

The MAR model: CORDEX.be and EURO-CORDEX results

Coraline WYARD Sébastien DOUTRELOUP Xavier FETTWEIS

2d MAR Workshop, 13-15 September 2017, IGE, Grenoble

1. MAR sensitivity to forcing reanalyses

- 2. MARv3.6 vs MAR3.7
- 3. Detection of hydroclimatic conditions favourable to floods
- 4. MAR results over the EURO-CORDEX domain

Sensitivity to forcing reanalyses

Flood detection

• CORDEX.be simulations

Forcings :

- ERA40(1958—1978)/ERA-Interim (1979—2015)
- NCEP/NCAR-v1 (1948-2015)
- · ERA-20C (1900-2010)
- · 20CRV2C (1900-2010)

Horizontal resolution :

5 km - 10 km - 20 km

reanalyses

Sensitivity to forcing

Sensitivity to forcing reanalyses : temperature ullet

reanalyses

Sensitivity to forcing

Sensitivity to forcing reanalyses : precipitations

SEASONAL DAILY PRECIPITATION AMOUNT

MARv3.6 vs MARv3.7 Flood detection

Sensitivity to forcing reanalyses

Sensitivity to forcing reanalyses : snow height •

- 1. MAR sensitivity to forcing reanalyses
- 2. MARv3.6 vs MAR3.7
- 3. Detection of hydroclimatic conditions favourable to floods
- 4. MAR results over the EURO-CORDEX domain

• MARv3.6 vs MARv3.7 : temperature

	2008-2014	DJF	MAM	JJA	SON	Annual mean
MARv3.6	R	0.97	0.98	0.95	0.98	0.97
	RMSE (°C)	1.08	1.11	2.07	1.35	1.47
	MB (°C)	-0.34	0.27	1.74	0.70	0.59
	STD (°C)	5.56	4.61	3.10	4.12	4.35
	Daily mean T (°C)	4.06	10.56	16.48	10.10	10.30
	Percentage of usable observations : 98,9 %					
	2012	DJF	MAM	JJA	SON	Annual mean
MARv3.7	2012 R	DJF 0.96	MAM 0.98	JJA 0.95	SON 0.98	Annual mean 0.97
MARv3.7	2012 R RMSE (°C)	DJF 0.96 1.51	MAM 0.98 1.25	JJA 0.95 1.52	SON 0.98 1.11	Annual mean 0.97 1.39
MARv3.7	2012 R RMSE (°C) MB (°C)	DJF 0.96 1.51 -0.85	MAM 0.98 1.25 -0.19	JJA 0.95 1.52 1.09	SON 0.98 1.11 0.07	Annual mean 0.97 1.39 0.03
MARv3.7	2012 R RMSE (°C) MB (°C) STD (°C)	DJF 0.96 1.51 -0.85 5.56	MAM 0.98 1.25 -0.19 4.61	JJA 0.95 1.52 1.09 3.10	SON 0.98 1.11 0.07 4.12	Annual mean 0.97 1.39 0.03 4.35
MARv3.7	2012 R RMSE (°C) MB (°C) STD (°C) Daily mean T (°C)	DJF 0.96 1.51 -0.85 5.56 4.06	MAM 0.98 1.25 -0.19 4.61 10.56	JJA 0.95 1.52 1.09 3.10 16.48	SON 0.98 1.11 0.07 4.12 10.10	Annual mean 0.97 1.39 0.03 4.35 10.30

• MARv3.6 vs MARv3.7 : precipitations

MARv3.6	2008-2014	DJF	MAM	JJA	SON	Annual mean
	R	0.67	0.58	0.52	0.61	0.59
	RMSE (mm/jour)	3.34	3.17	5.21	3.98	4.03
	MB (mm/jour)	0.11	-0.08	-0.36	-0.06	-0.10
	STD (mm/jour)	4.34	3.77	5.98	4.85	4.85
	Daily PPN amount (mm/jour)	2.48	1.69	2.68	2.36	2.30

Percentage of usable observations : 95,6 %

	2008-2014	DJF	MAM	JJA	SON	Annual mean
MARv3.7	R	0.75	0.60	0.56	0.67	0.64
	RMSE (mm/jour)	3.29	3.01	4.91	3.58	3.80
	MB (mm/jour)	0.25	-0.14	-0.43	-0.49	-0.20
	STD (mm/jour)	4.34	3.77	5.98	4.85	4.85
	Daily PPN amount (mm/jour)	2.48	1.69	2.68	2.36	2.30

Percentage of usable observations : 95,6 %

Sensitivity to forcing reanalyses

MARv3.6 vs MARv3.7

Flood detection

• MARv3.6 vs MARv3.7 : cloudiness

Sensitivity to forcing reanalyses

MARv3.6 vs MARv3.7

Flood detection

MARv3.6 vs MARv3.7 : global radiation

- 1. MAR sensitivity to forcing reanalyses
- 2. MARv3.6 vs MAR3.7
- **3.** Detection of hydroclimatic conditions favourable to floods
- 4. MAR results over the EURO-CORDEX domain

Floods :

- · 70% in winter
 - $^{\cdot}$ 50% caused by PPN
 - 50% caused by snow melting + PPN
- $\cdot~$ Observed floods \rightarrow flow rate > 300 m^3/s
- $\cdot\,$ MAR (conditions favourable to floods) $\rightarrow\,$ run-off > P95

Trends

1959-2010

Sensitivity to forcing reanalyses

Flood detection

Hydroclimatic conditions favourable to floods

1959-2010

14/09/2017

2d MAR Workshop – Coraline WYARD

- 1. MAR sensitivity to forcing reanalyses
- 2. MARv3.6 vs MAR3.7
- 3. Detection of hydroclimatic conditions favourable to floods

4. MAR results over the EURO-CORDEX domain

MARv3.6 vs MARv3.7 Flood detection

MAR vs ECA&D : temperature

Z (sigma_level) : 0.9996

FERRET (optimized) Var.7.1 NOAA/PMEL TMAP 12-SEP-2017 16:40:08

14/09/2017

Sensitivity to forcing

reanalyses

Sensitivity to forcing reanalyses

• MAR vs ECA&D : precipitations

FERRET (optimized) Var.7.1 NOAA/PMEL TMAP 12-SEP-2017 16:31:55

TIME : 01-JAN-2002 00:00 to 01-JAN-2003 00:00

Summary and prospects

- 1. MAR sensitivity to forcing reanalyses
- MAR forced by ERA-interim provides the best results
- MAR provides better results in winter
- Improvements in the convection scheme are required → non-hydrostatic MAR?
- 2. MARv3.6 vs MAR3.7
- MAR is highly sensitive to vegetation properties especially in summer \rightarrow MAR-CARAIB coupling
- 3. Detection of hydroclimatic conditions favourable to floods
 - \rightarrow Coupling MAR with a hydrological model or forcing a hydrological model by MAR
- 4. MAR results over the EURO-CORDEX domain
- MAR provides good results especially in Western Europe