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Understanding urban development types and 
drivers in Wallonia. A multi-density approach 
 
  
 
Abstract. In this study, urban development process in the Walloon region 
(Belgium) has been analysed. Two main aspects of development are 
quantitatively measured: the development type and the definition of the 
main drivers of the urbanisation process. Unlike most existing studies that 
consider the urban development as a binary process, this research considers 
the urban development as a continuous process, characterized by different 
levels of urban density. Eight urban classes are defined based on the 
Belgian cadastral data for years 2000 and 2010. A multinomial logistic 
regression model is employed to examine the main driving forces of the 
different densities. Sixteen drivers were selected, including accessibility, 
geo-physical features, policies and socio-economic factors. Finally, the 
changes from the non-urban to one of the urban density classes are detected 
and classified into different development types. 
The results indicate that zoning status (political factor), slope, distance to 
roads, population densities and mean land price respectively have impact 
on the urbanization process whatever maybe the density. The results also 
show that the impact of these factors highly varies from one density to 
another. 
 
 
Keywords: urban development; urban density; development type; driving 
forces; multinomial logistic regression model; cadastral data. 
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1 Introduction 

Progress in urban development increases the consumption of natural 
resources and may eventually cause environmental impacts. Therefore, 
urbanization processes attract increasing attention (e.g. Batty, Xie and 
Sun, 1999; Asensio, 2000; Hallowell and Baran, 2013; Kryvobokov et al., 
2015; Mustafa et al., 2015). Exiting models do usually not differentiate 
between high-density and low-density urban developments (e.g. Li, Zhou 
and Ouyang, 2013; Maimaitijiang et al., 2015). Yeh and Li (2002) argue 
that examining the development of different urban densities is an 
important factor in urban planning to help urban planners to set desirable 
urban density and forms according to different planning objectives. 
Mustafa et al. (2016) conclude that the assessment of urban flood damage 
is highly improved by using several urban densities instead of urban/non-
urban classes. 
This paper addresses the question of how to monitor and explain different 
forms of urbanization over time. To do that, this study explores and 
assesses urban development along seven urban-density classes against 
non-urban class in the Walloon region (southern part of Belgium) in terms 
of: (1) the main factors that steer the development and (2) the development 
type over time. 
In the past two decades, substantial advances have been made in urban 
modelling studies through a wide range of analytic models to observe 
and/or predict urban patterns. The existing analytic models can be 
generally classified either as prescriptive or descriptive models. 
Prescriptive models aim at determining the optimum urban patterns that 
satisfy a set of goals, whereas descriptive models aim at the analysis and 
simulation of current and/or future expected patterns. In line with the aims 
of this study, we focus on descriptive models. Several descriptive 
modelling approaches have been developed to analyse urban patterns. 
Generally, the main approaches adopt cellular automata (e.g. Batty, Xie 

and Sun, 1999; Feng et al., 2011; Mustafa et al., 2014), agent‐based (e.g. 
Zhang et al., 2010; Augustijn-Beckers, Flacke and Retsios, 2011), urban-
economic discrete-choice (e.g. Waddell, 2002; Kryvobokov et al., 2015), 
statistical models (e.g. Hu and Lo, 2007; Vermeiren et al., 2012; Li, Zhou 
and Ouyang, 2013), machine learning (e.g. Azari et al., 2016) and the 
integration of different models (e.g. Liu et al., 2014; Mustafa et al., 2015). 
A comprehensive review of a range of modelling approaches can be found 
in Briassoulis (2000), Verburg et al. (2004) and Brown et al. (2012). 
In this study, a statistical modelling approach is employed to track and 
analyse the development process. A multinomial logistic regression model 
(MLR) is selected to estimate the relationship between several 
urbanization driving factors and urban densities. 
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The expansion types of each urban density class can identify the future 
trend of each class. For instance, if a magnitude of new urban lands, 
related to a specific density class between two time-steps, is within 
existing urban cores, then the development behaviour of this class tends to 
be compacted. Authors defined three general development types (Hoffhine 
Wilson et al., 2003; Sun et al., 2013): (1) infill development, (2) edge-
development and (3) outlying development. In this study, the three types 
of development (figure 1) are measured for each density class.  

 

Fig. 1. Urban development types 

This paper is structured as follows. Section 2 gives an overview of 
potential urbanization drivers. Section 3 describes study area and presents 
the methodology and the data preparation process. Section 4 gives the 
detailed results and discusses the findings of this study, and finally the 
paper concludes with a brief remark and some policy-recommendations. 

2 Potential driving forces 

Although there is no universal driving forces for urban development, 
researchers have proposed various factors (table 1) which can be grouped 
into four main sets: (i) accessibility indicators, (ii) geo-physical features, 
(iii) land-use policies and (iv) socio-economic factors (table 1). 

Table 1. Summary of the driving factors of urban development in the literature. 

