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The problem

• MEMS structures

– Are not several orders larger than their 

micro-structure size

– Parameters-dependent manufacturing process 

• Low Pressure Chemical Vapor Deposition (LPCVD)

• Properties depend on the temperature, time process, 

and flow gas conditions

– Scatter in the structural properties

• Due to the fabrication process (photolithography, etching …)

• Due to uncertainties of the material 

• …

The objective of this work is to estimate this scatter
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• Properties depend on the temperature, time process, 

and flow gas conditions

– Scatter in the structural properties

• Due to the fabrication process (photolithography, etching …)

• Due to uncertainties of the material 

• …

The objective of this work is to estimate this scatter

• Application example

– Poly-silicon resonators

– Quantities of interest

• Eigen frequency

• Quality factor due to thermo-

elastic damping Q ~ 𝑊/∆𝑊

• Thermoelastic damping is a source of intrinsic 

material damping present in almost all materials

𝜏 ≪ 𝑇 isothermal process

𝜏 ≫ 𝑇 adiabatic process

𝜏 ~𝑇 𝑄 ↓
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The problem

• Material structure: grain size distribution 

SEM Measurements (Scanning Electron Microscope)

– Grain size dependent on the LPCVD temperature process

– 2 µm-thick poly-silicon films

1 𝝁m

Deposition temperature: 650 oCDeposition temperature: 580 oC

1 𝝁m

Deposition temperature [oC] 580 610 630 650

Average grain diameter [µm] 0.21 0.45 0.72 0.83

SEM images provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller
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The problem

• Material structure: grain orientation distribution 

– Grain orientation by XRD (X-ray Diffraction) measurements on 2 µm-thick poly-silicon films

Deposition temperature [oC] 580 610 630 650

<111> [%] 12.57 19.96 12.88 11.72

<220> [%] 7.19 13.67 7.96 7.59

<311> [%] 42.83 28.83 39.08 38.47

<400> [%] 4.28 5.54 3.13 3.93

<331> [%] 17.97 18.14 21.32 20.45

<422> [%] 15.15 13.86 15.63 17.84

XRD images provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller

Deposition temperature: 630 oC
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Monte-Carlo for a fully modelled beam

• The first mode frequency distribution can be obtained with

– A 3D beam with each grain modelled

– Grains distribution according to experimental measurements

– Monte-Carlo simulations

• Considering each grain is expensive and time consuming

Motivation for stochastic multi-scale methods
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Motivations

• Multi-scale modelling

– 2 problems are solved 

concurrently

• The macro-scale problem

• The meso-scale problem (on 

a meso-scale Volume 

Element)

• Length-scales separation

Lmacro>>LVE>>Lmicro

BVP

Macro-scale

Material 

response

Extraction of a meso-

scale Volume Element

For accuracy: Size of the meso-

scale volume element smaller than

the characteristic length of the

macro-scale loading

To be statistically representative:

Size of the meso-scale volume

element larger than the

characteristic length of the micro-

structure
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Motivations

• For structures not several orders larger than the micro-structure size

• Possibility to propagate the uncertainties from the micro-scale to the macro-scale

Lmacro>>LVE>~Lmicro

For accuracy: Size of the meso-

scale volume element smaller than

the characteristic length of the

macro-scale loading

Meso-scale volume element no

longer statistically representative:

Stochastic Volume Elements*

*M Ostoja-Starzewski, X Wang, 1999

P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015

X. Yin, W. Chen, A. To, C. McVeigh, 2008

J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011

….
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A 3-scale process

Grain-scale or micro-scale Meso-scale Macro-scale

 Samples of the 

microstructure (volume 

elements) are generated

 Each grain has a random 

orientation

 Intermediate scale

 The distribution of the 

material property ℙ(𝐶) is

defined

 Uncertainty quantification 

of the macro-scale quantity

 E.g. the first mode 

frequency ℙ 𝑓1 /Quality 

factor ℙ 𝑄

SVE size

Mean value of 

material property

SVE size

Variance of 

material property

Quantity of 

interest

Probability density

Stochastic 

Homogenization SFEM
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• From the micro-scale to the meso-scale

