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Abstract

With the ever increasing computation power provided by modern computing units comes an ever

increasing demand for accurate numerical simulations. Micromachined electromechanical devices

(MEMS) such as microscale gyroscopes and accelerometers, ubiquitous in modern smartphones,

or capacitive micromachined ultrasonic transducers (CMUTs), the candidate for next generation

ultrasound imaging technology, can bene�t from ever more accurate simulations. In some circum-

stances this indeed translates into a more performant �nal device or simply enables to consider

novel devices or working modes.

In the case of arrays of CMUTs, accurate simulations can help to understand the crosstalk

phenomenon between individual cells that adds noise to the sensor output and leads to a decrease

in the imaging quality. For that purpose large arrays of hundreds of CMUT cells can be simu-

lated. Such simulations are typically carried out on arrays of reduced size. However, when such

simulations are carried out on large arrays the problem to simulate becomes computationally un-

tractable on classical workstations and additional assumptions are required. Typical assumptions

are to suppose a linear behaviour and to neglect the in�uence on each other of cells too far apart

in the array. While these assumptions provide accurate results for speci�c excitation settings the

accuracy can be further improved when removing them or the constraints on the excitation settings

can simply be relaxed. In any case simulating large CMUT arrays without these two assumptions

has not been demonstrated yet.

In this thesis we propose to get rid of the two above assumptions: large MEMS and CMUT

arrays will be simulated without neglecting the in�uence of distant membranes while at the same

time the nonlinear electromechanical coupling, typical for MEMS devices, will be fully taken into

account. Doing so will widen the spectrum of acceptable excitation settings and allow for example

the simulation of nonlinearly excited, resonant CMUTs with a large and distant crosstalk. The

domain decomposition method will be used to take advantage of parallel computation while the

considered steady state time simulations will be carried out in Fourier space.
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Introduction

In this thesis we develop a method to simulate numerically large arrays of nonlinearly excited

microelectromachined (MEMS) devices. Such a simulation leads to a �nite element discretised

algebraic system that is way too large to be solved on a typical workstation or with classical direct

resolution techniques. The focus is on arrays of capacitive micromachined ultrasonic transducers

(CMUTs), the candidate for next generation ultrasound imaging. When receiving the ultrasound

waves re�ected by the object to image, a human tissue for example, the individual CMUT cells

vibrate with a magnitude and at a timing depending on the re�ecting object so that an image

of that object can be reconstructed. Unfortunately a vibration on a given cell also induces a

parasitic acoustic pertubation on all other cells in the array via the so-called crosstalk phenomenon,

deteriorating the imaging performance. Simulating that crosstalk on arrays of realistic sizes and

with a good accuracy can lead to a better understanding of the origin of the problem and on ways

to limit its negative impact.

Simulating such a problem however requires enormous computation power and memory, not

available on classical workstations, and is thus in practice performed on arrays of very limited

size. Doing so allows to capture only a limited part of the complex reality of the phenomenon.

Simplifying assumptions have thus been devised to still be able to quickly perform simulations on

realistic array sizes. By neglecting the crosstalk between distant membranes and considering a

linear behaviour large arrays could be simulated in a reasonable time in [1, 2].

In this thesis we want to go further and propose a way to simulate in a reasonable time

large arrays of CMUTs without neglecting the electromechanical nonlinearity, typical for MEMS

devices. The crosstalk between distant CMUT cells will be taken into account so that in the

end a nonlinearly excited, resonant CMUT with a large crosstalk between distant membranes

can be simulated and the actual complexity of this phenomenon can be grasped. Since the large

simulations that will be performed heavily rely on fast data transfers not available in the Matlab

code used we choose not to show simulation timings as these might not re�ect what can actually

be obtained and could lead to wrong conclusions.

For the numerical discretisation of the problems the �nite element method with hierarchical

high order interpolations will be used. In order to have tens of millions degrees of freedom-strong

simulations running in a reasonable time we will take advantage of the high computation power

of a parallel computing architecture using a selection of domain decomposition methods whose

performance will be compared. Our focus regarding the time dependency of the problem will be

on steady state simulations which will be advantageously performed in the Fourier domain while

still taking into account all nonlinear e�ects.
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Outline

This thesis is divided into �ve chapters as follows.

Chapter 1 begins with a general introduction to the working principle of MEMS ultrasonic

transducers with a focus on capacitive micromachined ultrasonic transducers (CMUTs). After-

wards a model for the three involved physics (electrostatics, elastodynamics and acoustics) and the

underlying assumptions are detailed. The nonlinearity (and the associated pull-in phenomenon)

arising from the coupling of the physics is then described. Finally the inter-subdomain crosstalk

in CMUT arrays and its negative impact on the imaging quality are discussed and the device

geometries used throughout this thesis are detailed.

Chapter 2 starts with an overview of the state of the art for the �nite element simulation of

large MEMS arrays in steady state as well as the associated intrinsic di�culties. Afterwards the

mathematical formulations for each uncoupled physical model are recalled and the �nite element

discretisations are derived. Coupling schemes to combine the three physics are then detailed. The

chapter ends with the selection of an appropriate �nite element discretisation for the reference

ultrasonic transducers presented in the previous chapter.

Chapter 3 describes an automatic multiharmonic resolution method to get the steady state

solution in time and compares it to the classical Newmark time stepping method. After a review

of the Newmark method the multiharmonic resolution method is �rst detailed on a 1D electrostatic

problem on a vibrating mesh. Its application to the simulation of CMUTs is then described. Finally

the suitability of both methods is assessed for the reference 2D CMUT model.

Chapter 4 describes domain decomposition methods (DDMs) with the goal of solving large

nonlinear electroelastoacoustic problems on a parallel computing architecture. The classical DDMs

for linear problems are �rst introduced and the impact of the choice of interface conditions on the

convergence rate is discussed. Methods for the nonlinear electroelastoacoustic problem are then

detailed and compared. Finally a coarse grid preconditionner is proposed to speed up convergence

for large MEMS arrays.

Chapter 5 begins with a 2D and 3D veri�cation of the multiharmonic solver. Simulations are

then performed on large 3D CMUT arrays with up to 20 million degrees of freedom to simulate

the crosstalk appearing through acoustic waves in the �uid. Finally the �uid is removed and the

crosstalk via elastic waves in the bulk is simulated. In any case nonlinearity is taken into account.

Original contributions and communications

To the best of our knowledge the following contributions are original.

1. Providing the �nal 3D forms of all formulations required to implement the faster converging,

strongly-coupled nonlinear electromechanical resolution method derived in [3]

2. Applying the multiharmonic method to the simulation of nonlinearly excited electromechan-

ical devices vibrating in a �uid

3. Combining a multiharmonic resolution and domain decomposition methods for nonlinear

electroelastoacoustic problems

2



4. Investigating the performance of various linear and intrinsically nonlinear domain decompo-

sition techniques for the parallel computation of MEMS

5. Simulating large CMUT arrays without a linearity hypothesis and fully taking the crosstalk

into account

It is worth mentioning that all simulations in this thesis have been implemented from scratch in a

vectorised Matlab code.

The following publications have been made in journal papers:

1. A. Halbach, P. Dular and C. Geuzaine, �Comparison of nonlinear domain decomposition

schemes for coupled electromechanical problems�, IEEE Transactions on Magnetics 52 (3),

1-4, 2016

2. A. Halbach and C. Geuzaine, �Automatic derivation of multiharmonic formulations for non-

linear electromechanical problems with time dependent mesh deformation�, 17th Interna-

tional Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments

in Microelectronics and Microsystems (EuroSimE), 1-7, 2016

3. A. Halbach and C. Geuzaine, �Steady-state, Nonlinear Analysis of Large Arrays of Electrically

Actuated Micromembranes Vibrating in a Fluid�, Engineering with Computers, in press

This work has also been presented at the following conferences: COMPUMAG 2015 (Canada),

DD23 2015 (South Korea), EUROSIME 2016 (France), ICOSAHOM 2016 (Brazil), DD24 2017

(Norway).
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Chapter 1

Physical modeling of micromachined

ultrasonic transducers

This chapter begins with a general introduction to the working principle of MEMS ultrasonic trans-

ducers with a focus on capacitive micromachined ultrasonic transducers (CMUTs). Afterwards a

model for the three involved physics (electrostatics, elastodynamics and acoustics) and the under-

lying assumptions are detailed. The nonlinearity (and the associated pull-in phenomenon) arising

from the coupling of the physics is then described. Finally the inter-subdomain crosstalk in CMUT

arrays and its negative impact on the imaging quality are discussed and the device geometries used

throughout this thesis are detailed.

1.1 Micromachined ultrasonic transducers

Micromachined ultrasonic transducers are microscale devices able to emit or receive ultrasound

through the vibration of a mechanical component. They are part of the wider microelectromechani-

cal systems (MEMS) family. Capacitive micromachined ultrasonic transducers (CMUTs, displayed

in �gure 1.1) are one example of these devices. They are used in applications such as ultrasound

imaging [4, 5, 6, 7] and nondestructive inspection [4, 5, 8, 9, 10, 11]. A 2D model of a modern

CMUT with typical dimensions [12, 13] is illustrated in �gure 1.2 and the associated material

characteristics are listed in table 1.1: an electrical contact (the electrode) is metal-deposited on

top of a polysilicon membrane which has a typical length of some tens of micrometers and a typical

height of the order of the micrometer. It lies above a vacuum-sealed gap whose height typically is

less than a micrometer. The membrane is supported by polysilicon pillars. The vacuum gap, the

membrane and the support pillars stand on top of an electrical insulator (silicon dioxyde). This

insulator prevents current from �owing from the electrode via the conducting polysilicon to the

grounded electrical contact beneath. The whole CMUT �nally stands on top of a large polysilicon

substrate (also called bulk) mechanically clamped at its bottom. Applying an alternating electric

voltage between the electrode and the ground creates, due to the tiny electrode-to-ground distance,

a downward pointing electrostatic force on the membrane. Because the force magnitude varies in

time the membrane vibrates. This vibration moves the �uid that lies on top of the device and this

5



Figure 1.1: Illustration of a modern CMUT array. A single CMUT cell dimension is of the order
of ten micrometers. (Source: Hitachi Corp.)

Water Vacuum gap Electrode Polysilicon

Silicon dioxide Electric ground Mechanical clamp

40 µm5 µm

500 µm

200 nm

500
nm

750 nm

Figure 1.2: Two dimensional illustration of a capacitive micromachined ultrasonic transducer
(CMUT) with typical dimensions (not to scale).

radiates ultrasound power. In the medical domain the ultrasound waves propagate through human

tissues with a large proportion of water. As an approximation the �uid can thus be considered to

be water for such applications.

In the con�guration that has just been described the CMUT works as an actuator. When the

CMUT is not used as an actuator but as an ultrasound sensor then external ultrasound waves

(e.g. the re�ected echo of the emitted waves) create a vibration of the membrane and the vibration

amplitude and timing can be measured via a capacitance change between the electrode and the

ground. With a large array of elementary CMUT cells measuring the magnitude and timing of the

re�ected waves one can build ultrasound images, e.g. in the medical domain or for nondestructive

crack evaluation.

The electric voltage applied between the electrode and the ground typically consists in a large

constant bias voltage plus, in case ultrasound is emitted, a tiny alternating voltage that creates a

membrane vibration: v(t) = VDC +vAC sin(2πft) V, typically with VDC of the order of 100 V and

vAC of the order of 1 V. In a way similar to microphones this bias voltage increases the sensitivity of

the sensor and, as will be seen later, leads to a quasi linear vibration around a constant de�ection.

The electrical excitation frequency f can be very high thanks to the microscale size of the vibrating

membranes. For medical applications with a vibration in a water-like �uid, typical frequencies used

6



Table 1.1: Material properties in a typical CMUT for medical applications.

Material Quantity Symbol Typical value

Polysilicon Young's modulus ESi 150 · 109 N/m2

Polysilicon Poisson's ratio νSi 0.3

Vacuum Electric permittivity εV 8.854 · 10−12 F/m

Water Volumic mass ρ 1000 kg/m3

Water Sound propagation speed c 1484 m/s

SiO2 Electric permittivity εSiO2
3.9 · 8.854 · 10−12 F/m

SiO2 Young's modulus ESiO2 70 · 109 N/m2

SiO2 Poisson's ratio νSiO2 0.17

Table 1.2: Physical quantities involved in the electromagnetic model.

Quantity Name Units

D Electric displacement �eld C/m2

E Electric �eld V/m

B Magnetic �ux density T

H Magnetic �eld N/(m·A)

J Current density A/m2

ρv Volume charge density C/m3

ε Electric permittivity F/m

v Electric potential V

in recent devices are in the megahertz range [14, 15, 16]. The corresponding wavelength in water

is of the order of the smallest features of the human body to image: a typical 1 MHz frequency

indeed corresponds to a wavelength λ in water of λ = sound speed
frequency = c

f = 1484 m/s
1 MHz ≈ 1.5 mm.

1.2 Electromagnetic model: electrostatics

General electromagnetic problems are described by Maxwell's equations. Using the notations

de�ned in table 1.2 they can be written as:

divD = ρv,

divB = 0,

curlE = −∂B
∂t

,

curlH = J +
∂D

∂t
.

(1.1)
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For the capacitive, electrostatically-actuated MEMS types under consideration the role of the

electric current is solely to charge and discharge the electrode-ground capacitor. Even though the

polysilicon in the membrane is an electrical conductor a layer of insulating silicon dioxyde ensures

that a negligeable conduction current �ows through the membrane. Additionally, for a typical

capacitance value C = 100 fF [17, 18] under a typical alternating electrode to ground voltage of

1·sin(2π·106t) V the magnitude of the current �owing through the capacitor is 1·2π·106·C ≈ 0.6 µA.

Such a small current, even at 1 MHz, can not create a magnetic �eld that signi�cantly impacts the

huge electric �eld between the electrode and the ground, and can thus not signi�cantly impact the

force applied to the membrane. The electric �eld is indeed very large: with the typical 1 V voltage

drop across the 700 nm gap of �gure 1.2 the electric �eld is 1
700·10−9 = 1.4 · 106 V/m. We will thus

neglect all magnetic e�ects so that curlE ≈ 0 and only two relations matter for the modeling:

{
divD = ρv,

curlE = 0.
(1.2)

Assuming isotropic materials gives D = εE so that

{
div εE = ρv,

curlE = 0.
(1.3)

The second equality in (1.3) means that one can �nd a scalar potential �eld v (the electric potential

�eld) such that E = −∇v. With this relation the �rst equality �nally gives the electrostatic

equation

div(ε∇v) = −ρv. (1.4)

All electrical problems in this work will be solved using equation (1.4).

1.3 Mechanical model: elastodynamics

Mechanical problems are ruled by a general equilibrium relation linking the stresses inside the

material, the applied external forces and the inertia terms. With the notations of table 1.3 a solid

volume is at equilibium if

divσ + f = ρ
∂2u

∂t2
(1.5)

that is if the stresses on the volume boundaries and the external forces exactly compensate the

inertia terms. Equation (1.5) alone does not allow to compute all the unknown �elds. An additional

relation linking the Cauchy stress tensor σ to the strain tensor ε as well as a way to compute the

strains ε in terms of the displacement u are needed [19]. The two latter relations depend on

the mechanical model we select: a better accuracy is obtained at the expense of an increased

complexity of the equations. For the ultrasonic transducer devices considered nonlinear models

have been analysed [20, 21]. However, because of the large aspect ratio (length to height) of

CMUT membranes, even at the maximum membrane de�ection the rotations and elongations in
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Table 1.3: Physical quantities involved in the mechanical model.

Quantity Name Units

σ Cauchy stress tensor N/m2

ε In�nitesimal strain tensor

C Hooke's law sti�ness tensor Pa

f Body force per unit volume N/m3

u Mechanical displacement [ux uy uz]
T m

ux Displacement in the ex direction m

uy Displacement in the ey direction m

uz Displacement in the ez direction m

ρ Volumic mass kg/m3

the polysilicon material are small. For the typical dimensions of �gure 1.2 with a 40 µm vacuum

length and 500 nm height the maximum central displacement does not exceed in practice 200 nm.

Considering a linearly increasing membrane displacement from the vacuum sides to the center

gives a rough approximation of the maximum membrane rotation for a �rst mode mechanical

vibration: α = tan−1
(

200 nm
20 µm

)
≈ 0.6◦. The half membrane length above the vacuum gap is then

elongated from 20 µm to 20 µm
cos(α) ≈ 20 µm+ 1 nm giving a tiny deformation of about 5 · 10−5. With

such small deformations and relatively small rotations a linear elasticity model is typically used

[22, 1, 23]. Furthermore because the membrane thickness over length ratio is still rather large

( 0.75
40 ) the geometrical nonlinearity can be ignored. With the notations de�ned in table 1.3 the

elasticity model can be written as follows:



divσ + f = ρ
∂2u

∂t2
,

ε =
1

2
[∇u+ (∇u)T ],

σ = C : ε,

(1.6)

with

ε = εT =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 ,

σ = σT =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 ,
(1.7)

where C : ε :=
∑
kl

cijklεkl.
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Table 1.4: Physical quantities involved in the �uid model.

Quantity Name Units

v Fluid velocity m/s

f Body force per unit volume N/m3

p Pressure Pa

ρ Volumic mass kg/m3

µ Dynamic viscosity Pa·s

1.4 Fluid model: linear acoustics

The water �uid used in CMUTs designed for the medical domain is assumed to be Newtonian and

it thus follows the Navier�Stokes equations for compressible Newtonian �uids. With the notations

of table 1.4 they can be written as


ρ (
∂v

∂t
+ (v · ∇)v) = −∇p+ div (µ (∇v + (∇v)T )) +∇(−2

3
µ divv) + f ,

∂ρ

∂t
+ div (ρv) = 0.

(1.8)

In the �rst equality one can �nd the inertia terms on the left followed by the pressure force, two

viscous forces and the external forces. To (1.8) an extra relation linking the pressure and density

has to be added. For an isentropic process, i.e. at constant entropy S, one gets

c =

√
∂p

∂ρ
, (1.9)

where c is the speed of sound in the �uid. For small density and pressure variations this equation

holds.

The viscosity terms in (1.8) are neglected since only the region within a few acoustic wavelength

of the source is of interest in this work. A very simple arti�cial viscous damping could however be

incorporated in the model as done in [24] to take into account losses of all origins. For an actual

viscoelastic model refer to e.g. [1]. Considering an inviscid �uid and considering no external forces

(1.8) rewrites as


ρ (
∂v

∂t
+ (v · ∇)v) = −∇p,

∂ρ

∂t
+ div (ρv) = 0,

(1.10)

which can, for tiny perturbations, be linearised around a mean value:


p = p+ δp,

ρ = ρ+ δρ,

v = v + δv = δv,

(1.11)

10



where the overlined quantities are the mean values, constant in space and time and where the

δ terms are tiny perturbations around the mean value of the pressure, the density and the �uid

velocity respectively. Since the �uid is at rest v equals zero. Injecting (1.11) into (1.10) and

neglecting nonlinear perturbations gives


ρ
∂δv

∂t
+ δρ

∂δv

∂t
+ ρ (δv · ∇)δv = −∇δp,

∂δρ

∂t
+ ρ div δv = 0.

(1.12)

The second and third terms of the �rst relation in (1.12) cancel out. Indeed, using the derivative

of a product rule and the second relation multiplied by δv:

ρ (δv · ∇)δv = ρ

3∑
j=1

δvj
∂δvi
∂xj

= −ρ
3∑
j=1

δvi
∂δvj
∂xj

+ ρ

3∑
j=1

∂(δvjδvi)

∂xj

≈ −ρ
3∑
j=1

δvi
∂δvj
∂xj

= −ρ div δv δv

=
∂δρ

∂t
δv =

∂(δρ δv)

∂t
− δρ∂δv

∂t

≈ −δρ∂δv
∂t

,

(1.13)

neglecting again second order perturbations. As can be seen with (1.13) the two middle terms in

the �rst relation of (1.12) cancel out so that


ρ
∂δv

∂t
+∇δp = 0,

∂δρ

∂t
+ ρ div δv = 0.

(1.14)

Taking the divergence of the �rst relation and the time derivative of the second one gives


ρ div

∂δv

∂t
+ ∆δp = 0,

∂2δρ

∂t2
+ ρ div

∂δv

∂t
= 0,

(1.15)

which can be combined into a single one

∂2δρ

∂t2
−∆δp = 0. (1.16)

With the isentropic approximation (1.9) the acoustic wave equation can be written:

1

c2
∂2δp

∂t2
−∆δp = 0, (1.17)

with c the speed of sound in the �uid and δp the pressure variation around the mean pressure.

It is worth noting that alternative acoustic formulations have been proposed. A displacement-
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based acoustic formulation [25] uses displacement unknowns in the �uid, simplifying the �uid-

structure coupling. This formulation however requires three times the unknowns of the scalar

pressure-based formulation. Moreover spurious non-zero frequency circulation modes have been

observed [26]. One can also use a scalar velocity potential-based formulation [27, 28, 26] which

has the advantage, unlike the pressure formulation, of being symmetric. An additional irrotational

�ow hypothesis is however required.

1.5 Nonlinear coupling, pull-in phenomenon and crosstalk

The mathematical models selected for the electromagnetic, mechanical and �uid problems are all

linear when uncoupled. Coupling the elastic and the electrostatic model together however brings

in nonlinearity and the pull-in phenomenon, also called pull-in instability [29, 30]. For illustration

purposes let us consider in �gure 1.3 a very simple static 1D model of the CMUT described in

�gure 1.2 (a circular 3D membrane shape is used). The model consists of an in�nitely thin elec-

trode connected via a spring of sti�ness k (N/m) to a clamped and electrically grounded bottom

electrode. Applying a constant voltage V between the upper and lower electrode creates an elec-

trostatic force (N) pushing the upper electrode downwards, closer to the bottom one. In case the

voltage is set to 0 the equilibrium distance between both electrodes is u0. The quantity u (m)

measures the di�erence between this position and the actual electrode position. It approximates

the peak de�ection of the 3D membrane.

u

ex

u0
ε0 k V

Figure 1.3: Lumped model of a membrane electrically actuated by a time-independent voltage V

Two forces are at play in �gure 1.3 namely the electrostatic force and the spring restoring force.

The spring force (N) simply equals

f spring = −k u ex (1.18)

where the sti�ness k can be computed using plate theory as done in [18]:

k =
f spring
u

=
64πESih

3

12 a2(1− ν2
Si)

= 2912N/m, (1.19)

where a is the membrane radius and h its height. In this simple one dimensional setting the

electrostatic force between the electrodes can be computed as follows:

f electrostatic =
1

2
qE = −1

2

(
ε0

V

(u0 + u)

)
V

(u0 + u)
A ex = −1

2
ε0

V 2

(u0 + u)2
A ex, (1.20)
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Figure 1.4: De�ection u (nm) versus electrode voltage (V) for the 1D electrically actuated mem-
brane model. The largest de�ection corresponds to u = u0.

with u0 = 700 nm (the membrane thickness is not taken into account since it is made of polysilicon,

a conductor) and where the surface A = 1.26 · 10−9 m2. In practical applications the computation

is not straightforward and numerical methods will be used for the accurate computation of the

electrostatic force on complex geometries [31, 32, 33, 34, 3, 35].

With (1.20) the static equilibrium relation writes

− k u− 1

2
ε0

V 2

(u0 + u)2
A = 0, (1.21)

which is quadratic in V . This nonlinearity is clearly visible in �gure 1.4 where relation (1.21) is

plotted: for a sweep on the time-independent electrical excitation the associated displacement u

is displayed. There are two equilibrium displacements for every voltage, one stable, on the side

below the voltage maximum and one unstable, on the side above the maximum. The unstable

equilibrium will end up either in the stable region or collapsed to the grounded electrical contact.

Beyond a limit voltage of about 160 V there is no more solution. What happens is that as the

voltage is increased slightly beyond a threshold the upper electrode suddenly collapses on the

bottom electrode because the restoring force can not compensate the ever increasing electrostatic

force anymore: this is called the pull-in phenomenon. As a rule of thumb pull-in typically occurs

at a displacement of about a third of the vacuum height. CMUTs working in collapse mode, i.e.

beyond pull-in, have been investigated [36, 37, 13]. For all typical CMUTs considered in this work

however the collapse mode will be avoided.

Unlike the electro-mechanical interaction, the �uid-structure interaction is linear. It requires

coupling terms at the �uid-solid interface [38, 39]:

∇δp · n ≡ ∂δp

∂n
= −ρ�uid

∂2u

∂t2
· n and fpressure = −δpn, (1.22)
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where n is the normal to the membrane pointing towards the �uid. The �rst relation is Newton's

law linking a pressure gradient to an acceleration and the second one links the pressure to a surface

force on the membrane.

In an array of micromembranes vibrating in a �uid, particularly when close to membrane

resonance, the vibration of one membrane can a�ect the vibration of another membrane in the

array. This phenomenon is called crosstalk. It has a negative impact on the imaging quality in e.g.

medical applications [40]. Analyses of the crosstalk have shown [41, 42, 43] that it mainly appears

via surface waves at the �uid-structure interface and via Lamb waves propagating in the silicon

substrate. For medical applications the coupling between membranes via the water �uid is high

compared e.g. to air and the focus will be on this �rst form of crosstalk.

10 µm

50 µm

Water Vacuum gap Electrode Insulator

Electric ground Mechanical clamp

10 µm
40 µm5 µm

750 nm

500
nm

750 nm

Figure 1.5: Illustration of the 3D test case used throughout this thesis. Top view (top) and side
view (bottom). The 2D test case is the side view (bottom) of the 3D test case.

Figure 1.6: Illustration of a 2 by 1 array of 2D CMUTs.
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1.6 Reference ultrasonic transducer geometries

In �gure 1.5 we de�ne a representative CMUT for medical applications in order to highlight the

main properties of the methods used in this thesis and be able to compare them on identical

geometries. The dimensions used correspond to the typical dimensions of a modern CMUT [12].

They are summarised along with the material properties in table 1.5 and table 1.6 respectively.

Table 1.5: Dimensions of the reference CMUT geometries.

Membrane thickness 750 nm

Vacuum height 500 nm

Vacuum length 40 µm

Electrode length 10 µm

Support pillars thickness 5 µm

Table 1.6: Material properties in the reference CMUT geometries.

Material Quantity Symbol Typical value

Insulator Young's modulus EI 150 · 109 N/m2

Insulator Poisson's ratio νI 0.3

Insulator Electric permittivity εI 11.7 · 8.854 · 10−12 F/m

Insulator Volumic mass ρI 2330 kg/m3

Vacuum Electric permittivity εV 8.854 · 10−12 F/m

Water Volumic mass ρ 1000 kg/m3

Water Sound propagation speed c 1484 m/s

The 2D test geometry (i.e. the side view of the 3D geometry) will most of the time not be used

alone but rather in a two-dimensional array with n elementary membranes. An array with two

membranes is depicted in �gure 1.6. This array is recurrent in this thesis and it thus deserves some

preliminary analysis. The �rst important value is the pull-in voltage of an individual membrane,

measured by increasing the time-independent voltage applied between the electrode and the ground.

This voltage sweep is shown in �gure 1.7. The pull-in voltage in the 2D test case settings is slightly

above 110 V . It is worth noting that the maximum membrane de�ection before pull-in is of the

order of a third of the vacuum gap height, a general rule of thumb.