 
Accessibility 
indicators 

Geo-physical 
features 

Land-use 
policies 

Socio-economic 
factors 

Shu et al. (2014) * *   
Mustafa et al. (2014) * * * * 
Li, Zhou and Ouyang 
(2013) 

* *   

Cammerer, Thieken and 
Verburg (2013) 

* *  * 

Poelmans and Van 
Rompaey (2010) 

* * * * 

Braimoh and Onishi (2007) * *  * 
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Accessibility indicators are often included in urban development models 
by means of simple indicators, such as distance to cities, distance to the 
road network and distance to water bodies (Serneels and Lambin, 2001; 
QUAN et al., 2006; Braimoh and Onishi, 2007). In this study, we 
considered Euclidean distances to different roads categories and to the 11 
Belgian cities with the largest population. 

Geo-physical factors are commonly considered as major drivers of the 
spatial distribution and expansion of urban areas (Li, Zhou and Ouyang, 
2013). There is often a relationship between development and a number of 
these factors, especially the topography of the study area (Cammerer, 
Thieken and Verburg, 2013; Li, Zhou and Ouyang, 2013). We considered 
elevation and slope as geo-physical factors in this study. 
Zoning status is often considered as one of the potential urban 
development drivers. It has been classified as the most pervasive driver in 
USA (Brueckner, 2011). In the Walloon region, land allocation is 
controlled by several regulations including the regional development plan, 
referred to as "plan de secteur (PDS)". In this paper, we consider this 
zoning plan, which defines the legally authorized land-use type for all the 
territory. 
This study also selects a number of socio-economic factors. Population is 
one of the most active drivers of development (Liu and Ma, 2011). In this 
respect, the evolution of net and gross population densities and number of 
households were considered. Economic development could also be 
considered as a driver of urban development; there is a relation between 
economic increase and urban development (Liu and Ma, 2011) and 
furthermore economic development has an important influence on people's 
location choices. In this respect, employment rate, richness level, housing 
and land prices are considered.  

3 Methodology  

3.1 Study area 

The Walloon region lies between latitudes 49°28' and 50°49'N and 
stretches between longitudes 2°50' and 6°28'E (figure 2). The Walloon 
region is the predominantly French-speaking region of Belgium. It has a 
territory of 16,844 km², corresponding to 55% of the Belgium territory. 
The population size in 2010 was equal to 3,498,384 inhabitants, 
representing a third of the entire Belgian population (Belgian Federal 
Government, 2015). Administratively, it comprises five provinces: 
Hainaut, Liège, Luxembourg, Namur, and Walloon Brabant. It has 20 
administrative arrondissements and 262 municipalities. The geography of 
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the area goes from flat to hilly with altitude ranges from 0 to 693m above 
see-level.  
The main metropolitan areas are Charleroi, Liège, Mons and Namur. They 
are all characterized by a historical city-centre around which the urban 
development was spread. Urban density greatly varies over the study area. 
The population is mainly concentrated on the main metropolitan centres. 
The rest of the territory is less densely inhabited. Consequently, several 
urban densities can be easily detected in the region and thus we can 
examine the sensitivity of different urbanization drivers to urban density. 

 

Fig. 2. Study area 

3.2 Multinomial logistic regression (MLR) model 

Binomial logistic regression models are used whenever the dependent 
variable is binary which takes values 0 or 1. When a dependent variable 
has more than two categories then a multinomial logistic regression 
models can be used. The multinomial logistic regression models have two 
basic forms, ordinal and non-ordinal (often referred to simply as MLR). 
The ordinal one is employed whenever each category of dependent 
variable is assumed to have a meaningful sequential order. Parallel lines 
test is usually performed to evaluate this assumption. In this study, the 
significance of Chi-Square statistic of the parallel lines test is 0.000. Given 
that the assumption of the parallel lines is violated, and thus we have to 
adopt a non-ordinal alternative (MLR). 
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The MLR model is applied to investigate the contribution of the selected 
driving forces (independent variables, X) on the probability of urban 
development along the different density classes (dependent variables, Y). 
The MLR analysis yields coefficients for each driving force (X). These 
coefficients are then interpreted as weights in a formula that generates a 
map for each urban density class depicting the probability of each cell in 
the landscape to be converted into this class. If the Y variable is a 
categorical map with k classes, taking on values 0, 1,..., k-1 and X is a set 
of explanatory variables X1, X2,..., Xn then the logit for each non-reference 
class k1,..., kn against the reference class k0 model is calculated through: 
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is the natural logarithm of class kn against the reference 

class k0, α is the intercept, βkn is the regression coefficients of class kn.  
The probabilities P of each class can be calculated with the following 
formula: 
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The goodness-of-fit, in terms of predictive ability and the interpretability, 
of the MLR outcomes is evaluated using the McFadden pseudo R-square 
and the Relative Operating Characteristic (ROC) statistic respectively 
(Clark and Hosking, 1986; Braimoh and Onishi, 2007; Lin et al., 2014; 
Mustafa et al., 2014; Shu et al., 2014). 
The McFadden pseudo R-square (MFR2) tries to mimic the R-squared 
statistic of linear regression models. An MFR2 of 1 indicates a perfect fit, 
while MFR2 of 0 indicates no relationship. It is calculated according to the 
following formula: 

