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Over the past decade, in vitro methods have been developed to study intestinal fermentation in pigs and its influence on the
digestive physiology and health. In these methods, ingredients are fermented by a bacterial inoculum diluted in a mineral buffer
solution. Generally, a reducing agent such as Na2S or cysteine-HCl generates the required anaerobic environment by releasing
metabolites similar to those produced when protein is fermented, possibly inducing a dysbiosis. An experiment was conducted to
study the impact of two reducing agents on results yielded by such in vitro fermentation models. Protein (soybean proteins, casein)
and carbohydrate (potato starch, cellulose) ingredients were fermented in vitro by bacteria isolated from fresh feces obtained from
three sows in three carbonate-based incubation media differing in reducing agent: (i) Na2S, (ii) cysteine-HCl and (iii) control with a
mere saturation with CO2 and devoid of reducing agent. The gas production during fermentation was recorded over 72 h. Short-
chain fatty acids (SCFA) production after 24 and 72 h and microbial composition of the fermentation broth after 24 h were
compared between ingredients and between reducing agents. The fermentation residues after 24 h were also evaluated in terms
of cytotoxicity using Caco-2 cell monolayers. Results showed that the effect of the ingredient induced higher differences than the
reducing agent. Among the latter, cysteine-HCl induced the strongest differences compared with the control, whereas Na2S was
similar to the control for most parameters. For all ingredients, final gas produced per g of substrate was similar ( P> 0.10) for the
three reducing agents whereas the maximum rate of gas production ( Rmax) was reduced ( P< 0.05) when carbohydrate ingredients
were fermented with cysteine-HCl in comparison to Na2S and the control. For all ingredients, total SCFA production was similar
( P> 0.10) after 24 h of fermentation with Na2S and in the control without reducing agent. Molar ratios of branched chain-fatty
acids were higher ( P< 0.05) for protein (36.5% and 9.7% for casein and soybean proteins, respectively) than for carbohydrate
(<4%) ingredients. Only fermentation residues of casein showed a possible cytotoxic effect regardless of the reducing agent
( P< 0.05). Concerning the microbial composition of the fermentation broth, most significant differences in phyla and in genera
ascribable to the reducing agent were found with potato starch and casein. In conclusion, saturating the incubation media with
CO2 seems sufficient to generate a suitable anaerobic environment for intestinal microbes and the use of a reducing agent can be
omitted.
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Implications

Animal studies seek to replace in vivo methods with in vitro
methods. In this study, we show that in vitro models, used
to investigate the influence of the diet on the digestive
physiology and intestinal health of pigs, can omit some
specific chemicals called reducing agents to induce the
oxygen-free environment required for intestinal microbes.

Therefore, building on this experiment, future research using
such in vitro models will yield results that are more relevant,
helping in reducing the number of animals usually used for
such studies on intestinal health.

Introduction

In vitro fermentation models are increasingly used to
characterize the fermentation of fiber-rich ingredients by† E-mail: Jerome.Bindelle@ulg.ac.be
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intestinal microbes and its influence on digestive physiology
(e.g. Bindelle et al., 2011; Jha et al., 2015) and intestinal
health of pigs (e.g. Pieper et al., 2009a; Cardarelli et al.,
2016). Although in vitro and in vivo methods are not directly
comparable (Weiss et al., 2015), Koecher et al. (2014)
showed that both types of models provide complementary
information on fermentation in the gut. In in vitro models,
after pre-digestion by pepsin and pancreatic enzymes to
simulate digestion in the stomach and in the small intestine
(Bindelle et al., 2007; Sappok et al., 2009), ingredients are
fermented in a closed system (syringe, flask or bottle) by a
bacterial inoculum made from fresh or snap-frozen ileal,
cecal or fecal material diluted in a mineral buffer solution.
The required anaerobic environment is generated: (i) by
carrying out feces collection and preparation of microbial
inoculum under a constant stream of CO2 or N2 and
(ii) by, except in a small number of early studies (e.g. Tilley
and Terry, 1963), adding a reducing solution. Usually this
solution contains Na2S, alone (Menke and Steingass, 1988)
or in combination with cysteine-HCl (Theodorou et al., 1994).
Such in vitro models lack the response of the host when

exposed to the bacterial metabolites produced during the
fermentation of the different ingredients, which limited their
use in health related studies. To solve this limitation, in vitro
adenocarcinoma intestinal cell culture models (Caco-2 cells or
mucus-secreting HT29-MTX cell layers) have been combined to
in vitro fermentation models (e.g. Payne et al., 2012).
However the addition of Na2S and/or cysteine-HCl in the