Another important characteristic is the �rst resonance frequency. To get it let us excite the

2 × 1 array with an electrical excitation leading to a linear vibration. The electrical excitation is

set to a 10 V time-constant value on both membranes plus a 1 V sine excitation applied only to

the left membrane. The absolute value of the maximum displacement is displayed in �gure 1.8 for

an electrical excitation frequency ranging from close to DC to the second resonance peak. The

�rst resonance appears for an electrical excitation frequency slightly above 1 MHz. Although not
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Figure 1.7: Maximum de�ection for a range of time-independent electric excitation voltages on the
2D test case of �gure 1.5.

exactly the same because of the di�erent electrical excitation the left and the right membrane share

a similar resonance frequency. The crosstalk is clearly visible.

Because of the selected electrical excitation the behaviour in the current test settings is linear

everywhere but very close to resonance. Indeed the displacements are small compared to the pull-

in displacement and the alternating voltage is much smaller than the constant term. Linearity

implies that the mechanical displacement u can be written as

u(x, t) = U0(x) +U s1(x) sin(2πf0t) +U c1(x) cos(2πf0t), (1.23)

for the considered v(x, t) = 10 + 1 · sin(2πf0t) V electrical excitation on the left membrane and

v(x, t) = 10 V on the right one. Using this decomposition gives additional insights into the be-

haviour of the membranes. The constant de�ection U0(x), in-phase vibration U s1(x) and quadra-

ture vibration U c1(x) versus frequency plot are shown in �gure 1.9 for the left membrane and in

�gure 1.10 for the right membrane. It is worth noting that the expected 90° phase shift at reso-

nance is correctly captured in the �gures since at the resonance peak the quadrature component

is dominant.
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Figure 1.8: Absolute value of the maximum de�ection on the left and right membrane of the 2× 1
array test case of �gure 1.6 as the electrical excitation frequency is swept from close to DC till
the second resonance frequency. The electrical excitation consists in a 10 V constant excitation on
both membranes plus a 1 V sine excitation applied only to the left membrane.
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Figure 1.9: Maximum de�ection of U0(x), U s1(x) and U c1(x) on the left membrane of the 2× 1
array test case of �gure 1.6 versus electrical excitation frequency f . The electrical excitation is
v(t) = 10 + 1 · sin(2πft) V and v(t) = 10 V on the left and right membranes respecitvely. The
bottom plot is a zoom around the �rst resonance.
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Figure 1.10: Maximum de�ection of U0(x), U s1(x) and U c1(x) on the right membrane of the 2×1
array test case of �gure 1.6 versus electrical excitation frequency f . The electrical excitation is
v(t) = 10 + 1 · sin(2πft) V and v(t) = 10 V on the left and right membranes respecitvely. The
bottom plot is a zoom around the �rst resonance.
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Chapter 2

Numerical simulation with �nite

elements

This chapter begins with an overview of the state of the art for the �nite element simulation of

large MEMS arrays in steady state as well as the associated intrinsic di�culties. Afterwards the

mathematical formulations for each uncoupled physical model are recalled and the �nite element

discretisations are derived. Coupling schemes to combine the three physics are then detailed. The

chapter ends with the selection of an appropriate �nite element discretisation for the reference

ultrasonic transducers presented in the previous chapter.

2.1 State of the art and challenges

MEMS devices are modeled with multiple techniques providing di�erent degrees of accuracy at

varying computational costs. Lumped models provide approximations of physical quantities at

very low computational cost since they consist of only a few degrees of freedom. They however

lack in general the accuracy of more advanced, but also computationally more intensive numerical

methods. This section provides an overview of the main methods used to model MEMS and CMUT

devices [22, 44, 45].

2.1.1 Simulation using lumped models

Lumped parameter models can be used to get a fast-to-solve approximation of a physical quantity of

interest. Instead of solving a physical problem with advanced, computationally intensive numerical

methods a lumped model only requires to solve an equivalent system with a few degrees of freedom.

Getting the parameters of the lumped model can be done in several ways such as by physically

measuring them, approximating them analytically or computing them with a numerical method at

a given working point. As an illustration, an equivalent sti�ness can be computed on the reference

CMUT of �gure 1.5 to correspond to the sti�ness k in the single degree of freedom model of �gure

1.3. Note that the equivalent sti�ness k is only valid for the settings at which it was measured.

With that sti�ness determined, all parameters of this very simple lumped model are known and it
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can be used to very quickly compute an approximation of the pull-in displacement and voltage of

the reference CMUT. Indeed using the notations of section 1.5 the electric potential is a function

of the de�ection u:

V =

√
−2ku (u0 + u)2

ε0A
(2.1)

and the pull-in displacement is such that ∂V (upull-in)
∂u = 0. The derivative ∂V

∂u is

∂V

∂u
= − 1

2
√
−2ku (u0+u)2

ε0A

· 2k

ε0A
[(u0 + u)2 + 2u (u0 + u)] (2.2)

which equals zero for the pull-in displacement u = − 1
3u0. The corresponding pull-in voltage is

V (−1

3
u0) =

√
8ku3

0

27ε0A
. (2.3)

The lumped model has the further advantage that the pull-in voltage and displacement can be

immediately recomputed if for example the vacuum gap is replaced by a dielectric gas. Additionally,

general trends can be immediately read from (2.3): the pull-in voltage strongly increases with the

gap height but decreases for high permittivity materials.

Because of the few involved quantites, the low time-to-solution as well as the ability to read

trends in the analytic equations, lumped models are widely used to model MEMS: the pull-in

voltage and displacement was approximated with a formula similar to (2.3) for a resonant gate

transistor in [30] and for �xed-�xed microbeams in [46], the de�ection of a cantilever microswitch

under various static electrical excitations was calculated in [47] while (weak) nonlinearity in MEMS

devices was modeled in [48, 44]. An overview of lumped models for MEMS devices can be found

in [49]. Modeling arrays of CMUT devices and the �uid coupling between individual CMUTs

is typically done via the use of self and mutual radiation impedances [50, 51, 52, 53, 54, 55]

linking the velocity of a pressure radiating membrane to the subsequent pressure forces applied

to the membrane of another CMUT cell. Several commercial software tools (e.g. Coventor [56])

implement such lumped models.

Unfortunately the major advantage of lumped models, namely the few number of degrees of

freedom, is also their main drawback: it only deals with a very simpli�ed model of reality and of the

actual MEMS geometry and can thus not handle details as well as an advanced numerical method

can. As a result lumped models are only able to provide a (possibly rough) approximation over a

limited range of working settings and MEMS geometries [53, 57, 58, 47]. A better representation

of the actual physics can only be obtained at the expense of an ever increasing complexity and

number of degrees of freedom in the model.

2.1.2 Simulation using the �nite element method

Numerical simulations of MEMS with the �nite element method have the ability to capture more

details in the physics and in the geometries than lumped models [53, 57, 58, 47]. They are nowadays

widely used for the simulation of MEMS and CMUT devices, often via the use of commercial
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software such as COMSOL, ANSYS or Abaqus [1, 59, 60, 61, 62]. Even though a 2D simulation

leads to a reduced computational cost, 3D simulations often need to be carried out to accurately

capture physical quantities when the 3D e�ects can not be neglected: in [62] a 2D simulation

accurately captured the maximum de�ection of a �xed-�xed microbeam while in [63, 64] it was

observed that an accurate prediction of the pull-in voltage on the considered MEMS could neither

be obtained with lumped models nor with a 2D �nite element simulation so that a computationally

demanding 3D simulation was performed to closely match experimental results.

2.1.3 Challenges for the �nite element simulation of large CMUT arrays

Exciting CMUT arrays close to membrane resonance can dramatically strengthen the vibration

and thus the emitted output pressure in emission and the sensitivity in reception. Unfortunately

working close to resonance can lead to a large crosstalk in arrays made up of replicated identical

cells. This crosstalk then heavily depends on the membrane boundary conditions and thus on the

position in the array. To accurately capture the crosstalk the problem can therefore not be solved

simply with periodicity conditions and the full array must be simulated.

Because of the high computational cost practical �nite element simulations of CMUT arrays

are limited to only a few cells [65, 21, 57, 59, 66, 67]. The computation indeed rapidly becomes

untractable without simpli�cation for large nonlinear arrays using standard direct solvers. For

this reason a wide range of simplifying approximations are used in practice, such as periodicity

conditions [68], supposing clamped-clamped membranes [69], using beam theory to compute the

membrane de�ection [70, 71], supposing �at CMUTs in order to use the Rayleigh integral to

compute the pressure �eld [1], neglecting the �uid coupling between distant membranes [1] or

considering a linear behaviour [1, 2]. While some approximations are fully valid for some CMUTs

others like the �uid coupling restriction to the close neighbours or the linearity assumption can

be easily violated, for example when close enough to resonance. Nevertheless, with simplifying

approximations including at least linearity the resolution of large arrays of CMUTs in a reasonable

amount of time has been demonstrated [1, 2]. Work has also been done to take into account

nonlinearity on single electromechanical micromembranes (vibrating in vacuum) in steady state

[65, 21] and for the transient simulation of arrays thereof [23].

To the best of our knowledge, getting in a reasonable amount of time the nonlinear solution

of large arrays of electromechanical micromembranes vibrating in a �uid (e.g. CMUTs) has not

been demonstrated, neither for the transient nonlinear solution, nor for the nonlinear steady state

solution. Capturing the steady state in a nonlinear simulation of large CMUT arrays can be even

more challenging than capturing a transient since by de�nition the steady state is obtained only

after all transients are damped enough, which for CMUT with low damping and working close to

resonance takes a long time compared to the electrical excitation period.

2.2 Finite element formulations

The partial di�erential equations (1.4), (1.6) and (1.17) described in the previous chapter model

respectively the uncoupled electromagnetic, elastodynamic and acoustic physics involved in MEMS

ultrasonic transducers. In this section they are reformulated for a numerical resolution using the
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(Galerkin) �nite element method [72] (refer to appendix A for an overview of the method and

implementation details).

2.2.1 Electrostatics

The partial di�erential equation (1.4) describing mathematically the electrostatic problem is:

div(ε∇v) = −ρv. (2.4)

For the reference CMUT of �gure 1.5 the domain R3 is truncated (refer to section 2.2.4) so as

to obtain a �nite domain Ω. The domain Ω∗e on which (2.4) is de�ned is equal to the truncated

domain: it includes the �uid, the solid and the vacuum region in �gure 1.5. However, since the

electric potential v depends on how the electric domain is deformed by the mechanical displacement

u, Ω∗e equals the truncated domain Ω deformed by the mechanical displacement u. This is denoted

by the star symbol.

Form (2.4) is called the strong form of the partial di�erential equation. In the (Galerkin) �nite

element method it is is not solved as such. It is instead solved in its so-called weak form: for a

problem de�ned on domain Ω∗e the strong form implies that∫
Ω∗e

div(ε∇v) v′ dΩ∗e =

∫
Ω∗e

− ρv v′ dΩ∗e, (2.5)

holds for any appropriate function v′ called test function. The corresponding boundary conditions

are detailed in section 2.3. A rigorous mathematical framework can be found in [72, 73, 74, 75].

One can then apply the generalised integration by parts formula (i.e. Green's formula) to get the

actual weak form for the electrostatic problem:

−
∫

Ω∗e

ε∇v · ∇v′dΩ∗e +

∫
∂Ω∗e

v′ ε ∂nv d∂Ω∗e =

∫
Ω∗e

− ρv v′ dΩ∗e, (2.6)

where ∂Ω∗e is the boundary of Ω∗e, n is the outward-pointing normal to the boundary and ∂nv =

∇v · n is the normal derivative of v.

2.2.2 Elastodynamics

The system of partial di�erential equations for the elastodynamic model (1.6) is:



divσ + f = ρ
∂2u

∂t2
,

ε =
1

2
[∇u+ (∇u)T ],

σ = C : ε,

(2.7)

with
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ε = εT =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 ,

σ = σT =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 ,
(2.8)

and u =
[
ux uy uz

]T
. In the reference CMUT problem of �gure 1.5 the volume forces in f

only consist of electrostatic forces and pressure forces.

Using Green's formula the equation of motion in (2.7) leads to:

divσ + f = ρ
∂2u

∂t2

⇒
∫

Ωm

divσ · u′dΩm +

∫
Ωm

f · u′dΩm =

∫
Ωm

ρ
∂2u

∂t2
· u′dΩm

⇒ −
∫

Ωm

∇u′ : σdΩm +

∫
∂Ωm

n · (σ u′)d∂Ωm +

∫
Ωm

f · u′dΩm =

∫
Ωm

ρ
∂2u

∂t2
· u′dΩm,

(2.9)

which holds for any appropriate test function u′. Domain Ωm is the solid region in the reference

geometry of �gure 1.5, ∂Ωm is its boundary. Unlike for the electrostatic problem domain Ωm is

not deformed by u because of the linear elasticity approximation: all elasticity calculations are

performed on the undeformed geometry. Furthermore

∇u′ =

 ∂xu
′
x ∂yu

′
x ∂zu

′
x

∂xu
′
y ∂yu

′
y ∂zu

′
y

∂xu
′
z ∂yu

′
z ∂zu

′
z

 , (2.10)

and : is the Frobenius product such that ∇u′ : σ :=
∑
ij

(∇u′)i,jσi,j . Expanding ∇u′ : σ and

using the symmetry of σ gives:

∇u′ : σ = ∂xu
′
xσxx + ∂yu

′
xσxy + ∂zu

′
xσxz + ∂xu

′
yσxy + ∂yu

′
yσyy + ∂zu

′
yσyz

+ ∂xu
′
zσxz + ∂yu

′
zσyz + ∂zu

′
zσzz

= ∂xu
′
xσxx + ∂yu

′
yσyy + ∂zu

′
zσzz

+ (∂xu
′
y + ∂yu

′
x)σxy + (∂zu

′
y + ∂yu

′
z)σyz + (∂xu

′
z + ∂zu

′
x)σxz

= ε′xxσxx + ε′yyσyy + ε′zzσzz + 2ε′xyσxy+2ε
′
yzσyz+2ε

′
xzσxz

=



σxx

σyy

σzz

σxy

σyz

σxz



T 

ε′xx

ε′yy

ε′zz

2ε′xy

2ε′yz

2ε′xz


≡



σxx

σyy

σzz

σxy

σyz

σxz



T 

ε′xx

ε′yy

ε′zz

γ′xy

γ′yz

γ′xz


,

(2.11)
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where the relations (∂xu
′
y + ∂yu

′
x) = 2εxy and the like come from the strain-displacement relation

in (2.7). The quantity γ is commonly used in mechanics to represent the shear strain.

Hooke's law for homogeneous isotropic materials is as follows:

σxx

σyy

σzz

σxy

σyz

σxz


=

E

(1 + ν)(1− 2ν)

[
C11 C12

C21 C22

]


εxx

εyy

εzz

γxy

γyz

γzx


, (2.12)

where ν is Poisson's ratio, E Young's modulus,

C11 =

 1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 , C22 =


1−2ν

2 0 0

0 1−2ν
2 0

0 0 1−2ν
2

 , (2.13)

C12 =

 0 0 0

0 0 0

0 0 0

 , C21 =

 0 0 0

0 0 0

0 0 0

 . (2.14)

Injecting (2.12) in (2.11) and putting everything in (2.9) �nally gives the weak formulation for the

elastodynamic problem:

−
∫

Ωm

∇u′ : σdΩm +

∫
∂Ωm

n · (σu′) d∂Ωm +

∫
Ωm

f · u′dΩm =

∫
Ωm

ρ
∂2u

∂t2
· u′dΩm

⇒ −
∫

Ωm

[

 ε′xx

ε′yy

ε′zz


T

C11

 εxx

εyy

εzz

+

 ε′xx

ε′yy

ε′zz


T

C12

 γxy

γyz

γxz

+

 γ′xy

γ′yz

γ′xz


T

C21

 εxx

εyy

εzz



+

 γ′xy

γ′yz

γ′xz


T

C22

 γxy

γyz

γxz

]dΩm +

∫
∂Ωm

n · (σu′) d∂Ωm +

∫
Ωm

f · u′dΩm =

∫
Ωm

ρ
∂2u

∂t2
· u′dΩm

(2.15)

or, in compact form,

−
∫

Ωm

[Mn(u′)TC11Mn(u) +Mn(u′)TC12Ms(u) +Ms(u
′)TC21Mn(u)

+Ms(u
′)TC22Ms(u)]dΩm +

∫
∂Ωm

n · (σu′) d∂Ωm +

∫
Ωm

f · u′dΩm =

∫
Ωm

ρ
∂2u

∂t2
· u′dΩm.

(2.16)

where

Ms(u) = [ ∂uy

∂x + ∂ux

∂y
∂uy

∂z + ∂uz

∂y
∂uz

∂x + ∂ux

∂z
]T , (2.17)
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is the 3D shear strain operator and

Mn(u) = [ ∂ux

∂x
∂uy

∂y
∂uz

∂z
]T , (2.18)

is the 3D normal strain operator. The external force term consists of pressure forces applied by

the �uid as well as the nonlinear electrostatic force derived in section 2.2.3 using the virtual work

principle. It is worth noting that (2.16) is not the only form to represent elastodynamic problems:

it could alternatively be written using e.g. Lamé coe�cients [76].

2.2.3 Electrostatic force

Electrostatic forces appear in an uncountable number of MEMS applications. Several methods

have been developed to compute them [77, 78, 79]. The most commonly used are the Maxwell

stress tensor and the virtual work principle [31, 32, 33, 34, 3, 35, 80].

The principle of virtual work states that a system is at equilibrium if and only if any tiny

perturbation in the external energy of that system is perfectly balanced by the variation of the

internal energy. Mathematically:

δWint = δWext ⇐⇒ equilibrium. (2.19)

The external work Wext originates from external mechanical forces and electric potentials applied

to the structure. The internal work Wint takes into account all work done inside the system in

reaction to the external forces. It is proportional to the strains and stresses inside the solid. The

electric potential is also a player in the internal energy as the accumulated internal energy increases

when the electric �eld increases.

Based on Gibbs energy as done in [3] the internal work can be rewritten:

δWint = δWm − δWe, (2.20)

where Wm is the mechanical work and We the electrical work.

Perturbing the internal energy by a compatible virtual displacement yields the mechanical

forces and perturbing the internal energy by a compatible electric potential perturbation yields

the electric charge:

fm · δu = Wint(δu) ≡ δuWint = δuWm − δuWe,

qe δv = Wint(δv) ≡ δvWint =���
�:0

δvWm − δvWe,
(2.21)

where the mechanical energy does not change when the electric potential is perturbed. Quantity

fm includes all forces applied to the system. That includes usual external loads as well as the

electrostatic forces. In what follows only the latter are of interest.

The electrostatic forces appear only because there is a change in electrical energy when per-

turbing the system with a virtual displacement. If there is no change in electrical energy there can

be no electrostatic force. This leads to the conclusion that

f electrostatic · δu = −δuWe. (2.22)
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In order to compute the electrostatic force the working domain Ω∗ is perturbed by a compatible

virtual displacement δu. Let (x, y, z) be the coordinates in the unperturbed Ω∗ region and (ξ, η, φ)

the coordinates in the perturbed region Ωp∗. Equation (2.22) gives:∫
Ω∗
f electrostatic · δu dΩ∗ = −(W p

e −We), (2.23)

where We and W p
e are the unperturbed and perturbed electrical energy respectively:

We =
1

2

∫
Ω∗
ε∇x,y,zv · ∇x,y,zv dΩ∗, W p

e =
1

2

∫
Ωp∗

ε∇ξ,η,φv · ∇ξ,η,φv dΩp∗. (2.24)

It is worth noting that in (2.23), integrating on the mechanical domain Ωm would give the same

result since the electrostatic force is zero everywhere but on Ωm. In (2.24) however the energy can

not be integrated only on Ωm: it must be integrated on Ω∗.

The perturbed electrical energy is brought back on the unperturbed region Ω∗ using the fol-

lowing coordinate change: 
ξ = x+ δux,

η = y + δuy,

φ = z + δuz,

(2.25)

whose Jacobian matrix is:

J =
∂(ξ, η, φ)

∂(x, y, z)
=

 1 + δxux δxuy δxuz

δyux 1 + δyuy δyuz

δzux δzuy 1 + δzuz

 , (2.26)

with δxux standing for ∂δux

∂x .

The Jacobian determinant |J | and its inverse matrix are needed. Since δu can be taken

arbitrarily small only the �rst order δu terms must be considered and |J | has a simple form:

|J | ≈ 1 + δxux + δyuy + δzuz +O(δu2), (2.27)

and

J−1 ≈ 1

|J |

 1 + δyuy + δzuz −δxuy −δxuz
−δyux 1 + δxux + δzuz −δyuz
−δzux −δzuy 1 + δxux + δyuy

 .
The inverse Jacobian determinant, in the form 1

1+x can be approximated to the �rst order by 1−x
which leads to a simple form:

J−1 ≈

 1− δxux −δxuy −δxuz
−δyux 1− δyuy −δyuz
−δzux −δzuy 1− δzuz

 . (2.28)

One can take advantage of the particular form of the inverse Jacobian matrix and rewrite it in the
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simpler form J−1 ≈ I −
[
∇δux ∇δuy ∇δuz

]
, where I is 3 by 3 identity matrix and ∇ the

gradient operator giving a column vector.

Using this simple form and dropping the subscripts on the undeformed gradient operator

(∇x,y,zv ≡ ∇v) one gets:

∇ξ,η,φv = J−1∇v = ∇v −∇δux
∂v

∂x
−∇δuy

∂v

∂y
−∇δuz

∂v

∂z
. (2.29)

Injecting (2.29) in (2.24) and multiplying by |J | for the coordinate change leads to:

W p
e =

1

2

∫
Ω∗
ε

[
∇v · ∇v − 2∇v · ∇δux

∂v

∂x
− 2∇v · ∇δuy

∂v

∂y
− 2∇v · ∇δuz

∂v

∂z

]
· (1 + δxux + δyuy + δzuz) dΩ∗,

which transforms (2.23) into:

∫
Ω∗
f electrostatic · δu dΩ∗ = −(W p

e −We)

= −1

2

∫
Ω∗
ε [∇v · ∇v (δxux + δyuy + δzuz)− 2∇v · ∇δux

∂v

∂x

− 2∇v · ∇δuy
∂v

∂y
− 2∇v · ∇δuz

∂v

∂z
] dΩ∗,

(2.30)

neglecting again all higher order perturbations.

In order to remove δu from equation (2.30) let us extract the δu perturbation's gradient from

the electrical energy di�erence. For that we �rst notice that

∇v δxux =


∂v
∂x 0 0
∂v
∂y 0 0
∂v
∂z 0 0

∇δux, (2.31)

∇v δyuy =

 0 ∂v
∂x 0

0 ∂v
∂y 0

0 ∂v
∂z 0

∇δuy, (2.32)

∇v δzuz =

 0 0 ∂v
∂x

0 0 ∂v
∂y

0 0 ∂v
∂z

∇δuz, (2.33)

∇δux
∂v

∂x
=


∂v
∂x 0 0

0 ∂v
∂x 0

0 0 ∂v
∂x

∇δux. (2.34)

Equation (2.34) is not displayed for y and z because it has exactly the same structure. Using in

(2.30) the previous relations one gets:
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∫
Ω∗
f electrostatic · δu dΩ∗ =

− 1

2

∫
Ω∗
ε [(∇v)T


∂v
∂x 0 0 0 ∂v

∂x 0 0 0 ∂v
∂x

∂v
∂y 0 0 0 ∂v

∂y 0 0 0 ∂v
∂y

∂v
∂z 0 0 0 ∂v

∂z 0 0 0 ∂v
∂z


 ∇δux∇δuy
∇δuz



− 2 (∇v)T


∂v
∂x 0 0 ∂v

∂y 0 0 ∂v
∂z 0 0

0 ∂v
∂x 0 0 ∂v

∂y 0 0 ∂v
∂z 0

0 0 ∂v
∂x 0 0 ∂v

∂y 0 0 ∂v
∂z


 ∇δux∇δuy
∇δuz

]dΩ∗,

(2.35)

which is identical to

∫
Ω∗
f electrostatic · δu dΩ∗ =

1

2

∫
Ω∗
ε (∇v)T


∂v
∂x 0 0 2∂v∂y − ∂v

∂x 0 2∂v∂z 0 − ∂v
∂x

−∂v∂y 2 ∂v∂x 0 0 ∂v
∂y 0 0 2∂v∂z −∂v∂y

−∂v∂z 0 2 ∂v∂x 0 −∂v∂z 2∂v∂y 0 0 ∂v
∂z


 ∇δux∇δuy
∇δuz

 dΩ∗,

(2.36)

the continuous weak formulation of the electrostatic force. It holds for any appropriate virtual

displacement δu.

2.2.4 Linear acoustics

Let δp be the acoustic pressure variation around the average pressure de�ned on domain Ωa (the

�uid domain on the reference CMUT of �gure 1.5). The acoustic wave equation (1.17) is

1

c2
∂2δp

∂t2
−∆δp = 0. (2.37)

Its weak form is derived in a way similar to the electrostatic weak form:

−
∫

Ωa

∇δp · ∇δp′dΩa +

∫
∂Ωa

δp′ ∂n δp d∂Ωa −
∫

Ωa

1

c2
∂2δp

∂t2
δp′dΩa = 0, (2.38)

where ∂Ωa is the boundary of Ωa and ∂nδp = ∇δp ·n is the normal derivative outward to the �uid

region. Taking into account the mechanical vibration as a pressure source is done with Newton's

law [38] as introduced in (1.22):

∂nδp = −ρ�uid
∂2u

∂t2
· n. (2.39)

Because the �uid region is in�nite in theory it has to be truncated for the �nite element method

and appropriate boundary conditions have to be imposed to avoid any wave re�ection at the

non-physical truncation surface. A classical method is to use Sommerfeld's radiation condition

[81, 82]:

∂nδp+
1

c

∂δp

∂t
= 0. (2.40)
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The Sommerfeld condition (2.40) forces outgoing pressure waves at in�nity: a pressure �eld of the

form

δp(r, t) = δP cos(ωt− kr), (2.41)

for a pressure value δP Pa, a pulsation ω rad/s, a wavenumber k = ω
c rad/m and a wave propagation

direction er perpendicular to the truncation surface corresponds to an outgoing wave and indeed

satis�es the Sommerfeld relation:

∂nδp = ∂er
δp = k δP sin(ωt− kr) =

ω

c
δP sin(ωt− kr) = −1

c

∂δP cos(ωt− kr)
∂t

. (2.42)

In practice outgoing waves are never exactly achieved in 2D or 3D but when far enough from

the acoustic source the relative decrease of δP is so slow in the normal direction that re�exion is

negligeable. A spherical truncation surface can be advantageously chosen to have waves propagat-

ing normally to the surface. Alternatively higher order absorbing boundary conditions [83, 84] or

perfectly matched layers (PML) [85, 86] can be used to deal with the truncation.

2.2.5 Sensitivity matrix

Solving the nonlinear coupled electroelastoacoustic problem (2.6)-(2.16)-(2.38) with the techniques

exposed in section 2.4 requires to compute a sensitivity matrix S telling how the mechanical energy,

the electrical energy, the acoustic energy and the electrostatic forces change given a change in the

electric potential v, mechanical displacement u and acoustic pressure δp. The method used below

to derive it was proposed in [3].