 
0

ln( )
2 1

ln( )

m
L

MFR
L

    (3) 

where Lm is the value of the likelihood function for the full model as fitted 
with X and L0 is the value of the likelihood function if all β except α are 0. 
The ROC statistic compares the probability map, produced by the MLR, to 
a map with the observed changes of urban cells for each class between two 
time-steps. It first divides the probability outcomes into percentile groups 
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from high to low probability and then calculates the proportion of true-
positives and false-positives for a range of specified threshold values and 
relates them to each other in a graph. The ROC measures the area under 
the curve and its value should range between 0.5 (random fit) and 1 
(perfect fit).  
Prior to performing the MLR model, we have to consider three aspects 
that may exist among the model inputs that might potentially affect the 
regression results: disparity in units, autocorrelation and multicollinearity. 
Due to disparity in units and scale of the explanatory variables (table 4), 
the logit coefficients cannot be used directly to measure the relative 
contribution of each variable to the urban development process. 
Consequently, all continuous X were standardized before performing the 
MLR model. Categorical X were not standardized to keep the meaning of 
the dummy variable. 
Spatial autocorrelation in one or more X will bias the results of the 
regression analysis. Autocorrelation is the propensity for cell value to be 
similar to surrounding cells. Moran's I statistic was processed to detect 
spatial autocorrelation for each X. It is given as: 

 
1 1

2

1

( )( )

_

( )

n n

ij i j

i j

n

i ij

i i j

w x x

M I n

x w

 



 

 

 




  

  
  



 

  (4) 

where M_I is the Moran's I statistic for each X, n is the number of 
neighbour cells to be taken into account, w spatial weights and Xi/j cells 
values at location i/j. The locations depend on the cell neighbours, 
considering shared-border neighbours (Xi) and possibly also diagonal 
neighbours (Xj). We considered only Xj neighbours. Moran's I value ranges 
between -1 and +1, where +1 means absolute autocorrelation and -1 none 
autocorrelation. To reduce the spatial autocorrelation, it is recommended 
to calibrate the model based on a structured or random sample from the 
whole dataset (Huang, Xie and Tay, 2010; Poelmans and Van Rompaey, 
2010; Cammerer, Thieken and Verburg, 2013; Puertas, Henríquez and 
Meza, 2014; Rienow and Goetzke, 2015). Alternatively, an autologistic 
regression which considers an autocorrelative term in the regression model 
can be employed. A number of studied showed that the autologistic 
regression model outperformed the logistic models (e.g. Lin et al., 2011; 
Shafizadeh-Moghadam and Helbich, 2015). Contrary, some studies (e.g. 
Dormann, 2007) reported that the logistic regression model tends to 
outperform the autologistic regression model in terms of model parameters 
estimation. Comparing both modelling approaches (logistic vs 
autologistic) goes beyond the scope of this paper. Our model has been 
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calibrated through a data sampling approach, which is a common approach 
in land-use change modelling.  
Multicollinearity represents a high degree of dependency among a number 
of X. It commonly occurs when a large number of X are introduced in a 
regression model. It is because some of X may relatively measure the same 
phenomena. Strong collinearities cause the erroneous estimation of 
parameters and further affect the MLR results (Lin et al., 2014). In this 
context, a number of procedures is proposed to detect multicollinearity 
among X such as tolerance value, variance inflation factor and Belsley 
diagnostics (Belsley, Kuh and Welsh, 1980; Judge et al., 1985; Belsley, 
1991; Kennedy, 2003). We used Belsley diagnostics to detect 
multicollinearity. The outcomes of Belsley diagnostics are condition 
indices and variance-decomposition proportions for each X. A condition 
index greater than 30 represents strong multicollinearity (Kennedy, 2003). 
In that case, it is highly recommended to omit all X with variance-
decomposition proportions exceeding the tolerance of 0.5 (Kennedy, 
2003).  