– Thermo-mechanical homogenization 

– Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization

– Need for a meso-scale random field

• The meso-scale random field

– Definition of the thermo-mechanical meso-scale random field

– Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale

– 3-Scale approach verification

– Application to extract the quality factor

• Accounting for roughness effect

– From the micro-scale to the meso-scale

– The meso-scale random field

– From the meso-scale to the macro-scale

Content
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• Definition of Stochastic Volume Elements (SVEs)

– Poisson Voronoï tessellation realizations

• SVE realization 𝜔𝑗

– Each grain 𝜔𝑖 is assigned material properties

• Elasticity tensor ℂm𝑖;

• Heat conductivity tensor 𝜅m𝑖 ;

• Thermal expansion tensors 𝛼m𝑖 .

• Defined from silicon crystal properties

– Each set ℂ𝑚𝑖 , 𝜅m𝑖 , 𝛼m𝑖 is assigned a 

random orientation

• Following XRD  distributions

• Stochastic homogenization

– Several SVE realizations

– For each SVE 𝜔𝑗 =∪𝑖 𝜔𝑖

– Homogenized material tensors not unique as statistical representativeness is lost*

From the micro-scale to the meso-scale

*“C. Huet, 1990

Computational 

homogenization

ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖 ∀𝑖

Samples of the meso-

scale homogenized

elasticity tensors

ℂM𝑗, 𝜅M𝑗 , 𝛼M𝑗

ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖 ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖

ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖

ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖

𝜔𝑗 =∪𝑖 𝜔𝑖
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• Thermo-mechanical homogenization

– Down-scaling

– Up-scaling

– Consistency Satisfied by periodic boundary conditions

From the micro-scale to the meso-scale

x

xMeso-scale BVP 

resolution

𝜔 =∪𝑖 𝜔𝑖

x

𝜺M,

𝛻M𝜗M, 

𝜗M

𝝈M, 𝒒M, 𝜌M𝐶𝑣M
ℂM, 𝜅M,𝜶MℂM,

….
𝜺M =

1

𝑉 𝜔
 
𝜔

𝜺m𝑑𝜔

𝛻M𝜗M =
1

𝑉 𝜔
 
𝜔

𝛻m𝜗m𝑑𝜔

𝜗M =
1

𝑉 𝜔
 
𝜔

𝜌m𝐶𝑣m
𝜌M𝐶𝑣M

𝜗m𝑑𝜔

𝝈M =
1

𝑉 𝜔
 
𝜔

𝝈m𝑑𝜔

𝒒M =
1

𝑉 𝜔
 
𝜔

𝒒m𝑑𝜔

𝜌M𝐶𝑣M =
1

𝑉 𝜔
∫ 𝜌m𝐶𝑣m𝑑𝑉

ℂM =
𝜕𝝈M

𝜕𝒖M ⊗𝛁M

𝜿M = −
𝜕𝒒M
𝜕𝛻M𝜗M

𝜶M: ℂM = −
𝜕𝝈M
𝜕𝜗M

&
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From the micro-scale to the meso-scale

𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100%

• Distribution of the apparent meso-

scale elasticity tensor ℂ𝑀

 For large SVEs, the apparent

tensor tends to the effective (and

unique) one

 The bounds do not depend on

the SVE size but on the silicon

elasticity tensor

 However, the larger the SVE,

the lower the probability to be

close to the bounds
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𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100%

• Use of the meso-scale distribution with macro-scale finite elements 

– Beam macro-scale finite elements

– Use of the meso-scale distribution as a random variable

– Monte-Carlo simulations 

From the micro-scale to the meso-scale

Coarse macro-mesh Fine macro- mesh

First bending mode of 

a 3.2 𝜇m-long beam

ℂM1 ℂM2 ℂM3
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𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100%