fermentation model releases metabolites such as H2S,
ammonia, thiols or amines that could be detrimental to some
intestinal microbes and to the intestinal epithelium while not
being present in such amounts in natural digestive physio-
logical processes. This could induce a bias in the results from
cell culture models, limiting their relevancy. H2S, for exam-
ple, is toxic to the intestinal mucosal barrier via DNA damage
(Attene-Ramos et al., 2006), alteration of the cellular
respiration (Medani et al., 2011) and inhibition of the
butyrate oxidation in colonocytes (Roediger et al., 1997).
Ammonia is a metabolic disruptor due to its ability to inhibit
mitochondrial oxygen consumption (Andriamihaja et al.,
2010) and short-chain fatty acids (SCFA) oxidation (Cremin
et al., 2003) in colonic epithelial cells. Moreover, the in vitro
microbial activity could be influenced by the reducing agent
as they can precipitate essential metal ions and produce
potentially toxic intermediates that may induce an imbalance
between bacterial species (Fukushima et al., 2003). Finally,
reducing agents produce molecules that are also end-
products of intestinal protein fermentation, blunting the
ability of in vitro methods to quantify the production of
metabolites originating from protein fermentation. H2S is
produced by fermentation of sulfur-containing amino acids
(AA) (Christl et al., 1992) by bacterial species commonly
present in the large intestine (e.g. Escherichia coli,
Clostridium spp., Enterobacter aerogenes) (Kumagai et al.,
1975; Awano et al., 2005). Ammonia is generated in the
large intestine by deamination of AA whereas the decarboxy-
lation of AA by Bifidobacterium, Clostridium, Bacteroides,

Streptococcus, Lactobacillus members can lead to the produc-
tion of amines (Hughes et al., 2000).
In this context, the present study aimed to investigate the

possibility of using an in vitro gas production method in
combination with a model of the host’s epithelium without
the addition of any reducing agent in the incubation medium.
For this purpose, the influence of the reducing agent (Na2S,
cysteine-HCl, or none) on kinetics of gas and SCFA produc-
tion, on intestinal microbial populations and on the toxicity
of fermentation residues for epithelial cells was evaluated
when protein (casein or soybean proteins) and carbohydrate
(cellulose or potato starch) ingredients were fermented
in vitro.

Material and methods

Ingredients
Four ingredients were used: soybean proteins (Soycomil;
ADM, Rotterdam, the Netherlands), casein (C7078; Sigma-
Aldrich, St. Louis, MO, USA), potato starch (S4251; Sigma-
Aldrich) and cellulose (Mikro-technik GmbH & Co. KG,
Bürgstadt, Germany).

Kinetics of gas and short-chain fatty acids production during
in vitro large intestine fermentation
In vitro fermentation. In vitro fermentation was conducted as
described in Bindelle et al. (2007) with changes in the use of
reducing agents as described hereafter. In brief, fresh feces
were collected from three sows directly from the rectum and
placed in plastic syringes. The air was chased from syringes
and they were placed in a water-bath (39°C) for transpor-
tation to the lab. After <1 h, feces samples of the three sows
were pooled in equal proportions on fresh-weight basis and
added to three incubation media, prepared according to
Menke and Steingass (1988) (Na2HPO4, 1.423 g/l; KH2PO4,
1.548 g/l; MgSO4× 7 H2O, 0.150 g/l; NaHCO3, 8.738 g/l;
(NH4) HCO3, 0.999 g/l; CaCl2× 2 H2O, 1.669mg/l; MnCl2×
4 H2O, 1.264mg/l; CoCl2× 6 H2O, 0.126mg/l; FeCl3×
6 H2O, 0.101mg/l; resazurin, 0.129mg/l) but differing
in reducing agent: (i) Na2S (14.3mg/l), (ii) cysteine-HCl
(25mg/l) or (iii) control without reducing agent. The
preparation was carried out under a constant stream of CO2,
and subsequently, the three media were bubbled for 30min
with CO2.
The fermentation was initiated by mixing 200mg of an

ingredient with 30ml of one of the three incubation media in
a 140-ml glass bottle equipped with a pressure sensor
module (Gas production system; Ankom Technology,
Macedon, NY, USA). The experimental scheme was as
follows: four ingredients (+ one blank without ingredient)×
three incubation media× six replicates.
During 72 h, pressure data were regularly recorded. After

24 h, the fermentation of two replicates for each combina-
tion of ingredient× incubation medium was stopped.
Fermentation broth was centrifuged (13 000×g, 5min, 4°C),
the supernatant and the pellet were stored at −20°C until
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further use, for SCFA analysis and for extraction of bacterial
genomic DNA, respectively. Short-chain fatty acids were also
analyzed after 72 h.