Rewriting equation (2.21) gives:

fm = ∂Wm

∂u −
∂We

∂u ,

qe = −∂We

∂v .
(2.43)

Linearising both relations at equilibrium leads to:


fm ≈ fem + (

∂2Wm

∂u2
− ∂2We

∂u2
)du− ∂2We

∂v∂u
dv,

qe ≈ qee −∂
2We

∂u∂v
du− ∂2We

∂v2
dv,

(2.44)

since the mechanical energy does not depend on the electric potential. This can be written in

matrix form:

[
Suu Suv

Svu Svv

][
du

dv

]
=

[
dfm

dqe

]
, (2.45)

in which S can be identi�ed as the sensitivity matrix of the electroelastic problem. Matrix S can
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be decomposed as follows:

S = A+

[
−∂

2We

∂2u −∂
2We

∂v∂u

−∂
2We

∂u∂v 0

]
:= A+

[
Kuu Kuv

Kvu 0

]
, (2.46)

where

A =

[
∂W 2

m

∂u2 0

0 ∂2We

∂v2

]
, Kuu =

 Kuxux Kuxuy Kuxuz

Kuyux Kuyuy Kuyuz

Kuzux Kuzuy Kuzuz

 , (2.47)

Kuv =
[
Kuxv Kuyv Kuzv

]T
, Kvu =

[
Kvux Kvuy Kvuz

]
, (2.48)

with ∂W 2
m

∂u2 and ∂2We

∂v2 the usual uncoupled elastodynamic (2.16) and electrostatic (2.6) systems.

The sensitivity matrix for the electroelastic problem is thus simply the sum of the uncoupled

elastodynamic and electrostatic terms and 3 extra terms whose 3D expression is computed below.

Because the acoustic formulation (2.38) and its coupling with the two other physics is linear the

sensitivity matrix for the electroelastoacoustic problem is simply obtained by including the terms

of the uncoupled acoustic formulation (2.38) and the corresponding coupling terms in matrix A.

Kuv matrix block:

Let us �rst calculate the expression of the Kuv block, which corresponds to ∂felec

∂v . For that recall

(2.30):

∫
Ω∗
f elec · δu dΩ∗ = −1

2

∫
Ω∗
ε[∇v · ∇v (δxux + δyuy + δzuz)− 2∇v · ∇δux

∂v

∂x

− 2∇v · ∇δuy
∂v

∂y
− 2∇v · ∇δuz

∂v

∂z
]dΩ∗.

(2.49)

Perturbing it by a compatible perturbation δv while keeping only linear perturbations of δv gives:∫
Ω∗
δvKT

uvδu dΩ∗ = −1

2

∫
Ω∗
ε [2∇δv · ∇v (δxux + δyuy + δzuz)

− 2∇δv · ∇δux
∂v

∂x
− 2∇v · ∇δuxδxv

− 2∇v · ∇δuy
∂v

∂y
− 2∇v · ∇δuyδyv

− 2∇v · ∇δuz
∂v

∂z
− 2∇v · ∇δuzδzv]dΩ∗,

(2.50)

whereKuv is a 3 by 1 column vector. Considering equations (2.31) through (2.34) and the following

variant thereof:

(∇v)T δxv = (∇δv)T


∂v
∂x

∂v
∂y

∂v
∂z

0 0 0

0 0 0

 , (2.51)
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one can rewrite (2.50) as:∫
Ω∗
δvKT

uvδu dΩ∗ =

−
∫

Ω∗
ε [(∇δv)T


∂v
∂x 0 0 0 ∂v

∂x 0 0 0 ∂v
∂x

∂v
∂y 0 0 0 ∂v

∂y 0 0 0 ∂v
∂y

∂v
∂z 0 0 0 ∂v

∂z 0 0 0 ∂v
∂z


 ∇δux∇δuy
∇δuz



− (∇δv)T


∂v
∂x 0 0 ∂v

∂y 0 0 ∂v
∂z 0 0

0 ∂v
∂x 0 0 ∂v

∂y 0 0 ∂v
∂z 0

0 0 ∂v
∂x 0 0 ∂v

∂y 0 0 ∂v
∂z


 ∇δux∇δuy
∇δuz



− (∇δv)T


∂v
∂x

∂v
∂y

∂v
∂z 0 0 0 0 0 0

0 0 0 ∂v
∂x

∂v
∂y

∂v
∂z 0 0 0

0 0 0 0 0 0 ∂v
∂x

∂v
∂y

∂v
∂z


 ∇δux∇δuy
∇δuz

]dΩ∗,

(2.52)

which is identical to

∫
Ω∗
δvKT

uvδu dΩ∗ = −
∫

Ω∗
ε (∇δv)T

·

 −
∂v
∂x −∂v∂y −∂v∂z −∂v∂y

∂v
∂x 0 −∂v∂z 0 ∂v

∂x
∂v
∂y − ∂v

∂x 0 − ∂v
∂x −∂v∂y −∂v∂z 0 −∂v∂z

∂v
∂y

∂v
∂z 0 − ∂v

∂x 0 ∂v
∂z −∂v∂y − ∂v

∂x −∂v∂y −∂v∂z


 ∇δux∇δuy
∇δuz

 dΩ∗.

(2.53)

Kvu matrix block:

The Kvu block corresponds to −∂
2We

∂u∂v . It is equal to the transpose of Kuv: Kvu = KT
uv.

Kuu matrix block:

The matrix blockKuu = −∂
2We

∂2u = −∂felec

∂u is now derived. For that recall (2.30) with pertubation

δu renamed as δu1 as there will be two perturbations here:∫
Ω∗
f elec · δu1 dΩ = −1

2

∫
Ω∗
ε [∇v · ∇v (δxu

1
x + δyu

1
y + δzu

1
z)

− 2∇v · ∇δu1
x

∂v

∂x
− 2∇v · ∇δu1

y

∂v

∂y

− 2∇v · ∇δu1
z

∂v

∂z
] dΩ∗.

(2.54)

The term ∂felec

∂u is obtained by taking the di�erence of the electrostatic force computed on the

original subdomain Ω described by (x, y, z) and the original subdomain pertubed by an in�nitesimal

perturbation δu2, called Ωp (which is di�erent from the Ωp used before) and described by (ξ, η, φ).

Unlike for Kvu, Kuu can not be obtained by simply perturbing (2.54) since the perturbation of

δu2 on v is not straightforward. The electrostatic force on the perturbed domain Ωp is given by:
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∫
Ωp∗

f elec · δu1 dΩp∗ = −1

2

∫
Ωp∗

ε [∇ξ,η,φv · ∇ξ,η,φ v (δξu
1
x + δηu

1
y + δφu

1
z)

− 2∇ξ,η,φv · ∇ξ,η,φδu1
x

∂v

∂ξ
− 2∇ξ,η,φv · ∇ξ,η,φδu1

y

∂v

∂η

− 2∇ξ,η,φv · ∇ξ,η,φδu1
z

∂v

∂ξ
]dΩp∗.

(2.55)

In order to bring this equation back to the unperturbed domain Ω we introduce in a similar way

to (2.25) the coordinate change: 
ξ = x+ δu2

x,

η = y + δu2
y,

φ = z + δu2
z,

(2.56)

whose inverse Jacobian matrix and Jacobian determinant are obtained in the same way:

J−1 =
∂(x, y, z)

∂(ξ, η, φ)
≈

 1− δxu2
x −δxu2

y −δxu2
z

−δyu2
x 1− δyu2

y −δyu2
z

−δzu2
x −δzu2

y 1− δzu2
z

 , (2.57)

|J | ≈ 1 + δxu
2
x + δyu

2
y + δzu

2
z, (2.58)

with δxu2
x standing for ∂δu2

x

∂x . Now all terms in (2.55) need to be turned into computations on the

undeformed mesh described by (x, y, z):

� δξu
1
x + δηu

1
y + δφu

1
z: since δu

1
x and the like are functions of (x, y, z) one has δξu1

x ≡
∂δu1

x

∂ξ =

δxu
1
x
∂x
∂ξ + δyu

1
x
∂y
∂ξ + δzu

1
x
∂z
∂ξ which using J−1 enables to compute

δξu
1
x + δηu

1
y + δφu

1
z = (1− δxu2

x)δxu
1
x − δxu2

y δyu
1
x − δxu2

z δzu
1
x

− δyu2
x δxu

1
y + (1− δyu2

y) δyu
1
y − δyu2

z δzu
1
y

− δzu2
x δxu

1
z − δzu2

y δyu
1
z + (1− δzu2

z) δzu
1
z,

(2.59)

�
∂v
∂ξ ,

∂v
∂η ,

∂v
∂φ : similarly to the above term we get

∂v

∂ξ
= (1− δxu2

x)
∂v

∂x
− δxu2

y

∂v

∂y
− δxu2

z

∂v

∂z
,

∂v

∂η
= −δyu2

x

∂v

∂x
+ (1− δyu2

y)
∂v

∂y
− δyu2

z

∂v

∂z
,

∂v

∂ξ
= −δzu2

x

∂v

∂x
− δzu2

y

∂v

∂y
+ (1− δzu2

z)
∂v

∂z
,

(2.60)

� ∇ξ,η,φδu1
x in the same way as (2.29)

∇ξ,η,φδu1
x = J−1∇δu1

x = ∇δu1
x −∇δu2

x

∂δu1
x

∂x

−∇δu2
y

∂δu1
x

∂y
−∇δu2

z

∂δu1
x

∂z
,

(2.61)
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� ∇ξ,η,φv similarly

∇ξ,η,φv = J−1∇v = ∇v −∇δu2
x

∂v

∂x

−∇δu2
y

∂v

∂y
−∇δu2

z

∂v

∂z
.

(2.62)

Using the above relations one can replace the four terms in (2.55) by their expression on the

unperturbed region Ω, not forgetting to multiply everything by |J | to change the integration

domain:

� ∇Tξ,η,φv∇ξ,η,φv (δξu
1
x + δηu

1
y + δφu

1
z) |J |:

∇ξ,η,φv · ∇ξ,η,φv (δξu
1
x + δηu

1
y + δφu

1
z) |J | = [∇v −∇δu2

x

∂v

∂x
−∇δu2

y

∂v

∂y
−∇δu2

z

∂v

∂z
]

· [∇v −∇δu2
x

∂v

∂x
−∇δu2

y

∂v

∂y
−∇δu2

z

∂v

∂z
]

· [(1− δxu2
x) δxu

1
x − δxu2

y δyu
1
x − δxu2

z δzu
1
x

− δyu2
x δxu

1
y + (1− δyu2

y) δyu
1
y − δyu2

z δzu
1
y

− δzu2
x δxu

1
z − δzu2

y δyu
1
z + (1− δzu2

z) δzu
1
z]

· (1 + δxu
2
x + δyu

2
y + δzu

2
z),

(2.63)

where all nonlinear perturbations can be neglected (but not the �rst and second perturba-

tion product as this would result in a trivial 0 = 0 equation). The expanded equation is

straightforward and is not displayed here.

� −2∇ξ,η,φv · ∇ξ,η,φδu1
x
∂v
∂ξ |J |:

−2∇ξ,η,φv · ∇ξ,η,φδu1
x

∂v

∂ξ
|J | = −2 [∇v −∇δu2

x

∂v

∂x
−∇δu2

y

∂v

∂y
−∇δu2

z

∂v

∂z
]

· [∇δu1
x −∇δu2

x δxu
1
x −∇δu2

y δyu
1
x −∇δu2

z δzu
1
x

· [(1− δxu2
x)
∂v

∂x
− δxu2

y

∂v

∂y
− δxu2

z

∂v

∂z
]

· (1 + δxu
2
x + δyu

2
y + δzu

2
z).

(2.64)

The last three terms are derived in the same way as the latter one.

Finally, to computeKuu the di�erence between the force computed on the unpertubed domain

Ω and on the domain Ωp perturbed by δu2 has to be taken, as done for the electrostatic force

computation. The �nal formulation is not displayed due to its size.

2.3 Spatial discretisation

In section 2.2 all required weak formulations have been derived at the continuous level. What is

eventually solved in the �nite element method however is an algebraic matrix obtained by dis-

cretising the weak formulation both in space and in time. The space discretised weak formulations

are presented in this section while the time discretisation is adressed in chapter 3.
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2.3.1 Electrostatics

The weak formulation of the electrostatic problem was obtained in (2.6):

−
∫

Ω∗e

ε∇v · ∇v′dΩ∗e +

∫
∂Ω∗e

v′ ε ∂nv d∂Ω∗e =

∫
Ω∗e

− ρv v′ dΩ∗e, (2.65)

Discretising it requires �rst to discretise the domain Ω∗e into a set of discrete elements approximating

the geometry. The set of discrete elements obtained after this step is called the �nite element

mesh. It is obtained with meshing softwares as e.g. GMSH [87]. The second step is to discretise

the unknown �eld v (the electric potential �eld) as follows:

v =

m∑
i=1

ciNi(x) = NT c, (2.66)

i.e. as a sum of products of space and time independent coe�cients ci and time independent but

space dependant shape functions Ni(x). Because v′ in (2.65) can be any appropriate function one

can simply use v′i = Ni (i = 1...m) so as to get m equations for the m unknown coe�cients ci.

This leads to an algebraic system of the form K c = b:
K11 · · · K1m

...
. . .

...

Km1 · · · Kmm




c1
...

cm

 =


b1
...

bm

 (2.67)

A well known example of an appropriate order one shape function Ni(x) is a piecewise linear

function equal to one on mesh node i and zero on all others. Figure 2.1 illustrates such a shape

function on a 1D mesh. As can be seen the shape function is non zero on only two mesh elements

so that matrix K in (2.67) has only few non-zero entries: it is sparse. High order interpolation

shape functions Ni are also considered: for a same number of mesh elements, and thus degrees of

freedom, they typically lead to a much more accurate solution so that the mesh can be coarser

with fewer elements for an as accurate solution. For more details on the selected high order shape

functions and their implementation refer to section A.2.

ex

1

i− 3 i− 2 i− 1 i i+ 1 i+ 2

Figure 2.1: First order 1D Lagrange shape function for node i

The resolution of the algebraic system (2.67) provides the set ofm coe�cients required in (2.66)

to compute the unknown �eld v. K is called sti�ness matrix of the weak electrostatic formulation.

The entry at the ith row and jth column in matrix K can be computed as follows:

Kij = −
∫

Ω∗e

ε∇Nj · ∇Ni dΩ∗e +

∫
∂Ω∗e

Ni ε ∂nv d∂Ω∗e, (2.68)
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while the ith entry in vector b is

bi =

∫
Ω∗e

− ρv Ni dΩ∗e. (2.69)

In this work the discretised electrostatic weak formulation does not include the volumic charge

term (2.69): the electric potential value is instead forced to the desired value on the electrode and

to 0 on the ground of the reference test case in �gure 1.5.

2.3.2 Elastodynamics

The weak elastodynamic formulation was derived in (2.16):

−
∫

Ωm

[Mn(u′)TC11Mn(u) +Mn(u′)TC12Ms(u) +Ms(u
′)TC21Mn(u)

+Ms(u
′)TC22Ms(u)]dΩm +

∫
∂Ωm

n · (σu′) d∂Ωm +

∫
Ωm

f · u′dΩm =

∫
Ωm

ρ
∂2u

∂t2
· u′dΩm.

(2.70)

Every component of the mechanical displacement u = [ux uy uz]
T can be discretised with (2.66):

ux =

m∑
i=1

cxi(t)Ni(x), (2.71)

uy =

m∑
i=1

cyi(t)Ni(x), (2.72)

uz =

m∑
i=1

czi(t)Ni(x), (2.73)

so that

u =

m∑
i=1

(
cxi [Ni 0 0]T + cyi [0 Ni 0]T + czi [0 0 Ni]

T
)
, (2.74)

which can be rewritten as

u =

m∑
i=1

(cxiNxi + cyiNyi + cziNzi) , (2.75)

where

Nxi =
[
Ni 0 0

]T
,

Nyi =
[

0 Ni 0
]T
,

Nzi =
[

0 0 Ni

]T
.

(2.76)
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Using (2.75) to discretise the weak elasticity formulation (2.70) leads in general to an algebraic

system M ∂2c
∂t2 +C ∂c

∂t +Kc = b:


M11 · · · M1m

...
. . .

...

Mm1 · · · Mmm

 ∂2

∂t2


c1
...

cm

+


C11 · · · C1m

...
. . .

...

Cm1 · · · Cmm

 ∂
∂t


c1
...

cm



+


K11 · · · K1m

...
. . .

...

Km1 · · · Kmm




c1
...

cm

 =


b1
...

bm


, (2.77)

whose resolution provides the set of m coe�cients cx, cy and cz required in (2.75) to compute the

unknown displacement �eld u. K is the sti�ness matrix, C is the damping matrix and M is the

mass matrix. In (2.70) matrix C is simply 0. Matrix K and M are made up of 9 blocks

K =

 Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 , (2.78)

M =

 Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

 , (2.79)

where each row corresponds to a component of the test function u′ and each column to a component

of the unknown �eld u. Vector b is only made up of 3 blocks:

b =

 bx

by

bz

 (2.80)

each of them corresponding to a component of the test function u′.

With that de�nition the entry at the ith row and jth column in matrix Kxz for example (the

remaining 8 submatrices are computed similarly) can be computed as follows:

(Kxz)ij = −
∫

Ωm

[Mn(Nxi)
TC11Mn(Nzj) +Mn(Nxi)

TC12Ms(Nzj) +Ms(Nxi)
TC21

·Mn(Nzj) +Ms(Nxi)
TC22Ms(Nzj)]dΩm +

∫
∂Ωm

n · (σ(Nzj)Nxi) d∂Ωm,

(2.81)

the entry at the ith row and jth column in matrix Mzy for example can be computed as

(Mzy)ij = −
∫

Ωm

ρNyj ·Nzi dΩm, (2.82)

while the ith entry in vector bx for example is
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(bx)i =

∫
Ωm

f electrostatic ·Nxi dΩm +

∫
Ωm∩Ωa

δpn ·Nxi dΩ. (2.83)

i.e. the sum of the electrostatic force and the pressure force. Homogeneous Dirichlet boundary

conditions (i.e. a clamp) are applied on the bulk clamp in the reference CMUT of �gure 1.5.

2.3.3 Electrostatic force

In the continuous formulation (2.36) used to compute the electrostatic force the perturbation δu can

be extracted from the gradient when considering the �nite element approximation δux = NT δUx,

δuy = NT δUy and δuz = NT δUz in which N is the column vector de�ned in (2.66). Ux is the

column vector listing all shape function coe�cients of the δux �eld's �nite element approximation.

Using this approximation one can write:

∇δux = ∇NT δUx,

∇δuy = ∇NT δUy,

∇δuz = ∇NT δUz,

(2.84)

where ∇NT has a row for the x, y and z spatial derivatives. Injecting (2.84) in (2.36) gives:

∫
Ω∗

 fx

fy

fz


T  NT 0 0

0 NT 0

0 0 NT


 δUx

δUy

δUz

 dΩ∗ =

1

2

∫
Ω∗
ε (∇v)T


∂v
∂x 0 0 2∂v∂y − ∂v

∂x 0 2∂v∂z 0 − ∂v
∂x

−∂v∂y 2 ∂v∂x 0 0 ∂v
∂y 0 0 2∂v∂z −∂v∂y

−∂v∂z 0 2 ∂v∂x 0 −∂v∂z 2∂v∂y 0 0 ∂v
∂z



·

 ∇N
T 0 0

0 ∇NT 0

0 0 ∇NT


 δUx

δUy

δUz

 dΩ∗.

(2.85)

Since (2.85) is valid for any compatbile perturbation they can simply be removed from the equation.

Considering only the ith test function Ni we get:∫
Ω∗

[
fxNi fyNi fzNi

]
dΩ∗ =

1

2

∫
Ω∗
ε (∇v)T


∂v
∂x 0 0 2∂v∂y − ∂v

∂x 0 2∂v∂z 0 − ∂v
∂x

−∂v∂y 2 ∂v∂x 0 0 ∂v
∂y 0 0 2∂v∂z −∂v∂y

−∂v∂z 0 2 ∂v∂x 0 −∂v∂z 2∂v∂y 0 0 ∂v
∂z



·

 ∇Ni 0 0

0 ∇Ni 0

0 0 ∇Ni

 dΩ∗.

(2.86)
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Expanding (2.86) �nally shows how the discretised components of the electrostatic force can

be computed:

∫
Ω∗

[
fxNi fyNi fzNi

]T
dΩ∗ =

1

2

∫
Ω∗
ε


∂v
∂x

2 ∂Ni

∂x −
∂v
∂y

2 ∂Ni

∂x −
∂v
∂z

2 ∂Ni

∂x + 2 ∂v∂x
∂v
∂y

∂Ni

∂y + 2 ∂v∂x
∂v
∂z

∂Ni

∂z

− ∂v
∂x

2 ∂Ni

∂y + ∂v
∂y

2 ∂Ni

∂y −
∂v
∂z

2 ∂Ni

∂y + 2 ∂v∂x
∂v
∂y

∂Ni

∂x + 2∂v∂y
∂v
∂z

∂Ni

∂z

− ∂v
∂x

2 ∂Ni

∂z −
∂v
∂y

2 ∂Ni

∂z + ∂v
∂z

2 ∂Ni

∂z + 2 ∂v∂x
∂v
∂z

∂Ni

∂x + 2∂v∂y
∂v
∂z

∂Ni

∂y

dΩ∗,

(2.87)

The equation system (2.87) can readily be used to compute the contribution of the electrostatic

force to the right handside vector b in the discretised elastodynamic system (2.77). Indeed we have

the following relations

(bx)i =
∫

Ω∗
fxNidΩ∗

(by)i =
∫

Ω∗
fyNidΩ∗

(bz)i =
∫

Ω∗
fzNidΩ∗

(2.88)

2.3.4 Linear acoustics

The weak acoustic formulation (2.38) is

−
∫

Ωa

∇δp·∇δp′dΩ−
∫
∂Ωa∩∂Ωm

δp′ ρ�uid
∂2u

∂t2
·n d∂Ω−

∫
∂Ωa\∂Ωm

δp′
1

c

∂δp

∂t
d∂Ω−

∫
Ωa

1

c2
∂2δp

∂t2
δp′dΩ = 0.

(2.89)

The acoustic pressure variation δp can be discretised using (2.66) as

δp =

m∑
i=1

ciNi = NT c, (2.90)

to give a system of the formM ∂2c
∂t2 +C ∂c

∂t +Kc = b where the ith row, jth column of the sti�ness

matrix K is given by

Kij = −
∫

Ωa

∇Nj · ∇NidΩ, (2.91)

the ith row, jth column of the damping matrix C is

Cij = −
∫
∂Ωa\∂Ωm

Ni
1

c
Nj d∂Ω, (2.92)

the ith row, jth column of the mass matrix M is

M ij = −
∫

Ωa

1

c2
NjNidΩm, (2.93)
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and the ith entry of vector b is

bi = −
∫
∂Ωa∩∂Ωm

Ni ρ�uid
∂2u

∂t2
· n d∂Ω. (2.94)

2.3.5 Sensitivity matrix

The sensitivity matrix derived in (2.46) has three nontrivial terms which will contribute to the

discrete sensitivity matrix: Kuv, Kvu and Kuu.

Kuv matrix block:

In the same way as for (2.84) one can use the �nite element approximation for δu and δv and

remove the perturbation shape function coe�cient vectors δU and δV on both sides of equation

(2.53):

∫
Ω∗
δV TNKT

uv

 NT 0 0

0 NT 0

0 0 NT


 δUx

δUy

δUz

 dΩ∗ = −
∫

Ω∗
ε δV T (∇NT )T

·

 −
∂v
∂x −∂v∂y −∂v∂z −∂v∂y

∂v
∂x 0 −∂v∂z 0 ∂v

∂x
∂v
∂y − ∂v

∂x 0 − ∂v
∂x −∂v∂y −∂v∂z 0 −∂v∂z

∂v
∂y

∂v
∂z 0 − ∂v

∂x 0 ∂v
∂z −∂v∂y − ∂v

∂x −∂v∂y −∂v∂z



·

 ∇N
T 0 0

0 ∇NT 0

0 0 ∇NT


 δUx

δUy

δUz

 dΩ∗,

(2.95)

where (∇NT )T has a column for the x, for the y and for the z spatial derivatives. Since this is

valid for any δu and δv the perturbations their coe�cient vectors can be removed. The algebraic

matrix Kuv obtained after discretisation has the form

Kuv =

 Kuxv

Kuyv

Kuzv

 . (2.96)

i.e. it has a block for every component of u.

The ith row (corresponding to the displacement) and jth column (corresponding to the electric

potential) of the sub-blocksKuxv,Kuyv andKuzv in the discretised matrixKuv can be computed

by using the following relations:
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∫
Ω∗

 NjKuxv Ni

NjKuyv Ni

NjKuzv Ni

 dΩ∗ =

−
∫

Ω∗
ε



− ∂v
∂x

∂Nj

∂x
∂Ni

∂x −
∂v
∂y

∂Nj

∂x
∂Ni

∂y −
∂v
∂z

∂Nj

∂x
∂Ni

∂z + ∂v
∂y

∂Nj

∂y
∂Ni

∂x

− ∂v
∂x

∂Nj

∂y
∂Ni

∂y + ∂v
∂z

∂Nj

∂z
∂Ni

∂x −
∂v
∂x

∂Nj

∂z
∂Ni

∂z

− ∂v
∂x

∂Nj

∂y
∂Ni

∂x −
∂v
∂y

∂Nj

∂y
∂Ni

∂y −
∂v
∂z

∂Nj

∂y
∂Ni

∂z −
∂v
∂y

∂Nj

∂x
∂Ni

∂x

+ ∂v
∂x

∂Nj

∂x
∂Ni

∂y + ∂v
∂z

∂Nj

∂z
∂Ni

∂y −
∂v
∂y

∂Nj

∂z
∂Ni

∂z

− ∂v
∂x

∂Nj

∂z
∂Ni

∂x −
∂v
∂y

∂Nj

∂z
∂Ni

∂y −
∂v
∂z

∂Nj

∂z
∂Ni

∂z −
∂v
∂z

∂Nj

∂x
∂Ni

∂x

+ ∂v
∂x

∂Nj

∂x
∂Ni

∂z −
∂v
∂z

∂Nj

∂y
∂Ni

∂y + ∂v
∂y

∂Nj

∂y
∂Ni

∂z


dΩ∗.