• Use of the meso-scale distribution with macro-scale finite elements 

– Beam macro-scale finite elements

– Use of the meso-scale distribution as a random variable

– Monte-Carlo simulations 

• No convergence: the macro-scale distribution (first resonance frequency) depends 

on SVE and mesh sizes

From the micro-scale to the meso-scale

Convergence

Coarse macro-mesh Fine macro-mesh

First bending mode of 

a 3.2 𝜇m-long beam

ℂM1 ℂM2 ℂM3
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• Need for a meso-scale random field

– Introduction of the (meso-scale) spatial correlation

• Define large tessellations

• SVEs extracted at different distances in each 

tessellation

– Evaluate the spatial correlation between the 

components of the meso-scale material operators

– For example, in 1D-elasticity

• Young’s modulus correlation

• Correlation length

From the micro-scale to the meso-scale

𝑅𝑬𝒙 𝝉 =
𝔼 𝑬𝒙 𝒙 − 𝔼 𝑬𝒙 𝑬𝒙 𝒙 + 𝝉 − 𝔼 𝑬𝒙

𝔼 𝑬𝒙 − 𝔼 𝑬𝒙
2

Young’s modulus correlation

𝐿𝑬𝒙 =
∫−∞
∞
𝑅𝑬𝒙 𝜏 𝑑𝜏

𝑅𝑬𝒙 0

Ex

Ey

t

SVE (x’, y’)

SVE (x, y) SVE (x+l, y)

SVE (x, y+l) SVE (x+l, y+l)
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• Need for a meso-scale random field (2)

– The meso-scale random field is characterized by the correlation length 𝐿𝐸𝑥
– The correlation length 𝐿𝐸𝑥 depends on the SVE size

From the micro-scale to the meso-scale

𝒍𝐒𝐕𝐄 = 𝟎. 𝟏 𝝁𝒎 𝒍𝐒𝐕𝐄 = 𝟎. 𝟒 𝝁𝒎

Random field with different SVEs sizes
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• From the micro-scale to the meso-scale

– Thermo-mechanical homogenization 

– Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization

– Need for a meso-scale random field

• The meso-scale random field

– Definition of the thermo-mechanical meso-scale random field

– Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale

– 3-Scale approach verification

– Application to extract the quality factor

• Accounting for roughness effect

– From the micro-scale to the meso-scale

– The meso-scale random field

– From the meso-scale to the macro-scale

Content
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• Use of the meso-scale distribution with stochastic (macro-scale) finite elements 

– Use of the meso-scale random field

Monte-Carlo simulations at the macro-scale

– BUT we do not want to evaluate the random field from the stochastic homogenization 

for each simulation Meso-scale random field from a generator

Need for a stochastic model of meso-scale elasticity tensors

The meso-scale random field

Stochastic model

ℂM(𝑥, 𝜃)

ℂM(𝑥 + 𝜏, 𝜃)

ℂM(𝑥 + 2𝜏, 𝜃)
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• Definition of the thermo-mechanical meso-scale random field

– Elasticity tensor ℂM(𝑥, 𝜃) (matrix form 𝑪𝑀) & thermal conductivity 𝜿M are bounded

• Ensure existence of their inverse

• Define lower bounds ℂL and 𝜿L such that 

– Use a Cholesky decomposition when semi-positive definite matrices are required

– We define the homogenous zero-mean random field 𝓥′ 𝒙, 𝜽 , with as entries

• Elasticity tensor 𝒜′ 𝒙, 𝜽 ⇒ 𝓥′(1)…𝓥′(21), 

• Heat conductivity tensor ℬ′ 𝒙, 𝜽 ⇒ 𝓥′(22)…𝓥′(27)

• Thermal expansion tensors   𝓥′(𝒕) ⇒ 𝓥′(28)…𝓥′(33)