Gas production. Gas production curves were modeled
according to Groot et al. (1996)

G=
A

1 + Bc
tc
: if t > 0;

where G (ml/g of dry matter (DM)) denotes cumulative gas
production v. time; A (ml/g of DM), maximal gas volume for
t=∞; B (h) time at which 50% of A is reached; and C, a
constant determining shape of the curve. From this equation, two
other parameters were calculated: Rmax, maximum rate of gas
production (ml/g of DM×h) and Tmax, time to reach Rmax (h).

Measurement of short-chain fatty acids production. Fer-
mentation supernatants were analyzed for SCFA (acetate,
propionate, butyrate, isobutyrate, valerate, isovalerate) pro-
duction with a Waters 2690 HPLC system (Waters, Milford,
MA, USA) fitted with an Aminex HPX 87 H column (Bio-Rad
Laboratories, Hercules, CA, USA) combined with an UV
absorbance detector (Waters 486 tunable absorbance
detector; Milford) set at 210 nm. The analysis was performed
at a flow rate of 0.6 ml/min and at 40°C using 3mM H2SO4 at
5% CH3CN as eluant.

Cytotoxicity of fermentation residues
Cell culture. A Caco-2 cell line (ATCC n°HTB-37), derived
from a human colon adenocarcinoma, was obtained from the
American Type Culture Collection (Rockville, MD, USA). Cells
were routinely cultured at 37°C in a humidified atmosphere
with 5% to 10% (v/v) CO2 in air in Dulbecco’s Modified Eagle
Medium (DMEM) (Lonza, Verviers, Belgium) supplemented
with 10% (v/v) heat-inactivated fetal bovine serum (FBS)
(Hyclone Perbio-Sciences, Erembodegem, Belgium), 1% (v/v)
L-glutamine 200mM and 1% (v/v) nonessential amino acids
(NEAA) (Lonza) with weekly passage.

Preparation of fermentation supernatants. Cytotoxicity assay
was performed on fermentation supernatants of the four
tested ingredients and blank stopped after 24 h of fermen-
tation. Each supernatant was filtered through a 0.22 μm filter
(Millipore, Bedford, MA, USA) and diluted with 10% (v/v) of
10× concentrated DMEM (4.5 g/l glucose, 10% (v/v) FBS,
1% (v/v) L-glutamine 200mM, 1% (v/v) NEAA (Lonza)). Five
dilutions (10× , 30× , 100× , 300× and 1000× ) were pre-
pared with 1× complete DMEM from each initial super-
natant mixed with 10× concentrated DMEM.

Cytotoxicity assay. Caco-2 cells were inoculated at a density
of 20 000 cells/well in 96-well culture plates (Corning Costar
#3596; Corning Costar Corp., Cambridge, MA, USA), and
cultivated until 8 days post-confluence. Then, cells were
incubated for 6 h (37°C, 5% (v/v) CO2/air) with 100 μl of
supernatants (1×, 10×, 30×, 100×, 300× and 1000×

dilutions), with the culture medium alone (negative refer-
ence), or with 1% (v/v) Triton X-100 (Sigma-Aldrich) (positive
reference). At the end of the incubation, the possible cyto-
toxic effect of fermentation supernatants was determined
using a Cytotoxicity Detection Kit (Roche Diagnostics GmbH,
Mannheim, Germany) according to the manufacturer’s
instructions. This assay is based on the measurement of the
activity of cytosolic lactate dehydrogenase (LDH) released in
the extracellular medium of Caco-2 cells upon cell damage or
necrosis. During the experiment, cell morphology was
observed by phase contrast microscopy.

Determination of bacterial composition
Total bacterial DNA extraction. Centrifugation pellets col-
lected after 24 h of fermentation were extracted for total
bacterial genomic DNA using a commercial kit (QIAamp®

DNA Stool Mini Kit; QIAGEN, Crawley, UK), following the
manufacturer’s instructions. DNA concentration and purity
were measured by optical density using a NanoDrop
ND-1000 (Isogen, Sint-Pieters-Leeuw, Belgium).