3.3 Dependent variables 

The dependent variables are constituted by cells, whose status remains 
non-urban and whose status changed from non-urban to one of urban 
density classes between 2000 and 2010. The cadastral dataset (CAD) was 
used to develop the dependent variables map. CAD is a vector map 
representing buildings in two dimensions as polygons provided by the land 
registry administration of Belgium. Each building comes with different 
attributes, from which the construction date is the most important attribute 
for our study. Using the construction date, two urban land-use maps were 
developed for 2000 and 2010 years. The CAD vector data were rasterized 
at a very fine cell dimension (2×2m). Due to the time and computational 
resources constraints, the MLR model lasts for about 13 hours to manage 
2×2m raster data, the rasterized cells were then aggregated to obtain 
100×100m raster-grids. The cell size of 100×100m is one of the most 
common cell dimensions used in land-use change studies (e.g. Jiang et al., 
2007; Poelmans and Van Rompaey, 2010; Sang et al., 2011; Munshi et al., 
2014), which allows cross-comparisons with standard datasets like 
Corinne Land Cover. Each aggregated cell has a density value that 
represents the number of rasterized 2×2m cells. This value has been used 
to introduce the density in the aggregated CAD maps (100×100m raster-
grid). 
In order to avoid overestimation of urban lands, two measures were 
applied to the aggregated data: the minimum building density per cell 
(MBDC) and the minimum building density per neighbour (MBDN). 
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The average size of residential building in Belgium is about 10×10m 
(Tannier and Thomas, 2013). The MBDC has been defined as 25 
rasterized cells (corresponding to an average-sized building). 
A threshold of five dwellings per hectare, corresponding to 5×25 
rasterized cells, was fixed for considering that a cell was urbanized. 
Neighbourhoods with such a density are indeed observable in the Walloon 
region. We then performed an analysis using different thresholds of 
MBDN using a search window of 3×3 cells for each MBDN cell less than 
125 (5×25). These thresholds are 125, 250, 625, 1250 and 2500. Table 2 
lists a comparison between (CORINE Land Cover) CLC data, CAD 
original aggregated data and different MBDN thresholds. 

Table 2. Comparison of area (km²) between CLC, CAD_Org original aggregated CAD data, 

MBDN_125, MBDN_250, MBDN_625, MBDN_1250  and MBDN_2500. 

Year CLC CAD_Org 
MBDN1
25 

MBDN 
250 

MBDN 
625 

MBDN 
1250 

MBDN 
2500 

2000 2506 3229 2599 2468 2093 1744 1579 
2006 2513 - - - - - - 
2010 - 3339 2716 2594 2230 1868 1693 

We assumed that the number of changed cells between two time-steps 
would increase until a specific value of MBDN and then start declining 
along with the increase of MBDN. Actually, those cells are under 
development at time-step 0 and reach the threshold of MBDN at time-step 
1 are then considered as urban. If the MBDN threshold is very high, this 
condition will not be reached because this threshold exceeds the observed 
number of built cells at time-step 0 and 1. The number of changed cells 
calculated in two provinces of the Walloon region confirmed our 
assumption (figure 3). The result showed that the most appropriate 
threshold for the MBDN is 625. 

 

Fig. 3. Number of changed cells between 2000 and 2010 
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We performed different multinomial logistic regression (MLR) models for 
4, 6, 8 and 10 urban densities quantile classes (including the non-urban 
class) and measured the goodness-of-fit in terms of misclassification rates. 
The misclassification rates equalled 24.23%, 23.60%, 22.70% and 
26.07%, respectively. As a result, for the final MLR, we used eight urban 
classes, from Density0 (non-urban) to Density7 (highest urban-density), 
each class has almost the same number of cells except for Density0 
(Figure 4). Table 3 lists the density range for each class.  

 

Fig. 4. Urban density classes of 2010 (7 highest density, 1 lowest density) 

Table 3. Urban classes density ranges in number of 2x2 pixels (% of 100x100 cell area)  

covered by building footprints. 

Class Min Max μ Mode 

Density0a - - - - 

Density1 25 (1.0%) 78 (3.2%) 51.5 32 

Density2 79 (3.2%) 132 (5.3%) 105.5 127 

Density3 133 (5.3%) 180 (7.2%) 156.5 138 

Density4 181 (7.2%) 243 (9.8%) 212.0 182 

Density5 244 (9.8%) 330 (13.2%) 287.0 254 

Density6 331 (13.2%) 491 (19.7%) 411.0 333 

Density7 492 (19.7%) 2500 (100.0%) 1365.9 504 

a Density0 represents all non-urban cells and affected cells by MBDC and MBDN procedures. μ: 
mean. 
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3.4 Independent variables 

