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A B S T R A C T

The first passage time is the time required for a system to evolve from an initial configuration to a certain target
state. This concept is of high interest for the study of transient regimes which are widely represented in wind
engineering. Although the concept has been widely studied from theoretical and numerical standpoints, there are
very few practical or experimental applications where the results are seen from this angle. This work is a first
attempt at bringing first passage times of stochastic systems into wind engineering by suggesting the use of a first
passage time map as a standard analysis tool in experimental wind engineering. The wind tunnel data related to
the spinning dynamics of a rotating square cylinder in turbulent flow is processed under the frame suggested by a
theoretical model for a simple linear oscillator. A specific algorithm is developed for the determination of the
average first passage time as a function of initial and target conditions based on the experimental measurements.
It is shown that the simple theoretical model is able to capture the different regimes of the experimental setup, so
that an equivalent linear Mathieu oscillator, presenting the same evolution of energy, from a first passage time
point of view, was identified. This experimental investigation provides a first link between an analytical but
simplified result and a more complex reality.
1. Introduction

The first passage time is the time required for a system, leaving a
known initial configuration, to reach a certain state for the first time. In
deterministic dynamics this concept is central in the description of
transient regimes, for instance to estimate the time required for a
deterministic system to reach its steady-state, under a stationary excita-
tion (Chopra, 2007). The first passage time has attracted much more
attention in a stochastic context, in which numerous theoretical ap-
proaches to its estimation and description have been developed (Gri-
goriu, 2002; Lin and Cai, 2004; Preumont, 1994; Schuss, 2010; Bolotin,
1984; Stratonovitch, Silverman). Although the concept has been widely
studied from theoretical and numerical standpoints, there are very few
practical or experimental applications where the results are seen from the
angle of first passage times. This seems paradoxical for slightly damped
and randomly excited structures, such as those which are studied in wind
engineering today. Indeed, slightly damped systems have long memory
times and require a lot of time before a steady regime can be reached.
Because they spendmost of their time in transient regimes, it is important
to focus on a transient representation of their response. Among others,
first passage times are one way to do this.
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Some examples of the possible application of first passage times in
wind engineering are the following ones. First, dispersion of pollutant
releases is the object of massive experimental and numerical research.
Reliable and accurate results are obtained through costly high-resolution
developments or experimental testing such as field measurements
(Barad, 1958; Stathopoulos et al., 2004), atmospheric boundary layer
flow simulations (Stathopoulos et al., 2004; Halitsky, 1963; Huber and
Snyder, 1982; Li and Meroney, 1983; Meroney, 2004) or computational
fluid dynamics (Meroney, 2004, 2016; Gousseau et al., 2011; Tominaga
and Stathopoulos, 2013, 2016; Di Sabatino et al., 2013). A bridge deck
flutter instability in turbulent flow (Andrianne and de Ville de Goyet,
2016) is another problem in which first passage times are of outmost
concern. Another example concerns tower cranes that are left free to
rotate as a weathervane in a turbulent wind velocity field. The increasing
number of recorded accidents due to high wind and partly to the auto-
rotation (Mok, 2008) aroused the curiosity of the scientific community.
Out-of-service wind velocities criteria are proposed by (Eden et al., 1983;
Sun et al., 2009) while the stochastic response under turbulent wind
conditions was the object of experimental testing assessing the risk of
autorotation of the crane in a given environment (Voisin, 2003; Voisin
et al., 2004; Eden et al., 1981, 1983). In all these applications, the
ces, University of Li�ege, Li�ege, Belgium.
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question of first passage time is typically central and offers an alternative
answer to the risk assessment with a good understanding of the influence
of problem parameters of a system/structure's transient response. In
particular it tackles questions such as the time it takes for a pollutant to
reach a given concentration at a given place, the time required before
stochastic instability occurs, the time it takes for a crane to exhibit large
amplitude oscillations, or complete autorotations. The large number of
potential applications in wind engineering encourages the development
of reliable tools for the understanding and prediction of systems in
transient regimes.

We restrict the current study to linear oscillations around an equi-
librium point. In a single degree-of-freedom case, a very general model of
a linear system, which is also suitable to capture many features of the
aeroelastic loading, is composed of inertial, viscous and restoring forces,
as well as a forcing and, possibly, a parametric excitation. The stochastic
analysis of such systems has been widely studied. In particular, by
analogy with a pendulum subjected to a support motion, the stochastic
stability of a simple oscillator has already been studied under deter-
ministic or stochastic excitations (Gitterman, 2010a, 2010b; Alevras
et al., 2013; Yurchenko et al., 2013). The separatrix between stable and
unstable zones is studied in (Bishop and Clifford, 1996; Clifford and
Bishop, 1994; Garira and Bishop, 2003; Xu andWiercigroch, 2006) while
(Mallick and Marcq, 2004) provides an asymptotic solution for the
probability density function of the energy. Beside, the analysis of
non-stationary problems can be done in several different ways, (i) either
through Monte Carlo simulations (Kloeden and Platen, 1992; Primo�zi�c,
2011; Giles, 2008; Vanvinckenroye and Deno€el, 2015) providing for
instance the time evolution of the joint probability density function in
transient and, eventually, stationary regimes, (ii) either through a more
theoretical context, where the state-variable probability density function
and the first passage time are obtained as the solutions of the
Fokker-Planck-Kolmogorov and generalized Pontryagin equations. These
equations can be solved numerically through a path integration method
(Kougioumtzoglou and Spanos, 2014a), the perturbation method (Canor
et al., 2016), the smooth particle hydrodynamics method (Canor and
Deno€el, 2013), high dimensional finite elements (N�aprstek and Kr�al,
2014, 2017), or other approximate techniques. Comparisons of
approached and numerical solutions for the first passage times and the
associated, so-called, survival probability, are widely available (Kou-
gioumtzoglou and Spanos, 2014b; Spanos and Kougioumtzoglou, 2014a,
2014b; Palleschi and Torquati, 1989).