(2.97)

Kvu matrix block:

The Kvu block corresponds to −∂
2We

∂u∂v . It is the transposition of Kuv and thus has the form

Kvu =
[
Kvux Kvuy Kvuz

]
(2.98)

i.e. it has a column for every component of u. The terms for Kvu are simply obtained by �ipping

i and j in (2.97):

∫
Ω∗

[
NiKvux

Nj NiKvuy
Nj NiKvuz

Nj

]
dΩ∗ =

−
∫

Ω∗
ε



− ∂v
∂x

∂Ni

∂x
∂Nj

∂x −
∂v
∂y

∂Ni

∂x
∂Nj

∂y −
∂v
∂z

∂Ni

∂x
∂Nj

∂z + ∂v
∂y

∂Ni

∂y
∂Nj

∂x

− ∂v
∂x

∂Ni

∂y
∂Nj

∂y + ∂v
∂z

∂Ni

∂z
∂Nj

∂x −
∂v
∂x

∂Ni

∂z
∂Nj

∂z

− ∂v
∂x

∂Ni

∂y
∂Nj

∂x −
∂v
∂y

∂Ni

∂y
∂Nj

∂y −
∂v
∂z

∂Ni

∂y
∂Nj

∂z −
∂v
∂y

∂Ni

∂x
∂Nj

∂x

+ ∂v
∂x

∂Ni

∂x
∂Nj

∂y + ∂v
∂z

∂Ni

∂z
∂Nj

∂y −
∂v
∂y

∂Ni

∂z
∂Nj

∂z

− ∂v
∂x

∂Ni

∂z
∂Nj

∂x −
∂v
∂y

∂Ni

∂z
∂Nj

∂y −
∂v
∂z

∂Ni

∂z
∂Nj

∂z −
∂v
∂z

∂Ni

∂x
∂Nj

∂x

+ ∂v
∂x

∂Ni

∂x
∂Nj

∂z −
∂v
∂z

∂Ni

∂y
∂Nj

∂y + ∂v
∂y

∂Ni

∂y
∂Nj

∂z



T

dΩ∗,

(2.99)

Kuu matrix block:

Kuu has the form

Kuu =

 Kuxux
Kuxuy

Kuxuz

Kuyux
Kuyuy

Kuyuz

Kuzux
Kuzuy

Kuzuz

 (2.100)
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i.e. it has a row and a column for every component of u. Its discretisation is based on the

calculations performed in section (2.2.5): taking the di�erence between the force computed on the

unpertubed domain Ω and on the domain Ωp perturbed by δu2 while replacing the perturbations

by their �nite element approximation δu1
x = N1TU1

x , δu
2
x = N2TU2

x as done for the electrostatic

force computation one gets:

∫
Ω∗

(δu2)T
∂f elec
∂u

δu1dΩ∗ =

∫
Ω∗

(δu2)TKuuδu
1dΩ∗ =

∫
Ω∗

 δU2
x

δU2
y

δU2
z


T  N2 0 0

0 N2 0

0 0 N2

Kuu

 N1T 0 0

0 N1T 0

0 0 N1T


 δU1

x

δU1
y

δU1
z

 dΩ∗ =

∫
Ω∗
− ε

2

 δU2
x

δU2
y

δU2
z


T  ∇N

2 0 0

0 ∇N2 0

0 0 ∇N2





2E2
x 0

0 2E2
x

0 0

2ExEy E2
x + E2

y − E2
z

−E2
x − E2

y + E2
z 2ExEy

−2EyEz 2ExEz

2ExEz 2EyEz

−2EyEz 2ExEz

−E2
x + E2

y − E2
z −2ExEy

0 2ExEy −E2
x − E2

y + E2
z −2EyEz 2ExEz

0 E2
x + E2

y − E2
z 2ExEy 2ExEz 2EyEz

2E2
x 2EyEz −2ExEz 2ExEy E2

x − E2
y + E2

z

2EyEz 2E2
y 0 0 2EyEz

−2ExEz 0 2E2
y 0 −2ExEz

2ExEy 0 0 2E2
y 2ExEy

E2
x − E2

y + E2
z 2EyEz −2ExEz 2ExEy 2E2

z

2ExEy 2ExEz 2EyEz −E2
x + E2

y + E2
z 0

2ExEz −2ExEy E2
x − E2

y − E2
z 2EyEz 0

−2EyEz −E2
x + E2

y − E2
z

2ExEz −2ExEy

2ExEy 2ExEz

2ExEz −2ExEy

2EyEz E2
x − E2

y − E2
z

−E2
x + E2

y + E2
z 2EyEz

0 0

2E2
z 0

0 2E2
z



 ∇N
1T 0 0

0 ∇N1T 0

0 0 ∇N1T


 δU1

x

δU1
y

δU1
z

 dΩ∗,

(2.101)

where
[
Ex Ey Ez

]
=
[

∂v
∂x

∂v
∂y

∂v
∂z

]
and (2.84) was used to express the �nite element

approximation of the perturbation's gradient. Again ∇N2T is a matrix with row 1 giving the
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x derivative of the row vector N2T , row 2 the y derivative and row 3 the z derivative. Since

(2.101) must hold for any δu1 and δu2 perturbation their coe�cient vectors δU1 and δU2 can

be removed. The ith row, jth column of the discretised submatrices in Kuu is given by:

∫
Ω∗

 NjKuxux
Ni NjKuxuy

Ni,x NjKuxuz
Ni

NjKuyux
Ni NjKuyuy

Ni NjKuyuz
Ni

NjKuzux
Ni NjKuzuy

Ni NjKuzuz
Ni

 dΩ∗ =

∫
Ω∗
− ε

2



2E2
x
∂Nj

∂x
∂Ni

∂x + 2E2
x
∂Nj

∂y
∂Ni

∂y + 2E2
x
∂Nj

∂z
∂Ni

∂z

[2ExEy
∂Nj

∂x + (E2
x + E2

y − E2
z )
∂Nj

∂y + 2EyEz
∂Nj

∂z ]∂Ni

∂x

+[(−E2
x − E2

y + E2
z )
∂Nj

∂x + 2ExEy
∂Nj

∂y − 2ExEz
∂Nj

∂z ]∂Ni

∂y

+[−2EyEz
∂Nj

∂x + 2ExEz
∂Nj

∂y + 2ExEy
∂Nj

∂z ]∂Ni

∂z . . .

[2ExEz
∂Nj

∂x + 2EyEz
∂Nj

∂y + (E2
x − E2

y + E2
z )
∂Nj

∂z ]∂Ni

∂x

+[−2EyEz
∂Nj

∂x + 2ExEz
∂Nj

∂y + 2ExEy
∂Nj

∂z ]∂Ni

∂y

+[(−E2
x + E2

y − E2
z )
∂Nj

∂x − 2ExEy
∂Nj

∂y + 2ExEz
∂Nj

∂z ]∂Ni

∂z

. . .

[2ExEy
∂Nj

∂x + (−E2
x − E2

y + E2
z )
∂Nj

∂y − 2EyEz
∂Nj

∂z ]∂Ni

∂x

+[(E2
x + E2

y − E2
z )
∂Nj

∂x + 2ExEy
∂Nj

∂y + 2ExEz
∂Nj

∂z ]∂Ni

∂y

+[2EyEz
∂Nj

∂x − 2ExEz
∂Nj

∂y + 2ExEy
∂Nj

∂z ]∂Ni

∂z

2E2
y
∂Nj

∂x
∂Ni

∂x + 2E2
y
∂Nj

∂y
∂Ni

∂y + 2E2
y
∂Nj

∂z
∂Ni

∂z . . .

[2EyEz
∂Nj

∂x − 2ExEz
∂Nj

∂y + 2ExEy
∂Nj

∂z ]∂Ni

∂x

+[2ExEz
∂Nj

∂x + 2EyEz
∂Nj

∂y + (−E2
x + E2

y + E2
z )
∂Nj

∂z ]∂Ni

∂y

+[−2ExEy
∂Nj

∂x + (E2
x − E2

y − E2
z )
∂Nj

∂y + 2EyEz
∂Nj

∂z ]∂Ni

∂z

. . .

[2ExEz
∂Nj

∂x − 2EyEz
∂Nj

∂y + (−E2
x + E2

y − E2
z )
∂Nj

∂z ]∂Ni

∂x

+[2EyEz
∂Nj

∂x + 2ExEz
∂Nj

∂y − 2ExEy
∂Nj

∂z ]∂Ni

∂y

+[(E2
x − E2

y + E2
z )
∂Nj

∂x + 2ExEy
∂Nj

∂y + 2ExEz
∂Nj

∂z ]∂Ni

∂z

[−2EyEz
∂Nj

∂x + 2ExEz
∂Nj

∂y − 2ExEy
∂Nj

∂z ]∂Ni

∂x

+[−2ExEz
∂Nj

∂x + 2EyEz
∂Nj

∂y + (E2
x − E2

y − E2
z )
∂Nj

∂z ]∂Ni

∂y

+[2ExEy
∂Nj

∂x + (−E2
x + E2

y + E2
z )
∂Nj

∂y + 2EyEz
∂Nj

∂z ]∂Ni

∂z

2E2
z
∂Nj

∂x
∂Ni

∂x + 2E2
z
∂Nj

∂y
∂Ni

∂y + 2E2
z
∂Nj,z

∂z
∂Ni

∂z



dΩ∗,

(2.102)

where Ni ≡ N1
i and Nj ≡ N2

j to have a shorter formulation.
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2.4 Resolution schemes for the nonlinear coupling

Coupling the electrostatic (2.6) and elastodynamic (2.16) formulations together brings in non-

linearity as illustrated in section 1.5. The coupling is nonlinear because the electrostatic force

depends nonlinearly on the electric �eld which depends on the mechanical deformation which itself

depends on the electrostatic force. In case of very small displacements one could linearize the

problem by considering that the electrostatic force and electric �eld do not change with the tiny

deformation. When close to the pull-in voltage however the mechanical displacement can not be

neglected, even though the deformations are still small enough to use linear elasticity. This is due

to the particularly long shape of the vibrating membrane.

Solving the electroelastoacoustic (2.6)-(2.16)-(2.38) coupled nonlinear problem can be achieved

in two main ways:

� Staggered/weak resolution [88]: solve the formulations independently at every nonlinear it-

eration while using the �elds of the previous solved formulation as input for the next one

� Monolithic/strong resolution [3]: Solving the whole coupled problem at every nonlinear it-

eration, using Newton's method for faster convergence. This uses the sensitivity matrix

discretised in section 2.3.5

When getting closer to the pull-in voltage the nonlinearity gets stronger and the staggered approach

requires much more nonlinear iterations than Newton's method as illustrated in �gure 2.2. The

�gure shows the number of nonlinear iterations required for both nonlinear resolution methods

as the time-independent electrode-to-ground excitation voltage is increased. The computation is

performed on the reference CMUT geometry of �gure 1.5 (no �uid considered). Fot the same test

settings with 105 V electrode-to-ground electrical excitation the nonlinear relative residual history

is displayed in �gure 2.3. In either resolution method the nonlinear relative residual is computed

on the coupled electrostatic-elastodynamic formulation (2.6)-(2.16) at nonlinear iteration k as

‖b(xk) −A(xk)xk

b(x0) −A(x0)x0
‖2, (2.103)

where A(x)x = b(x) is the algebraic system corresponding to the �nite element discretised

electrostatic-elastodynamic problem and x0 is an initial guess described in section 2.4.3. Quantity

x includes the coe�cients ci in the �nite element discretisation of the electric potential �eld (2.66)

and of the mechanical displacement �eld (2.75). For reasonably low voltages the staggered resolu-

tion approach is the best choice since every iteration is lightweight compared to a Newton iteration.

Beyond a certain voltage however the overhead associated to Newton's method is overcompensated

by the dramatic reduction of the iteration count.

2.4.1 Staggered resolution

The staggered approach to solve the nonlinear electroelastoacoustic coupling consists in solving

alternatively the electrostatic formulation (2.6) and the coupled elastoacoustic formulation (2.16)-

(2.38) . At the end of every nonlinear iteration, i.e. after having solved the elastoacoustic formu-

lation the mesh has to be deformed by the mechanical displacement u so that the electrostatic
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Figure 2.2: Number of nonlinear iterations to reach a 10−8 relative residual versus electrode to
ground excitation voltage (V ) for a staggered resolution scheme and a Newton iteration on the
reference CMUT geometry of �gure 1.5 (no �uid considered).
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Figure 2.3: Nonlinear relative residual versus number of iterations for a staggered resolution scheme
and Newton's iteration close to the pull-in voltage on the reference CMUT geometry of �gure 1.5
(no �uid considered).
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Figure 2.4: CMUT vacuum gap mesh smoothly deformed by a Laplacian resolution. Height is
exagerated for illustration.

formulation and the electrostatic forces (2.87) are computed on the deformed mesh. Because no

displacements are de�ned in the vacuum gap under the membrane (illustrated in �gure 1.5) and

because the membrane displacement can be a quite large portion of the gap height the gap mesh

elements could be distorded. To �x this a Laplace equation is numerically solved for every space

coordinate x, y and z in the vaccum gap Ωv:

∆umesh,x = 0 on Ωv,

∆umesh,y = 0 on Ωv,

∆umesh,z = 0 on Ωv,

umesh = u on Ωm ∩ Ωv,

(2.104)

with Dirichlet constraints on the solid-vacuum interface Ωm∩Ωv. Figure 2.4 illustrates the smooth

mesh that is obtained with (2.104).

At every outer staggered nonlinear iteration the elastoacoustic problem (2.16)-(2.38) itself can

either be solved at once in a coupled fashion or iteratively until convergence. The latter resolution

method requires the least amount of memory resources and has thus been investigated. Unfortu-

nately the convergence of such weakly coupled structure-acoustic problems can be hard to achieve

[39], in particular for sti� structures with a high acoustic coupling. In this thesis it has been ob-

served that with air the problem converges when not too close to resonance while it diverges with

water, even with relaxation methods. For that reason the strongly-coupled elastoacoustic resolu-

tion will be preferred. Even with this resolution method however the acoustic coupling with a very

sti� structure still causes problems: the resulting algebraic system to solve has a bad conditionning

[39] of up to 1030. Fortunately this can be dramatically improved by rescaling the acoustic pressure

force term in (1.22) whose sti�ness terms are orders of magnitudes smaller than the other terms

in the elastodynamic formulation (2.16). Using the same notation as in (1.22) the two coupling

terms in the elastoacoustic formulation are changed as follows:

−
∫

Ωa∩Ωm

ρ�uid
∂2u

∂t2
· n δp′ d∂Ω→ −

∫
Ωa∩Ωm

1

a
ρ�uid

∂2u

∂t2
· n δp′ d∂Ω, (2.105)

∫
Ωm∩Ωa

δpn · u′dΩ→
∫

Ωm∩Ωa

a δpn · u′dΩ, (2.106)

where a is a large constant scalar, e.g. 1010. In other words the vibrating membrane pressure source

is factor a weaker (2.105) and so is the acoustic pressure but the force applied on the mechanical

membrane is a times stronger (2.106) to compensate. This increases the sti�nesses associated to
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term
∫

Ωm∩Ωa

a δpn ·u′dΩ to something more comparable to the other mechanical sti�nesses. The

actual pressure is then simply a δp.

2.4.2 Newton's method

Solving iteratively the nonlinear discretised electroelastoacoustic algebraic system A(x)x = b(x)

with Newton's method is done by updating at every iteration k the unknown �eld x as follows:

J(xk)dx = b(xk)−A(xk)xk,

xk+1 = xk + dx,

xk=0 = x0,

(2.107)

where J is the iteration Jacobian matrix of Newton's iteration. Matrix J is equal to the sensitivity

matrix discretised in section 2.3.5, obtained as a sum of A and extra terms coming from the

linearisation around the kth iterate of the nonlinear terms. In the electroelastoacoustic problem

considered A is obtained by generating the electrostatic (2.6), the elastodynamic (2.16) and the

acoustic (2.38) systems in a same formulation using the �nite element method. J is then obtained

by adding toA the Jacobian termsKuv,Kvu andKuu whose �nite element discretised expression

can be found in section 2.3.5.

Similarly to the staggered resolution method the mesh is smoothly deformed by solving (2.104)

after (2.107) at every nonlinear iteration. Doing so however changes the node coordinates in the

mesh without adjusting the associated electric potentials. This leads to a noisy dx update in

(2.107) since the electric potentials computed at the previous nonlinear iteration were computed

on the mesh as it was before smoothing. As a consequence convergence slows down as can be seen

in �gure 2.5. This problem is easily �xed by recomputing the electric potential on the electric mesh

region where no mechanical displacements are de�ned Ωe\Ωm: Solve (2.6) on Ωe\Ωm,

v = vΩm
on Ωm.

(2.108)

2.4.3 Initial guess

The proposed iterative nonlinear resolution schemes require an initial guess x0 =
[
u0 v0 δp0

]T
for the mechanical displacement u, the electric potential v and the acoustic pressure δp0. An

inapropriate choice can lead to the divergence of the algorithm. As an example the following

initial guess on the reference geometry (�gure 1.5)



u0 = 0 on Ωm,

v0 = 0 on Ωe,

v0 = 105 V on Ωelectrode,

δp0 = 0 on Ωa

(2.109)
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Figure 2.5: Nonlinear relative residual versus number of iterations for Newton's iteration close
to the pull-in voltage when the mesh is smoothed at every nonlinear iteration with or without
subsequent electrostatic �eld update.

brings the CMUT membrane beyond pull-in at the �rst iteration even though in the actual solution

it is not. This happens because the electric �eld computed with the �nite element method will

be huge right below the electrode, leading to too high electric forces. The following initial guess

is used throughout the thesis: u0 = 0 on Ωm and v0 is the solution of (2.6) when the electric

potential is �xed to the electrical excitation on the electrode and to 0 on the electric ground. The

pressure δp0 is initially set to zero on its domain. This leads to more realistic electric forces and

to a smooth convergence.

2.4.4 Diagonal scaling

It is known [89] that the monolithic coupling of electromechanical formulations can have a bad con-

ditionning. This is not hard to imagine given the huge di�erence between the electric permittivity

of the order of 10−12 and Young's modulus here of the order 1010. The eigenvalues of the electric

system are much smaller than the mechanical ones as illustrated in �gure 2.6 (two top plots). This

leads to a very large condition number.

In order to improve the conditionning a diagonal scaling is used (in addition to (2.105) and

(2.106) for electroelastoacoustic problems). The diagonal scaling for a general algebraic matrix

Ax = b is as follows:

De�ne a diagonal matrix P which is the inverse of the square root of the diagonal of A:

Pij =
1√
|Aij |

δij , (2.110)

where δij is the Kronencker delta. De�ning
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Figure 2.6: All eigenvalues for the elasticity (2.16) and electrostatic (2.6) formulations without
(two top) and with (two bottom) diagonal scaling.
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Ã = PAP ,

b̃ = Pb,
(2.111)

one solves for x̃: Ãx̃ = b̃ and the solution vector x is x = P x̃. With the diagonal scaling the A

matrix to invert is replaced by a better conditionned scaled matrix Ã whose elements are

Ãij =
1√
|Aii|

Aij
1√
|Ajj |

, (2.112)

which brings the electrostatic and elastodynamic sti�nesses closer to each other. This results in

more comparable eigenvalues as can be seen in �gure 2.6 (two bottom plots).

2.5 Optimal mesh size and interpolation order

Creating an optimised mesh is fundamental in the �nite element method to get an accurate solution

at the lowest possible computational cost. As an example on the reference CMUT model in �gure

1.5 it does not make sense to mesh the vacuum gap with a very �ne mesh if the membrane is

not �nely meshed as well. Selecting the appropriate interpolation order in the �nite element

discretisation of the �elds (refer to section 2.3.1) is also of crucial importance to keep the size of

the algebraic systems to solve low while still getting an accurate solution. This section gives an

idea of the best combination of the interpolation order and mesh size parameters for a realistic

membrane de�ection shape. Results are only shown for the electroelastic problem as the �uid

region in this thesis is obtained for simplicity via an extrusion of the CMUT membrane and can

thus hardly lead to an optimal mesh. Because the mesh used is a structured quadrangular mesh

in 2D, structured hexahedral mesh in 3D, there are three parameters to tweak: the number of

mesh layers vertically in the vacuum gap, vertically in the membrane and horizontally. The mesh

of the reference CMUT in �gure 1.5 is optimised for an electroelastic (2.6)-(2.16) problem with

a time-independent electrical excitation voltage of 10 V . The Matlab code used imposes same

interpolation orders for the mechanical displacement u and for the electric potential v.

Figure 2.7 shows the mechanical displacement u versus interpolation order (1 through 6) for a

coarse horizontal mesh with only 10 element layers on the membrane (uniform divisions are used).

As can be seen an order 1 interpolation leads to a very sti� membrane whose deformation is far

below the actual deformation while order 2 provides a much better approximation. For order 3 and

beyond the deformations are accurate and the de�ections are visually the same. Table 2.1 shows

the convergence to the actual maximum mechanical displacement (0.812 nm) as the interpolation

order and the mesh density are increased. The top table shows a sweep of the number of vertical

element layers in the vacuum, the middle table shows a sweep of the number of vertical element

layers in the membrane while the bottom table shows a sweep of the number of horizontal element

layers. In any case the sweep is on a single mesh parameter while the two other parameters are

chosen �ne enough to remove their in�uence.

As can be seen on table 2.1 a good compromise between accuracy and computational cost for

any interpolation order seems to be to mesh the vacuum gap with a single vertical element layer.

The membrane seems however to be best meshed with 2 or even 3 order 1 element layers vertically
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Figure 2.7: Exagerated membrane displacement for the reference CMUT illustrated in �gure 1.5
versus interpolation order (1 through 6) for a coarse horizontal mesh (10 element layers horizontally
on the membrane). The electroelastic problem (2.6) - (2.16) is solved for a time-independent
electrode-to-ground electrical excitation.
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Table 2.1: For the electroelastic problem (2.6)-(2.16) on the reference CMUT illustrated in �gure
1.5 the tables show the maximum mechanical displacement u nm versus interpolation order and
versus number of vertical element layers in the vacuum gap (top), number of vertical element
layers in the membrane (middle), number of horizontal element layers (bottom). Actual maximum
displacement is 0.812 nm.

# vertical vacuum layers 1 2 3

Order 1 0.805 0.809 0.810

Order 2 0.810 0.812 0.812

Order 3 0.811 0.812 0.812

# vertical membrane layers 1 2 3 4 5

Order 1 0.746 0.794 0.804 0.808 0.809

Order 2 0.811 0.812 0.812 0.812

Order 3 0.812 0.812 0.812

# horizontal layers 3 10 42 63 120 240 480 960

Order 1 0.021 0.073 0.502 0.636 0.762 0.798 0.807 0.810

Order 2 0.381 0.787 0.809 0.810

Order 3 0.726 0.809 0.812

Order 4 0.713 0.812

while a single layer is here again enough for higher order elements. As for the best number of

horizontal element layers on the membrane, as few as 3 elements with order 3 interpolation can be

used if an up to 10% error is acceptable. A much better approximation can however be obtained

with 10 order 3 element layers horizontally. For order 2 a similar accuracy is obtained with about

42 elements while up to a thousand are required for a �rst order interpolation: this amounts to

roughly a factor 20 increase in the number of horizontal layers.

The analysis done in this section still makes sense for dynamical excitations as long as only the

�rst membrane vibration mode is excited.

2.6 Mesh used for the reference geometry

For the reference geometry of �gure 1.5 the 2D meshed �uid region on top of the membranes is

box-shaped and illustrated (not to scale) on �gure 2.8. It is truncated horizontally at 4 membrane

length, i.e. 200µm on the left and right side of the 2D membrane array and at 10 membrane

length, i.e. 500µm from the membrane top in the vertical direction. The mesh is structured, made

of quadrangles. The mesh of the �uid region that lies above the membranes is extruded from the

membrane mesh with 80 layers. The membrane, the vacuum gap and the bulk all have 2 vertical

mesh element layers. The support pillars have 4 horizontal element layers while the membrane has
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4 membrane-lengths 4 membrane-lengths

Figure 2.8: Illustration of the displacement �eld (exagerated), the corresponding acoustic pressure
�eld in the �uid and the electric potential �eld for an array of two reference membranes detailed
on �gure 1.5. The �uid box is not to scale. Its height is 10 membrane-lengths.

23. The �uid boxes surrounding the membrane on the left and right side both have 65 horizontal

element layers. The total number of quadrangles in the mesh is 12735.

When using order 3 interpolations on the proposed mesh to get the maximum mechanical dis-

placement versus frequency plot in the settings used in �gure 1.8 one gets an excellent accuracy

both because the mesh is dense enough and because the �uid box size is large enough to decrease

su�ciently the �uid truncation e�ects: for frequencies ranging from 100 kHz to 4 MHz the maxi-

mum displacement of the constant de�ection, the in-phase vibration and the quadrature vibration

all have an accuracy better than 1%. Furthermore the �rst resonance peak only moves by 2 kHz,

i.e. 0.1% when doubling the �uid box size and the mesh density in each direction.
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Chapter 3

Steady state time resolution

This chapter describes an automatic multiharmonic resolution method to get the steady state

solution in time and compares it to the classical Newmark time stepping method. After a review

of the Newmark method the multiharmonic resolution method is �rst detailed on a 1D electrostatic

problem on a vibrating mesh. Its application to the simulation of CMUTs is then described. Finally

the suitability of both methods is assessed for the reference 2D CMUT model.

3.1 Steady state analysis

To de�ne and illustrate what steady state is consider the CMUT lumped model of �gure 1.3.

In order to predict the dynamic de�ection the mass m (kg) of the membrane has to be taken

into account. Additionally a damping term has to be added to take into account the power

radiated by the emitted pressure waves and any other source of losses: for simplicity a damping

proportional to the membrane speed is used in the following illustrations. As a result a damped

spring-mass system is obtained (�gure 3.1). The equivalent mass can be computed with [18]:

m = 1.84π a2 h ρSi = 4 · 10−12 kg.

u(t)

ex

u0
ε0 k c v(t)

m

Figure 3.1: Lumped model of a membrane electrically actuated by a time-dependent voltage v(t).

Adding the inertia forces m∂2u
∂t2 and damping forces c∂u∂t to (1.21) gives the updated equilibrium

equation

− k u− 1

2
ε0

v2

(u0 + u)2
A− c∂u

∂t
−m∂2u

∂t2
= 0, (3.1)

where the damping coe�cient c = 6 · 10−6 (Ns/m) has been exagerated for illustration.

When a periodic electrical excitation is applied to an initially unexcited CMUT membrane at
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Figure 3.2: Membrane de�ection u(t) versus time for an electrical excitation v(t) = 10+1 ·sin(2π ·
800000t) V applied to the system at rest.

rest (�gure 3.2) the membrane �rst vibrates in an aperiodic fashion before the vibration is damped

enough and settles to a periodic waveform: the steady state. The aperiodic signal is the transient

state. For CMUTs it can last much longer than illustrated. As can be seen in the �gure the

transient state can overshoot, reaching de�ections that are not reached in steady state.

In order to evaluate the crosstalk deteriorating the imaging performance of a CMUT array one

may electrically excite a given membrane in the array and compute the perturbation induced on

the other membranes. The electrical excitation can be a pulse with a high spectral content or can

be made up of a single or a few harmonics to catch the behaviour at or around a speci�c frequency

f0. In the latter case, adopted in this work, the periodic steady state solution is of interest rather

than the non-periodic transient solution.

The following two sections propose methods to get the steady state solution. The �rst method

does it without taking advantage of the periodic behaviour while the second one does.

3.2 Newmark's time stepping method

In this work second order time dependant systems will be obtained:

M
∂2φ(x, t)

∂t2
+C

∂φ(x, t)

∂t
+Kφ(x, t) = f, (3.2)

whereM is the mass matrix containing the inertia terms, C the damping matrix, K the sti�ness

matrix and f the external sources. For a nonlinear problem M , C, K and f are functions of

space and time. The mass matrixM for the time-dependent elastodynamic problem was obtained

in (2.82), the sti�ness matrix K was obtained in (2.81) and the forces in (2.83). For the time-

dependent acoustic problem M is obtained from (2.93), C from(2.92) and K from (2.91).
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Table 3.1: Typical parameter pairs (γ, β) for the Newmark algorithm

γ β Algorithm name Convergence order Stability

0 0 Explicit 2 unstable

1/2 0 Centered di�erence 2 cond. stable

1/2 1/12 Fox & Goodwin 3 cond. stable

1/2 1/6 Linear acceleration 2 cond. stable

1/2 1/4 Constant acceleration 2 uncond. stable

t
φn−2(x)

t− 2δt

φn−1(x)

t− δt

φn(x)

t

φn+1(x)

t+ δt

Figure 3.3: Solution �eld φ at every discrete time value.