Bacterial 16S ribosomal RNA gene amplification and pyr-
osequencing. Pyrosequencing analyses were conducted as
detailed in Tran et al. (2015), on bacterial V1 to V3 regions of
the 16S rRNA gene amplified in a Ep Master system gradient
apparatus (Eppendorf, Hamburg, Germany) and sequenced
in the same titanium pyrosequencing reaction using the
Roche 454 GS Junior Genome Sequencer (Roche Diagnostics,
Vilvoorde, Belgium).

Bioinformatics analysis. Data processing from amplicon
sequencing was carried out with the Genome Sequencer FLX
System Software Package 2.3 (Roche Diagnostics). The raw
reads were processed until operational taxonomic unit (OTU)
binning and taxonomical assignation with MOTHUR v1.32
(Schloss et al., 2009). Raw reads denoising was performed
with the Pyronoise algorithm implemented in MOTHUR.
The presence of chimeric sequences was checked using
ChimeraSlayer developed by the Broad Institute (http://
microbiomeutil.sourceforge.net/#A_CS) (Su et al., 2014). A
taxonomical identification based on the SILVA database
V1.15 (Pruesse et al., 2007) to the genus level was assigned
to each OTU (80% homogeneity cutoff).
In the second step, all unique sequences for each OTU

were compared with the SILVA data set 1.15 gene microbial
database using the Basic Local Alignment Search Tool
algorithm (Altschul et al., 1990). For each OTU, a consensus
detailed taxonomic identification was given based upon the
identity (<1% of mismatch with the aligned sequence) and
the metadata associated with the best hit. Rarefaction curves
and biodiversity parameters were obtained from subsampled
datasets using MOTHUR. Chao index and inverted Simpson
index were used for richness and alpha-diversity measures,
respectively. Depth of coverage was estimated with Good’s
coverage index (Rodriguez et al., 2016).
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Statistical analyses
The influence of the ingredient and the reducing agent on
gas fermentation parameters and on total SCFA production
and molar ratio after 24 and 72 h of fermentation was
analyzed using the MIXED procedure of SAS 9.4 software
(SAS Institute Inc., Cary, NC, USA). Means were separated
using the LSMEANS statement with a GLM based on two
criteria of classification (ingredient, reducing agent) and their
interaction. Cytotoxicity data as well as microbial composi-
tion (phylum and genus levels) of fermentation broth after
24 h of fermentation were analyzed similarly.
In all cases, the fermentation flask was used as experi-

mental unit. Post hoc pair-wise comparisons were done using
Student t test. Significance was judged at P< 0.05.
In addition, a principal component analysis (PCA) was

performed using the PRINCOMP procedure of SAS 9.4 soft-
ware (SAS Institute Inc.) to determine the relationships
between the ingredient and the reducing agent upon gas
fermentation parameters, SCFA production, cytotoxicity and
microbial composition of the fermentation broth. The cor-
relation among the variables was determined with the
loading plots of the first four eigenvalues.

Results

Kinetics of gas and short-chain fatty acids production during
in vitro large intestine fermentation
Carbohydrate and protein ingredients differed in gas pro-
duction profiles. Fermentation of carbohydrates yielded
higher final gas production (A) than proteins (P< 0.001;
Table 1) but A was similar (P> 0.10) among the three
reducing agents for each ingredient. With higher B and Tmax
and lower Rmax values, cellulose and soybean proteins fer-
mented slower than potato starch and casein. For each
ingredient, fermentation patterns with Na2S and in the con-
trol without a reducing agent were similar and differed
(P< 0.05) from cysteine-HCl, specifically for Rmax and Tmax.
For all ingredients, SCFA production was similar (P> 0.10)

after 24 and 72 h with Na2S and in the control without
reducing agent (Table 2). Cysteine-HCl yielded higher total
SCFA production for some ingredients. Branched-chain fatty
acids (BCFA) ratio was similar (P> 0.05) between incubation
media for protein ingredients and higher than with carbo-
hydrates (P< 0.05).