Explicit solutions of the Fokker-Planck-Kolmogorov and Pontryagin
equations are available in some limited cases only (Chunbiao and
Bohou, 2000; Schuss, 2010; Risken, 1996). The stochastic averaging
method used in (Vanvinckenroye and Deno€el, 2017a, 2017b) to solve
the generalized Pontryagin equation provides an approximate but
closed-form solution for a single-degree-of-freedom system submitted
to broadband parametric and forced excitations. This generic model can
be used to describe a wide range of physical problems, such as the
behaviour of a tower crane under wind excitation (Vanvinckenroye and
Deno€el, 2016), the deflection of a cable submitted to an axial oscillation
of an anchorage (de Sa Caetano and Engineering, 2007) or ship
capsizing and rolling motion (Moshchuk et al., 1995a; Troesch et al.,
1992). Although being too simple to capture the full complexity of
realistic problems such as those related to colored excitations,
non-linearities (Moshchuk et al., 1995b) or multi-degrees-of-freedom
structures, it is conjectured that this model can be fitted or adjusted
to many (more complex) wind engineering problems. This paper serves
as a demonstration, with the particular application of a crane oscillating
in a turbulent flow.

While first passage times have been thoroughly studied in many as-
pects of numerical and theoretical modeling, it is surprising that exper-
imental investigations are very limited. It appears that the only
experimental investigations are in the field of applied physics (Roberts
and Yousri, 1978; Spano et al., 1989), and usually aim at comparing
experimental observations and approached analytical solutions. These
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applications in other fields of science and engineering suggest that it is a
mistake to ignore the first passage time representation of transient sig-
nals. Following this motivation, we have decided to process wind tunnel
data within the framework of first passage time and to compare the re-
sults with the simple theoretical model discussed before. As shown next,
results are concluding and suggests the use of first passage time maps as a
complementary technique to usual analysis tools (Gurley et al., 1997).
This is to the authors’ knowledge a first attempt at bringing first passage
times of stochastic systems into engineering.

2. A mathematical model of a tower crane

The dynamics of a crane spinning in a turbulent velocity field can be
modeled with a governing equation of the type:

Iθ€ þ C _θ ¼ Mw (1)

where θðtÞ is the angular position of the crane jib in a horizontal plane
and MwðtÞ is the aerodynamic load resulting from the wind flow.
Considering that the rotation of the crane is associated with slower
timescales than those of the wind flow along a characteristic length of the
crane (say its diameter), the quasi-steady assumption (Dyrbye and Han-
sen, 1997) is considered. The aerodynamic torque is therefore expressed
by

Mw ¼ 1
2
ρairCMHB2jjvreljj2 (2)

as a function of the air density ρair , the moment coefficient CM , the cir-
cumscribed dimensions of the lattice cross section H � B (height� span)
and the relative wind velocity vrel.

There is no angle-proportional term (no stiffness) in the rotative
equilibrium (1), since the spinning crane is assumed to be ideally
balanced. If the wind was uniform and steady, without turbulence, the
crane would find an equilibrium position in the mean direction of the
wind; in other words, the stiffness in the problem comes from the aero-
dynamic loading MwðtÞ. In this paper, we are concerned with small
amplitude rotations of the crane, which also partly justifies a linearized
version of the inertial and internal forces in the governing equation,
therefore simply modeled by the rotative inertia I and viscosity C.

In the horizontal plane of the crane, the wind velocity is characterized
by its mean component U and its fluctuating components u and w
respectively parallel and perpendicular to the wind direction (see Fig. 2
(c)), which are stochastic processes characterized by their power spectral
densities SuðωÞ and SwðωÞ. For small incidences, the moment coefficient
can be linearized too so that CMðαÞ ¼ ∂CM

∂α jα¼0α with α the relative angle
between the crane and the instantaneous wind velocity vector. The
relative velocity entering in (2) is given by:

vrel ¼ ðU þ u;wÞ � �� r _θsinθ; r _θcosθ
�
: (3)

with r the abscissa of the aerodynamic focus along the jib, i.e. the point at
which the moment coefficient does not vary with the lift coefficient
(Dyrbye and Hansen, 1997). In this model we subscribe to the common
assumption that u and w are small compared to U, although they might
affect higher order statistics (Dyrbye and Hansen, 1997); also we assume
that rotations are small around the equilibrium configuration, i.e. θ ≪ 1
and that the rotative velocity of the crane, of order B _θ is also small
compared to U. The squared norm of the relative velocity and the
apparent angle of attack are therefore expressed as

jjvreljj2 ¼ U2 þ 2Uu and α ¼ θ � w� r _θ
U

(4)

which is identical to usual assumptions for wings (Fung, 2002) and
bridge decks (Claudio and Carlotta, 2004; Carlotta and Claudio, 2006).