System (3.2) can be solved very generally (even for transients) by advancing from the solution

φn at one time step to the next one φn+1 (as illustrated in �gure 3.3) with a time stepping method

such as Newmark's method [90, 91]:

(M + γδtC + βδt2K)φn+1(x) = (2M − (1− 2γ) δtC − (
1

2
+ γ − 2β) δt2K)φn(x)

+ (−M − (γ − 1) δtC − (
1

2
− γ + β) δt2K)φn−1(x)

+ δt2(βfn+1 + (
1

2
+ γ − 2β)fn + (

1

2
− γ + β)fn−1),

with all zero initial conditions used in this work. Variable δt (s) is the time step in the time-

discretisation (supposed constant in this work): a solution is computed at every time step δt. For

an accurate solution it should be small enough. Variables φn+1, φn and φn−1 are the unknown

�elds at the next, the current and the previous time steps respectively. Parameters γ and β can

be used to tune the properties of Newmark's method [92].

Table 3.1 lists typical choices of parameters (γ, β). Choosing β = 1
4 and γ = 1

2 supposes that

the acceleration is constant during each time step δt. This set of parameters leads to an uncondi-

tionally stable algorithm, i.e. the error at a given instant t on the solution φ will be damped in

the next time steps, no matter how large the time step δt is [93]. For all other conditionally stable

algorithms, stability is not unconditional, it is only obtained with conditions on δt. Furthermore

it is worth noting that the choice β = 1
4 and γ = 1

2 introduces in theory no error on the solution

magnitude, only on its phase.
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3.3 An automatic multiharmonic resolution

In section 3.2 a method was detailed to compute the solution in time of general problems, including

their steady state solution. Unfortunately with this method the transient state has to be �rst time

stepped through before the steady state is obtained, approximately. For linear problems with a

single or a few excitation frequencies a harmonic approach can be preferred: because the steady

state is periodic in time with a period 1
f0

all �elds can be written in terms of their Fourier series

φ(x, t) =

∞∑
k=0

φsk(x) sin(ωkt) + φck(x) cos(ωkt), (3.3)

where ωk = 2πkf0, or as used in practice in terms of complex valued phasors φ(x)

φ(x, t) =

∞∑
k=0

<
(
φk(x) ei ωkt

)
, (3.4)

where φk(x) = φsk(x) − i φck(x) and i =
√
−1. Due to linearity all frequencies are uncoupled so

that phasor �eld φk (or alternatively �elds φsk(x) and φck(x)) can be computed for every index k

separately by using the harmonic equivalent of (3.2)

− ω2
kM φk(x) + iωkC φk(x) +K φk(x) = f, (3.5)

for which the time-dependency is removed. Phasor �eld φk(x) is then obtained by solving

(−ω2
kM + iωkC +K)φk(x) = f. (3.6)

The harmonic approach just described can be readily used to compute the vibration of the reference

CMUT of �gure 1.5 for an electrical excitation v(t) = V + δv(t) (V) with δv ≪ V since this

corresponds to a linear vibration around a static de�ection. For illustration consider the lumped

model in (3.1): the only nonlinear term v2

(u0+u)2 can be linearised with an excitation v(t) = V +δv(t)

as

v2

(u0 + u)2
=

(V + δv)2

(u0 + U + δu)2
≈ V 2 + 2V δv

(u0 + U)2
(3.7)

if δv ≪ V and thus δu≪ U and δu≪ u0 as well.

The actual nonlinear equation (3.1) was solved for an electrical excitation v(t) = 10 + 1 ·
sin(2π 800000t) V. The steady state de�ection u versus time is plotted in �gure 3.4 (top) along

with its Fourier series computed on a single period (bottom). As expected, for the tiny 1 V

alternating voltage added to the 10 V bias only the excitation frequencies appear on the Fourier

plot, the other ones are much smaller: the vibration is linear. It is worth noting that the constant

harmonic is 5 times stronger than the vibration harmonic which is in good agreement with the

linear approximation (3.7). When the excitation voltage is v(t) = 10 + 10 · sin(2π 800000t) or even

higher with v(t) = 60 + 60 · sin(2π 800000t) V however the vibration clearly becomes nonlinear as

shown in �gure 3.5 and 3.6. Because of the nonlinearity the frequencies in the Fourier series of the

mechanical displacement and electric potential are coupled and new harmonics appear.
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Figure 3.4: De�ection u(t) versus time (top) and corresponding Fourier series (bottom) for an
electrical excitation v(t) = 10 + 1 · sin(2π · 800000t) V in the lumped model (3.1).

As has been observed in �gure 3.6 the harmonic approach described above can not be used

for nonlinear problems anymore: instead the more general multiharmonic or harmonic balance

method can be used. In this method the �elds are still decomposed with a Fourier series as done

in (3.3) but the harmonics considered are not anymore only those of the excitation �eld since new

harmonics can appear. A �eld is instead approximated by a truncated Fourier series including as

many as possible of the dominant harmonics:

φ(x, t) =

N∑
k=0

φsk(x) sin(ωkt) + φck(x) cos(ωkt). (3.8)

For the lumped model (3.1) with v(t) = 10 + 10 · sin(2π 800000t) V it can be seen from �gure

3.5 that a good approximation of the de�ection u can be obtained with

u(t) = uc0 + us1 sin(ω1t) + uc2 cos(ω2t). (3.9)

where ω1 = 2π ·800000t and ω2 = 2 ·2π ·800000t. Moreover since the largest u harmonic de�ection

is 1 nm, much smaller than u0, relation (3.1) can be simpli�ed to

− k u− 1

2
ε0
v2

u2
0

A− c∂u
∂t
−m∂2u

∂t2
≈ 0, (3.10)
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Figure 3.5: De�ection u(t) versus time (top) and corresponding Fourier series (bottom) for an
electrical excitation v(t) = 10 + 10 · sin(2π · 800000t) V in the lumped model (3.1).

In the multiharmonic method, to obtain the three unknown harmonic coe�cients uc0, us1 and uc2
the �eld u in (3.10) is replaced by its Fourier truncation:

−k uc0 − k us1 sin(ω1t)− k uc2 cos(ω2t)− 100
2 ε0

1+2 sin(ω1t)+sin2(ω1t)
u2
0

A

−c ω1 us1 cos(ω1t) + c ω2 uc2 sin(ω2t) +mω2
1 us1 sin(ω1t) +mω2

2 uc2 cos(ω2t) = 0,

(3.11)

a simple form that could only been obtained because in (3.10) the impact of u on the electrode

to ground distance is neglected. For higher excitation voltages this does not hold anymore and

section 3.3.1 will present a technique to deal with the full 1
(u0+u)2 term.

Using the trigonometry identity sin2(α) = 1−cos(2α)
2 to rewrite (3.11) gives:

−k uc0 − k us1 sin(ω1t)− k uc2 cos(ω2t)− 50 ε0
1
u2
0
A− 50 ε0

2 sin(ω1t)
u2
0

A− 50 ε0
1−cos(ω2t)

2u2
0

A

−c ω1 us1 cos(ω1t) + c ω2 uc2 sin(ω2t) +mω2
1 us1 sin(ω1t) +mω2

2 uc2 cos(ω2t) = 0.

(3.12)

Since (3.12) is valid for any time t one can extract an equation for every sine and cosine term.
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Figure 3.6: De�ection u(t) versus time (top) and corresponding Fourier series (bottom) for an
electrical excitation v(t) = 60 + 60 · sin(2π · 800000t) V in the lumped model (3.1).

Keeping only the equations corresponding to the Fourier truncation of u, that is the equation for

the constant terms, the sin(ω1t) terms and the cos(ω2t) terms gives



− k uc0 − 50 ε0
1

u2
0

A− 50ε0
1

2u2
0

A = 0,

− k us1 − 50 ε0
2

u2
0

A+mω2
1 us1 = 0

− k uc2 + 50 ε0
1

2u2
0

A+mω2
2 uc2 = 0,

(3.13)

i.e. three equations for the three unknown Fourier coe�cients. The coe�cients can �nally be

computed:


uc0 = −0.74 nm,

us1 = −1.03 nm

uc2 = 0.29 nm,

(3.14)

which matches closely the coe�cients obtained in �gure 3.5.

In the hypothesis of u ≪ u0, i.e. for low excitation voltages the equations (3.13) giving the

Fourier coe�cients of the de�ection u do not exhibit coupled harmonics. Once the hypothesis is

61



removed (as will be seen in section 3.3.1) however all harmonics become coupled. For 2N + 1

harmonics the system to solve is thus 2N + 1 times larger.

The multiharmonic method has already been investigated in several �elds [94, 95, 96, 97, 98,

99, 100]. Its e�ective use on large scale applications is however impeded by two main factors.

On the one hand the derivation of the equation terms in the multiharmonic formulation (even

for a number of harmonics considered 2N + 1 equal 3) can become extremely tedious when done

manually. On the other hand the size of the nonlinear system is multiplied by 2N + 1 compared

to the time-domain approach. The �rst issue is adressed by using an automatic implementation of

[101, 102] using symbolic computation. Concerning the second issue it has been shown in [103] that

the convergence of the Fourier approximation is generally of order N−1 but can be much faster for

simple harmonic excitations [94, 104].

3.3.1 Application to 1D electrostatics on a vibrating mesh

Electrostatic formulation on the undeformed mesh

Let us consider a 1D electrostatic problem solved in terms of the electrostatic potential v on a

multiharmonically vibrating mesh, deformed by the mechanical displacement u. The system is

excited on an electrode via a time-harmonic Dirichlet boundary condition on the electric potential:

v = V1 sin(2πf0t). A reference potential of 0 is imposed on the ground. Let us assume that the

electric potential solution v(x, t) and the mechanical displacement u(x.t) can be approximated

by the truncated Fourier series v(x, t) = Vs1(x) sin(2πf0t) + Vs3(x) sin(3 · 2πf0t) and u(x, t) =

U c0(x) + U c2(x) cos(2 · 2πf0t), i.e. considering the second and sixth harmonic for the electric

potential and the constant term and �fth harmonic for the displacement. While this limited

expansion is chosen for the simplicity of the following analytic calculations, it already leads in

practice to very accurate numerical results. The goal of the multiharmonic resolution is to �nd the

Fourier coe�cients Vs1(x), Vs3(x), U c0(x) and U c2(x).

Since the mesh deformation u is decomposed as a sum of harmonics, integration on the mesh

deformed by u must be handled carefully. All the quantities are brought back to the undeformed

mesh [105], by introducing the change of variables for the 1D x coordinate x∗ = x + ux with

Jacobian J(x, t). Denoting by Ω the undeformed con�guration and by Ω∗ the deformed one and

using relations dΩ∗ = |J |dΩ and ∇∗ = J−1∇ leads to the following weak formulation of the

electrostatic problem: Find v in an appropriate function space such that

−
∫

Ω∗
ε (∇∗v)T∇∗v′dΩ∗ = 0, (3.15)

holds for all test functions v′ with v = v on the electrode and 0 on the ground. On the undeformed

mesh the formulation becomes

−
∫

Ω

ε (∇v)TJ−TJ−1∇v′|J |dΩ, (3.16)

with

J =
∂x∗

∂x
=

[
1 +

∂ux
∂x

]
, J−1 =

∂x

∂x∗
=

1

|J |
· [1],
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and |J | = 1 + ∂ux

∂x in this one dimensional setting. Equation (3.16) can be rewritten as:

−
∫

Ω

ε
∂v

∂x

∂v′

∂x

1

|J |
dΩ = 0. (3.17)

It should be noted that in 2D and 3D extra Jacobian terms appear. Some of those can be neglected

in small displacement applications but not in the kind of vibrating micromembrane test cases we

consider, where the displacements can be large compared to the overall geometrical dimension of

the problem. Also note that because of the abrupt change of J and |J | between a solid material

and a non-solid material like e.g. air, one should avoid any kind of averaging for the Jacobian at

these interfaces.

Multiharmonic expansion

In order to obtain the �nal multiharmonic formulation, the non-polynomial factor G(x, t) := 1
|J|

is �rst computed in weak form: Find G such that∫
Ωe

G|J |G′dΩ =

∫
Ωe

G′dΩ, (3.18)

holds for appropriate test functions G′. G itself is computed using a multiharmonic resolution. In

practice it is well approximated with the same Fourier coe�cients as for the mechanical displace-

ment: G(x, t) = Gc0(x) +Gc2(x) cos(2 · 2πf0t).

The next step could then simply be, as done in section 3.3, to symbolically replace v and 1
|J|

(and u in 2D and 3D) by their truncated Fourier expansion and then expand the whole formulation

and multiply the sines and cosines together using recursively the following four identities to leave

only sines and cosines of degree one but at higher frequencies:

cos(a) · cos(b) =
cos(a+ b)

2
+

cos(a− b)
2

,

sin(a) · sin(b) =
cos(a− b)

2
− cos(a+ b)

2
,

sin(a) · cos(b) =
sin(a+ b)

2
+

sin(a− b)
2

,

cos(a) · sin(b) =
sin(a+ b)

2
− sin(a− b)

2
.

(3.19)

Doing so at this step would however make the number of expanded symbolic terms increase dra-

matically. In 1D it can be shown that it increases as N2 because of the product between G and ∂v
∂x ,

while in 2D it increases as N4. To limit the explosion of the number of terms one can multiharmon-

ically precompute all products of terms that are known, i.e. all terms but the unknown and the

test function. Alternatively the formulation can be rewritten as a sum of products of a coe�cient

multiplying the unknown term and the shape function term and the coe�cient can be computed

via an FFT with a tunable accuracy, i.e. with a tunable number of harmonics considered. This

has the advantage to be systematic and general. Furthermore it removes the need to perform step

(3.18). The Matlab fft function or the FFTW library [106] can be called for that purpose.
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In the 1D case there is only the 1
|J| known term so that the number of symbolic terms appearing

after expansion is limited. One can immediately move to the next steps:

� replace the multiplied known term and the unknown by their truncated Fourier series

� expand the formulation

� apply time derivatives to the sines and cosines

� use (3.19) to transform the sines and cosines powers and products into sums of higher fre-

quency sines and cosines

This amounts to transforming (3.17) into:

−
∫

Ω

ε
∂v

∂x

∂v′

∂x

1

|J |
dΩ = 0

⇔−
∫

Ω

ε
∂(Vs1 sin(2πf0t) + Vs3 sin(3 · 2πf0t))

∂x

∂v′

∂x
(Gc0 +Gc2 cos(2 · 2πf0t))dΩ = 0

⇔−
∫

Ω

ε [Gc0
∂Vs1
∂x

sin(2πf0t) +Gc0
∂Vs3
∂x

sin(3 · 2πf0t) +Gc2 cos(2 · 2πf0t)
∂Vs1
∂x

sin(2πf0t)

+Gc2 cos(2 · 2πf0t)
∂Vs3
∂x

sin(3 · 2πf0t)]
∂v′

∂x
dΩ = 0

⇔−
∫

Ω

ε [(Gc0
∂Vs1
∂x
− 1

2
Gc2

∂Vs1
∂x

+
1

2
Gc2

∂Vs3
∂x

) sin(2πf0t) + (Gc0
∂Vs3
∂x

+
1

2
Gc2

∂Vs1
∂x

) sin(3 · 2πf0t)

+ (
1

2
Gc2

∂Vs3
∂x

) sin(5 · 2πf0t)]
∂v′

∂x
dΩ = 0,

(3.20)

which is valid for any time t and can thus be split into three independent equations, with the sine

terms removed. Taking the equations corresponding to the Fourier expansion of v, i.e. the terms

multipled by sin(2πf0t) and the ones multiplied by sin(3 · 2πf0t) gives an excellent approximation

of the actual electrostatic formulation and leads to the �nal multiharmonic formulation: Find Vs1
and Vs3 such that 

∫
Ω

ε (Gc0
∂Vs1
∂x
− 1

2
Gc2

∂Vs1
∂x

+
1

2
Gc2

∂Vs3
∂x

)
∂v′

∂x
dΩ = 0,

∫
Ω

ε (Gc0
∂Vs3
∂x

+
1

2
Gc2

∂Vs1
∂x

)
∂v′

∂x
dΩ = 0,

(3.21)

holds for appropriate test functions v′. This system can be rewritten in matrix form:[
KVs1Vs1

KVs1Vs3

KVs3Vs1
KVs3Vs3

][
Vs1(x)

Vs3(x)

]
=

[
b

0

]
, (3.22)

where each of the four blocks can be generated using a usual monoharmonic �nite element assem-

bler and where the right-hand-side incorporates the contribution of the nonhomogeneous Dirichlet

boundary condition.

As can be seen, even for linear electrostatic problems the harmonics Vs1 and Vs3 can be coupled if

the mesh is deformed. To understand that this makes sense simply consider a mechanical membrane
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vibrating harmonically as a sine wave and a constant applied electrostatic voltage between two

electrodes. Even though the electrostatic voltage on the electrode is constant the voltage inside

the membrane will vary with time and thus the overall voltage will have a constant component

plus a harmonic component. In case the membrane displacement is a constant or simply zero then

the electric potential harmonics are uncoupled and the o�-diagonal blocks KVs1Vs3and KVs3Vs1 are

zero as can be seen in (3.21) when Gc2 is set to zero.

Implementation aspects

When implementing the multiharmonic method in an already existing �nite element assembler

software the focus should be on reusing as much as possible what already exists and has been

validated, and modifying as little as possible of the software. With that in mind, using the excplicit

symbolic computation as throughout section 3.3.1 is desirable since it can be implemented as a

top layer orchestrating the functions available in the software API. Solving the 1D electrostatic

problem detailed above with the multiharmonic method could then be done with a pseudocode

similar to algorithm 3.1.

Algorithm 3.1 Multiharmonic resolution

// ------------------------ Define and initialise fields -----------------------

field v,u, vs1,vs3,uc0,uc2;

v.sin1 = vs1; v.sin3 = vs3;

u.cos0 = uc0; u.cos2 = uc2;

// ------------- Compute multiharmonically G as the inverse of |J| --------------

field G,detJ, Gc0,Gc2,detJc0,detJc2;

G.cos0 = Gc0; G.cos2 = Gc2;

detJ.cos0 = 1+dUc0/dx

detJ.cos2 = dUc2/dx

// Define the invjac formulation (unknown is G, test function G'):

formulation invjac;

invjac.definemultiharmonic(

∫
Ω

G(x, t)|J(x, t)|G′(x) dΩ =

∫
Ω

G′(x) dΩ );

// Assemble the algebraic system of the invjac formulation:

invjac.assemblemultiharmonic();

// Solve:

G = invjac.solve();

// --- Define the electrostatic formulation (unknown is v, test function v') ---

formulation electrostatics;

electrostatics.definemultiharmonic(

∫
Ω

− ε∂v(x, t)

∂x

∂v′(x)

∂x
G(x, t) = 0 );

// Assemble the algebraic system of the electrostatic formulation:

electrostatics.assemblemultiharmonic();

// Solve and save:

v = electrostatics.solve();

vs1.save(); vs3.save();
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Function .definemultiharmonic(string) is detailed in algorithm 3.2 along with the output

of the work done by every line when the 1D electrostatic problem is considered. The function

is written for general polynomial formulations. It fully automatically derives the multiharmonic

formulations for the required number of harmonics in every �eld. At the same time it also gives

all the required directives to the algebraic matrix assembly process so that the multiharmonic

generation is also fully automated and transparent for the user.

Algorithm 3.2 .de�nemultiharmonic(string)

string.replacefieldsbytruncations();

>> −ε ∂(Vs1 sin(2πf0t)+Vs3 sin(3·2πf0t))
∂x

∂v′

∂x (Gc0 +Gc2 cos(2 · 2πf0t))

string.expand();

>> −ε [(Gc0
∂Vs1

∂x −
1
2Gc2

∂Vs1

∂x + 1
2Gc2

∂Vs3

∂x ) sin(2πf0t) + (Gc0
∂Vs3

∂x + 1
2Gc2

∂Vs1

∂x ) sin(3 · 2πf0t)

+ ( 1
2Gc2

∂Vs3

∂x ) sin(5 · 2πf0t)]
∂v′

∂x

string.extractharmonicequations();

>>
∫

Ω
ε (Gc0

∂Vs1

∂x −
1
2Gc2

∂Vs1

∂x + 1
2Gc2

∂Vs3

∂x )∂v
′

∂x dΩ = 0

>>
∫

Ω
ε (Gc0

∂Vs3

∂x + 1
2Gc2

∂Vs1

∂x )∂v
′

∂x dΩ = 0

string.defineharmonicblocks();

>> Defining block 1, i.e. KVs1Vs1 :
>> .define(

∫
Ω
ε (Gc0

∂Vs1

∂x −
1
2Gc2

∂Vs1

∂x )∂v
′

∂x dΩ = 0 ) for unknown Vs1, test function Vs1'
>> Defining block 2, i.e. KVs3Vs1

:
>> .define(

∫
Ω
ε 1

2Gc2
∂Vs3

∂x
∂v′

∂x dΩ = 0 ) for unknown Vs3, test function Vs1'
>> Defining block 3, i.e. KVs1Vs3

:
>> .define(

∫
Ω
ε 1

2Gc2
∂Vs1

∂x
∂v′

∂x dΩ = 0 ) for unknown Vs1, test function Vs3'
>> Defining block 4, i.e. KVs3Vs3 :
>> .define(

∫
Ω
εGc0

∂Vs3

∂x
∂v′

∂x dΩ = 0 ) for unknown Vs3, test function Vs3'

Algorithm 3.3 .assemblemultiharmonic

// Call the monoharmonic assembler on the four (unknown-test function)

// blocks defined in .definemultiharmonic:

// Assemble block KVs1Vs1 :
assemble(block 1), unknown is Vs1, test function Vs1'

// Assemble block KVs3Vs1
:

assemble(block 2), unknown is Vs3, test function Vs1'
// Assemble block KVs1Vs3 :
assemble(block 3), unknown is Vs1, test function Vs3'

// Assemble block KVs3Vs3
:

assemble(block 4), unknown is Vs3, test function Vs3'
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In algorithm 3.2 .define is the usual monoharmonic �nite element de�ner available in the

software API: it processes a user entered formulation to a form understandable by the assembler.

After the .definemultiharmonic step an algebraic matrix of the form (3.22) is simply obtained

by calling .assemblemultiharmonic, detailed in algorithm 3.3, in which .assemble is the classical

monoharmonic �nite element assembler already available in the software API. The .solve step

then solves the algebraic problem (3.22). By de�ning a new unknown �eld for each harmonic of the

electric potential the already available �nite element assembler should be able without modi�cation

to assemble at the right place in matrix K all monoharmonic blocks: the existing software does

not require major modi�cations, if any at all. All what is required is to be able to perform simple

symbolic operations on strings (or equivalent techniques), which is at least partially available in

symbolic processing libraries (e.g. with the expand function in Matlab).

Timing tests have been performed on a homemade Matlab code implementing the described

explicit-symbolic multiharmonic method. For a varying number of harmonics considered in all

�elds, �gure 3.7 shows the symbolic computation time (top), matrix generation time (center) as

well as the LU decomposition time of the generated matrix (bottom) for an electrostatic problem

as well as a Newton iteration to solve the electroelastoacoutic problem on the 2D reference CMUT

model with about 12000 mesh quadrangles and a third order �nite element interpolation. Timings

for the reference 3D CMUT are provided in section 5.2. It can be seen in �gure 3.7 that the symbolic

computation time can be rather large compared to the other timings. Fortunately the symbolic

computations must only be computed once for a given Fourier truncation and do not depend on the

number of elements in the mesh. As expected the timings for the sensitivity matrix in Newton's

method are the largest, since the corresponding formulations include a large number of terms.

In any case however the operations are performed in a matter of seconds in 2D since in practice

less than 6 harmonics are required for an accurate solution. In 3D the symbolic computation

and generation times are a matter of minutes. It is worth noting in �gure 3.8 how independent

the condition number of the algebraic matrix obtained from the discretisation of the electrostatic

problem and from the sensitivity matrix is (the condition number shown is the condition number

of the diagonally scaled matrices [89]). This is a desirable property since it means that a higher

number of harmonics does not lead to an ill-conditionned algebraic matrix and thus a larger number

of harmonics can be considered to accurately simulate the very nonlinear, close to pull-in vibration.

3.3.2 Application to CMUT models

A staggered algorithm to solve the nonlinear coupled electroelastoacoustic (2.65)-(2.70)-(2.89)

problem for the simulation of CMUTs was presented in section 2.4.1. Combining this algorithm

with the multiharmonic method is straightforward once the electrostatic �eld can be computed on

a geometry deformed by the mechanical displacement, as detailed in section 3.3.1. Updating the

mechanical displacement �eld u, the acoustic pressure �eld δp and the electric potential v from

the kth iteration (uk, δpk, vk) to the (k+ 1)th iteration (uk+1, δpk+1, vk+1) of the multiharmonic

staggered algorithm is done in three steps.
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Figure 3.7: Time (s) for the symbolic multiharmonic computation (top), the matrix generation
(center) and its LU decomposition (bottom) for the electrostatic force (2.87), the electrostatic
problem (2.65) and a the sensitivity matrix (section 2.3.5) in the Newton iteration versus number
of terms in the Fourier truncation of every �eld.
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Figure 3.8: Condition number of the diagonally scaled �nite element discretised algebraic matrices
versus number of terms in the Fourier truncation of every �eld.

1. Update the electric potential �eld vk+1 (2.65) on the geometry deformed by uk as detailed

in section 3.3.1

2. Update the electrostatic forces fk+1 (2.87) (using the computed �eld vk+1) on the geometry

deformed by uk in the same way as detailed in section 3.3.1

3. Update the mechanical displacement uk+1 and acoustic pressure δpk+1 (2.70) for every fre-

quency independently with the linear harmonic resolution described in section 3.3 since the

formulation is linear. Use fk+1 as the electrostatic force

Figure 3.9 (left) shows the sparsity pattern of the discretised algebraic system of the multiharmonic

electrostatic problem to solve at step 1. The electric potential harmonics are clearly coupled

together, as already observed in (3.22). The sparsity pattern on the right would be obtained if

the elastoacoustic problem to solve at step 3 was solved with the multiharmonic resolution. The

decoupling between harmonics at di�erent frequencies can be observed: for every frequency kf0

and hf0 with k 6= h the harmonic set usk, uck, δpsk and δpck can be solved independently from

the set ush, uch, δpsh and δpch. This is a key point of the multiharmonic staggered resolution for

CMUTs since in practice the elastoacoustic problem is the computationally intensive and memory

demanding step of a staggered iteration.