Cytotoxicity of fermentation residues
For the initial dilution, the LDH release was higher
(P< 0.001) after exposure to fermentation supernatants of
casein than to the other ingredients and were over two-fold
higher that the LDH release from the negative reference,
which indicated a possible cytotoxic effect (Figure 1).
Increasing dilutions of supernatants did not reach the
threshold of cytotoxicity. None of the reducing agents
induced a different release of LDH in the culture media
(P> 0.10) (data not shown). Ta
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Determination of bacterial composition
The sequencing of 16S amplicons led to the analysis of
88 088 raw reads. After cleaning and chimera removal,
67 666 reads, that is, a mean of 2255 reads/sample, were
binned into 13 728 OTUs with 0.03 clustering distance. Rar-
efaction curves are provided in the Supplementary Figure S1.
The mean value of 0.99 for the Good’s coverage index at the
genus level (Supplementary Table S1) shows that if the
sequencing effort was deep enough to capture the dominant
populations of the microbiota at the genus level which were
fermenting the different substrates in the presence of the
different reducing agents. Regardless of the ingredient and
the reducing agent, the microbiota expressed as relative
proportions of each phylum in fermentation broth was
dominated by the two most abundant bacterial phyla in the
porcine gut microbiota: Firmicutes (77.6 ± 11.19%) and
Bacteroidetes (10.6 ± 5.94%). Other phyla included Proteo-
bacteria (4.2 ± 8.20%), Spirochaetes (0.3 ± 0.23%) and Ver-
rumicrobia (0.3 ± 0.15%). Actinobacteria, Fusobacteria,
Lentisphaerae, Fibrobacteres, Synergistetes each contributed
to less than 0.1% of the population. Unclassified sequences
accounted for 6.6 ± 3.63%.
Relevant differences were found in the relative proportions

of these phyla according to the ingredient. By comparison
with the fermentation blank, the proportion of Firmicutes
was reduced for potato starch, soybean proteins and cellu-
lose (86.34% v. 62.99%, 71.50%, 78.22%, respectively;
P< 0.001) whereas, Bacteroidetes were more abundant for
potato starch and soybean proteins (6.06% v. 13.16%,
20.82%; P< 0.05). Fermentation broths of potato starch
presented a higher proportion of Proteobacteria as compared
with the blanks (17.45% v. 0.75%; P< 0.0001).
In addition to the ingredient, the microbial communities

changed with the reducing agent. At the phylum level,
the comparison of the three reducing solutions for a
given ingredient (Table 3) did not reveal any difference
between Na2S and control without reducing agent
(P> 0.10). But the use of cysteine-HCl with potato starch
modified the share of Firmicutes and Proteobacteria.
The reduction in Firmicutes (47.56% v. 71.70%, 69.71%;
P< 0.0001) was compensated by a three-fold increase
in Proteobacteria with cysteine-HCl compared with Na2S
or control (31.77% v. 10.74%, 9.83%, respectively;
P< 0.0001). When casein was fermented with cysteine-HCl,
the fermentation broth contained higher proportions of
Proteobacteria than with Na2S or without any reducing agent
(2.77% v. 0.33%, 0.35%; P< 0.05).
At the genus level, only proportions of genera for which

significant differences (P< 0.05) were observed between
the three reducing solutions for at least one ingredient are
given in Tables 4 and 5. Similarly to the phylum level, the
most significant differences in genera were found with
potato starch and casein. For potato starch, several
genera belonging to the Firmicutes (Streptococcus, Blautia,
Lachnospiraceae unclassified, Veillonellaceae unclassified,
Erysipelotrichaceae Incertae sedis) were less abundant with
cysteine-HCl than with Na2S and/or the control (P< 0.05).Ta
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Higher proportions of Proteobacteria with potato starch with
cysteine-HCl than with Na2S and control could be attributed
to an increase in Succinivibrio (28.87% v. 9.08%, 8.24%;
P< 0.0001). Within Proteobacteria, Escherichia increased
with cysteine-HCl compared with Na2S and control for the
fermentation of both protein ingredients (P< 0.01). For
casein, Lachnospiraceae Incertis sedis and Dorea were more
abundant when casein was fermented with cysteine-HCl
(P< 0.01), whereas the opposite trend was observed for
Fusobacterium (P< 0.0001).

Principal component analysis of the influence of the
ingredient and the reducing agent
A PCA was performed based on the correlation matrix from
the complete data set (Figures 2 and 3). The first two prin-
cipal components (PC1 to PC2), which explained 61.3% of
the variability in the data set, clearly discriminated samples
according to the ingredient. High values along PC1 reflected
high degrees of cytotoxicity of casein, combined to high
BCFA production that was counterbalanced by reduced
acetate and propionate ratios compared with the other
ingredients. PC2 mainly discriminated ingredients according
to the fermentation kinetics measured through B, Tmax and
Rmax. Similarly, PC3 was mainly influenced by the ingredient
and explained 16.3% of the observed variability. High pro-
portion of Bacteroidetes after 24 h for soybean proteins was
translated into high negative scores along PC3. PC4,
accounting for 5.8% of the variance, showed a separation
according to the reducing agent for casein and potato starch.