The meso-scale random field

𝜺: ℂM − ℂL : 𝜺 > 0 ∀𝜺

𝛻𝜗 ⋅ 𝜿M − 𝜿L ⋅ 𝛻𝜗 > 0 ∀𝛻𝜗

𝑪M 𝒙, 𝜽 = 𝑪L +  𝓐+𝓐′ 𝒙, 𝜽
𝑇  𝓐+𝓐′ 𝒙, 𝜽

𝜿M 𝒙, 𝜽 = 𝜿L +  𝓑 + 𝓑′ 𝒙, 𝜽
𝑇  𝓑 + 𝓑′ 𝒙, 𝜽

𝜶M𝒊𝒋
𝒙, 𝜽 =  𝓥(𝒕) + 𝓥′

(𝒕)
𝒙, 𝜽
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• Characterization of the meso-scale random field

– Generate large tessellation realizations

– For each tessellation realization

• Extract SVEs centered on 𝒙 + 𝝉

• For each SVE evaluate ℂM(𝒙 + 𝝉), 𝜅M(𝒙 + 𝝉), 𝛼M 𝒙 + 𝝉

– From the set of realizations ℂM 𝒙, 𝜽 , 𝜅M 𝒙, 𝜽 , 𝛼M 𝒙, 𝜽

• Evaluate the bounds ℂL and 𝜿L

• Apply the Cholesky decomposition ⇒ 𝓐′ 𝒙, 𝜽 , 𝓑′ 𝒙, 𝜽

• Fill the 33 entries of the zero-mean homogenous field 𝓥′ 𝒙, 𝜽

– Compute the auto-/cross-correlation matrix

– Generate zero-mean random field 𝓥′ 𝒙, 𝜽

• Spectral generator & non-Gaussian mapping

The meso-scale random field

𝑅𝓥′
𝑟𝑠

𝝉 =
𝔼 𝓥′ 𝑟 𝒙 𝓥′ 𝑠 𝒙 + 𝝉

𝔼 𝓥′ 𝑟 2 𝔼 𝓥′ 𝑠 2

Ex

Ey

t

SVE (x’, y’)

SVE (x, y) SVE (x+l, y)

SVE (x, y+l) SVE (x+l, y+l)
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• Polysilicon film deposited at 610 ºC 

– SVE size of 0.5 x 0.5 𝜇m2

– Comparison between micro-samples and generated field PDFs

The meso-scale random field

𝑪M11
[GPa] 𝜅M33

[W/(m ⋅ 𝐾)]
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• Polysilicon film deposited at 610 ºC (2)

– Comparison between micro-samples and generated field cross-correlations

The meso-scale random field

Micro-Samples Generator
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• Polysilicon film deposited at 610 ºC (3)

– Comparison between micro-samples and generated random field realizations

The meso-scale random field

Micro-Samples Generator
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• From the micro-scale to the meso-scale

– Thermo-mechanical homogenization 

– Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization

– Need for a meso-scale random field

• The meso-scale random field

– Definition of the thermo-mechanical meso-scale random field

– Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale

– 3-Scale approach verification

– Application to extract the quality factor

• Accounting for roughness effect

– From the micro-scale to the meso-scale

– The meso-scale random field

– From the meso-scale to the macro-scale

Content
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• 3-Scale approach verification with direct Monte-Carlo simulations

– Use of the meso-scale random field

Monte-Carlo simulations at the macro-scale

– Macro-scale beam elements of size 𝑙mesh

– Convergence in terms of 𝛼 =
𝑙𝐸𝑥
𝑙mesh

𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100%

From the meso-scale to the macro-scale

Coarse macro-mesh Fine macro-mesh

ℂM1(𝑥) ℂM1(𝑥 + 𝜏)

First bending mode of 

a 3.2 𝜇m-long beam
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• 3-Scale approach verification (𝛼~2) with direct Monte-Carlo simulations