Solving the nonlinear coupled electroelastoacoustic problem with Newton's method described

in section 2.4.2 is a faster converging yet computationally expensive alternative to the staggered

resolution. Once the staggered multiharmonic implementation is understood, applying the mul-

tiharmonic method to Newton's algorithm is straightforward with an automatic multiharmonic

assembler. Unsurprisingly the �nite element assembly is much more demanding in terms of com-

putational power than for the staggered multiharmonic method since the extra sensitivity matrix

(2.3.5) to generate is large and less sparse. All u, δp and v harmonics in the coupled electroelastoa-

coustic (2.65)-(2.70)-(2.89) formulation at a given Newton iteration will be coupled so that unlike

for the staggered resolution method the frequencies can not be solved independently: the size of

the problem to solve at every Newton iteration is proportional to the total sum of the number of

harmonics in every �eld.
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Figure 3.9: Sparsity pattern of the multiharmonic electrostatic sti�ness matrix (left) and the
multiharmonic elastoacoustic sti�ness matrix (right) for 5 harmonics per unknown �eld (4 for the
pressure �eld).

For both the staggered algorithm and Newton's method it is interesting to investigate the

dependency of the nonlinear convergence rate on the number of harmonics considered in the electric

potential v, in the mechanical displacement u and in the pressure �eld δp. Figure 3.10 shows

the convergence history for an increasing number of harmonics in every �eld when the staggered

multiharmonic algorithm is used to simulate the reference 2D CMUT of �gure 1.5 with an electrical

excitation voltage v(t) = 40 + 40 · sin(2π · 800000t) V on the left membrane and v(t) = 40 V on the

right one. A same number of harmonics is used for �elds v, u and δp. It appears that the nonlinear

convergence rate of the staggered method is una�ected by an increase in the number of harmonics

considered. With the same settings, �gure 3.11 however shows a di�erent behaviour for Newton's

method: the convergence rate improves as the number of harmonics considered increases. When

only the number of harmonics for v increases (bottom) the same strong improvement is observed:

for only two electric potential harmonics the convergence is not quadratic but for 5 harmonics it

becomes quadratic. This e�ect can be attributed to the way the multiharmonic Newton Jacobian

matrix is computed: since it contains nonlinear terms it can not be computed exactly for a limited

number of harmonics. The sti�ness matrices of the electrostatic and elastoacoustic formulations

however can be exactly computed since the formulations are linear.

3.3.3 Illustration on the reference nonlinear 2D CMUT model

We consider the reference 2D CMUT model of �gure 1.5. In practical CMUT applications a

close-to-linear vibration is achieved by adding a tiny alternating voltage (e.g. 1% of the pull-in

voltage) to a big constant excitation voltage (e.g. 90% of the pull-in voltage). Here however the

nonlinear behaviour is put to the fore by applying a larger than usual alternating voltage. In the

current test case an electrode-to-ground excitation of v(t) = 40 + 40 sin(2π · 800000 t) V with a

strong alternating voltage is applied to the left membrane and v(t) = 40 V is applied on the right

one. The pull-in voltage is of about 110 V and the �rst mode resonance at about 1 MHz: the

behaviour should thus be clearly nonlinear and close to resonant. Similarly to (3.8) the mechanical
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Figure 3.10: Convergence history when the staggered algorithm is used to solve the nonlinear
electroelastoacoutic problem of the reference CMUT in �gure 1.5.

displacement �eld u, the pressure �eld δp and the electric potential �eld v are decomposed as

u(x, t) = U c0(x)+U s1(x) sin(2πf0t)+U c1(x) cos(2πf0t)+U s2(x) sin(4πf0t)+U c2(x) cos(4πf0t)+...,

(3.23)

for the mechanical displacement �eld u,

δp(x, t) = δPc0(x)+δPs1(x) sin(2πf0t)+δPc1(x) cos(2πf0t)+δPs2(x) sin(4πf0t)+δPc2(x) cos(4πf0t)+...,

(3.24)

for the acoustic pressure �eld δp and

v(x, t) = Vc0(x) +Vs1(x) sin(2πf0t) +Vc1(x) cos(2πf0t) +Vs2(x) sin(4πf0t) +Vc2(x) cos(4πf0t) + ...,

(3.25)

for the electric potential �eld v. The shape of the �rst 9 vibration harmonics is displayed in �gure

3.12 for a single and for two membranes and in �gure 3.13 for three membranes. In any case the 40

V bias excitation is applied to all membranes and the 40 V alternating excitation is only applied

to the leftmost membrane. Comparing these two �gures clearly shows the impact of the array size

on the crosstalk and how complex it can be to predict the vibration harmonics.

The absolute magnitude of the displacement, the pressure and the electric potential harmonics

with two membranes are shown in �gure 3.14. For the more typical electrical excitation v(t) =

95+VAC sin(2π ·800000 t) V (with VAC ranging from 1 to 7 V) leading to a close-to-linear vibration

around a static de�ection, the maximum harmonic values is displayed in �gure 3.15. From �gure

3.14 it can be seen that for the nonlinear CMUT excitation a good approximation is obtained by

considering �ve harmonics for the mechanical displacement u, two for the electric potential v and

four for the acoustic pressure δp.

The crosstalk and the nonlinear behaviour are clearly captured in �gure 3.12 by the multihar-

monic resolution. As can be seen additional mechanical vibration harmonics appear because of
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Figure 3.11: Convergence history when Newton's method is used to solve nonlinear electroelas-
toacoutic on the reference CMUT of �gure 1.5. On the top �gure the number of harmonics is
increased at the same time for the electric potential v, the mechanical displacement u and the
acoustic pressure δp. On the bottom �gure it increases only for v while a constant 5 harmonics
are considered for u and δp.
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Figure 3.12: Shape of the displacement harmonic U c0, U s1, U c1, U s2, U c2, U s3, U c3, U s4,
U c4 (from north to south) for a single and for two membranes. In the latter case an alternating
excitation is added to the bias only on the left membrane. Displacements (m) are exagerated.
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Figure 3.13: Shape of the displacement harmonic U c0, U s1, U c1, U s2, U c2, U s3, U c3, U s4, U c4

(from north to south). An alternating excitation is added to the bias only on the left membrane.
Displacements (m) are exagerated.
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Figure 3.14: Maximum absolute value displacement (m), pressure (MPA, 106 · Pa) and electric
potential (MV, 106 · V ) for every of the 9 �rst harmonics. Pressure is measured at the membrane
top.

the nonlinearity. With a tiny alternating electrical excitation component (�gure 3.15) the Fourier

terms U c0, U s1 and U c1 are dominant and the vibration is close to linear. The terms U s2 and

U c2 grow bigger as the alternating excitation component is increased and the constant component

is decreased as can be seen in �gure 3.14 and 3.15. In the limit case of a 0 V constant electrical

excitation component all what is left is U c0, U s2, U c2 and higher harmonics. This makes physical

sense since the electric force acting on the membrane will have the same direction no matter the

sign of the alternating electric potential: the vibration frequency is doubled. Another impact of

the nonlinear behaviour is the appearance of new resonance peaks between 0 Hz and the �rst mode

linear resonance frequency. As an example the Fourier term U c2 vibrates at twice the U c1 vibra-

tion frequency and resonates thus at about half of its electrical excitation resonance frequency. The

bottom harmonics visible in �gure 3.12 are clearly vibrating beyond their �rst resonance mode. An

additional nonlinear behaviour visible in the �gure is the di�erent time-constant deformation (top

of the �gure) on the left and right membranes, even though both have a same constant excitation

of 40 V. This comes from the coupling between harmonics when nonlinearity is considered.

3.4 Comparison of the multiharmonic resolution and New-

mark's method

For the lumped CMUT model of �gure 3.1 the de�ection u(t) was plotted in �gure 3.2 for the �rst

couple of excitation voltage periods. The transient state was clearly visible for at least the �ve

�rst excitation periods before settling down to reach the steady state reponse.

For the 2D reference CMUT of �gure 1.5 with a v(t) = 40 + 40 · sin(2π · 800000t) V electrical
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Figure 3.15: Maximum absolute value of the 9 �rst mechanical displacement (m) harmonics (U c0,
U s1, U c1, U s2, U c2, U s3, U c3, U s4, U c4) (top) and electric potential (V ) harmonics (Vc0, Vs1,
Vc1, Vs2, Vc2, Vs3, Vc3, Vs4, Vc4) (bottom) versus alternative electrical excitation voltage VAC (V )
for a 95 + VAC sin(2π · 800000 t) volts electrode to ground electrical excitation.
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excitation voltage on the left membrane and v(t) = 40 V on the right one a close to resonance,

nonlinear vibration is obtained. Figure 3.16 shows the beginning of the transient response when

the excitation is suddenly applied to the membranes at rest while �gure 3.17 shows the steady

state response on both the left and the right membranes. Unlike for the lumped model, after

10 µs all harmonics in the transient response have not been damped enough to be in steady state.

This is because the damping coe�cient used in the lumped model was exagerated for illustration

purposes. For medical CMUT applications with a water �uid a large damping source comes from

the power radiated by the emitted acoustic pressure waves. This damping is much smaller than the

damping in the lumped model so that a long transient state has to be time stepped through with

Newmark's method before reaching the steady state that is of interest: �gure 3.18 illustrates that on

the reference 2D CMUT. The �gure shows horizontal lines as well as curves vibrating around those

horizontal lines. The horizontal lines represent the steady state harmonic magnitudes computed

with the multiharmonic method, 5 harmonics are considered for every �eld. The curves vibrating

around come from a Fourier transform performed on the time-solution obtained with Newmark's

method: at every electrical excitation period a Fourier transform is computed on the maximum

membrane de�ection and thus the period-by-period evolution of the harmonics in the time solution

is obtained. Parameters γ = 0.5 and β = 0.25 were used in Newmark's method with δt = 8.33 ns

(i.e. 150 time steps per period). The linear acceleration and Fox & Goodwin algorithm described

in table 3.1 have been tried as well but more than 100000 time steps per period were required to

have a stable integration scheme.

Figure 3.18 shows the large number of electrical excitation periods required to reach an approx-

imation of the steady state: for a correct approximation at least 100 periods are required. While

this only corresponds to a very short timespan (125 µs) the computational cost associated is large:

150 time steps were used in each period to have an accurate time resolution so that steady state

was reached after more than 15000 time steps. While it is true that every time step corresponds

to a smaller problem than in the multiharmonic resolution, the large number of time steps re-

quired combined with the relatively lost cost of the staggered multiharmonic resolution (where the

large elastoacoustic problem can be solved for every frequency independently) make for an orders of

magnitudes faster multiharmonic resolution. Additionally the multiharmonic algorithm has proven

more robust since it can deliver the solution for electrical excitations even closer to resonance while

Newmark's method can not without additional e�ort because the transient overshoots and brings

the membrane beyond pull-in.

3.5 Conclusion

The multiharmonic method was introduced on a 1D electrostatic problem computed on a vibrating

mesh. The di�culties arising form the nonlinearity and the vibrating mesh have been discussed and

a solution has been proposed. A possible implementation of the multiharmonic method has been

drafted with pseudo-code. It has demonstrated the potential of the method to be fully automated

with e.g. symbolic computation while it has also shown that only few changes, if any, are required

for an implementation in an existing �nite element assembler software. Timings for the simulation

on a 2D CMUT application, implemented in a non-optimised Matlab code, have shown that the
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Figure 3.16: Absolute value of the maximum de�ection on the left and right membrane of the
reference CMUT of �gure 1.5 when a v(t) = 40 + 40 · sin(2π · 800000t) V electrical excitation is
suddenly applied to the left membrane and v(t) = 40 V to the right one. Initial state is at rest.
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Figure 3.17: Absolute value of the maximum de�ection on the left and right membrane of the
reference CMUT of �gure 1.5 when a v(t) = 40 + 40 · sin(2π · 800000t) V electrical excitation is
applied to the left membrane and v(t) = 40 V to the right one. Steady state is reached.
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Figure 3.18: Maximum of the multiharmonically computed displacement (m) harmonics (horizontal
lines) and of the harmonics computed via a Fourier transform at every electrical excitation period
in the Newmark time resolution. Time increases in the right direction.
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extra cost associated to the symbolic processing is not problematic. Finally the advantage of using

the multiharmonic method over Newmark's method to simulate the steady state of CMUTs has

been demonstrated on a realistic CMUT application with a close to resonance, nonlinear electrical

excitation: the multiharmonic method is orders of magnitudes faster as well as more robust.
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Chapter 4

Domain decomposition methods

This chapter describes domain decomposition methods (DDMs) with the goal of solving large

nonlinear electroelastoacoustic problems on a parallel computing architecture. The classical DDMs

for linear problems are �rst introduced and the impact of the choice of interface conditions on the

convergence rate is discussed. Methods for the nonlinear electroelastoacoustic problem are then

detailed and compared. Finally a coarse grid preconditionner is proposed to speed up convergence

for large MEMS arrays.

4.1 Introduction

Typical capacitive micromachined ultrasonic transducers (CMUTs) used for ultrasound imaging

consist of large arrays of replicated elementary 3D cells (a 2D cell is illustrated in �gure 1.2).

Getting the numerical solution to this problem is a computationally challenging task involving in

3D tens of millions degrees of freedom ruled by nonlinear equations. Such a resolution cannot

rely solely on classical direct solver technology. In this thesis the large computation is made

possible by a DDM taking advantage of parallel computation. The fundamental idea of DDM

is to split the computational domain Ω into n smaller subdomains Ωi with or without overlap

and solve at every iteration of an iterative solver the problem independently on every subdomain,

preferably in parallel. In order to end up with the correct solution on the whole domain one has

to exchange interface data between the subdomains at every iteration. At convergence the union

of the solution on all subdomains is close enough to the actual solution on Ω. Only overlapping

DDMs are considered in this thesis and for simplicity a subdomain corresponds to a single CMUT

cell.

4.2 Linear problems

This section introduces the fundamental DDM algorithms for linear problems. Most of the proposed

DDM algorithms for nonlinear problems in section 4.3 are based on their linear counterparts

exposed in this section.
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4.2.1 Linear alternating Schwarz algorithm

One of the simplest DDM algorithms is the classical alternating Schwarz algorithm [107, 108]. As

an illustration consider a 1D electrostatic problem (for a uniform electric permittivity) ∆v = 0 ≡
∂2v
∂x2 = 0 on domain Ω with imposed electric potential v on the domain boundaries. Split Ω in two

overlapping domains Ω1 (with coordinates ranging from x = 0 to 6) and Ω2 (ranging from x = 4

to 10) as shown in �gure 4.1. Solving the problem for an initial all zero guess with the classical

alternating Schwarz algorithm consists in performing the following updates at the kth iteration:

∂2vk+1
1

∂x2
= 0 on Ω1,

vk+1
1 = vk2 on ∂Ω1,

vk+1
1 = 3 on ΓD1,

v0
1 = 0 on Ω1,

(4.1)

for vΩ1
on Ω1 and 

∂v2k+1
2

∂x2
= 0 on Ω2,

vk+1
2 = vk1 on ∂Ω2,

vk+1
2 = 2 on ΓD2,

v0
2 = 0 on Ω2,

(4.2)

for vΩ2
on Ω2. It is worth noting that this algorithm is well suited for parallelisation as the

communication cost between processing units is limited to exchanging �eld values at the interfaces.

Figure 4.1 illustrates the iterates of the algorithm. As can be seen after enough iterations the actual

solution (a linear decrease from 3 V to 2 V) is reached. As can be easily understood from �gure

4.1 for a zero overlap the method stagnates. For a non zero overlap the convergence is accelerated

as the overlap length increases. Unfortunately even for large overlaps the Schwarz alternating

algorithm exhibits a rather slow convergence as illustrated in �gure 4.2 where the algorithm needs

a hundred iterations to reach machine precision for the large 20% overlap.

V

x

3V

2V

∂Ω2 ∂Ω1ΓD1 ΓD2

Ω1
Ω2

Figure 4.1: Iterations of the Schwarz alternating method for a 1D electrostatic problem with two
subdomains and an all 0 initial guess.
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Figure 4.2: Relative error at coordinate x = 4 versus number of iterative Schwarz iterations for
the 1D test case of �gure 4.1.

For the reference 2D CMUT of �gure 1.5 with 2 membranes and excitation voltage settings

leading to a quasi-linear behaviour (v(t) = 10 + 1 · sin(2πf0t) V on the electrode of the left

membrane and 10 V on the right one) the resolution of the elastoacoutic formulation (2.16)-(2.38)

with the linear alternating Schwarz method leads to the convergence curves illustrated in �gure

4.3 for the 0 Hz harmonics of the problem and �gure 4.4 for the fundamental frequency harmonics

(the frequencies can be solved uncoupled as detailed in section 2.4). In both cases a 5% overlap

is used. In the 0 Hz problem the 2 membranes in the CMUT array are not coupled by the

�uid since the pressure �eld is zero everywhere and they thus barely in�uence each other. As

a consequence the alternating Schwarz algorithm performs well. For the fundamental frequency

problem the method seems to stagnate well below the �rst resonance frequency (about 1 MHz). As

the electrical excitation frequency increases to get closer to resonance however the method diverges

faster and faster. Once the �rst resonance frequency is passed �gure 4.4 (bottom) clearly shows the

convergence of the method. In any case however several hundreds of iterations are required to reach

the lowest achievable overall relative residual. The overall relative residual is computed as
||b−Ax||2
||b||

2

for a �nite element discretised algebraic problem Ax = b. A and b are the algebraic matrix/vector

corresponding to the discretised elastoacoustic problem (as detailed in sections 2.3.2 and 2.3.4) on

the whole domain Ω while the discretised acoustic pressure and mechanical displacement �elds in

the x vector are the 0-overlap disjointly-restricted sum of the �elds on all subdomains, i.e. the

value of a given �eld on a given subdomain is �rst zeroed everywhere but on the 0-overlap restricted

subdomain before it is added to the �eld value on all other subdomains.

4.2.2 Krylov-Schwarz with interface unknowns

The Krylov-Schwarz algorithm with interface unknowns in the DDM iteration [109] (identi�ed

in the following by acronym S ) improves the convergence rate of the linear alternating Schwarz

algorithm while keeping its low communication cost advantage for parallelisation.

Consider a linear continuous problem F (u) = f on the whole region Ω of �gure 4.5 subject to

applied loads f and Dirichlet constraints uD on ΓD. Ω is split into n overlapping subdomains Ωi

for i = 1, ..., n. Call Σji the ith subdomain's outer interface shared with subdomain j . When

subscript ij is used in the following then i represents the origin (i.e. on which subdomain the data

is computed) and j the destination (i.e. for which subdomain the data is computed). Considering

one harmonic frequency at a time the problem to solve is:
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Figure 4.3: Overall relative residual versus iteration number for the linear iterative Schwarz algo-
rithm applied to the 0 Hz part of the elastoacoutic formulation.
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Figure 4.4: Overall relative residual versus iteration number for the linear iterative Schwarz algo-
rithm applied to the fundamental frequency part of the elastoacoutic formulation.
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Figure 4.5: Illustration of a domain decomposed into three overlapping subdomains

{
F (u) = f on Ω,

u = uD on ΓD.
(4.3)

Generalising the linear alternating Schwarz algorithm 4.2.1 to more elaborate interface conditions

gives the following update equation from iteration step k to k + 1:


F (uk+1

i ) = fi on Ωi,

uk+1
i = uDi on ΓDi

(µ∂n + S)uk+1
i = gkji = (−µ∂n + S)ukj on Σji,

, (4.4)

∀i = 1, ..., n, where µ is a constant number, ∂n is the normal derivative operator, gji is the interface

data computed on Ωj and given to Ωi and S is an operator detailed below. The third equation

guarantees that if the method converges then the overlall solution is equal to the union of the

solutions on all subdomains. For µ set to zero and S to unity the third relation corresponds to

imposing Dirichlet boundary conditions at the interface and (4.4) is identical to linear alternating

Schwarz. In the following equations µ is set to one, leading to so-called Robin or mixed-type

interface conditions. With such a choice the algorithm (4.4) is usually referred to as optimised

Schwarz (OS ). The optimal S operator can be easily deduced. Indeed, when considering only

linear operators S, the interface data update relation at iteration k + 1 for subdomain i

(∂n + S)uk+1
i = (−∂n + S)ukj , (4.5)

can be rewritten

(∂n + S)(uk+1
i − u∞i ) = (−∂n + S)(ukj − u∞j ), (4.6)

where u∞i and u∞j are the exact solutions at the Σji interface and thus satisfy the interface data

update relation as well. Renaming uk+1
i − u∞i as ek+1

i , the error on the ui �eld at interface Σji at

iteration k + 1 one gets

(∂n + S)ek+1
i = (−∂n + S)ekj . (4.7)

The optimal operator S is such that convergence is achieved after exactly one iteration. This

implies that
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e1
i = 0⇒ (−∂n + S)e0

j = 0, (4.8)

hence

(−∂n + S)e0
j = 0⇒ ∂ne

0
j = S e0

j . (4.9)

The optimal S operator for the considered form of interface conditions is thus the Dirichlet to

Neuman operator (DtN). Because the DtN operator is nonlocal, a variety of local approximations

have been derived such as Sommerfeld, complexi�ed Sommerfeld, optimised order 0 and 2 condi-

tions or a square root operator [110, 83]. In our case Dirichlet conditions will always be used for

the electrostatic potential and mechanical displacement �elds while both Dirichlet and Sommerfeld

conditions will be compared for the propagating acoustic pressure waves, the only really coupled

problem. The Sommerfeld condition corresponds to an S operator equal to S = − 1
c
∂
∂t with c (m/s)

the propagation speed in the �uid.

The Krylov-Schwarz algorithm with interface unknowns is not solved in the form (4.4) in

practice, as this would lead to the same slow convergence as was observed for linear alternating

Schwarz. Instead it takes advantage of the linearity of the operator F to rewrite the problem in a

way such that fast linear iterative solvers can be used. Indeed due to linearity the solution ui on

every subdomain i can be decomposed as ui = vi +wi, where vi is the contribution of the arti�cial

interfaces Σij to the solution and wi the contribution of the physical sources (f and uD). Since

from an iteration k to k + 1 only the arti�cial interface data changes, wi can be computed once

and for all by solving:


F (wi) = fi on Ωi,

wi = uDi on ΓDi

(∂n + S)wi = 0 on Σji.

, (4.10)

Field vi however does change from an iteration step to the other. Setting all physical sources to

zero gives the update for vi: 
F (vk+1

i ) = 0 on Ωi,

vk+1
i = 0 on ΓDi,

(∂n + S)vk+1
i = gkji on Σji.

(4.11)

Let us now rewrite the interface data g update equation:

gk+1
ji = (−∂n + S)uk+1

j

= (−∂n + S)vk+1
j + (−∂n + S)wk+1

j

= (−∂n + S)vk+1
j + (−∂n + S)wj

= (−∂n + S)vk+1
j + bji,

(4.12)

where bji is the physical sources contribution for Ωi computed on Ωj . Since v
k+1
j is a function of

g one can write the relation for the full interface data unknown vector:
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gk+1 = Agk + b, (4.13)

where the operatorA includes an iteration of the linear alternating Schwarz algorithm with physical

sources set to 0 and Robin-type interface conditions as can be seen in (4.12). Vector b is the vector

of the physical sources contribution and can be computed on every subdomain using relation

bij = (−∂n + S)wi. At convergence g must be such that

Fg ≡ (I −A)g = b, (4.14)

which can be solved using any linear solver, in particular a Krylov method like GMRES which

requires only the matrix-free evaluation of Fg.

Let us apply the algorithm on the reference 2D CMUT of �gure 1.5 with the same quasi-

linear settings as used for the linear alternating Schwarz algorithm. The overall relative residual is

computed in the same way with the same initial residual to be able to compare both algorithms.

Figure 4.6 shows the number of iterations required to reach a 10−3 overlall relative residual for both

Dirichlet and Sommerfeld interface conditions. The fundamental-frequency harmonic subproblem

of the elastoacoutic (2.16)-(2.38) formulation is solved. Here again a 5% overlap is used. The

convergence with the current algorithm is dramatically faster and more robust compared to the

linear alternating Schwarz algorithm. This holds for the whole range of frequencies of interest.

With Dirichlet interface conditions the number of iterations does not signi�cantly change with

the frequency, even close to membrane resonance. A slight increase can however be observed

as the frequency increases. For Sommerfeld interface conditions the convergence is faster than

with Dirichlet except close to resonance. Unlike for Dirichlet the convergence speeds up as the

frequency increases. In any case the lowest achievable residual is close to the one that could

be achieved with the linear alternating Schwarz algorithm, except with Sommerfeld conditions

close to resonance as shown in �gure 4.6 (bottom). Figure 4.7 shows the convergence history

for several overlap sizes with an excitation frequency of 800 kHz. For the top �gure Dirichlet

interface conditions are used while for the bottom one Sommerfeld conditions are used. In both

cases the convergence slows down as the overlap is decreased. This behaviour is expected since

the algorithm does not converge without overlap. In any case however the Sommerfeld interface

conditions lead to a faster convergence. Figure 4.8 shows the convergence history for several

electrical excitation frequencies with a 5% overlap. For the top �gure Dirichlet interface conditions

are used while for the bottom one Sommerfeld conditions are used. Unsurprisingly with Dirichlet

interface conditions the convergence slows down as the frequency of the acoustic waves increases. It

was already observed in [110] that Dirichlet interface conditions are not adapted for high frequency

problems with wave propagation. Sommerfeld interface conditions force outgoing pressure waves

and have been shown to be more adapted for wave propagation [110, 83]: the trend in �gure 4.8 is

opposite to what was observed for Dirichlet interface conditions. For low frequency acoustic waves

the algorithm converges slower than at higher frequency. This behaviour should not surprise since

below resonance the frequencies are low (below 1 MHz) and thus the wavelength in water (more

than 1500 µm) is much longer than the CMUT dimensions so that the problem can be considered

a low frequency problem. For the excitation frequency of 25600 kHz in the �gure however the
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corresponding wavelength in water is 58 µm, similar to the CMUT dimension so that the problem

can be considered a high frequency problem and Sommerfeld conditions are then much better

adapted.

4.2.3 Krylov-Schwarz with volume unknowns

In order to solve the linear problem (4.3) for unknown u the linear alternating Schwarz algorithm

introduced in section 4.2.1 uses DDM as an iterative solver with a �xed-point method, leading

to slow convergence. In section 4.2.2 the linear system is rewritten to allow the usage of Krylov

subspace methods such as GMRES. This leads to a dramatically faster convergence. In this section

DDM is used as an algebraic preconditionner M to solve the �nite-element discretised algebraic

problem Ax = b, corresponding to the continuous problem in (4.3), in its preconditionned form

M−1Ax = M−1b with an e�cient iterative solver. The Krylov-Schwarz algorithm with volume

unknowns in the DDM iteration, usually referred to as additive Schwarz is a classical algorithm

for linear problems.

