schoof,2007].

(3) Thermomechanical instability: Changes in basal sliding can induced
thermal oscillations [Robel et al.,2013,2014].
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Melt-elevation feedback

� Step 1: Steady state for equilibrium line E1.

Accumulation

Ablation

E1

North South
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Melt-elevation feedback

� Step 2: Perturbation of the equilibrium line + initiation of ice-sheet growth.

Accumulation

Ablation

E1 E2

North South
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Melt-elevation feedback

� Step 3: Steady state for new equilibrium line E2.

Accumulation

Ablation

E2

North South
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Marine ice sheet instability mechanism

� Step 1: Steady state on an upward sloping bed (qin = qout).

∗
∗ ∗∗ qin

qout
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Marine ice sheet instability mechanism

� Step 2: Initiation of grounding line retreat (qin < qout).

∗
∗ ∗∗ qin

qout
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Marine ice sheet instability mechanism

� Step 3: Self-sustained grounding line retreat (qin� qout).

∗
∗ ∗∗ qin

qout
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Thermal induced oscillations mechanism

� Step 1: Ice sheet build-up on a frozen bed (binge phase).

∗∗ ∗∗
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Thermal induced oscillations mechanism

� Step 2: Binge/Purge transition.

∗∗ ∗∗
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Thermal induced oscillations mechanism

� Step 3: Rapid basal motion (purge phase).

∗∗ ∗∗
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Thermal induced oscillations mechanism

� Step 4: Purge/Binge transition.

∗∗ ∗∗
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Uncertainty quantification for ice-sheet modelling
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How are ice-sheet models affected by uncertainties?

Bedrock elevation

Geothermal heat flux

Surface temperature

Surface accumulation

Sub-shelf melting

Atmospheric forcing

Basal sliding coefficient

. . .

+ uncertainty

Change in volume

Change in area

Grounding line position

Ice velocity

Instability analysis

. . .

Input variables
(x1,x2, . . . ,xm)

Model
y = g(x1,x2, . . . ,xm)

Output variable
y
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Conclusion
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Conclusion
� Ice sheets are modelled as thin-film flows driven by the force of gravity and

basal sliding. These shallow models are the basis for ice-sheet
mathematical and numerical models.

� Many challenges still remain in understanding and modelling physical
mechanisms appearing in ice sheets such as basal sliding, calving and basal
melting underneath ice-shelves.

� Challenges remain in quantifying the role of uncertainties in ice-sheet
models on the response and stability of ice-sheets under warming climate
conditions.
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