Respectively grouping together rigidity and damping terms, equation
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(1) is rewritten

Iθ€þ
�
C þM⋆ r

U

�
1þ 2

u
U

��
_θ þM⋆

�
1þ 2

u
U

�
θ ¼ M⋆w

U
(5)

where, as soon as U 6¼ 0, the reference torque M⋆ is defined as

M⋆ ¼ �1
2
ρairHB

2U2∂CM

∂α > 0: (6)

As introduced earlier, this quantity also plays the role of a stiffness,
aligning the crane with the mean wind orientation θ ¼ 0 when there is no
turbulence.

A dimensionless version of the governing equation is obtained by
introducing the circular frequency of the oscillator Ω⋆ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

M⋆=I
p

as well

as the structural and aerodynamic damping coefficients, ξs ¼ CΩ⋆

2M⋆ and
ξa ¼ r

2UΩ
⋆. It reads

θ00 þ ð2ξs þ 2ξað1þ ~uÞÞθ0 þ ð1þ ~uÞθ ¼ �~w; (7)

where symbol 0 represents a derivative with respect to the non-
dimensional time τ ¼ Ω⋆t, and where ~u ¼ 2 u

U and ~w ¼ w
U represent the

dimensionless components of the wind fluctuations.
The Hamiltonian of the dimensional system (5) is given by the con-

servative part of the equation and is defined as

H ¼ I
_θ
2

2
þM⋆θ

2

2
¼ I

2

�
_θ
2 þΩ⋆2θ2

�
(8)

while the dimensionless Hamiltonian is given by the conservative part of
equation (7):

~H ¼ θ02

2
þ θ2

2
¼ H

M⋆ : (9)

It is therefore observed that M⋆ also plays the role of a characteristic
energy.

3. Theoretical background for first passage times

A dynamic system like (5) or (7) is stochastic in nature because of the
randomness in the fluctuating components of the wind velocity field.
Hence, the time required for the system to evolve from a certain initial
energy (Hamiltonian) to a higher level of energy, for the first time, is a
random variable. The statistical distribution of this first passage time can
be established by means of numerical simulations (Kougioumtzoglou and
Spanos, 2014b; Spanos and Kougioumtzoglou, 2014a, 2014b; Palleschi
and Torquati, 1989). As an alternative, analytical expressions of the low
order moments can be established in closed form by means of asymptotic
approaches, adducing the existence of two different dynamics in the
system. In particular, the average (Vanvinckenroye and Deno€el, 2017a)
and the standard deviation (Vanvinckenroye and Deno€el, 2017b) of the
first passage time have closed-form expressions, which are well-suited to
understand the behaviour of a simple oscillator submitted to broadband
excitations.

The use of first passage times in the analysis of slightly damped sys-
tems is motivated by the fact that the system memory is long and
therefore that steady states take too long to develop. Because the use of
first passsage times is novel in wind engineering, some important results
are summarized in this Section. They are given in a dimensionless
version, in order to ease its later comparison with equation (7). For the
sake of simplicity in notations, the tilde symbol is dropped in this Section.

3.1. Undamped oscillator

The undamped, externally and parametrically forced oscillator is
governed by the following non-dimensional Mathieu equation:
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x€ðτÞ þ ½1þ uðτÞ �xðτÞ ¼ wðτÞ: (10)
The parametric (multiplicative) and forcing (additive) excitations
uðτÞ and wðτÞ are assumed to be δ-correlated noises of spectrum intensity
Su and Sw, such that E½uðτÞuðsÞ� ¼ δðτ� sÞSu, E½wðτÞwðsÞ� ¼ δðτ � sÞSw and
E½uðτÞwðsÞ� ¼ δðτ� sÞSuw. Assuming that these noises are of small in-
tensity, and that the damping ratio is small, this system spends a large
fraction of its time in a transient regime. Another peculiarity is that its

total internal energy or Hamiltonian HðτÞ, defined by H ¼ x2
2 þ x

⋅ 2

2 evolves
on a slow time scale (Mallick and Marcq, 2004). Let the first passage time
τ1 be the time required for the system departing from an initial energy H0

to reach a target energy Hc ¼ H0 þ ΔH. This time is random because the
system is randomly excited. Its statistical moments are given by the so-
lution of the generalized Pontryagin equation (Pontryagin et al., 1989),
which is solved according to a stochastic averaging method proposed by
Moshchuk (Moshchuk et al., 1995a). The average first passage time τ1 ¼
E½τ1� for this problem is explicitly given by (Vanvinckenroye and Deno€el,
2017a)

τ1 ¼ 4
Su

ln
�
HcSu þ 2Sw
H0Su þ 2Sw

�
¼ 4

Su
ln
�
1þ ΔH⋆

H⋆
0 þ 1

�
(11)

where the dimensionless groups

H⋆
0 ¼ H0Su

2Sw
and ΔH⋆ ¼ ΔHSu

2Sw
(12)

have been introduced to simplify the notations. Expression (11) reveals
the existence of three different regimes (Vanvinckenroye and Deno€el,
2017a).

Incubation regime (I)
For ΔH⋆ ≪ H⋆

0 þ 1, the average first passage time is proportional to
ΔH⋆. This is valid for τ1 ≪ 4=Su so that an incubation time is arbitrarily
defined as τincub ¼ 1=2Su corresponding to the timewindow during which
the average first passage time linearly scales with the energy increase
ΔH⋆.

Multiplicative regime (M)
ForH⋆

0 ≫ 1, the mean first passage time just depends on the ratioH⋆
c =

H⋆
0 ¼ ðH⋆

0 þ ΔH⋆Þ=H⋆
0 , i.e. by how much the initial energy H0 is multi-

plied to obtain the target energy level Hc ; it is independent of the forcing
excitation intensity Sw.