Statistical data related to the population volume, the number of 
households, the employment rate, the richness index (a comparison of the 
average income per capita in a given municipality with the average 
income per capita in Belgium) and the mean land/housing price were 
provided by the official Belgian statistics (Institut wallon de l’évaluation, 
de la prospective et de la statistique, 2011; Belgian Federal Government, 
2013) and mapped with a resolution of 100×100m raster-grid at 
municipality level. Gross population density was calculated for each 
municipality as the number of inhabitants divided by the area of 
municipality in km², whereas net population density was calculated as the 
number of inhabitants divided by the area of built-up lands of the 
municipality in km². 
The digital elevation model (DEM) provided by the Belgian National 
Geographic Institute was used to calculate elevation and slope in 
percentage for each cell. 
Accessibility was measured by the Euclidean distance of a cell to four 
categories of roads and major Belgian cities. Roads categories of 2002 
were provided by Navteq. Four categories of roads were introduced in the 
MLR (highways: high speed and volume controlled access roads, 
major_roads: quick travel between and through cities, secondary_roads: 
moderate speed travel within cities and local_roads: moderate speed travel 
between neighbourhoods). The Belgian cities with the largest population, 
a minimum population of 30,000, (Antwerp, Brussels, Wavre, Brugge, 
Gent, Charleroi, Mons, Liege, Hasselt, Arlon and Namur) were used to 
develop a map of distances to cities. 
According to the zoning plan of the Walloon region, urban development is 
only allowed in those zones that are designated for residential, economic 
or leisure development. In other zones, such as agricultural and forest 
areas, urban development is not permitted, unless specific conditions are 
fulfilled. A zoning map was developed by discerning the zones where 
urban development is not permitted (code 0) and the zones that are 
designated for urban development (code 1). All maps were created as 
raster grids with a resolution of 100×100m (table 4). The spatial resolution 
is defined in function of the availability of data. The statistical data are 
available at municipality level, whereas other variables could be calculated 
at cell level. The combination of data at different resolutions is common in 
land-use studies (e.g. Cammerer, Thieken and Verburg, 2013; Roy 
Chowdhury and Maithani, 2014). 
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Table 4. List of the selected drivers of urban development. 

Driver  Name Typea Unit Resolutionb μ σ 

X1 Elevation 1 m 1  257.14 183.4 

X2 Slope 1  % 1  5.51 57.02 

X3 Dist to city 1 m 1  29028.16 15479.34 

X4 
Dist to 
Highways 

1 m 1  7936.12 8282.57 

X5 
Dist to 
Major_roads 

1  m 1  4174.5 3757.23 

X6 
Dist to 
Secondary_road
s 

1 m 1  1668.27 1425.25 

X7 
Dist to 
Local_roads 

1 m 1  818.63 850.46 

X8 
Dist to rail 
stations 

1 m 1  6962.07 5710.64 

X9 Num households 1 number 2 6421.52 12040.71 

X10 
Mean housing 
price 

1 € 2 139487 31965.1 

X11 Mean land price 1 €/m² 2 51.1 99.73 

X12 
Employment 
potential 

1 % 2 48.39 98.42 

X13 Richness index  1  % 2 95.71 61.62 

X14 
Expansion 
population 
density 

1 inh/km² 2 206.95 354.33 

X15 
Net population 
density 

1  
inh/urban 
km² 

2 819.52 522.97 

X16 Zoning status 2  binary 1     

a 1. Continuous, 2. Categorical. b 1. Cell level, 2. Municipality level. μ: mean. σ: standard deviation 

3.5 Identification of urban development types 

Each type of urban development leads to different planning and 
environmental consequences. Thus, identifying the types of development 
over time is essential for monitoring and alleviating the consequences of 
the urbanization process (Luck and Wu, 2002). In this context, three types 
of development are measured for each density class. 
The first type of development is infill. In this type of development, the 
non-urban cells which are completely surrounded by urban cells, are 
converted to cells corresponding to one of the density classes. Infill 
development usually occupies vacant land, where public facilities such as 
sewer, water, and roads already exist (Hoffhine Wilson et al., 2003). 
The second type of development is edge-development, where non-urban 
cells, which adjoin existing urban cells, are converted to one of the density 
classes. This type represents an expansion of the existing urban patch and 
has been called urban fringe development (Wasserman, 2000; Hoffhine 
Wilson et al., 2003) 
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The final type of urban development is outlying, in which non-urban cells 
are being converted to one of the density classes beyond existing 
developed areas. 
In order to identify expansion type, the raster maps of existing urban 
patches associated with newly developed urban patches were firstly 
converted to vector maps. Following the conversion steps, the boundaries 
of each existing urban patch were detected.  
The vector maps (map for each density class) of newly developed urban 
patches were overlaid with the boundaries of each existing urban patch. 
Using Select By Location function in ArcGIS, if the newly developed 
urban patch was within the boundaries of existing urban patch, the patch 
was categorized as infill development. If the newly developed urban patch 
touches the boundary of existing urban patches, the patch was categorized 
as edge-development. All other newly urban patches were then classified 
as outlying development (figure 5). 