– First bending mode

– Second bending mode

From the meso-scale to the macro-scale

Eigen frequency

Eigen frequency

First bending mode of 

a 3.2 𝜇m-long beam

Second bending mode of 

a 3.2 𝜇m-long beam
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• Quality factor

– Micro-resonators

• Temperature changes with compression/traction

• Energy dissipation

– Eigen values problem

• Governing equations

• Free vibrating problem

– Quality factor

• From the dissipated energy per cycle

•

From the meso-scale to the macro-scale

𝐌 𝟎
𝟎 𝟎

 𝐮
 𝝑
+

𝟎 𝟎
𝐃uϑ(𝛉) 𝐃ϑϑ

 𝐮
 𝝑
+

𝐊uu(𝛉) 𝐊uϑ(𝛉)
𝟎 𝐊ϑϑ(𝛉)

𝐮
𝝑

=
𝑭u
𝑭ϑ

−𝐊uu(𝛉) −𝐊u𝝑(𝛉) 𝟎

𝟎 −𝐊ϑϑ(𝛉) 𝟎
𝟎 𝟎 𝐈

𝐮
𝝑
 𝐮
= 𝑖𝜔

𝟎 𝟎 𝐌
𝐃ϑu(𝛉) 𝐃ϑϑ 𝟎

𝐈 𝟎 𝟎

𝐮
𝝑
 𝐮

𝐮(𝑡)
𝝑(𝑡)

=
𝐮𝟎
𝝑𝟎

𝑒𝑖𝜔𝑡

𝑄−1 =
2 ℑ𝜔

ℑ𝜔 2 + ℜ𝜔 2
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• Application of the 3-Scale method to extract the quality factor distribution 

– 3D models readily available

– The effect of the anchor can be studied

From the meso-scale to the macro-scale

L w

t

L w

t

Lsupport

wsupport

g

15 x 3 x 2 μm3-beam & anchor, 

deposited at 610 ºC

15 x 3 x 2 μm3-beam, 

deposited at 610 ºC
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• From the micro-scale to the meso-scale

– Thermo-mechanical homogenization 

– Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization

– Need for a meso-scale random field

• The meso-scale random field

– Definition of the thermo-mechanical meso-scale random field

– Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale

– 3-Scale approach verification

– Application to extract the quality factor

• Accounting for roughness effect

– From the micro-scale to the meso-scale

– The meso-scale random field

– From the meso-scale to the macro-scale

Content
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Accounting for roughness effect

• Surface topology: asperity distribution 

– Upper surface topology by AFM (Atomic Force Microscope) measurements on 2 µm-

thick poly-silicon films

AFM data provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller

Deposition temperature [oC] 580 610 630 650

Std deviation [nm] 35.6 60.3 90.7 88.3
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• From the micro-scale to the meso-scale 

– Second-order homogenization

– Stochastic homogenization

• Several SVE realizations

• For each SVE 𝜔𝑗 =∪𝑖 𝜔𝑖

• The density per unit area is now non-constant

Accounting for roughness effect

Computational 

homogenization

ℂm𝑖 ∀𝑖

Samples of the meso-

scale homogenized

elasticity matrix UM &

density  𝝆M

ℂ
M1
𝑗 ,ℂ

M2
𝑗 , ℂ

M3
𝑗 , ℂ

M4
𝑗 U

M𝑗

ℂm𝑖
ℂm𝑖

ℂm𝑖

𝜔𝑗 =∪𝑖 𝜔𝑖

 𝒏M = ℂM𝟏
: 𝜺M + ℂM𝟐

: 𝜿M

 𝒎M = ℂM𝟑
: 𝜺M + ℂM4

: 𝜿M

A
 ℎ/2

𝑥

𝜺M, 𝜿M
 𝒏M, ℂM1

, ℂM2

 𝒎M, ℂM3
, ℂM4

𝝎 =∪𝒊 𝝎𝒊

Meso-scale BVP 

resolution

 𝝆
M𝑗
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• The meso-scale random field