Additive regime(A)
For H⋆

0 ≪ 1, the first passage time is independent of H⋆
0 . No matter

the value of the (relatively small) initial energy H0 in the system, pro-
vided it is much smaller than 2Sw=Su, it does not influence the expected
first passage time. In this regime, the expected first passage time only
depends on the increase in energy ΔH⋆, in other words on how much
energy is added to the initial condition H0.

Fig. 1 (a) shows the level curves of the first passage time τ1Su4 , as given
by (11), as a function of H⋆ and ΔH⋆, and identifies the three regimes
(incubation, additive andmultiplicative). The bottom part of the diagram
represents the incubation regime (I), the left part of the diagram corre-
sponding to the additive regime (A) presents horizontal asymptotes as
the first passage time is independent of the initial energy level. Finally,
the multiplicative regime (M) is represented in the right part where the
first passage time depends on the relative energy increase ΔH⋆=H⋆

0 and
the curves present a unit slope in logarithmic scales. As a consequence of
the definition of H⋆

0 and ΔH⋆, see (12), the forced-only ðSu ¼ 0Þ and
parametric-only ðSw ¼ 0Þ excitations respectively correspond to the
bottom left and upper right corners of this parameter space. They happen
to take place in the incubation and multiplicative regimes, respectively.
The additive regime can only be accessed with a combination of forced
and parametric excitations.



Fig. 1. (a) Representation of the average first passage time τ1Su
4 with identification of the three regimes with no damping and (b) with different damping ratios.

Fig. 2. (a) Experimental setup in the wind tunnel (b) Vertical view and mechanical conception of the pivot (c) Plan view of the setup configuration.
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These three behavioural regimes can also be observed in higher order
moments. For instance, a closed-form expression of the standard devia-
tion of the first passage time is also available in the undamped case
(Vanvinckenroye and Deno€el, 2017b). It is not reported here.

Particularisation of expression (11) to the non-dimensional tower
crane governing equation (7) provides the non-dimensional first passage
time:

τ1 ¼ 4
S
~u

ln

 
1þ Δ~H

~H0 þ
2S

~w
S
~u

!
: (13)

Observing that Sαuðκ ¼ ω=Ω⋆Þ ¼ α2Ω⋆SuðωÞ for any real constant α,
the average first passage time of the governing equation (5) is finally

t1 ¼ τ1
Ω⋆ ¼ 1

Su=UΩ⋆2 ln

0
@1þ

ΔH
M⋆

H0
M⋆ þ Sw=U

2Su=U

1
A: (14)

3.2. Damped oscillator

A variant of the system, including damping, is governed by

x⋅⋅ þ 2ξx⋅ þ ð1þ uÞx ¼ w; (15)

with ξ a small damping ratio. In this case, the expected first passage time
takes a more involved formulation (Vanvinckenroye and Deno€el, 2017a),
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τ1ðH0Þ ¼ 4
ln
�
1þ ΔH⋆

⋆

�
þ
�
1þ H⋆

0 þ ΔH⋆
�a � �1þ H⋆

0

�a

Suð1� aÞ

"
H0 a

� ∫ H⋆
0 þΔH⋆

H⋆
0

ð1þ zÞa
z

dz

#

(16)

with a ¼ 8ξ
Su
. Damping enters in the average first passage time only

through its ratio with the dimensionless intensity of the parametric
excitation. As a→0, the first passage time given by (16) regularly tends
towards (11). This solution is only valid for positive first passage times,
which correspond to systems with a limited damping so that energy in-
creases on average (Vanvinckenroye and Deno€el, 2017a). When there is
no forcing term, i.e. Sw ¼ 0 (multiplicative regime), the solution de-

generates into τ1ðH0Þ ¼ 4
Suð1�aÞ ln

�
1þ ΔH⋆

H⋆
0

�
. In this case, the damping

does not modify the form of the first passage time, which still increases
like the logarithm of the ratio Hc=H0. This solution presents a positive
first passage time for a < 1, which means that the energy of the system
increases, on average, only if the damping ratio is below a certain
threshold, ξ < Su=8. For a � 1, the dissipation mechanism drives the
dynamical system to lower energy levels, on average. The evaluated
expected first passage time is negative. It has no meaning anymore since
the Itô formulation on which the developments are based is no more
valid. For a damping ratio equal to the critical threshold, the dissipated
energy balances the injected energy and the first passage time is not
defined (infinite on average).

Fig. 1 (b) shows the reduced expected first passage time τ1Su
4 for
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different damping ratios. It is seen that the damping ratio has little
influence on the first passage time in the incubation regime (at short
time), while it extends the expected first passage time in the additive
regime. In the multiplicative regime (upper right corner), the slope of
the level curves of the first passage time is affected by the damping
ratio; they are still asymptotically linear in the log-log space, which
means that the first passage time is governed by a power of ΔH⋆=H⋆

0
smaller than unity. In all regimes, increasing the damping ratio in-
creases the first passage time.