Consider a domain decomposed into n overlapping subdomains as in �gure 4.5. Let Ri be the

restriction matrix for the ith subdomain. Applying Ri to a vector with elements on the whole

domain gives a vector xi of smaller size with only the elements of the vector that are on subdomain

i; applying its transpose (called extension matrix) to a vector with elements only on subdomain

i gives a vector with zero elements on the whole domain except on subdomain i. As an example

for a vector x de�ned on the whole domain with �ve entries x1, x2, x3, x4, x5 the restriction to a

subdomain including only x1, x3 and x4 is done with the restriction matrix detailed in (4.15): Ri

is a matrix with a number of rows equal to the number of subdomain unknowns and made up of

only zeros and ones. Applying the extension matrix (i.e. the transpose of the restriction matrix)

on the subvector as shown in (4.16) returns a vector de�ned on the whole domain but with only

the contribution of the subdomain.

 x1

x3

x4

 = R134x =

 1 0 0 0 0

0 0 1 0 0

0 0 0 1 0



x1

x2

x3

x4

x5

 (4.15)


x1

0

x3

x4

0

 = RT
134R134x =


1 0 0

0 0 0

0 1 0

0 0 1

0 0 0


 x1

x3

x4

 (4.16)

The additive Schwarz method consists in solving the original (linear) system Ax = b precondi-

tonned by M−1
AS with e.g. GMRES, a Krylov subspace method:

M−1
ASAx ≡

N∑
i=1

RT
i A
−1
i RiAx =

N∑
i=1

RT
i A
−1
i Rib ≡M−1

ASb, (4.17)
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Figure 4.6: Number of GMRES iterations to reach a 10−3 overall relative residual (top) and
lowest achievable overall relative residual (bottom) versus frequency for the fundamental-frequency
harmonic subproblem of the elastoacoutic formulation in case of Dirichlet and Sommerfeld interface
conditions.
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Figure 4.7: Convergence history for the fundamental frequency subproblem of the elastoacoutic
formulation for a varying subdomain overlap. Interface conditions are Dirichlet (top) or Sommer�ed
(bottom). The algorithm used is Krylov-Schwarz with interface unknowns.
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Figure 4.8: Convergence history for the fundamental frequency subproblem of the elastoacoutic
formulation for a varying electrical excitation frequency. Interface conditions are Dirichlet (top)
or Sommer�ed (bottom). The algorithm used is Krylov-Schwarz with interface unknowns.
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for N subdomains, where Ai is the part of the global matrix A corresponding to subdomain i,

i.e. Ai = RiAR
T
i . As can be seen, the unknown vector x contains volumic unknowns, unlike

in the algorithm in section 4.2.2 where it only contained the (fewer) unknowns at the subdomain

interfaces.

Applying M−1
AS to a vector in the original additive Schwarz algorithm consists in applying

RT
i A
−1
i Ri to the vector subdomain per subdomain and summing all subdomain contributions on

the overlaps. It has been shown [111] that a faster convergence can be achieved using the restricted

additive Schwarz variant introduced in [112] (re�ered to by the acronym RAS ). In this variant the

contributions are not simply added together but are instead �rst restricted in a 0-overlap disjoint

fashion (i.e. everything outside of the restricted disjoint subdomain is zeroed) before being summed

together. The preconditionner then becomes:

M−1
RAS =

N∑
i=1

R̃
T

i A
−1
i Ri, (4.18)

where R̃i is the same asRi except that it corresponds to a disjoint partitionning of the subdomains

with fewer rows. The restricted variant will be used throughout this thesis.

Similarly as in section 4.2.2 more elaborate interface conditions can be used for a faster DDM

convergence [113]. To use the same Sommerfeld interface conditions as in section 4.2.2 the only

thing to change in the restricted additive Schwarz algorithm is the A−1
i solve step: A−1

i is no more

equal to Ai = RiAR
T
i . Applying A

−1
i to a vector ri (corresponding to r at the continuous level)

on subdomain i now corresponds to solving the following problem [114]:


F (ui) = ri on Ωi,

ui = uDi on ΓDi

∂nui + S(ui) = 0 on Σji,

, (4.19)

where S is the Sommerfeld operator used in section 4.2.2, that is S(u) = − 1
c
∂u
∂t with c (m/s) the

propagation speed in the �uid. Unlike in the previous algorithm the ∂nu + S(u) term computed

on the neighbouring subdomains is not required here which makes for a simpler implementation.

With such interface conditions the algorithm is usually called optimised restricted additive Schwarz

(ORAS ).

Let us test the performance of the algorithm on the reference 2D CMUT of �gure 1.5 with

the same linear settings as in the previous section and with the same de�nition of the overall

relative residual and same initial residual. Figure 4.9 shows the number of iterations required to

reach a 10−3 overall relative residual for the fundamental-frequency harmonic subproblem of the

elastoacoutic (2.16)-(2.38) formulation when considering RAS as well as ORAS with Sommerfeld

interface conditions. A 5% overlap is used. The convergence is slightly faster than for the Krylov-

Schwarz algorithm with interface DDM unknowns, in particular without Sommerfeld conditions as

can be seen when comparing to �gure 4.6. Furthermore RAS converges faster closer to resonance

than ORAS but its iteration count increases as the frequency increases while it is the opposite for

ORAS. Unlike the previous algorithm the current algorithm can not achieve an as small overall

relative residual close to resonance as shown in �gure 4.9 (bottom). This will have an impact
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when considering Newton's method to solve the nonlinear electroelastoacoustic problem since it

tends to be poorly conditionned. Figure 4.10 shows the convergence history for several overlap

sizes with an excitation frequency of 800 kHz. For the top �gure the classical RAS algorithm is

used while for the bottom one ORAS with Sommerfeld conditions is used. In the second case the

convergence clearly slows down as the overlap is decreased. The ORAS algorithm with Sommerfeld

conditions does not converge without overlap. For the classical RAS algorithm however the top

�gure shows a very limited increase in the iteration count as the overlap size decreases. For

the CMUT application considered RAS converges even for minimal overlap which is an interesting

property since decreasing the overlap size can decrease the number of unknowns in the subdomains.

Figure 4.11 shows the convergence history for several electrical excitation frequencies with a 5%

overlap. Unsurprisingly the behaviour is similar as for the previous algorithm in section 4.2.2: with

Dirichlet interface conditions the convergence slows down as the frequency of the acoustic waves

increases. For the Sommerfeld interface conditions, the opposite happens. For low frequency

acoustic waves the algorithm converges slower than at higher frequency.

4.2.4 Choice of the linear domain decomposition method

In this section three main DDMs were detailed to e�ciently solve a linear problem in parallel. It

was observed that the alternating Schwarz algorithm leads to a slow convergence. This is mainly

due to the fact that a �xed point resolution is used to solve the problem iteratively. For the

Krylov-Schwarz algorithm with interface and with volume unknowns in the DDM vectors however,

a linear problem was obtained and solved with the Krylov subspace method GMRES. This has

dramatically improved convergence and alternating Schwarz will thus be disregarded as a building

block for nonlinear DDM algorithms in the next section.

An analysis of the electrical excitation frequency impact on the convergence rate has shown

that the optimised algorithms with the Sommerfeld interface conditions systematically exhibit a

faster convergence rate than their non-optimised counterparts, except close to resonance. For

lower-than-resonance electrical excitation frequencies the di�erence is limited while it becomes

increasingly visible for higher frequencies. An analysis of the overlap size has shown a slowdown

in the convergence rate for all algorihms but RAS. Unsurprisingly for the latter algorithm fast

convergence could still be achieved for a small overlap [115].

Because the frequencies of interest are around the �rst resonance frequency (about 1 MHz) the

convergence rate is either not improved or only slightly improved by the use of optimised interface

conditions. Taking into account the di�culty to implement them on a 3D CMUT array it can be

a resonable choice to use only Dirichlet interface conditions.
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Figure 4.9: Number of GMRES iterations to reach a 10−3 overall relative residual (top) and
lowest achievable overall relative residual (bottom) versus frequency for the fundamental-frequency
harmonic subproblem of the elastoacoutic formulation with algorithm RAS and ORAS.
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Figure 4.10: Convergence history for the fundamental frequency subproblem of the elastoacoutic
formulation for a varying subdomain overlap. Interface conditions are Dirichlet (top) or Sommer�ed
(bottom). The algorithm used is Krylov-Schwarz with volume unknowns (RAS and ORAS).
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Figure 4.11: Convergence history for the fundamental frequency subproblem of the elastoacoutic
formulation for a varying electrical excitation frequency. Interface conditions are Dirichlet (top) or
Sommer�ed (bottom). The algorithm used is Krylov-Schwarz with volume unknowns (RAS and
ORAS).
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4.3 Nonlinear problems

Using DDM to solve the nonlinearly coupled electroelastoacoutic formulation (2.6)-(2.16)-(2.38)

corresponding to the nonlinear problem

F (u) = 0 on Ω (4.20)

can be achieved with a combination of the Newton, Krylov and Schwarz methods. The nonlinear

DDMs can be classi�ed into two categories. The �rst category includes the methods that result in

the direct application of the algorithms presented in section 4.2.2 and 4.2.3 to the linear system

obtained at every staggered or Newton iteration of the nonlinear problem. The staggered and

Newton-Krylov-Schwarz DDM algorithms listed in �gure 4.12 are in the �rst category. The second

category includes all other algorithms in the �gure. They share the property of being nonlinearly

preconditionned: a full nonlinear resolution step is added at every iteration to include as soon as

possible the nonlinearity. For a rather extensive discussion of nonlinear DDMs refer to [116, 117].

Nonlinear DDM

Staggered

Interface DDM unknowns
(Staggered S)

Volume DDM unknowns
(Staggered RAS)

Newton-Krylov-Schwarz

Interface DDM unknowns
(NS)

Volume DDM unknowns
(NRAS)

Nonlinear alternating Schwarz

Newton-Krylov-Schwarz restricted additive Schwarz

Interface DDM unknowns
(NKSS) Volume DDM unknowns

(NKSRAS)

Additive Schwarz preconditionned inexact Newton

(ASPIN)

Figure 4.12: Nonlinear domain decomposition algorithms considered along with their acronyms.
The algorithms are considered with domain decomposition unknowns taken either on the subdo-
main interfaces or on their volume (if applicable).
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4.3.1 Staggered Krylov-Schwarz (Staggered S and Staggered RAS)

The staggered Krylov-Schwarz algorithm [118] is a DDM that can be used when the nonlinearity

originates from the combination of multiple linear physics as in the electroelastoacoutic case in this

paper. It is based on the Krylov-Schwarz algorithm described previously for linear formulations,

with DDM unknowns taken either on the subdomain interfaces as in section 4.2.2 or on their

volumes as in section 4.2.3. In the �rst case the algorithm will be referred to by staggered S while

in the second case it will be referred to by staggered RAS. Their optimised counterparts are then

named staggered OS and staggered ORAS respectively.

In the electroelastoacoutic case the staggered S (staggered RAS ) algorithm simply consists in

using the linear Krylov-Schwarz algorithm in alternance on the uncoupled linear electrostatic (2.6)

and linear elastoacoutic formulations (2.16)-(2.38) until convergence. It shares the advantages of

the staggered resolution scheme described in 2.4.1, that is all frequencies in the elastoacoustic

formulation can be solved for independently. Furthermore it is lighter and faster to solve when

the nonlinearity is not too strong compared to the Newton algorithm used in the coming sections.

When close to pull-in the overhead of the Newton resolution is overcompensated by the decrease in

the iteration count. Figure 4.13 shows the number of nonlinear iterations required to reach a 10−4

relative nonlinear residual versus frequency for a 40+40·sin(2πf0t) V electrical excitation on the left

membrane of the 2 by 1 2D CMUT array of �gure 1.5 and 40 V on the right one. Results are shown

for both the staggered S and staggered RAS algorithms as well as their optimised counterparts with

Sommerfeld interface conditions. The �gure clearly shows the large number of nonlinear iterations

required by the staggered DDM algorithm when the nonlinearity becomes stronger closer to the

resonance frequency (about 1 MHz). When too close to resonance the membrane de�ects beyond

pull-in and there is no more physical solution to the problem.

In combination with �gure 4.15 (showing the minimum achievable overall relative DDM residual

versus nonlinear iteration for a 800 kHz electrical excitation) it appears that in the vicinity of the

resonance peak the number of nonlinear iterations to reach the 10−4 relative nonlinear residual is

impacted by the accuracy to which the DDM solution can be computed. In the staggered case

however low enough DDM residuals are reached and this e�ect has only a very limited impact.

Finally �gure 4.14 shows the number of DDM iterations required to reach a 10−3 overall relative

DDM residual versus the staggered nonlinear iteration number. An electrical excitation frequency

of 800 kHz is used. The 4 algorithms compare to each other similarly to what has been observed in

sections 4.2.2 and 4.2.3, that is Krylov-Schwarz with volume unknowns (i.e. RAS) converges faster

than with interface unknowns and OS and ORAS converge slightly faster than their nonoptimised

equivalent. The new information of the �gure is how the number of DDM iterations is impacted

by the nonlinearity: no impact is observed, even for this close-to-resonance, nonlinear test case.

4.3.2 Newton-Krylov-Schwarz (NS and NRAS)

The Newton-Krylov-Schwarz algorithm [119, 120, 121] applies the Krylov-Schwarz algorithm with

interface or volume unknowns described previously to the Newton algorithm described in 2.4.2. In

case the Krylov-Schwarz algorithm with interface unknowns is used the algorihm will be referred to

by the acronym NS while it be NRAS in case of volume unknowns. NS or NRAS can be preferred
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Figure 4.13: Number of nonlinear iterations to reach a 10−4 overall nonlinear relative residual
versus frequency for the electroelastoacoutic problem solved with KS, RAS and their optimised
variant at every nonlinear staggered iteration.
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Figure 4.14: Number of domain decomposition iterations to reach a 10−3 overall relative residual
for the fundamental-frequency harmonic subproblem of the elastoacoustic problem versus staggered
nonlinear iteration.
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Figure 4.15: Minimum achievable overall relative residual for the fundamental-frequency harmonic
subproblem of the elastoacoustic problem versus staggered nonlinear iteration.
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Figure 4.16: Number of nonlinear iterations to reach a 10−4 overall nonlinear relative residual
versus frequency for the electroelastoacoutic formulation solved with algorithm NS and NRAS.
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to the staggered Krylov-Schwarz algorithm when close to pull-in. In that case the associated

Newton iteration overhead can be compensated by a dramatic decrease in the iteration count as

already pointed out in �gure 2.2. Unlike the staggered algorithm this algorithm does not solve the

electrostatic (2.6) and elastoacoutic (2.16)-(2.38) formulations in alternance. It solves instead the

three physics at once with a Newton iteration as described in section 2.4.2.

Consider the nonlinear �nite element discretised problem A(x)x = b(x). At every nonlinear

iteration of Newton's method the following linear formulation has to be solved:

Jdx = b−Ax, (4.21)

where J is the Jacobian matrix for Newton's method (detailed in section 2.2.5 for the electroe-

lastoacoustic problem) and dx the correction on the unknown displacement, pressure and electric

�eld. Because this is a linear problem one can use the linear Krylov-Schwarz method, with interface

unknowns as in section 4.2.2 or with volumic unknowns as in section 4.2.3. The implementation

with volumic unknowns is straightforward. Care has to be taken however for the interface unknown

variant when deciding what the physical sources are. Rewriting Newton's iteration as

Jdx = b−Ax

⇐⇒ J(xk+1 − xk) = b−Axk

⇐⇒ Jxk+1 = b+ (J −A)xk,

(4.22)

makes clear that an extra (J −A)xk physical source adds to the other physical sources. Note that

setting (J−A)xk to zero when setting the physical sources to zero does not mean all computations

must be performed on the undeformed mesh.

With the same settings as in section 4.3.1 �gure 4.16 shows the number of nonlinear iterations

required to reach a 10−4 nonlinear relative residual versus frequency for NS and NRAS. The �gure

clearly shows the dramatic nonlinear convergence speedup versus the staggered algorithm of section

4.3.1: for the considered test frequencies up to 10 times fewer nonlinear iterations are now required.

Unlike for the staggered algorithm, the number of nonlinear iterations exhibits a strong dependence

on the DDM algorithm used because the DDM can not solve as accurately the linear system (4.21)

as it could solve the better conditionned problems in the staggered DDM algorithm of section 4.3.1.

As a matter of facts the nonlinear convergence is faster for NS than for NRAS. This can be related

to the fact that Krylov-Schwarz with interface unknown can provide a more accurate solution than

with volume unknowns as was observed in �gures 4.6 and 4.9.

4.3.3 Nonlinear alternating Schwarz algorithm

The nonlinear alternating Schwarz algorithm is the full-nonlinear extension of the linear alternating

Schwarz algorithm of section 4.2.1. It consists in an outer and an inner iteration loop. In the outer

iteration the �eld value on the neighbours of subdomain i is set as Dirichlet condition on the outer

interfaces of subdomain i for every subdomain i = 1...n. The Dirichlet conditions are then kept

constant in the inner iteration which consists in solving the full nonlinear problem F (u) = 0 on

every subdomain Ωi independently as follows
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{
F (uk+1

i ) = 0 on Ωi,

uk+1
i = ukj on Σji ∀neighbour j,

(4.23)

for the kth outer iteration. In [116] the slow DDM convergence of this method was pointed out.

This is con�rmed in �gure 4.17 for the 2D reference CMUT of �gure 1.5 with same settings as

in the previous nonlinear DDM section. This was expected because similarly to the linear alter-

nating Schwarz algorithm the DDM is used as an iterator, not as a preconditionner. Additionally

the �gure and a previous study [122] underline convergence issues with this method close to reso-

nance, a working mode often used in MEMS. Another downside of this algorithm is that the LU

decomposition of the algebraic problem resulting from the �nite element approximation of the con-

tinuous problem solved at every inner Newton iteration can not be reused, unlike in the staggered

Krylov-Schwarz and Newton-Krylov-Schwarz algorithm families.

This algorithm has however the advantage of requiring a number of inner nonlinear iterations

on every subdomain that adapts to the degree of nonlinearity. In case of an array of cross-talking

MEMS cells with a single cell excited it might well be that only a single subdomain has strong

nonlinearity, thus only this cell would get many inner nonlinear iterations. This is an interesting

property, yet taking advantage of it might not be straightforward as it can be di�cult to exactly

predict where nonlinearity will be strong in case of resonance.

4.3.4 Newton-Krylov-Schwarz restricted additive Schwarz

(NKSS and NKSRAS)

Newton-Krylov-Schwarz restricted additive Schwarz (called NKS-RAS in the literature) adds to

the NKS or NRAS algorithm of section 4.3.2 a full-nonlinear resolution step at every nonlinear

iteration. Working details are provided in algorithm 4.1 for a nonlinear problem to solve F (u) = 0,

but one iteration can be summarised as:

� solve the nonlinear subproblem on every subdomain with the �elds at the outer subdomain

interfaces constrained to the �eld value on the neighbour subdomains

� take the union of the 0-overlap disjoint restriction of the nonlinear solution on every subdo-

main

� perform a single NKS or NRAS iteration while considering the previously computed �eld

union on all subdomains as the initial guess

In case NKS is used in the last step the NKSRAS algorithm will be called NKSS while it will be

called NKSRAS in case NRAS is considered.
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Figure 4.17: Overall relative residual versus iteration number for the nonlinear iterative Schwarz
algorithm applied to the electroelastoacoutic formulation.
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Algorithm 4.1 NKS-RAS algorithm

u0 = 0;
while stopping criterion on the overall nonlinear relative residual not reached do

for i=1...n do
Find uki such that{
FΩi

(uki ) = 0 on Ωi

uki = uk−1
j on Σji ∀ neighbour j

using Newton's method
end for

uk :=

n∑
i=1

0-Overlap disjoint restriction(uki )

Update uk with one step of the NKS or NRAS algorithm with initial guess uk

end while

In this algorithm the LU decomposition can be reused during the NKS or NRAS iteration, unlike

for the nonlinear classical Schwarz algorithm, which dramatically speeds up every iteration. The

preliminary nonlinear resolution has the ability to reduce the number of outer iterations required

compared to a standard NKS or NRAS method. This comes at the expense of an increased

computational cost for every outer iteration, which however does not require more communication

between processing units. In practice the algorithm will be of interest if it can achieve a low enough

number of outer iterations.

Figure 4.18 shows the number of outer iterations of the NKSS and NKSRAS algorithms versus

frequency around the �rst resonance while �gure 4.19 shows for the same frequency sweep how the

number of inner nonlinear iterations change on the left and right subdomains. As before the left

and right subdomains have a constant 40 V electrical excitation but only the left subdomain has

an extra 40 V alternating voltage. Two main observations can be made. Firstly in this CMUT

problem NKSS and NKSRAS are not converging faster from a nonlinear residual point of view

than their NKS and NRAS counterparts. This is essentially due to the added residual coming from

the jump introduced at the �uid interface by the 0-overlap restriction step. The second observation

is that right after the region around resonance (in the vicinity of the resonance peak there is no

physical solution since the membrane is collapsed to the ground electrode) the algorithm does not

converge, even though NKS and NRAS were converging. To recover convergence one has to move

a bit further away from resonance: the convergence range around resonance seems to be more

limited than it was for NKS or NRAS. The cause of this e�ect can be seen in �gure 4.19. When

decreasing the frequency down to the resonance the number of inner non linear iterations explodes

well before the actual resonance frequency. This is because the full nonlinear problem is solved at

the �rst outer iteration with 0 Dirichlet boundary conditions, which does not correspond to the

actual solution. The inner nonlinear problem to solve, with 0 Dirichlet boundary condition, has a

di�erent resonance frequency than the actual problem. In the NKS or NRAS algorithms this was

not a problem since the nonlinearity was incorporated more progressively in the DDM solution.
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Figure 4.18: Number of outer nonlinear iterations to reach a 10−4 overall nonlinear relative resid-
ual versus frequency for the electroelastoacoutic formulation solved with algorithm NKSS and
NKSRAS.
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Figure 4.19: Number of inner nonlinear iterations on the left and right membrane to reach a 10−4

overall nonlinear relative residual versus frequency for the electroelastoacoutic formulation solved
with algorithm NKSRAS.
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4.3.5 Nonlinear additive Schwarz preconditioned inexact Newton

(ASPIN )

Consider a nonlinear problem F (u) = 0 to be solved on domain Ω. Split Ω into n overlapping

subdomains Ωi as illustrated in �gure 4.5. Instead of solving the original nonlinear problem F (u) =

0 the additive schwarz preconditioned inexact Newton algorithm (ASPIN) solves an equivalent

nonlinear system

F(u) = 0, (4.24)

using an inexact Newton method. F is called the nonlinearly preconditionned original system F .

For the F chosen below one can show that solving the original and the nonlinearly preconditionned

nonlinear systems leads to the same solution [123].

De�ning the subdomain projection Ti(u) ∀i = 1...n with support on the ith overlapping sub-

domain (Ti = 0 on the exterior boundaries of the overlapping subdomain) as the solution of the

nonlinear system

FΩi
(u− Ti(u)), (4.25)

with FΩi
being the nonlinear function F restricted to the ith subdomain, one can write the F

operator applied to unknown u as

F(u) =

N∑
i=1

Ti(u). (4.26)

The Ti projection can be interpretated as the nonlinear correction δu on subdomain Ωi [124], in

our electroelastoacoutics case of the displacement u, acoustic pressure δp and electric potential v.

The problem F(u) = 0 is solved in ASPIN using an inexact Newton solver which requires the

iteration Jacobian matrix. An approximation J̃ to the heavy Jacobian matrix has been deduced

in [123]:

J̃ =

N∑
i=1

J−1
Ωi
J , (4.27)

where J is the Jacobian matrix of the original system F on the whole domain and JΩi its restriction

on subdomain Ωi.

Rewriting the Newton iteration using (4.27) gives the following system to solve at every outer

ASPIN iteration:

N∑
i=1

J−1
Ωi
Jdu = F(u) = δu. (4.28)

Equation (4.28) resembles the additive Schwarz preconditionned linear Jacobian system of the orig-

inal nonlinear system F . This can be solved using Krylov-Schwarz with volumic DDM unknowns

as in section 4.2.3 in combination with a classical GMRES function but with the preconditionner

only applied to the left hand side operator. Algorithm 4.2 describes the steps to perform in ASPIN.
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Algorithm 4.2 ASPIN algorithm

u0 = 0;
while stopping criterion on δu correction not reached do

for i=1...n do
Find δui such that{
FΩi(u

k
i − δui) = 0 on Ωi

δui = 0 on Σji ∀ neighbour j

using Newton's method
end for

δu :=

n∑
i=1

δui

Solve (4.28), compute the Jacobian matrices for uk

uk+1 := uk + du
end while

As can be seen in algorithm 4.2 every outer ASPIN iteration requires to solve a nonlinear

problem on every subdomain as well as solve a linear problem using e.g. GMRES. Even though

the nonlinear resolution need not be solved very accurately an ASPIN iteration might still be quite

heavy. The performance of the algorithm will strongly depend on the number of outer iterations.

ASPIN has been shown to have a fast convergence in the case of incompressible Navier-Stokes

equations [119] even for high Reynolds numbers where a classical Newton-Krylov-Schwarz did not.

In our test case however quadratic convergence could not be obtained. The nonlinear residual would

mainly remain at the interface between subdomains. This could be linked to the conditionning

issues observed in section 4.3.2.

4.3.6 Choice of the nonlinear domain decomposition method

In this section the major nonlinear DDM algorithms have been detailed and compared. They can

be classi�ed into two broad categories. The �rst category contains the staggered Krylov-Schwarz

and Newton-Krylov-Schwarz algorithms. Both exclusively rely on linear DDM algorithm: at every

nonlinear iteration a linear problem is solved. For those two algorithms a single LU decomposition

is required at every nonlinear iteration and can be reused throughout the linear DDM resolution

step. They furthermore incorporate rather progressively the nonlinearity into the solution so that

for the CMUT application convergence is obtained even close to resonance and pull-in. A limitation

however is that no matter how localised the nonlinearity is the two algorithms will require a same

amount of nonlinear iterations on every subdomain: the number of nonlinear iterations does not

adapt to the degree of nonlinearity on every subsomain.

In the second category reside the nonlinear alternating Schwarz algorithm as well as the NKS-

RAS and ASPIN algorithms. This category di�ers from the �rst one by the extra full nonlinear

resolution performed at each outer nonlinear iteration. Doing so leads to a number of nonlinear

iterations that adapts to the degree of nonlinearity on every subdomain. Taking advantage of it

can however be a challenge since it might not be known a priori where nonlinearity will be strong,

in particular for a close to resonance vibration.
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For the nonlinear alternating Schwarz algorithm convergence was slow, if achievable at all.

Additionally no LU decomposition could be reused at any time, leading to a poorly converging,

computationally intensive algorithm. In the NKS-RAS algorithm the nonlinear convergence of

NKS, which was already good, could not be improved further. NKS-RAS in fact provided a slower

nonlinear convergence: most of the nonlinear residual would accumulate at the �uid subdomain

interface because of the pressure �eld restriction step. Furthermore because the nonlinearity is

rather brutally incorporated the problem solved at the very �rst step has a resonance frequency

too much shifted compared to the actual problem so that divergence was observed for frequencies

for which NKS converged smoothly.

Only the staggered and NKS algorithms will be considered in what follows.

4.4 Coarse grid

All simulations in this chapter have so far been performed considering in the reference 2D CMUT

model of �gure 1.5 only 2 vibrating membranes. Increasing the number of subdomains unfortu-

nately leads to an increased number of DDM iterations required to reach a given tolerance. This

can be understood by looking at the interface-data update equation (4.14) for algorithm Krylov-

Schwarz with interface unknowns in section 4.2.2: recalling that the A operator consists in solving

a linear problem on every subdomain with interface data coming from the �elds of the neighbour

at the previous DDM iteration should make clear that at every DDM iteration information can

only �ow from a subdomain to its direct neighbour. Thus, if the 2D model has n membranes then

at least n iterations are required to exchange information between the two exterior membranes of

the array. In practice this tends to increase the number of DDM iterations as illustrated on the

top of �gures 4.20 and 4.21. The �gures show the convergence history for an increasing number of

subdomains on the fundamental frequency harmonic subproblem of the elastoacoutic formulation

(2.16)-(2.38). Both the Krylov-Schwarz algorithm with interface and with volume unknowns tend

to converge slower as the number of subdomains is increased.