– Generate large tessellation realizations

– For each tessellation realization

• Extract SVEs centred at 𝒙 + 𝝉

• For each SVE evaluate UM(𝒙 + 𝝉),  𝝆M(𝒙 + 𝝉)

– From the set of realizations UM 𝒙, 𝜽 , 𝝆M 𝒙, 𝜽 ,

• Evaluate the bounds 𝐔L and  𝝆𝐿

• Apply the Cholesky decomposition ⇒ 𝓐′ 𝒙, 𝜽

• Fill the 22 entries of the zero-mean homogenous 

field 𝓥′ 𝒙, 𝜽

– Compute the auto-/cross-correlation matrix

Accounting for roughness effect

𝑅𝓥′
𝑟𝑠

𝝉 =
𝔼 𝓥′ 𝑟 𝒙 𝓥′ 𝑠 𝒙 + 𝝉

𝔼 𝓥′ 𝑟 2 𝔼 𝓥′ 𝑠 2

ℂm𝑖
ℂm𝑖

ℂm𝑖

𝜔𝑗 =∪𝑖 𝜔𝑖
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• From the meso-scale to the macro-scale 

– Cantilever of 8 x 3 x t 𝜇m3deposited at 610 ºC 

Accounting for roughness effect

L w

t

Flat SVEs (no roughness)  - F

Rough SVEs ( Polysilicon film deposited at 610 ºC ) - R

Grain orientation following XRD measurements – Sipref

Grain orientation uniformly distributed – Siuni

Reference isotropic material – Iso

Roughness effect is the most important 

for 8 x 3 x 0.5 𝜇m3 cantilevers
Roughness effect is of same importance as 

orientation for 8 x 3 x 2 𝜇m3 cantilevers
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Conclusions & Perspectives

• Efficient stochastic multi-scale method

– Micro-structure based on experimental measurements

– Computational efficiency relies on the meso-scale random field generator

– Used to study probabilistic behaviors

• Perspectives

– Other material systems

– Non-linear behaviors

– Non-homogenous random fields
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Thank you for your attention ! 
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• Governing equations

– Thermo-mechanics

• Linear balance 

• Clausius-Duhem inequality in terms of volume entropy rate 

• Helmholtz free energy

– Strong form in terms of the displacements 𝒖 and temperature change 𝜗 (linear elasticity) 

– Finite element discretization 

Thermo-mechanical problem

𝜌  𝒖 − 𝛻 ⋅ ℂ:  𝜺 − ℂ: 𝜶𝜗 − 𝜌𝒃 = 0

𝜌𝐶𝑣  𝜗 + 𝑇0𝜶: ℂ:  𝜺 − 𝛻 ⋅ 𝜿𝛻𝜗 = 0

𝐌(𝜌) 𝟎
𝟎 𝟎

 𝐮
 𝝑
+

𝟎 𝟎
𝐃ϑu(𝜶, ℂ) 𝐃ϑϑ(𝜌𝐶𝑣)

 𝐮
 𝝑
+

𝐊uu(ℂ) 𝐊uϑ(𝜶, ℂ)
𝟎 𝐊ϑϑ(𝜿)

𝐮
𝝑

=
𝑭u
𝑭ϑ

𝜌  𝒖 − 𝛻 ⋅ 𝝈 − 𝜌𝒃 = 0

 𝑆 = −
𝛻 ⋅ 𝒒

𝑇

ℱ 𝜺, 𝑇 = ℱ0 𝑇 − 𝜺:
𝜕2𝜓

𝜕𝜺𝜕𝜺
: 𝛼 𝑇 − 𝑇0 + 𝜓 𝜺

𝝈 =
𝜕ℱ

𝜕𝜺
𝑇

𝑆 =
𝜕ℱ

𝜕𝑇
𝜺

𝜕2ℱ0
𝜕𝑇𝜕𝑇

= 𝜌𝐶𝑣, &
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• Stochastic model of the meso-scale random field: Spectral generator*

– Start from the auto-/cross-covariance matrix

– Evaluate the spectral density matrix from the periodized zero-padded matrix  𝑹𝓥′
P 𝝉

• 𝝎 gathers  the discrete frequencies 

• 𝝉 gathers  the discrete spatial locations 

– Generate a Gaussian random field 𝓥′ 𝒙, 𝜽

• 𝜼 and 𝜽 are independent random variables 

– Quid if a non-Gaussian distribution is sought?