High proportions of Fusobacterium and Escherichia, as
observed when casein was fermented with cysteine-HCl,
were associated with low values along PC4. Similarly, potato
starch fermented with cysteine-HCl showed a high propor-
tion of Succinivibrio, leading to a negative value along
PC4 whereas a positive value was obtained with Na2S
or the control.

Discussion

Comparing fermentation kinetics, SCFA production, cyto-
toxicity of the fermentation products and finally the micro-
biota fermenting several contrasted ingredients under three
different reducing conditions (with cysteine-HCl, with Na2S,
without any reducing agent) showed that the different
reducing agents accounted for a limited part of the varia-
bility. Differences in the investigated response variables that
can be obtained from such in vitro models were by far more
influenced by the ingredient than the reducing agent since
the three first PCs accounted for more than 75% of the
variability. This was highlighted by the low share of varia-
bility (5.8%) explained by PC4 in the PCA and the fact that
clusters grouped the different ingredients whatever the
reducing agent along the first three PCs. Looking more spe-
cifically at individual response variables, final fermentability
of the ingredients as measured through total gas production
(A) was not influenced by the reducing agent added to the
fermentation broth. Nonetheless, Morgan et al. (2004)
observed with some feed ingredients a negative impact of
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Figure 1 Cytotoxic effects on intestinal mucosa upon exposure of Caco-2 cells to fermentation supernatants (initial dilution) of the four tested ingredients
and blank of fermentation in three incubation media: with Na2S or cysteine-HCl (Cys) or control without reducing agent. Comparison with incubation
medium alone (negative reference) or supplemented with 1% Triton X-100 (positive reference). The cytotoxicity was determined by assaying the lactate
dehydrogenase (LDH) activity released in the culture medium and is given as means ± SD (n= 8). Values are representative of two independent
experiments. The horizontal discontinuous line represents the threshold of toxicity.
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the use of cysteine-HCl on rumen microbes activity in vitro,
which were reflected in this study by changes in fermentation
kinetics. The addition of cysteine-HCl to the buffer solution
reduced the maximum rate of gas production (Rmax) for the
carbohydrate ingredients. The second reducing agent (Na2S)
did not influence the fermentation parameters for any of the
tested ingredients. Casein and potato starch fermented
faster than soybean proteins and in turn, soybean proteins
fermented faster than cellulose. This is explained, in the
absence of any enzymatic pre-digestion of the ingredients, by
differences in solubility of the nutrients and water-holding
capacity of the polymers.
Although the total SCFA production was not influenced by

the reducing agent for casein and potato starch, the molar
ratio of propionate was higher when cysteine-HCl was used
by comparison with the control devoid of reducing agent.
Higher propionate was counterbalanced by a reduced ratio
of acetate and is explained by the higher proportion of
Proteobacteria for casein and potato starch fermentation
with cysteine-HCl since some Proteobacteria are specifically
involved in propionate production (e.g. Succinivibrio
dextrinosolvens) (Watanabe et al., 2010).
From a phylum perspective, the microbiota, dominated by

Firmicutes (77.6 ± 11.19%) followed by Bacteroidetes
(10.6 ±5.94%), was in agreement with Guo et al. (2008) and
Kim et al. (2011), regardless of the ingredient and the
reducing agent. The domination of the bacterial communities
after 24 h of fermentation by these two phyla, composed
principally of anaerobes, confirms the strict anaerobic con-
ditions in all fermentation bottles, including in the controls
devoid of reducing agent. Differences in microbial com-
munities and SCFA profiles between the three reducing
conditions after 24 h were more important with ingredients
for which the fermentation started earlier, namely casein and
potato starch. This means that although the influence of the
reducing agent is less important than that of the ingredient,
it significantly affects the fermentation pathways and bac-
teria that are growing in the broth, especially when sub-
strates are being metabolized intensively by the microbial
communities. So for casein and potato starch, the proportion
of Proteobacteria was considerably higher when cysteine-HCl
was used as reducing agent. This was ascribed to a pro-
liferation of the Escherichia and Succinivibrio genera for the
fermentation of casein and potato starch, respectively.
Moreover among the Fusobacteria phylum, the proportion of
the Fusobacterium genus was increased for the fermentation
of casein in the presence of cysteine-HCl in the fermentation
broth. These three genera are presumed to have the capacity
to degrade cysteine-HCl. Indeed, Escherichia are able to
degrade cysteine-HCl by means of specific desulfhydrases
(Awano et al., 2005). Gomez-Alarcon et al. (1982) studied
the nutrient requirements of S. dextrinosolvens and reported
that the addition of cysteine to the culture medium promotes
its growth, leading to increased propionate production as
mentioned before. Regarding the Fusobacterium genus,
F. nucleatum, found in the oral cavity and in infected sites of
healthy and sick people, was also reported as able toTa
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degrade cysteine with specific desulfhydrases (Fukamachi
et al., 2002).
Using culture-independent molecular techniques, some