 

Fig. 5. The flow chart for identification of three urban development types 
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4 Results and discussions 

The urban area in 2000 in the Walloon region was 2093 km², accounting 
for 12.4% of the total area, and in 2010, the urban area increased to 2230 
km², accounting for 13.2% of the total area. The rate of increase varies 
based on density (table 3): 36.6% (50.3 km²) for Density1, 25.3% (34.8 
km²) for Density2, 16.6% (22.9 km²) for Density3, 7.6% (10.5 km²) for 
Density4, 5.2% (7.1 km²) for Density5, 3.9% (5.3 km²) for Density6 and 
finally 4.9% (6.7 km²) for Density7.  
As regard with the MLR model, all explanatory variables (X) have strong 
degree of spatial autocorrelation with Moran's I value between 0.746 for 
zoning and 0.999 for distance to cities. To reduce the spatial 
autocorrelation, a random sample of 15,675 cells, around 1.15% of the 
study area, distributed throughout the study area was used in the MLR 
model. All X show low degree of multicollinearity with condition indices 
between 1 and 9.15 for all X maps and 1 to 9.86 for the selected samples. 
Thus, all X are introduced in the MLR model. 
The goodness-of-fit of the MLR model in terms of predictive ability is 
evaluated using McFadden pseudo R-square and it equals 0.244. Clark and 
Hosking (1986) suggested that a McFadden pseudo R-square value greater 
than 0.2 can be considered as a good fit. The MLR reveals a very good 
correspondence with ROC values (figure 6): 0.775, 0.819, 0.829, 0.805, 
0.793, 0.813 and 0.914 for classes 1, 2, 3, 4, 5, 6 and 7 respectively. In 
general, ROC values higher than 0.7 can be considered as a reasonable fit 
(Jr and Lemeshow, 2004; Poelmans, 2010; Cammerer, Thieken and 
Verburg, 2013). This indicates that the MLR performs well and the 
MLR’s outcomes could effectively interpret the process of urban 
development in the Walloon region. 
Table 5 gives the results of the MLR model. To relatively measure the 
contribution of each X to the urban development process, the Odds Ratio 
(OR), which equals exp(β), is calculated for each X. An OR greater than 1 
(coefficients greater than 0) indicates a positive effect, i.e. the probability 
of development increases by increasing the OR of the variable, whereas an 
OR less than 1 (coefficients less than 0) indicates a negative effect, i.e. the 
probability of urban development decreases by increasing the OR of the 
variable. An OR of 1 (coefficients of 0) indicates the absence of a 
significant contribution to development process (Braimoh and Onishi, 
2007). 

The interpretation of the parameters of the MLR model is most tangible by 
considering the interpretation in terms of multiplicative effects on the 
odds. Take as an example the parameter representing the effect of 
elevation on Density7 expansion. This parameter equals 0.110. A one unit 
increase would in elevation would imply that we have to multiply the odds 
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by exp(0.110) = 1.117. Similarly, a five unit increase would imply that the 
odds have to be multiplied by exp(5x0.110) = 1.7.  
Generally, the impact of different drivers varies with different densities. 
These drivers can be grouped into common drivers with impacts on 
different urban classes and special drivers with impacts on individual 
classes. The likelihood of urban development is notably influenced by 
policies (zoning status). Zoning status has the strongest impact on urban 
developments of all densities. Slope, distance to local_roads, distance to 
secondary_roads, net/gross population densities and mean land price 
respectively also demonstrate an impact on all density classes, but far less 
important than zoning status.  

Table 5. The coefficients (β) of MLR model and (OR value). Density0 is the reference class. 

 Density1 Density2 Density3 Density4 Density5 Density6 Density7 

α -4.158 -4.603 -4.700 -4.583 -4.409 -4.500 -5.969 

Elevation 
-0.078 
(0.925) 

-0.032 
(0.969) 

0.043 
(1.043) 

0.105 
(1.111) 

0.023 
(1.023) 

0.204* 
(1.226) 

0.110 
(1.117) 

Slope 
-0.237* 
(0.789) 

-0.078 
(0.925) 

-0.210* 
(0.811) 

-0.644* 
(0.525) 

-0.693* 
(0.500) 

-0.840* 
(0.432) 

-1.185* 
(0.306) 

Dist to city 
0.072 
(1.074) 

0.051 
(1.053) 

-0.099 
(0.906) 

-0.036 
(0.965) 

0.130* 
(1.139) 

0.008 
(1.008) 

0.070 
(1.072) 

Dist to highways 
-0.129 
(0.879) 

0.014 
(1.014) 

-0.004 
(0.996) 

-0.165* 
(0.848) 

-0.146* 
(0.864) 

-0.306* 
(0.736) 

-0.917* 
(0.400) 

Dist to 
major_roads 

-0.113 
(0.893) 

-0.036 
(0.964) 

-0.021 
(0.980) 

-0.084 
(0.920) 

-0.244* 
(0.783) 

-0.215* 
(0.807) 

-0.587* 
(0.556) 

Dist to 
secondary_roads 

-0.265* 
(0.767) 

-0.257* 
(0.774) 