Particularisation of expression (11) to the non-dimensional tower
crane governing equation (7) provides the non-dimensional first passage
time:

τ1 ¼ 4
S~uð1� aÞ

2
64ln�1þ Δ~H

~H0

�
þ

�
1þ

�
~H0 þ Δ~H

�
S~u
2S~w

�a
�
�
1þ ~H0

S~u
2S~w

�a
a

� ∫
~H0þΔ~H
~H0

�
1þ z S~u

2S~w

�a
z

dz

3
75

(17)

with a ¼ 8ξs
S~u
. The corresponding dimensional formulation provides the

dimensional time t1 ¼ Ω⋆�1τ1

t1 ¼ 1
Su=Uð1� aÞ

1
Ω⋆2

2
4ln�1þ ΔH

H0

�

þ

�
1þ H0 þ ΔH

M⋆

2Su=U
Sw=U

�a

�
�
1þ H0

M⋆

2Su=U
Sw=U

�a

a

�∫ H0þΔH
H0

�
1þ z

M⋆

2Su=U
Sw=U

�a

z
dz

3
5

(18)

where a can also be expressed as a function of the problem parameters as
a ¼ C

ISu=U
1

Ω⋆2 ¼ 2ξs
Su=UΩ⋆.

There are two discrepancies between thismathematicalmodel and the
simple tower crane model introduced in Section 2. First, the theoretical
solutions are derived for delta-correlated noises uðtÞ and wðtÞ. In the
considered problem, the power spectral densities of the turbulence com-
ponents are assumed tobebroadenough in the frequencybands associated
with the dynamics of the problem so that a replacement of the actual
power spectral density by an equivalent white noise intensity might be
operated. This is classical in buffeting analysis (Davenport, 1962) and has
also beendiscussed in the scopeoffirst passage times. Second, theproblem
at hand features a parametric excitation in the velocity-dependent term,
see (7). In order to get rid of that term, the pivot of the crane model was
chosen close to the aerodynamic center so that r ≪ B.
Fig. 3. (a) Coarse grid used for the first passage time measurements (b) Turbulence co
coarse grid.
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4. Experimental investigations

4.1. Experimental setup and identification of the mechanical properties of
the model

The tests have been performed at the Wind Tunnel Laboratory of the
University of Li�ege, in the low speed test section of dimensions 2:5m�
1:8m� 2m. An homogenous turbulent field is generated 12m upstream
the tower model using a passive grid generator (Roach, 1987) (see Fig. 3
(a)). The corresponding air flow has been characterized by 3-axis mea-
surement of the wind velocity with a Cobra-probe with an acquisition
frequency of 500Hz. In a first step, long measurements have been per-
formed where the tower crane is left free to rotate in a turbulent velocity
field (see Fig. 2 (a)). The rotation of the crane has been measured with a
laser SICK OD2-P300W200I0 of range 100 to 500mm with an acquisition
frequency of 1000Hz.

The setup consists in a rectangular jib of section H � e ¼ 0:042m�
0:042m and length B ¼ 1mmade of rigid machinable foam of density ρ ¼
690kg=m3 (see Fig. 2 (c)). The pivot is placed at 0:4m of one extremity so
that the jib has a length L1 ¼ 0:6m and the counter-jib a length L2 ¼ 0:4m

and the inertia is given by I ¼ ρHe L31þL32
3 ¼ 0:11kgm2. Friction between

the mast and the pivot is minimized by the means of two ball bearings
vertically aligned in the pivot as illustrated in Fig. 2 (b). The two ball
bearings are adjusted in a circular drilling in the foam. A threaded shaft
ensures the verticality and the rigidity of the fixation with the hollow
vertical mast.

Finally, the mechanical properties of the physical model have been
characterized through measurement of the free response of the crane
when it is launched in wind-off conditions. The acceleration has been
measured with a wireless PCB accelerometer with acquisition fre-
quency of 200Hz. The crane has been manually launched in order to
observe the free response decay. The corresponding theoretical gov-
erning equation is

I _θ þ C _θ ¼ 0: (19)

Note that the aerodynamic damping associated with the rotation of
the crane is again neglected because of the position of the pivot (r ¼ 0).
This equation governing the free response of the crane is a particular case
of a very general model θ€þ G

�
θ; _θ
� ¼ 0, where G

�
θ; _θ
�
is the (possibly

nonlinear) restoring force function. In the assumed model, the restoring
force function should be a plane independent on the angular position θ.
However, slight imperfections in the setup have resulted in a slightly
different result, as shown by the surface represented in Fig. 4. This
restoring force function has been obtained by measuring the free
response of the crane with 3-D accelerometers, then integrating to obtain
angular velocity and angular positions. Finally the restoring force func-
tion is obtained by plotting the acceleration against the position and
velocity. Results shown in Fig. 4 (a) represent an average response over 6
launches. Holes in the map are due to the interpolation algorithm. Fig. 4
mponents parallel (u) and perpendicular (w) to the main wind direction with the



Fig. 4. Representation of the restoring force function as a function of position and velocity (a) and as a function of velocity for θ ¼ 0;� π
50;� π

25;�π
2 and � π (b).
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(b) represents slices of the map for different values of θ.
As expected, an overall decreasing behaviour is observed with _θ.

However, this evolution is slightly nonlinear and dependent on θ. While
the acceleration was expected to be always negative due to damping, a
small geometrical imperfection influences the acceleration in neighbor-
hood of θ ¼ 0 and for small values of the rotational velocity. For a series
of reasons such as small gaps in the ball bearings, small play between the
supporting tube and the cylindrical support of the jib (see Fig. 2 (a)), the
slight deflection of the jib, and other imperfections, the jib does actually
not revolve in a perfectly horizontal plane, creating therefore zones with
lower potential energy. These zones are relatively wide and do not hinder
the good adjustment of parameters of the linear model, as shown in
Section 4.4.
Fig. 5. Main and partial envelopes reconstruction.
4.2. Grid turbulence

The turbulent field is characterized at a mean velocity U ¼ 3:6m=s
and led to horizontal turbulence intensities Iu ¼ 6:2% and Iw ¼ 4:8%
resp. Parallel and perpendicular to the main direction. The power spec-
tral densities of u=U and w=U are represented in Fig. 3 (b) as a function of
the pulsation ω.

