Computational \& Multiscale Mechanics of Materials

Generation of unidirectional composite SVEs

 from micro-structural statistical informationWu Ling, Bidaine Benoit, Major Zoltan, Nghia Chnug Chi, Noels Ludovic

The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-03-28) in the context of the M-ERA.NET Joint Call 2014.

The problem

- Material uncertainties affect structural behaviors

The problem

- Illustration assuming a regular stacking
- 60\%-UD fibers
- Damage-enhanced matrix behavior

- Question: what does happen for a realistic fibre stacking?

Experimental measurements

- 2000x and 3000x SEM images

- Fibers detection

- Basic geometric information of fibers' cross sections
- Fiber radius distribution $p_{R}(r)$
- Basic spatial information of fibers
- The distribution of the nearest-neighbor net distance function $p_{d_{1 s t}}(d)$
- The distribution of the orientation of the undirected line connecting the center points of a fiber to its nearest neighbor $p_{\vartheta_{1 s t}}(\theta)$
- The distribution of the difference between the net distance to the second and the first nearest-neighbor $p_{\Delta d}(d)$ with $\Delta d=d_{2 \text { nd }}-d_{1 \text { st }}$

- The distribution of the second nearest-neighbor's location referring to the first nearest-neighbor $p_{\Delta \vartheta}(\theta)$ with $\Delta \vartheta=\vartheta_{2 \text { nd }}-\vartheta_{1 \text { st }}$

Micro-structure stochastic model

- Histograms of random micro-structures' descriptors

Micro-structure stochastic model

- Dependency of the four random variables $d_{1 s t}, \Delta d, \vartheta_{1 \text { st }}, \Delta \vartheta$
- Correlation matrix

	$d_{1 s t}$	Δd	$\vartheta_{1 \text { st }}$	$\Delta \vartheta$
$d_{1 \text { st }}$	1.0	0.21	0.01	0.02
Δd		1.0	0.002	-0.005
$\vartheta_{1 \text { st }}$			1.0	0.02
$\Delta \vartheta$				1.0

- Distances correlation matrix
$d_{1 \text { st }}$ and Δd are dependent they will be generated from their empirical copula

	$d_{1 s t}$	Δd	$\vartheta_{1 \text { st }}$	$\Delta \vartheta$
$d_{1 \text { st }}$	1.0	0.27	0.04	0.08
Δd		1.0	0.05	0.06
$\vartheta_{1 \text { st }}$			1.0	0.05
$\Delta \vartheta$				1.0

Micro-structure stochastic model

- $d_{1 \text { st }}$ and Δd should be generated using their empirical copula

Directly from copula generator

Statistic result from generated SVE

Micro-structure stochastic model

- The numerical microstructure is generated by a fiber additive process

1) Define N seeds with first and second neighbors distances

Micro-structure stochastic model

- The numerical microstructure is generated by a fiber additive process

1) Define N seeds with first and second neighbors distances
2) Generate first neighbor with its own first and second neighbors distances

Micro-structure stochastic model

- The numerical microstructure is generated by a fiber additive process

1) Define N seeds with first and second neighbors distances
2) Generate first neighbor with its own first and second neighbors distances
3) Generate second neighbor with its own first and second neighbors distances

Micro-structure stochastic model

- The numerical microstructure is generated by a fiber additive process

1) Define N seeds with first and second neighbors distances
2) Generate first neighbor with its own first and second neighbors distances
3) Generate second neighbor with its own first and second neighbors distances
4) Change seeds \& then change central fiber of the seeds

- The numerical micro-structure is generated by a fiber additive process
- The effect of the initial number of seeds N and
- The effect of the maximum regenerating times $n_{\max }$ after rejecting a fiber due to overlap

SEM: Average V_{f} of 103 windows;
Numerical micro-structures: Average V_{f} of 104 windows.