-0.141* 
(0.869) 

-0.283* 
(0.754) 

-0.214* 
(0.807) 

-0.197* 
(0.822) 

-0.278* 
(0.758) 

Dist to local_roads 
-0.651* 
(0.521) 

-0.536* 
(0.585) 

-0.587* 
(0.556) 

-0.552* 
(0.576) 

-0.427* 
(0.653) 

-0.394* 
(0.674) 

-0.228* 
(0.796) 

Dist to rail stations 
0.002 
(1.002) 

-0.020 
(0.980) 

0.069 
(1.071) 

0.024 
(1.024) 

-0.136 
(0.873) 

-0.141 
(0.868) 

-0.289* 
(0.749) 

Num households 
0.001 
(1.001) 

-0.016 
(0.984) 

-0.079 
(0.924) 

-0.098 
(0.907) 

-0.131* 
(0.877) 

-0.082 
(0.922) 

-0.086 
(0.918) 

Mean housing 
price 

0.027 
(1.027) 

0.029 
(1.029) 

0.074 
(1.076) 

0.037 
(1.038) 

0.096 
(1.101) 

0.038 
(1.039) 

-0.170 
(0.843) 

Mean land price 
0.079 
(1.082) 

0.127 
(1.136) 

0.083 
(1.087) 

0.191* 
(1.210) 

-0.054 
(0.947) 

0.250* 
(1.284) 

0.198* 
(1.219) 

Employment 
potential 

-0.174* 
(0.840) 

-0.098 
(0.907) 

-0.027 
(0.974) 

0.001 
(1.001) 

0.105 
(1.111) 

0.205* 
(1.228) 

0.236* 
(1.266) 

Richness index  
0.159 
(1.172) 

0.032 
(1.033) 

0.057 
(1.059) 

-0.076 
(0.927) 

-0.043 
(0.958) 

-0.371* 
(0.690) 

-0.305* 
(0.737) 

Gross population 
density 

0.311* 
(1.365) 

0.161* 
(1.175) 

0.210* 
(1.233) 

0.213 
(1.237) 

0.257 
(1.293) 

-0.076 
(0.927) 

0.045 
(1.046) 

Net population 
density 

-0.362* 
(0.696) 

-0.364 
(0.695) 

-0.451 
(0.637) 

-0.233 
(0.792) 

-0.078* 
(0.925) 

0.120 
(1.128) 

-0.070 
(0.932) 

Zoning status 
2.735* 
(15.405) 

3.639* 
(38.050) 

3.745* 
(42.317) 

3.278* 
(26.523) 

2.942* 
(18.952) 

2.807* 
(16.555) 

3.775* 
(43.598) 

* Significant P≤ 0.05 
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Fig. 6. ROC curves of different urban classes 

The impact of distance to local_roads, namely intra-urban or inter-villages 
roads, is generally decreasing with built-up densities. Distances to 
highways and major_roads have a noticeable impact on the expansion of 
high density projects (Density7) with OR of 0.40 and 0.56 respectively. It 
should be stressed that a number of urban cores are directly accessible via 
high-speed roads in the Walloon region. Employment potential has a 
significant attraction impact on Density7. It is generally increasing with 
density, which is what can be expected. The richness index and elevation 
have moderate impacts on urban Density6. Distance to rail stations has a 
moderate positive influence on urban Density7. Still this influence is much 
lower than the proximity of high-speed roads, suggesting that urban areas 
located nearby train stations are not yet sufficiently attractive for new 
dense developments. This should be a major concern for urban policy 
makers. Mean housing price represents a low influence on urban 
development. This influence is negative for high density developments, 
which is another source of concern given the shortage of available 
housing, especially apartments, in areas characterized by a strong pressure 
on the real estate market. 
OR values for zoning show that policy has a very strong impact on the 
highest density developments (Density7). Those high density 
developments will most naturally be developed in areas where the legally-
binding plan allows such developments, in order to minimize the 
administrative and financial risks of such operations. Zoning status impact 
is taken a downward trend with classes 4, 5 and 6 respectively. We 
consider those classes as suburbs. Quite understandably that urban 
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developments in suburbs do not strictly follow policies. The zoning impact 
on Density1 is very low compared to other classes. This class can be 
considered as remote developments which can sometimes deviate from 
existing zoning plans especially in agricultural zones. Land-use policies 
also show a noticeable impact on classes 2 and 3. We considered those 
both classes as low density developments in rural areas. It is not surprising 
that new developments are mainly directed to urbanisable zones, where 
there is an excess supply of such land. The MLR findings are in line with 
the results reported in a number of other studies. Poelmans and Van 
Rompaey (2010) examined the relation between urban development in 
norther Belgium and slope, distance to different roads, major cities, 
employment potential and zoning status using logistic regression. They 
concluded that zoning status, slope, distance to roads are the major 
determinants of the spatial pattern of urban development. Hu and Lo 
(2007) used logistic regression to identify the forces that have driven the 
urban growth in Atlanta. They reported that population density and 
distance to roads were found to affect urbanization process. 
General speaking, urban development patterns can be considered as an 
oscillation between phases of diffusion and coalescence over time 
(Winsborough, 1962; Yu and Ng, 2007; Shi et al., 2012). Diffusion is 
considered as a dispersion of urban patches, while coalescence is the 
fusion of urban patches into a limited number of patches (Dietzel et al., 
2005; Shi et al., 2012). Infill and edge developments are forms of 
coalescence, whereas outlying developments represent diffusion (Xu et 
al., 2007; Shi et al., 2012). The proportion of infill and edge urban 
developments is about 92% of the total newly developed urban lands, 
which indicates that the urban development between 2000 and 2010 was 
obviously in the form of coalescence.  
The edge-development was the dominant type of all urban classes’ 
expansion during the study period, occupying approximately 83% of the 
total newly developed urban lands (Figure 7). This implies that the 
urbanization process between 2000 and 2010 were prominently expanded 
in the urban fringe spaces.  
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Fig. 7. The area proportion (%) of each urban development type in 2000–2010 