The turbulence component u has a monotonically decreasing fre-
quential content while the perpendicular component w presents a peak
value for ω ¼ 9:1rad=s. Both contents are very similar for higher fre-
quencies and for all frequencies we have Sw=UðωÞ � Su=UðωÞ. The pro-
portional turbulences u=U and w=U characterized here are supposed not
to change significantly with the mean velocity U. The Mathieu oscillator
is submitted to white noise excitations u and w so that in the next
coming results constant values of the spectra Su=U and Sw=U are found to
be equivalent to the narrow-band spectra Su=UðωÞ and Sw=UðωÞ.
4.3. Algorithmic establishment of the first passage time chart

Fig. 1 shows a chart of the first passage time of the system energy, as a
function of the initial energy and of the energy increase. This is an
appropriate way to represent the different regimes in which a system
could evolve: Incubation, Multiplicative or Additive. In this section, we
present an algorithm to determine this chart for measured realizations of
the stochastic response.

In practice, the tower crane is left free to rotate under the turbulent
flow for 6 hours. Its rotational displacement is measured and the velocity
is obtained by differentiation. Then the time series of the dimensionless
energy ~HðtÞ is established and the first passage time chart as a function of
~H0 and Δ~H is constructed.

The extraction of first passage times from a time series is composed of
several sequential steps. They are explained after some general nomen-
clature is introduced.

The main envelope ~Eðt; t0Þ is the monotonically increasing function
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corresponding to the highest energy level ever reached at time t > t0. The
main envelope is associated with the initial time t0 ¼ 0, where the initial
energy is ~H0 ¼ ~Hð0Þ, so that ~Eðt0; t0Þ ¼ ~H0 and ~Eðt; t0Þ � ~Eðt0; t0Þ, 8t > t0.
The main envelope is represented in blue in Fig. 5. This curve provides
the target energy levels ~Hc ¼ ~Eðt1; t0Þ as a function of the corresponding
first passage times t1. The inverse function is not a single-valued function,
but if we restrict it to the minimum time corresponding to each energy
(i.e. discarding the plateau's in the main envelope), it provides the first
passage time as a function of the energy increase Δ~H,

t1
�
Δ~H; ~H0

� ¼ ~E
�1�~H0 þ Δ~H

�
: (20)

This time is to be understood as a time elapsed from t0 where the initial
energy is ~H0. This provides a coarse estimation of the first passage time. A
refined estimator can be obtained by pretending that the recording has
started a little later, at another time t 0 where the energy was also equal to
~H0. By restricting the time series to the window t > t 0, another estimation
of t1ðΔ~H; ~H0Þ is obtained and statistics of the first passage time, starting
from initial energy level ~H0 can be obtained, even froma single realization
of the process. Themethod canbegeneralized for other values of the initial
energy, in such a way to provide a chart of the average first passage time,
for various combinations of ~H0 and Δ~H. Nevertheless, it would be
computationally ineffective to determine this chart in this way.

For the needs of the following algorithm, we also define the partial
envelope ~Eðt; t 0Þ as the main envelope of the remaining part of the signal
starting at time t 0. The green and red plots in Fig. 5 show two examples of
local envelopes. As a corollary the partial envelope associated with time
t0 corresponds to the main envelope. Unless ~Hðt 0Þ is the largest energy
level over all times before time t 0, the local envelope starts below the
main envelope and eventually reaches it after some time. The part of the
partial envelope that is different from the main envelope is called the
local envelope.

It is important to notice that the local envelope might coincide with
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the time series ~HðtÞ, depending on the sign of the local derivative at time
t 0. If the energy ~Hðt 0Þ is minimum or increases, then ~HðtÞ coincides with
the local envelope for t � t 0 and until the next local maximum (see
beginning of red curve in Fig. 5). On the contrary if the energy presents a
maximum or decreases at time t 0, then the local envelope presents a jump
until the next point where the energy is higher (see beginning of green
curve in Fig. 5).

In order to develop an efficient algorithm, the time series is first
scanned through in order to determine, for each time step, whether the
energy ~HðtÞ is increasing or decreasing. This can be efficiently done with
vector operations. For an increasing energy, the index of the next
maximum is stored and for a decreasing energy, the index of the next
higher energy is stored.

Secondly and using this information, themain envelope is constructed,
starting from t ¼ 0 until the end of the time series (see blue curve in
Fig. 5). The main envelope is straightforwardly elaborated as a succession
of local envelopes, depending on the ascending or descending character
of the signal. The main envelope is stored and will be used as support for
the next steps.

Third, the energy axis is discretized in a finite number of intervals.
These intervals are chosen with uniform sizes on a logarithmic scale, as
this is the physical scaling suggested by the stochastic model. These in-
tervals define bins in the ~H � Δ~H plane.