studies demonstrated that dietary changes affect the
complex microbiota of the gastro-intestinal tract and lead
to shifts in bacterial communities (Leser et al., 2000;
Pieper et al., 2009b). So the higher differences in phyla
according to the ingredient than the reducing agent are not
really surprising. For example, potato starch led to higher
proportions of Proteobacteria as compared with the other
ingredients that could be attributed mainly to Succinivibrio,
since its proliferation in the rumen was associated to a high-
starch diet (O’Herrin and Kenealy, 1993). Also, Bacteroidetes
were more abundant with potato starch and soybean
proteins than in the blanks devoid of ingredients. This
observation can be explained by the requirements in
polysaccharides of the Bacteroidetes. In the human large
intestine, the stability and coexistence of closely related
members in this phylum was shown to be based on an
synergetic interaction network related to the breakdown
and utilization of dietary polysaccharides (Rakoff-Nahoum
et al., 2014).

Results from the Caco-2 assay indicate that the reducing
agent incorporated in the fermentation broth has a negligible
impact on intestinal cytotoxicity of the fermentation super-
natants. Despite their colorectal origin, Caco-2 cells were
proven a valuable in vitro model of the human and pig
intestinal epithelium to assess toxicity of fermentation pro-
ducts (Artursson et al., 2012). Indeed, differences in ingre-
dients were observed comforting the relevancy of the test.
The higher cytotoxicity of casein can be ascribed to its fast
fermentation and by the production of toxic metabolites by
the bacterial population such as ammonia, H2S, thiols and
amines, which are usually produced by protein fermenting
bacteria (Hughes et al., 2000).

Conclusion

It can be concluded that in vitro intestinal fermentation
models used in pig studies to investigate shifts in microbial
fermentation and communities should avoid the use of
cysteine-HCl as reducing agent. The addition of Na2S
seems useless if appropriate CO2 saturation is realized
and, since it probably blunts the ability to detect some

Table 4 Distribution of different genera in the bacterial population (%) after 24 h of fermentation of the four tested ingredients and blank of
fermentation by pig fecal bacteria in three incubation media: with Na2S or cysteine-HCl (Cys) or control (Ctrl) without reducing agent (n= 2)

Phylum Firmicutes

Genus
Streptococcus

spp.
Mogibacterium

spp.
Blautia
spp.

Lachnospiraceae
i.s.

Roseburia
spp.

Dorea
spp.

Lachnospiraceae
uncl.

Ruminococcaceae
uncl.