Micro-structure stochastic model

- Comparisons of fibers spatial information

Micro-structure stochastic model

- Numerical micro-structures are generated by a fiber additive process
- Arbitrary size
- Arbitrary number

- Possibility to generate non-homogenous distributions

Stochastic homogenization on the SVEs

- Stochastic homogenization

- Extraction of Stochastic Volume Elements
- 2 sizes considered: $l_{\text {SVE }}=10 \mu m \& l_{\mathrm{SVE}}=25 \mu \mathrm{~m}$
- Window technique to capture correlation

$$
R_{\mathrm{rs}}(\boldsymbol{\tau})=\frac{\mathbb{E}[(r(\boldsymbol{x})-\mathbb{E}(r))(s(\boldsymbol{x}+\boldsymbol{\tau})-\mathbb{E}(s))]}{\sqrt{\mathbb{E}\left[(r-\mathbb{E}(r))^{2}\right]} \sqrt{\mathbb{E}\left[(s-\mathbb{E}(s))^{2}\right]}}
$$

- For each SVE
- Extract apparent homogenized material tensor \mathbb{C}_{M}

$$
\left\{\begin{array}{l}
\varepsilon_{\mathrm{M}}=\frac{1}{V(\omega)} \int_{\omega} \varepsilon_{\mathrm{m}} d \omega \\
\sigma_{\mathrm{M}}=\frac{1}{V(\omega)} \int_{\omega} \sigma_{\mathrm{m}} d \omega \\
\mathbb{C}_{\mathrm{M}}=\frac{\partial \sigma_{\mathrm{M}}}{\partial \boldsymbol{u}_{\mathrm{M}} \otimes \nabla_{\mathrm{M}}}
\end{array}\right.
$$

- Consistent boundary conditions:
- Periodic (PBC)
- Minimum kinematics (SUBC)
- Kinematic (KUBC)

Stochastic homogenization on the SVEs

- Apparent properties

Increasing $l_{\text {SVE }}$
When $l_{\text {sVE }}$ increases

- Average values for different BCs get closer (to PBC one)
- Distributions narrow
- Distributions get closer to normal

Stochastic homogenization on the SVEs

- When $l_{\text {SVE }}$ increases: marginal distributions of random properties closer to normal
$-l_{\mathrm{SVE}}=10 \mu \mathrm{~m}$

$-l_{\text {SVE }}=25 \mu \mathrm{~m}$

Stochastic homogenization on the SVEs

- Correlation

Increasing $l_{\text {SvE }}$

(1) Auto/cross correlation vanishes at $\tau=l_{\text {SVE }}$
(2) When $l_{\text {SVE }}$ increases, distributions get closer to normal
(1)+(2) Apparent properties are independent random variables

However the distribution depend on

- $l_{\text {SVE }}$
- The boundary conditions
- Quid larger SVEs?
- Computational cost affordable in linear elasticity
- Computational cost non affordable in failure analyzes
- How to deduce the stochastic content of larger SVEs?
- Take advantages of the fact that the apparent tensors can be considered as random variables

- Quid larger SVEs?
- Computational cost affordable in linear elasticity
- Computational cost non affordable in failure analyzes
- How to deduce the stochastic content of larger SVEs?
- Take advantages of the fact that the apparent tensors can be considered as random variables

Stochastic homogenization on the SVEs

- Quid larger SVEs?
- Computational cost affordable in linear elasticity
- Computational cost non affordable in failure analyzes
- How to deduce the stochastic content of larger SVEs?
- Take advantages of the fact that the apparent tensors can be considered as random variables
- Accuracy depends on Small/Large SVE sizes

- Numerical verification of 2-step homogenization
- Direct homogenization of larger SVE (BSVE) realizations
- 2-step homogenization using BSVE subdivisions

Stochastic reduced order model

- Stochastic model of the anisotropic elasticity tensor
- Extract (uncorrelated) tensor realizations \mathbb{C}_{M}^{i}

- Represent each realization $\mathbb{C}_{\mathrm{M}}^{i}$ by a vector \mathcal{V} of 9 (dependant) $\mathcal{V}^{(r)}$ variables
- Generate random vectors \mathcal{V} using the Copula method
- Simulations require two discretizations
- Random vector discretization

Stochastic reduced order model

- Ply loading realizations
- Non-uniform homogenized stress distributions
- Different realizations yield different solutions

- Stochastic generator based on SEM measurements of unidirectional fibre reinforced composites
- Computational homogenization on SVEs
- Two-step computational homogenization for Big SVEs
- Future work: nonlinear and failure analyzes

Thank you for your attention!