The result shows a gradual downward trend in the infill expansion type 
from Density7 till Density2 and then shows an upward trend. Most of 
infill newly urban patches of classes 1 and 2 are within major urban cores 
(Figure 8). Those patches might be under urban development at the current 
time and will be intensified in the future. The infill expansion type of 
Density7 is greater than other urban classes with the implication of 
compact urban growth near existing urban cores. In addition, the degree of 
outlying expansion of Density7 indicates that high-density expansion can 
also be found further from urban cores. Further analysis is still required to 
see whether the new discontinuous developments were followed by later 
efficient infill based on expansion patterns for different time periods. 
Due to shortages of available urban space and the high cost of construction 
in existing urban cores, investments in suburbs have become economically 
attractive especially for individuals. That can explain the higher values of 
the outlying expansion of density classes 7, 6, 5, 4 and 3. 
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Fig. 8. The area proportion (%) of each urban development type in 2000–2010 

 

5 Conclusions  

In this study, we presented a comprehensive analysis of recent 
urbanization process in the Walloon region (Belgium) between 2000 and 
2010. A set of procedures were done to measure development types and 
the main drivers of the urbanization process. This research considered 
urban development as a continuum. It can be seen that the examination of 
different urban densities expansion help with better understanding of 
urbanization process and can be utilized by urban planners to generate 
development scenarios according to different density strategies. 
An examination of the driving forces of urban development process in the 
Walloon region was required to help with improving land-use efficiency 
and minimizing destruction to the regional ecosystem. A multinomial 
logistic regression model (MLR) was employed to relatively measure the 
impact of different drivers on the probability of development. Sixteen 
drivers were selected from four sets of driving forces including geo-
physical features, land-use policies, socio-economic and accessibility.  
The MLR model can include biophysical factors as well as socio-
economic factors. The model’s ability to include as many socio-economic 
factors as necessary allows us to better understand human interactions 
with urban systems. The MLR models can model any state. In the case of 
urban to non-urban, the modeller should select the urban class as a 
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reference class. The MLR also requires less demand of computation 
resources for calibration. Despite these strengths, the MLR models suffer 
some limitations. Firstly, it assumes that the occurrence probability is 
linearly and additively related to the controlling factors on a logistic scale 
(Cheng and Masser, 2003). If this assumption cannot be satisfied, the 
performance may degrade. Secondly, unlike other urbanization modelling 
approaches such as cellular automata or agent-based, the MLR models are 
not temporally explicit. In other words, it can indicate the location of a 
specific urban development, but cannot indicate when the development 
will take place.  
Three types of urban development were detected: (1) infill development, 
(2) edge-expansion and (3) outlying expansion. The analysis indicated that 
the development between 2000 and 2010 was mainly of infill and edge 
developments, which reveals that the Walloon region experienced more 
compacted urbanization pattern. This result is consistent with a number of 
studies that refer to urban development have mostly concentrated in 
developed urban cores (e.g. Schneider and Woodcock, 2008; Petrov, 
Lavalle and Kasanko, 2009; Banzhaf and Lavery, 2010). 
The results suggest that urban development in the Walloon region is 
remarkably influenced by land-use policies. Therefore, a tighter control of 
urban development through legislative measures would improve land-use 
efficiency. Our findings highlighted that the impact of different drivers 
varies along with urban density. This is especially the case for the land-use 
policies, whose effects are much more significant for smaller densities 
than for higher ones, with exception for the urban cores. Our approach can 
predict future land consumption in accommodating a specific number of 
dwellings along various levels of densities, which is critically important 
for policy makers to restrict urban sprawl. 
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