Fourth, going point by point through the entire signal, each time step
can be considered as the first point t 0 6¼ t0 of a shorter time series with

initial energy ~H
0
0 ¼ ~Hðt 0Þ . The partial envelope ~Eðt; t 0Þ provides estimators

of the first passage times t1 for that initial energy and various target
energies (or different energy increases). A counting procedure allocates,
in the appropriate bins, the first passage times associated with the target

energies, starting from ~H
0
0ðt0Þ. To construct partial envelopes, the process

is the same, except that the main envelope is now known. If the point
~Hðt0Þ is part of the main envelope, then the partial envelope follows the
main envelope from that point until the end of the signal. If ~Hðt0Þ is not a
point of the main envelope, then the envelope is reconstructed as a
succession of local envelopes until the main envelope is reached. Once
the main envelope is reached, the partial envelope follows the main
envelope until the end of the signal.

Finally, since the same discretized energy level will have several oc-
currences in the original time series, several values of the first passage
time will be observed for each ~H0 � Δ~H combination (in each bin).
Averaging of all these first passage times provides the average first pas-
sage time chart.

A pseudo-code of this algorithm, wheremain and partial envelopes are
established as a succession of local envelopes (nested function), is given
in Appendix A and Matlab routines are also provided under GNU license,
freely available from the website (Vanvinckenroye, 2017).

This algorithm can be seen as a variant of the rainflow algorithm
(Downing and Socie, 1982), which is used in fatigue assessment to
reduce a varying stress signal into a set of stress reversals and hereby
count the number of half-cycles that can lead to fatigue. That algorithm
consists in virtually rotating the time signal by 90� and considering a
water drop flowing from one point. The path followed by the drop
corresponds to our main envelope and provides information about the
minima and maxima, as well as an estimation of the number of signif-
icant cycles in the signal.
4.4. Results

Fig. 6 (a) shows the chart of the average first passage time recon-
structed with the above presented algorithm (in straight line). Dotted
lines represent the average first passage times obtained with the math-
ematical model presented in Section 3. These lines are similar to those of
Fig. 1-(b), in the relatively high damped case ða ¼ 3Þ. This means that the
damping is large compared to the parametric excitation input. It does not
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mean that damping is large.
While the dimensional problem depends on the four parameters Ω⋆,

Su=UðωÞ, Sw=UðωÞ and ξs , see equation (18), the first passage time only

depends on three combinations of those 4 parameters: 1
Su=UΩ⋆2, 2Su

Sw
and a,

which means that an infinite number of different oscillators can present
the same first passage time chart. In other words, two oscillators that
would have two different natural circular frequencies Ω⋆ and subjected
to turbulence intensities that are inversely proportional to Ω⋆2, exhibit
the same first passage time chart. The faster oscillator being excited with
less energetic loadings than the slower oscillator, the energy of both
oscillators will actually increase similarly, on average, and they will
present the same first passage time chart.

However, the definition of ~H ¼ θ2

2 þ _θ
2

2Ω⋆2 requires the knowledge of

Ω⋆, defined as the fundamental pulsation of the time series θðtÞ. The
characteristic frequency Ω⋆ ¼ 1:95rad=s has been chosen and obtained
as the maximum of the power spectral density of the angular position.
This leaves us with the adjustment of 3 parameters.

The parameters of the model are obtained by a minimisation of the
mean-square error between the experimental chart and the correspond-
ing theoretical one, defined as

R ¼ 1
n1n2

Xn1
i

Xn2
j

Δ2
i;j

Ni;j

Ntot
(21)

where the summation is repeated over all n1n2 bins and where Δ ¼
t1;exp � t1;th is the difference between the experimental and theoretical
n1 � n2 matrices of first passage times in the ðH0;ΔHÞ space. This error is
weighted according to the number of observations Ni;j of the first passage
time in each bin Ntot ¼ P

i

P
j
Ni;j. Implementation of a simple search al-

gorithm provided the lowest residual. The corresponding values of the
parameters are

Su=U ¼ 3:2� 10�5s; Sw=U ¼ 6:4� 10�7s and ξs ¼ 0:11 : (22)

Theycorrespond to theparameters of the equivalentMathieuoscillator
presented in Section 2. It is not the objective of this work to provide a
physical meaning to those parameters. Indeed, they are just equivalent, in
the sense of theminimisation (21), since the physical problem tested in the
wind tunnel is not exactly governed by the same equation. Although the
humble scope of this paper is to highlight a possible field of application of
first passage times by exploiting the richness of the generic Mathieu
oscillator, it is believed that the direct analysis, i.e. the direct determina-
tion of equivalent parameters given all actual properties of the physical
problem, goes beyond the scope of this work. We just notice that Su=U and
Sw=U are short with respect to the timescale of the problem which justifies
the slower evolutionof energy.Also,wenotice that ξs ¼ 0:11 is a relatively
small parameter, which is also a necessary condition for the stochastic
averaging to apply. Being defined as a ratio between dissipative moments
in the mechanical system and a stationary aerodynamic moment, see (7),
the damping coefficient ξs has not the classical meaning of a structural nor
aerodynamic damping. It is therefore not abnormally large.

Despite the slight dissimilarities between the physical and numerical
models, which are emphasized in the next Section, the behaviour in
terms of first passage times is very well captured, over several orders of
magnitude.

4.5. Discussion

The dimensional incubation time defined as tincub ¼ 1
8Ω⋆2Su=U ð1�aÞ is

negative, which means that no incubation regime is observed due to the
important structural damping (ξ compared to u=U). The other two re-
gimes are clearly observable: the independence in ~H0 in the additive
regime is observed in the left part of Fig. 6 (a) while the asymptotically
constant (and negative) slope which is characterstic of the multiplicative



Fig. 6. (a) Charts of the average first passage time t1 and (b) of the standard deviation of the first passage time. Comparison between the experimental data (solid
lines) and the theoretical model (dotted lines).
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regime is observed in the right part of the diagram. The notable change
between both behaviours is observed around ~H0 ¼ 10�5.