Casein
Cys 0.130b 0.281b 0.0553d 6.12a 0.000c 4.12a 22.4b 14.3c

Na2S 0.0355b 2.97a 0.0484d 4.71b 0.000c 2.47b 20.6bc 15.9abc

Ctrl 0.0796b 2.81a 0.135cd 4.82b 0.000c 2.53b 19.7bcd 17.6ab

Soybean proteins
Cys 0.0316b 0.000b 0.217c 4.81b 0.339b 0.509c 29.0a 8.56de

Na2S 0.0854b 0.000b 0.105cd 4.27b 0.628a 0.211c 28.4a 10.3d

Ctrl 0.0328b 0.0156b 0.132cd 4.06bc 0.605a 0.229c 30.0a 9.96d

Cellulose
Cys 0.121b 0.0489b 0.0827cd 1.50f 0.000c 0.438c 17.2def 15.0bc

Na2S 0.124b 0.0242b 0.0644cd 2.54de 0.000c 0.213c 18.6cdef 18.3a

Ctrl 0.0598b 0.000b 0.148cd 1.77ef 0.000c 0.198c 18.0cdef 16.6abc

Potato starch
Cys 0.154b 0.0156b 0.536b 3.29cd 0.0458c 0.346c 19.7bcde 6.09e

Na2S 3.90a 0.0193b 1.16a 3.32cd 0.000c 0.340c 27.5a 9.23de

Ctrl 1.03b 0.0109b 1.13a 3.39cd 0.0416c 0.0591c 28.8a 9.29de

Blank
Cys 0.256b 0.0127b 0.0641cd 1.48f 0.000c 0.628c 17.0def 14.6bc

Na2S 0.0705b 0.0285b 0.0856cd 1.62f 0.000c 0.112c 16.6ef 16.2abc

Ctrl 0.125b 0.0376b 0.101cd 1.46f 0.0125c 0.239c 16.0f 15.0bc

SEM 0.192 0.186 0.0677 0.275 0.0406 0.222 0.959 0.715
P-values
I <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
R 0.024 0.004 0.002 0.191 0.108 0.016 0.084 0.008
I× R 0.002 <0.001 <0.001 0.038 0.026 0.258 0.002 0.775

i.s.= incertae sedis; uncl.= unclassified; I= ingredient; R= reducing agent.
a,b,c,d,e,f Values within a column with different superscripts differ significantly at P<0.05.
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protein fermentation metabolites, it can easily be omitted.
Finally, when fermentation broths are applied to Caco-2 cells
culture to simulate the effect of bacterial metabolites on the

intestinal epithelium, the impact of the ingredient is detect-
able regardless of the reducing agent used, as for most of the
response variables measured in the present study.

Table 5 Distribution of different genera in the bacterial population (%) after 24 h of fermentation of the four tested ingredients
and blank of fermentation by pig fecal bacteria in three incubation media: with Na2S or cysteine-HCl (Cys) or control (Ctrl) without reducing
agent (n= 2)

Phylum Firmicutes Bacteroidetes Fusobacteria Proteobacteria

Genus Veillonellaceae uncl. Erysipelotrichaceae i.s. Xylanibacter spp. RF16 uncl. Fusobacterium spp. Succinivibrio spp. Escherichia spp.

Casein
Cys 0.342cde 0.0284c 0.0284cd 0.136bcd 0.430a 0.0134c 1.96a

Na2S 0.276cde 0.0129c 0.0387cd 0.291abc 0.0258b 0.0484c 0.0970d

Ctrl 0.189de 0.0324c 0.0148d 0.130cd 0.0176b 0.0296c 0.0769d

Soybean proteins
Cys 0.144e 0.0136c 0.443b 0.126cd 0.0452b 1.16c 0.516b

Na2S 0.158e 0.000c 0.498ab 0.124cd 0.000b 0.960c 0.112d

Ctrl 0.183de 0.0156c 0.628a 0.0955cd 0.000b 0.644c 0.0830d

Cellulose
Cys 0.389cd 0.0225c 0.0905cd 0.177bcd 0.0152b 0.0529c 0.257bcd

Na2S 0.273cde 0.0159c 0.111cd 0.506a 0.000b 0.0523c 0.161d

Ctrl 0.327cde 0.0190c 0.136cd 0.243bc 0.000b 0.163c 0.104d

Potato starch
Cys 0.483c 0.106c 0.513ab 0.0313d 0.0144b 28.9a 0.177cd

Na2S 1.23a 1.20a 0.188c 0.0265d 0.000b 9.08b 0.232cd

Ctrl 1.01b 0.648b 0.438b 0.145bcd 0.000b 8.24b 0.138d

Blank
Cys 0.218de 0.0962c 0.0641cd 0.224bc 0.0193b 0.0509c 0.429bc

Na2S 0.186de 0.0437c 0.0875cd 0.475a 0.000b 0.122c 0.234cd

Ctrl 0.251de 0.0754c 0.113cd 0.351ab 0.000b 0.163c 0.201cd

SEM 0.0586 0.0600 0.0393 0.0294 0.0212 1.38 0.0861
P-values
I <0.001 <0.001 <0.001 0.001 0.002 <0.001 <0.001
R 0.071 <0.001 0.086 0.020 0.003 <0.001 <0.001
I× R 0.001 <0.001 0.045 0.232 0.003 <0.001 <0.001

uncl.= unclassified; i.s.= incertae sedis; I= ingredient; R= reducing agent.
a,b,c,d,e Values within a column with different superscripts differ significantly at P<0.05.

Figure 2 Score plot from the first four principal components (PC1 to PC4). Different symbols indicate the scores of the four ingredients according to the
reducing agent incorporated in the fermentation broth: Na2S, cysteine-HCl (Cys) or control without reducing agent (control). Symbols are: = Casein;
= Cellulose; = Potato starch; = Soybean proteins.
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