The meso-scale random field

 𝑅𝓥′
𝑟𝑠

𝝉 = 𝜎
𝓥′ 𝑟

𝜎
𝓥′ 𝑠

𝑅𝓥′
𝑟𝑠

𝝉 = 𝔼 𝓥′ 𝑟 𝒙 − 𝔼 𝓥′ 𝑟 𝓥′ 𝑠 𝒙 + 𝝉 − 𝔼 𝓥′ 𝑠

𝑺𝓥′
𝑟𝑠

𝝎(𝒎) = 

𝑛

 𝑅𝓥′
P (𝑟𝑠)

𝝉 𝒏 𝑒−2𝜋𝑖𝝉
𝑛 ⋅𝝎(𝒎) 𝑺𝓥′ 𝝎

(𝒎) = 𝑯𝓥′ 𝝎
(𝒎) 𝑯𝓥′

∗ 𝝎(𝒎)
&

*Shinozuka, M., Deodatis, G., 1988

𝓥′(𝒓) 𝒙, 𝜽 = 2𝛥𝜔 ℜ  

𝑠

 

𝒎

𝑯𝓥′
(𝒓𝒔)

𝝎(𝒎) 𝜂(𝑠,𝒎) 𝑒2𝜋𝑖 𝒙⋅𝝎
𝒎 +𝜽(𝒔,𝑚)
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• Stochastic model of the meso-scale random field: non-Gaussian mapping*

– Start from micro-sampling of the stochastic homogenization

• The continuous form of the targeted PSD function

• The targeted marginal distribution density function 𝑭𝐍𝐆(𝒓) of the random variable 𝓥′(𝒓)

• A marginal Gaussian distribution 𝑭𝑮(𝒓) of zero-mean and targeted variance 𝝈𝓥′(𝒓)

– Iterate 

The meso-scale random field

𝑺𝐓
𝑟𝑠
(𝝎) = 𝚫𝝉𝑺𝓥′

𝑟𝑠
𝝎(𝒎) = 𝚫𝝉 

𝑛

 𝑅𝓥′
P (𝑟𝑠)

𝝉 𝒏 𝑒−2𝜋𝑖𝝉
𝑛 ⋅𝝎(𝒎)

*“Deodatis, G., Micaletti, R., 2001

Generate Gaussian random 

vector  𝓥′𝐆 (𝒙) from 𝑺
𝑟𝑠

𝝎

Map 𝓥′𝑮 (𝒙) to a non-Gaussian field: 

𝓥′𝐍𝐆
(𝒓)

𝒙 = 𝑭𝐍𝐆 𝒓 −𝟏
𝑭𝐆 𝒓 𝓥′𝐆

(𝒓)
(𝒙)

Evaluate the PSD 𝑺𝐍𝐆
𝑟𝑠
(𝝎) of 𝓥′𝐍𝐆 𝒙

𝑺𝐍𝐆
𝑟𝑠

≃ 𝑺𝐓
𝑟𝑠
?

𝑺
𝑟𝑠

𝝎 ← 𝑺
𝑟𝑠

𝝎
𝑺𝐓

𝑟𝑟
𝝎 𝑺𝐓

𝑠𝑠
𝝎

𝑺𝐍𝐆
𝑟𝑟

𝝎 𝑺𝐍𝐆
𝑠𝑠

𝝎

No