The tower crane model is a physical system presenting some dif-
ferences with the idealized mathematical model of the stochastic
Mathieu oscillator of Section 3. First of all, all slight nonlinearities
related to the angle of attack, the moment coefficient and the squared
apparent velocity have been linearized in order to express the aero-
dynamic load as a linear function of the turbulence components u and
w. Moreover, the quasi-steady model based on the sole consideration of
the moment coefficient might be limited to represent the aerodynamic
loading on the oscillating crane. Indeed, the aerodynamic moment re-
sults from the pressures distributed along the moving jib, which have to
be multiplied by their respective lever arms and integrated. These
pressures are random as a result of the turbulence, and should in
principle be expressed as a slice cut of a spatial stochastic field
including the space-coherence of the fluctuating wind. At last but not
least, the turbulence components u and w present a broadband spec-
trum (see Fig. 3 (b)) which is not exactly a δ-correlated noise as assumed
in the Mathieu oscillator model. All these reasons conspire to make the
actual physical model of the tower crane somehow different from an
accurate aerodynamic model of the crane, but also different from the
simple Mathieu oscillator model. While the tower crane is a physical
problem presenting a significant complexity, to some extent, it is here
demonstrated that its first passage behaviour can be captured and
reproduced with a simple equivalent model.

This conclusion is very promising as to the utility of simple models to
represent first-passage statistic in the buffeting analysis of slightly dam-
ped structures. Both the wind-tunnel results and the properties of the
equivalent Mathieu oscillator can be exploited to infer some information
on the reliability of the considered system. On one hand, very long
measurements in the wind tunnel, and the appropriate post-processing in
terms of first-passage times, as discussion in Section 4.3, can offer a fair
picture of how the first-passage time scales with the problem parameters,
in particular, in which regime a randomly excited structure evolves. On
the other hand, the adjustment of an equivalent model, as suggested in
this paper, can be used to smoothen the slight imperfections of too short
measurements or even to extrapolate to situations that could not be
observed in the wind-tunnel.

As an example of extrapolation of the information provided by the
Mathieu oscillator model, we discuss the standard deviation of the first
passage time. This information is as much important as the average first
passage time, as soon as reliability is concerned (Vanvinckenroye and
Deno€el, 2017b). The counting algorithm presented in Section 4.3 can
provide additional statistical information about first passage time,
including higher statistical moments and the standard deviation. The
solid lines in Fig. 6 (b) represent the first-passage time chart of the
measured energy. This is now compared to the standard deviation of the
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first passage time obtained with the Mathieu oscillator model. Unfortu-
nately, the closed form solutions of the second statistical moment are
available in the undamped case only (Vanvinckenroye and Deno€el,
2017a). However, comparison is possible by means of Monte Carlo
simulations. Using the set of parameters obtained by adjusting the mean
first passage time, given in (22), we have simulated 10,000 simulations
(dt ¼ 0:01, and duration as long as required to observe the first passages)
of the system, in order to determine the standard deviation of the first
passage time. This has resulted in the dotted lines in chart 6 (b). Although
a bit less accurate (partly because of looser confidence intervals for
higher statistics), there is a fair matching between the measured standard
deviation of first passage times and those predicted by the simple model.

As to other possible extrapolations of the model, it is manifestly also a
flexible tool to upscale thefirst passage timesmeasured in thewind tunnel
to longer runs. Once a regime (incubation, additive or multiplicative) in
which oscillations are taking place is reached, characterized and its
boundaries are determined, the analytical model indicates how the first
passage time scales with respect to higher energy levels. As long as one is
interested in first passage times in this regime, the model might provide
fair extrapolations, with all usual limitations of usage on extrapolation.

As a particular example, the model is able to predict for how long
measurements would need to be performed in order to reach some
larger energy levels. This has two important implications. On one
hand, in a preliminary design stage of a wind tunnel setup, the model
is able to evaluate for how long the wind tunnel campaign should be
foreseen. On the other hand, the model might prove to be a valuable
decision tool for those investigators who are already dealing with
stability evaluations (Voisin, 2003) and who would like to know
whether is it worth prolonging their measurement before larger
amplitude might be observed.

5. Conclusion

The first passage time is a tool that is applicable in many wind-
engineering problems, especially as soon as the random turbulence of
wind is concerned. The closed-form solution of the average first passage
time under combined forced and parametric excitations is a quite novel
result. It highlighted the existence of various regimes. Among them, the
additive and the multiplicative regimes have been observed in the sto-
chastic dynamics of a tower crane in a turbulent flow. This system has
been shown to be rather accurately modeled by a simple Mathieu oscil-
lator, at least in terms of first passage times. In this context, this exper-
imental investigation provides a first link between an analytical but
simplified result and a more complex reality through the tower crane
problem. It is shown that there exists an equivalent linear Mathieu
oscillator presenting the same energy evolution from a first passage time
point of view. Indeed, average and second-order first passage time charts
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are very similar and the theoretical model may be used to understand and
predict the tower crane behaviour. A future objective might be the
investigation of the different assumptions (white noise excitations, small
damping, linearization, no aerodynamic damping) and their impact on
the equivalent Mathieu oscillator.
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