

Generation of unidirectional composite SVEs from micro-structural statistical information

Wu Ling, Bidaine Benoit, Major Zoltan, Nghia Chnug Chi, Noels Ludovic

The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-03-28) in the context of the M-ERA.NET Joint Call 2014.

The problem

Material uncertainties affect structural behaviors

The problem

- Illustration assuming a regular stacking
 - 60%-UD fibers
 - Damage-enhanced matrix behavior

Question: what does happen for a realistic fibre stacking?

Experimental measurements

2000x and 3000x SEM images

Fibers detection

Basic geometric information of fibers' cross sections

- Fiber radius distribution $p_R(r)$

Basic spatial information of fibers

- The distribution of the nearest-neighbor net distance function $p_{d_{1st}}(d)$
- The distribution of the orientation of the undirected line connecting the center points of a fiber to its nearest neighbor $p_{\vartheta_{1\text{st}}}(\theta)$
- The distribution of the difference between the net distance to the second and the first nearest-neighbor $p_{\Delta d}(d)$ with $\Delta d = d_{\rm 2nd} d_{\rm 1st}$
- The distribution of the second nearest-neighbor's location referring to the first nearest-neighbor $p_{\Delta\vartheta}(\theta)$ with $\Delta\vartheta=\vartheta_{\rm 2nd}-\vartheta_{\rm 1st}$

- Dependency of the four random variables d_{1st} , Δd , ϑ_{1st} , $\Delta \vartheta$
- Correlation matrix

	$d_{1\mathrm{st}}$	Δd	$ heta_{1 ext{st}}$	Δϑ
d_{1st}	1.0	0.21	0.01	0.02
Δd		1.0	0.002	-0.005
$\vartheta_{1\mathrm{st}}$			1.0	0.02
Δϑ				1.0

Distances correlation matrix

 $d_{1{
m st}}$ and Δd are dependent they will be generated from their empirical copula

	$d_{1\mathrm{st}}$	Δd	$ heta_{1 ext{st}}$	$\Delta artheta$
$d_{1\mathrm{st}}$	1.0	0.27	0.04	0.08
Δd		1.0	0.05	0.06
$ heta_{1 ext{st}}$			1.0	0.05
Δϑ				1.0

 $d_{1{
m st}}$ and Δd should be generated using their empirical copula SEM sample Generated sample

Directly from copula generator

Statistic result from generated SVE

- The numerical microstructure is generated by a fiber additive process
 - Define N seeds with first and second neighbors distances

- The numerical microstructure is generated by a fiber additive process
 - Define N seeds with first and second neighbors distances
 - 2) Generate first neighbor with its own first and second neighbors distances

- The numerical microstructure is generated by a fiber additive process
 - Define N seeds with first and second neighbors distances
 - Generate first neighbor with its own first and second neighbors distances
 - Generate second neighbor with its own first and second neighbors distances

- The numerical microstructure is generated by a fiber additive process
 - Define N seeds with first and second neighbors distances
 - Generate first neighbor with its own first and second neighbors distances
 - Generate second neighbor with its own first and second neighbors distances
 - 4) Change seeds & then change central fiber of the seeds

- The numerical micro-structure is generated by a fiber additive process
 - The effect of the initial number of seeds N and
 - The effect of the maximum regenerating times n_{max} after rejecting a fiber due to overlap

SEM: Average $V_{\rm f}$ of 103 windows; Numerical micro-structures: Average $V_{\rm f}$ of 104 windows.

Comparisons of fibers spatial information

CMCS2017 -

- Numerical micro-structures are generated by a fiber additive process
 - Arbitrary size
 - Arbitrary number

Possibility to generate non-homogenous distributions

Stochastic homogenization

- Extraction of Stochastic Volume Elements
 - 2 sizes considered: $l_{\text{SVE}} = 10 \ \mu m \ \& \ l_{\text{SVE}} = 25 \ \mu m$
 - Window technique to capture correlation

$$R_{\mathbf{rs}}(\boldsymbol{\tau}) = \frac{\mathbb{E}[(r(\boldsymbol{x}) - \mathbb{E}(r))(s(\boldsymbol{x} + \boldsymbol{\tau}) - \mathbb{E}(s))]}{\sqrt{\mathbb{E}[(r - \mathbb{E}(r))^2]}\sqrt{\mathbb{E}[(s - \mathbb{E}(s))^2]}}$$

- For each SVE
 - Extract apparent homogenized material tensor C_M

$$\begin{cases} \boldsymbol{\varepsilon}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\varepsilon}_{\mathrm{m}} d\omega \\ \boldsymbol{\sigma}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\sigma}_{\mathrm{m}} d\omega \\ \mathbb{C}_{\mathrm{M}} = \frac{\partial \boldsymbol{\sigma}_{\mathrm{M}}}{\partial \boldsymbol{u}_{\mathrm{M}} \otimes \boldsymbol{\nabla}_{\mathrm{M}}} \end{cases}$$

- Consistent boundary conditions:
 - Periodic (PBC)
 - Minimum kinematics (SUBC)
 - Kinematic (KUBC)

Apparent properties

Increasing $l_{\rm SVE}$

When l_{SVE} increases

- Average values for different BCs get closer (to PBC one)
- Distributions narrow
- Distributions get closer to normal

• When l_{SVE} increases: marginal distributions of random properties closer to normal

Correlation

Increasing l_{SVE}

- (1) Auto/cross correlation vanishes at $\tau = l_{\rm SVE}$
- (2) When l_{SVE} increases, distributions get closer to normal
- (1)+(2) Apparent properties are independent random variables However the distribution depend on
- l_{SVE}
- The boundary conditions

- Quid larger SVEs?
 - Computational cost affordable in linear elasticity
 - Computational cost non affordable in failure analyzes
- How to deduce the stochastic content of larger SVEs?
 - Take advantages of the fact that the apparent tensors can be considered as random variables

Quid larger SVEs?

- Computational cost affordable in linear elasticity
- Computational cost non affordable in failure analyzes
- How to deduce the stochastic content of larger SVEs?
 - Take advantages of the fact that the apparent tensors can be considered as random variables

Quid larger SVEs?

- Computational cost affordable in linear elasticity
- Computational cost non affordable in failure analyzes
- How to deduce the stochastic content of larger SVEs?
 - Take advantages of the fact that the apparent tensors can be considered as random variables
 - Accuracy depends on Small/Large SVE sizes

- Numerical verification of 2-step homogenization
 - Direct homogenization of larger SVE (BSVE) realizations
 - 2-step homogenization using BSVE subdivisions

Stochastic reduced order model

- Stochastic model of the anisotropic elasticity tensor
 - Extract (uncorrelated) tensor realizations $\mathbb{C}_{\mathsf{M}}^i$

- Represent each realization $\mathbb{C}_{\mathrm{M}}^i$ by a vector $\boldsymbol{\mathcal{V}}$ of 9 (dependant) $\boldsymbol{\mathcal{V}}^{(r)}$ variables
- Generate random vectors V using the Copula method
- Simulations require two discretizations
 - Random vector discretization

Stochastic reduced order model

Ply loading realizations

- Non-uniform homogenized stress distributions
- Different realizations yield different solutions

Conclusions

- Stochastic generator based on SEM measurements of unidirectional fibre reinforced composites
- Computational homogenization on SVEs
- Two-step computational homogenization for Big SVEs
- Future work: nonlinear and failure analyzes

Thank you for your attention!