To make the number of iterations less dependent on the number of subdomains a coarse grid

correction or a coarse grid preconditionner can be used. It enables direct information exchange

between any two subdomains by solving a problem de�ned on the whole domain but which has

much less degrees of freedom than the actual problem and is thus fast to solve.

Let us illustrate the fundamental idea of a coarse grid correction. For that consider an algebraic

problem Ax = b coming from the �nite element discretisation of a linear problem on a �ne mesh.

Consider also the algebraic problem Acxc = bc coming from the �nite element discretisation of

the same problem but on the coarsened �ne mesh: the coarse mesh. Adding at iteration k of an

iterative solver the coarse grid correction to the current approximate solution xk can be done in

four steps.
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1. Compute the residual rk = b−Axk

2. Interpolate the residual rk on the coarse mesh to get rkc

3. Compute the coarse error ekc = A−1
c r

k
c

4. Interpolate the coarse error on the �ne mesh and add it to xk

Quantity ekc is indeed an error since ekc = A−1
c r

k
c = A−1

c (bC −Acx
k
c ) = A−1

c bC − xkc . It is worth
noting that in case the coarse mesh and �ne mesh coincide we have xk +ekc = xk +A−1

c bC −xkc =

xk + A−1b − xk = A−1b and xk immediately becomes the solution of the problem on the �ne

mesh without further iterations.

In our case the �ne mesh and the coarse mesh are identical. The only di�erence between the �ne

and the coarse problem is that order 3 �nite element interpolations are used on the �ne problem

while order 1 is used on the coarse problem, leading to a lighter problem with much less degrees

of freedom. Doing so with the selected hierarchical shape functions (see section A.2) has the

advantage that �ne-coarse and coarse-�ne interpolations are straightforward. Indeed interpolating

the �nite element discretised vector x from the �ne mesh to xc on the coarse mesh is as simple

as xc = RCOARSEx, where the restriction matrix RCOARSE selects only the entries of x that

correspond to order 1 interpolation degrees of freedom. RCOARSE is only made of zeros and ones

and has a number of rows equal to the number of order 1 degrees of freedom. Interpolating back

xc to x is done with the extension matrix RT
COARSE as x = RT

COARSExc.

For the Krylov-Schwarz algorithm with interface unknowns of section 4.2.2 problem-speci�c

coarse preconditionners have been proposed [125, 126]. Here a coarse grid correction is used. The

interface data update equation (4.13)

gk+1 = Agk + b (4.29)

is changed as follows:

gk+1 = CAgk + b, (4.30)

where the operator C adds a coarse correction to Agk. The application of C to the interface data

vector y = Agk is detailed in algorithm 4.3. In the algorithm the problem (4.3) is solved and the

notations of section 4.2.2 are used.

For the RAS algorithm of section 4.2.3 a coarse grid preconditionner is used. Designing it can

be done in multiple ways [112, 127, 128]. The coarse algebraic preconditionner considered here

changes the restricted additive Schwarz system (4.17) to:

(M−1
RAS +M−1

COARSE)Ax =(M−1
RAS +M−1

COARSE) b, (4.31)

where M−1
COARSE = RT

COARSEA−1
COARSERCOARSE and ACOARSE = RCOARSEART

COARSE.
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Algorithm 4.3 Application of the coarse operator C to an interface data vector y
for i=1...n do

�� Find the solution to the arti�cial sources problem:
Find vi such that
F (vi) = 0 on Ωi

vi = 0 on ΓDi

(∂n + S)vi = yji on Σji
�� Add the solution to the physical sources:
ui = vi + wi;

end for

�� Compute the overall residual:
r = f − F (u);
�� Compute the coarse grid correction ec:
Find the best order 1 approximation ec such that{
F (ec) = rc on Ω

ec = 0 on ΓD
for i=1...n do

�� Add the arti�cial sources contribution in eci to vi:
vi = eci − wci + vi;

end for

Compute the updated interface data vector y based on subdomain �elds vi;

Computations have been performed on the reference 2D CMUT of �gure 1.5 with a varying

number of membranes. The DDM subdomains are the individual membranes. The nonlinear

electroelastoacoustic problem is solved with a staggered resolution and the convergence behaviour

of the DDMmethods is displayed at the second nonlinear iteration for the elastoacoutic formulation

(2.16)-(2.38). The membrane at the extreme left and right is fully clamped and has a 0 V electrical

excitation. On all other membranes a 40 V constant voltage is set. Only on the second membrane

(looking from the left of the array) an alternating voltage of 40 V at 800 kHz is added to the DC

bias.

Figure 4.20 and 4.21 show the e�ect on the Krylov-Schwarz algorithm with interface and with

volume unknowns with and without coarse grids of an increasing number of subdomains. Results for

the fundamental frequency-harmonic subproblem of the elastoacoustic formulation are displayed.

In any case adding a coarse grid speeds up convergence by at least a factor 3. The coarse grid used

for Krylov-Schwarz with interface unknowns seems to converge faster than with volume unknowns

(i.e. for RAS). Note the di�erence in the x-axis scale for the top and bottom �gure. Unfortunately

with interface unknowns it cannot achieve a really accurate solution and using it e.g. in NS (section

4.3.2) is problematic.

Figure 4.22 and 4.23 show results for the vibrations at the electrical excitation frequency f0

as well as 2f0 and 3f0. Figure 4.22 is there to illustrate the in-phase and quadrature membrane

vibration associated to the results of �gure 4.23. Unsurprisingly the top harmonics, vibrating at

f0, require the largest number of DDM iterations to reach a 10−3 overall relative residual. This

can be related to the large crosstalk they exhibit.

It is �nally worth comparing the sizes of the algebraic matrix associated to the �ne problem

to solve on every subdomain with the coarse problem solved on the whole domain. The �ne
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Figure 4.20: Overall relative residual versus domain decomposition iteration for the Krylov-Schwarz
algorithm with interface unknowns without (top) and with (bottom) coarse grid as the number
of subdomains is increased. The elastoacoutic problem is solved for the fundamental frequency
harmonics.
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Figure 4.21: Overall relative residual versus domain decomposition iteration for the RAS algorithm
without (top) and with (bottom) coarse grid as the number of subdomains is increased. The
elastoacoutic problem is solved for the fundamental frequency harmonics.
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Figure 4.22: In-phase (subtop) and quadrature (subbottom) membrane vibration harmonics on
the reference CMUT with 6 membranes for a vibration frequency equal to the electrical excitation
frequency (top), twice as large (middle) and 3 times as large (bottom).
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Figure 4.23: Number of domain decomposition iterations to reach a 10−3 overall relative residual
as the number of subdomains is increased for the Krylov-Schwarz algorithms with interface and
volume unknowns with coarse grid. The elastoacoutic problem is solved for the fundamental
frequency f0, 2f0 as well as 3f0 harmonics.
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subdomain problems are computed in parallel while the coarse problem is computed on a single

processor and should thus be small enough compared to the �ne subdomain problem. Since for the

�ne problem an order 3 interpolation is used on a structured quadrangular mesh there are exactly

16 degrees of freedom per quadrangle. For the coarse problem order 1 is used and there are thus

4 times less degrees of freedom per quadrangle. At the same time the coarse problem only has a

single degree of freedom on each side of the overlap, further reducing the size. One thus obtains a

coarse problem for N subdomains that has an overall size of less than N
4 · n, where n is the size

of the �ne problem on a single subdomain. While this can seem to be a rather �ne coarse mesh a

higher �ne interpolation order can be used with less elements in the mesh to further coarsen the

coarse grid. A typical way to obtain a much coarser mesh however is to really consider di�erent

coarse and �ne meshes but this requires the ability to interpolate between two di�erent meshes,

which has not been implemented.
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Chapter 5

Application to the simulation of

crosstalk in MEMS

This chapter begins with a 2D and 3D veri�cation of the multiharmonic solver. Simulations are

then performed on large 3D CMUT arrays with up to 20 million degrees of freedom to simulate

the crosstalk appearing through acoustic waves in the �uid. Finally the �uid is removed and the

crosstalk via elastic waves in the bulk is simulated. The nonlinearity introduced by the electrome-

chanical coupling is taken into account in all cases.

5.1 Software veri�cation

5.1.1 One-dimensional CMUT

In this section the multiharmonic solver will be veri�ed for a nonlinear multiharmonic resolution

on a 2D mesh against a 1D model of a CMUT vibrating in water. For that purpose, the pressure

forces applied by the �uid on the membrane are added to the model of �gure 1.3: the resulting

model is displayed in �gure 5.1.

u(t)

ex

u0
ε0 k v(t)

δp(x, t)

ρ, c

Figure 5.1: Lumped model of a membrane electrically actuated by a time-dependent voltage v(t)
and vibrating in a �uid.

117



With the pressure force applied by the �uid on the membrane the equilibrium equation (1.21)

becomes

− k u(t)− 1

2
ε0

v(t)2

(u0 + u(t))2
A− δp(u0 + u(t), t)A = 0. (5.1)

Newton's law gives the relation at the electrode between the pressure gradient and the mechanical

acceleration:

− dδp(u0 + u(t), t)

dx
= ρ

d2u(t)

dt2
. (5.2)

Finally the wave equation de�nes the acoustic behaviour in the �uid:

d2δp(x, t)

dx2
− 1

c2
d2δp(x, t)

dt2
= 0, (5.3)

and the Sommerfeld radiation condition at in�nity

dδp

dx
+

1

c

dδp

dt
= 0 (5.4)

leads to outgoing pressure waves.

Equation (5.1) can be rewritten as:

− k u(t)(u(t) + uo)
2 − 1

2
ε0 v(t)2A− δp(u0 + u(t), t)(u(t) + u0)2A = 0 (5.5)

which is a cubic equation in u(t) possibly leading to multiple real solutions. Only a single solution

however is not beyond pull-in.

Considering an electrical excitation v(t) = 300 sin(2πf0t) V (f0 is set to 1 MHz) leads to a

nonlinear periodic vibration u(t) that can be approximated by its Fourier truncation similarly to

what has been done in chapter 3:

u(t) = Uc0 + Us1sin(2πf0t) + Uc1cos(2πf0t) + Us2sin(2 · 2πf0t) + Uc2cos(2 · 2πf0t) + ... (5.6)

Because the pressure waves emitted by the vibrating electrode are outgoing one gets

δp(x, t) = δPs1 sin(2πf0t− k1x) + δPc1 cos(2πf0 − k1x)

+δPs2 sin(2 · 2πf0t− k2x) + δPc2 cos(2 · 2πf0 − k2x) + ...
(5.7)

where ki is the wavenumber for frequency if0, that is ki = 2π
λi

= 2πif0
c . In (5.7) the time-

independent term is dropped since a constant displacement creates no pressure variation. The

pressure form (5.7) automatically satis�es Sommerfeld's condition (5.4). In order to obtain all

unknown Fourier coe�cients Uc0, Us1, Uc1, Us2, Uc2, ... and δPs1, δPc1, δPs2, δPc2, ... equations

(5.1), (5.2) and (5.3) can be used. A symbolic resolution has been implemented in Matlab to get the

coe�cients corresponding to the �rst 8 harmonic frequencies, i.e. the �rst 17 Fourier coe�cients

in (5.6) and the �rst 16 terms in (5.7). Table 5.1 shows their value while �gure 5.2 shows the
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electrode acceleration versus time for a half excitation period (bottom) and the pressure versus

distance to electrode for several time instants (top).
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Figure 5.2: Electrode acceleration versus time (bottom) and pressure versus distance x to electrode
at 11 di�erent time steps.

A multiharmonic �nite element simulation is performed for veri�cation on a 2D mesh with a

�uid truncated 400 µm above the membrane top. The mesh is structured. It is made up of 20000

rectangular elements with a �rst order �nite element interpolation. There is a single element in the

x direction. Because the �nite element simulation of this 1D problem is performed on a 2D mesh

one has to make sure to remove the dependency on the y coordinate. This is automatically achieved

for the electrostatic and acoustic problems by imposing natural boundary conditions on the left

and right boundaries of the vacuum and �uid regions. Imposing natural boundary conditions on

the elasticity problem however does not exclude 2D e�ects as such conditions correspond to an

interface that is free to move. The y-component of the displacement is thus forced to zero on the

boundaries.
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As can be seen on table 5.1 the Fourier coe�cients of the membrane displacement and emitted

pressure are very close for the analytic resolution and the �nite element resolution and the mul-

tiharmonic solver can thus be considered veri�ed in 2D. The fact that the results do not exactly

match is linked to the �nite number of elements in the mesh.

Table 5.1: Value of the Fourier coe�cients of the displacement u(t) and pressure δp(t) on the 1D
CMUT model of �gure 5.1.

Harmonic u(t) analytic u(t) FEM δp(t) analytic δp(t) FEM

c0 −1.08694 · 10−7 −1.08694 · 10−7

s1 0 0 0 0

c1 0 0 0 0

s2 1.33661 · 10−8 1.33661 · 10−8 −2.33543 · 104 −2.33543 · 104

c2 1.25572 · 10−9 1.25571 · 10−9 2.48585 · 105 2.48585 · 105

s3 0 0 0 0

c3 0 0 0 0

s4 −1.19833 · 10−11 −1.19830 · 10−11 −3.75599 · 103 −3.75599 · 103

c4 1.00977 · 10−10 1.00984 · 10−10 −4.45741 · 102 −4.45739 · 102

s5 0 0 0 0

c5 0 0 0 0

s6 −1.26351 · 10−12 −1.26378 · 10−12 1.14365 · 10 1.14363 · 10

c6 −2.04971 · 10−13 −2.08111 · 10−13 −7.04958 · 10 −7.04971 · 10

s7 0 0 0 0

c7 0 0 0 0

s8 4.01561 · 10−15 4.37047 · 10−15 1.40129 1.40611

c8 −1.89011 · 10−14 −1.81790 · 10−14 3.16625 · 10−1 2.98733 · 10−1

5.1.2 Three-dimensional CMUT

In this section the Matlab code is veri�ed against a 3D �nite element simulation performed in [1] on

a circular CMUT cell surrounded by six neighbouring cells. Water couples all the cells together so

that when the central cell is electrically excited the six surrounding ones vibrate due to crosstalk:

the problem involves a coupling between the electric potential �eld, the mechanical displacement

and the acoustic pressure. The electrostatic (2.6), elasticity (2.16) and acoustic (2.38) formulations

are used for the simulations. The dimensions of a single cell are identical to those used in [1] and

are provided in �gure 5.3.

A linear vibration mode is considered in the same way as in [1]: a large bias voltage of 95 V

(about 90% of the pull-in voltage) is applied between the electrode and the ground on (only) the

central membrane. To the bias voltage a small 1 V alternating voltage is added, with a frequency

ranging from close to zero to 40 MHz. This small alternating voltage leads to a linear vibration
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Figure 5.3: Model of a circular CMUT.

around the static de�ection and thus allows to compute the constant de�ection independently from

the harmonic vibration. Moreover because of linearity the vibration only involves the in-phase and

the quadrature vibration at the electrical excitation frequency. Close to membrane resonance

however this might not hold anymore and extra harmonics can appear due to nonlinearity, but as

done in [1] the vibration will still be supposed linear.

A staggered resolution scheme is used to solve the nonlinear electroelastoacoutic problem. For

convenience the electrostatic as well as the elastoacoustic problem are solved with the automatic

multiharmonic resolution detailed in section 3, even though the vibration is linear and a classical

harmonic resolution method could be used once the static de�ection is known. The multiharmonic

resolution has indeed the advantage to automatically compute the correct electrostatic forces acting

on the membrane. Indeed, as was the case in (3.7), the constant and alternating components of

the electrostatic force cannot be computed by considering independently the constant electric �eld

and the alternating electric �eld since the force depends nonlinearly on the electric �eld.

Unlike in [1] no extra mechanical damping will be added to the model since it is not straight-

forward to �nd the equivalent damping term to add to the elasticity formulation. The mesh used

for the �nite element computation is shown in �gure 5.4: the mesh is extruded with a single layer

in the vacuum gap and on the membrane while 5 layers are used in the water on top of the mem-

branes. A second order �nite element interpolation is used for the mechanical displacement, for

the acoustic pressure and for the electric potential �eld. The truncated �uid region has a height

and a radius of 200 µm.

In a �rst veri�cation the six outer membranes are clamped. In any case water is considered

for the �uid and only the inner membrane is electrically excited. Figure 5.5 is obtained when the

maximum vibration magnitude is computed for a frequency sweep. The computed curve matches

closely the curve obtained in [1]. Apart from the di�erent mesh, interpolation order and �uid

truncation considered, the main visible di�erence is the larger vibration close to resonance. This

should come as no surprise as no mechanical damping has been considered. The only damping in

the model comes from the radiated acoustic power.

In a second veri�cation the outer membranes are free to move and �gure 5.6 is obtained.

Compared to �gure 5.5 where the outer membranes are clamped new peaks appear. The curve

obtained clearly shows the impact on the inner membrane of the crosstalk between the inner and

the outer membranes. The results here again closely match those of [1].
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Figure 5.4: Top view of the meshed circular membrane geometry.

Table 5.2: First �ve resonance frequencies computed in [1].

fR1 fR2 fR3 fR4 fR5
3.86 MHz 11 MHz 19.9 MHz 23.9 MHz 32.8 MHz

To quantify how close both simulations are one can compare the �rst �ve resonance frequencies

(fR1, fR2, fR3, fR4, fR5). The frequencies obtained in [1] are listed in table 5.2 while the resonance

frequencies obtained with the multiharmonic solver are such that

1. 3.5 MHz < fR1 < 4 MHz

2. 11.5 MHz < fR2 < 12 MHz

3. 20.5 MHz < fR3 < 21 MHz

4. 23.5 MHz < fR4 < 24 MHz

5. 32.5 MHz < fR5 < 33 MHz

i.e. very close to the ones obtained in [1], especially at higher frequency. The associated resonance

modes are displayed in �gure 5.7 and correspond to the modes in the reference. The software can

thus be considered validated in this 3D electroelastoacoustic test case as well.
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Figure 5.5: Maximum membrane de�ection versus frequency when the central membrane is elec-
trically excited and the outer membranes are clamped. The constant de�ection is removed.

5.2 Crosstalk through acoustic waves

This section demonstrates that crosstalk through acoustic waves propagating in water can be

simulated in steady state for large CMUT arrays with the techniques presented. The nonlinearity

arising from the electromechanical coupling is in any case fully taken into account. For that, arrays

of CMUTs are considered. As an illustration �gure 5.8 shows a 10 by 10 array. The elementary

cells are the reference 3D CMUT of �gure 1.5, with water on top of the membranes and a clamped

bulk region in order to focus on the �uid crosstalk.

The nonlinearly coupled electric-mechanic-acoustic problem is simulated with the staggered

resolution method described in section 2.4.1. The electroelastoacoustic formulation (2.6)-(2.16)-

(2.38) is solved with the multiharmonic framework.

Because obtaining the �nite element discretised algebraic system with high-order �nite element

interpolations along with the multiharmonic framework can take up a large part of the total simu-

lation time it is worth analysing the fraction of the time that is spent on the symbolic processing,

the matrix assembly and the actual resolution of the algebraic system. The times are displayed

in �gure 5.9 for 1024 hexahedra in the mesh of every single CMUT cell and a second order �nite

element interpolation. They extend in 3D the analysis performed for �gure 3.7.

For the staggered resolution the only problem that becomes larger with an increasing number of

harmonics is the electrostatic problem. It has indeed been shown that the elastoacoustic problem

can be solved for each harmonic frequency independently. For a Newton iteration however the

sensitivity matrix (derived in section 2.3.5) must be considered for all electric �eld, mechanical

displacement and acoustic pressure harmonics together, leading to a very large algebraic system

to solve. A Newton iteration could thus not be performed for more than two harmonics with

reasonable memory resources.
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Figure 5.6: Maximum membrane de�ection versus frequency when the central membrane is elec-
trically excited and the outer membranes are free to vibrate. The constant de�ection is removed.

Observations made in 2D for �gure 3.7 are still valid here: the symbolic computations take

a relatively large time but can be computed once and for all and are thus not problematic while

the matrix generation time is dominant in the total simulation time. In any case however �gure

5.9 shows that a large number of harmonics (more than 10) could be treated in a very reasonable

amount of time in a 3D setting. The vast majority of excitation settings are thus within reach,

considering that in chapter 3 only 5 harmonics were required for a very accurate simulation of

a close-to-resonant vibrating CMUT with a large v(t) = 40 + 40 sin(2πf0t) V excitation voltage

(pull-in voltage was 110 V).

Simulating large CMUT arrays is also within reach with the domain decomposition methods

presented in chapter 4, as long as the number of iterations required remains reasonable. Array

sizes ranging from 2× 2 to 7× 7 have been simulated using the staggered RAS algorithm (detailed

in section 4.3.1) and the number of domain decomposition iterations recorded. The seven �rst

harmonics have been considered for every �eld. Figure 5.10 shows the number of iterations required

to reach a 10−9 overall relative residual versus number of cells in the array. A plot is shown for

every harmonic frequency. As can be seen for the constant frequency the number of iterations

remains stable. This is because there is no �uid crosstalk for the 0 Hz frequency. For all other

frequencies the number of iterations required increases with the number of subdomains but still

remains very reasonable even for a 7× 7 array. Furthermore by adding the coarse grid detailed in

section 4.4 the number of iterations can be reduced by up to a factor 3. The detailed convergence

history can be found in �gure 5.11 (no coarse grid considered) and in �gure 5.12 (coarse grid

considered).

The in�uence of the electrical excitation frequency is also investigated: in �gures 5.13 and 5.14

the excitation frequency is increased from 1 MHz to 8 MHz by factors of 2. The �rst �gure shows

the convergence history for the RAS algorithm without coarse grid correction while in the second
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Figure 5.7: Shape of the �rst �ve vibration modes. The vibration component in quadrature is
displayed.
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Figure 5.8: Illustration of a 10x10 CMUT array (not to scale). Water on top not displayed.

�gure a coarse grid has been used. It is visible with the 4 and 8 MHz excitation frequencies that

an increased frequency leads to a rather large convergence slowdown (the other 2 harmonics are

heavily impacted by the resonance peak between the 1 and 2 MHz excitation frequency). This

slowdown with an increasing frequency is expected and was already observed on the 2D reference

geometry before, where it was improved with Sommerfeld interface conditions. The same trend

is observed when a coarse grid is used, though the coarse grid still provides a noticeable factor 2

convergence speedup at 8 MHz.

In order to demonstrate the parallel computation capabilities of the algorithm a simulation

of a 12 × 12 CMUT array surrounded by a �uid layer has been performed in parallel on 196

processing units. For high accuracy seven harmonics have been used in the Fourier truncation

of the displacement, pressure and electric potential �elds: out of the 7 the last 2 are negligeable

while the �rst and the �fth are the largest. After discretisation there are 2, 206, 526 degrees of

freedom in the domain decomposition unknown vector - x in (4.17) - of the electrostatic problem

and 18, 305, 463 in total for all frequencies of the elastoacoustic problem. The solution time on 196

processing units (2 GHz Intel cores with 4 GB RAM) was about 8 hours per staggered nonlinear

iteration with the multiharmonic solver (3 iterations accurately solve the nonlinearity) - in our quite

basic Matlab implementation most of the time was spent in communication between processing

units. In the membrane plane, structured mesh layers made up of 16× 16 order 2 hexahedra were

used to accurately capture the �rst mode membrane vibration (as shown in section 2.5). The

�uid was 2 membrane-length (100 µm) high and meshed with 2 layers. Allowing more than 4

GB memory per processing unit would provide a more accurate simulation of the �uid. Fig. 5.16

shows a 3D view of the Uc2 and δPc2 displacement and pressure harmonics in case of a 70 volts

electrode to ground DC bias applied on all cells with an additional 70 sin(2π · 106 t) volts applied

only on two cells. Figures 5.15, 5.17 and 5.18 show the top view of the membrane displacement and

pressure at the membrane top for all harmonics considered. Because the pull-in voltage is around
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Figure 5.9: Time (s) for the symbolic multiharmonic computation (top), the matrix generation
(center) and its LU decomposition (bottom) for the electrostatic force (2.87), the electrostatic
problem (2.65) and a the sensitivity matrix (section 2.3.5) in the Newton iteration versus number
of terms in the Fourier truncation of every �eld.
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Figure 5.10: Number of DDM iterations to reach a 10−9 overall relative residual versus number of
cells in the CMUT array.

200 volts and the membrane vibrates close to resonance the displacements changed by 30% from

the �rst to the second staggered nonlinear iterations and nonlinearity had thus clearly to be taken

into account. An example of nonlinear e�ect is visible on the top view of the constant de�ection

in �gure 5.15: even though the constant bias voltage is the same for all cells the two cells excited

with an additional alternating voltage have a larger constant de�ection than the others.

5.3 Crosstalk through elastic waves

In this section the reference CMUT geometry of �gure 1.5 is considered without the �uid layer on

top, so that a MEMS device with an electromechanical coupling is obtained. With these settings

one can simulate the crosstalk between CMUT cells that originates from bulk elastic waves. The

electrostatic formulation used in the staggered nonlinear resolution is described in 2.3.1 while the

elastodynamic formulation is described in 2.3.2.

For the �nite element simulation the bulk region must be truncated and interface conditions

must be set at the truncation boundaries. In the hypothesis of perfect re�ection at the exterior

bulk boundaries Dirichlet conditions can be used to clamp the bulk. In the hypothesis of radiated

elastic waves appropriate conditions must be applied. For acoustic pressure waves this was achieved

by using Sommerfeld interface conditions (2.40). In an elastic medium however all waves do not

propagate at the same speed: compression waves typically have a higher velocity than shear waves.

The Sommerfeld condition can thus not be used as such, it must be replaced by Kupradze interface

conditions [129]. For a bulk truncation boundary parallel to the bottom of the membrane (i.e. in

the x− y plane perpendicular to the z axis) and located far enough from the membranes one can

assume that the elastic waves are traveling downwards (in the −z direction) and hit the truncation

boundary perpendicularly. In this case the Kupradze conditions to impose on the truncation
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Figure 5.11: In�uence of the number of subdomains on the convergence history for the 3D CMUT
array with water. The top �gure is for the constant harmonic, the middle one for the fundamental
frequency harmonics and the bottom one for twice that frequency. The RAS DDM algorithm is
used without coarse grid.
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Figure 5.12: In�uence of the number of subdomains on the convergence history for the 3D CMUT
array with water. The top �gure is for the constant harmonic, the middle one for the fundamental
frequency harmonics and the bottom one for twice that frequency. The RAS DDM algorithm is
used with a coarse grid.
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Figure 5.13: In�uence of the excitation frequency on the convergence history for the 3D CMUT
array with water. The top �gure is for the fundamental frequency harmonics and the bottom one
for twice that frequency. The RAS DDM algorithm is used without coarse grid.
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Figure 5.14: In�uence of the excitation frequency on the convergence history for the 3D CMUT
array with water. The top �gure is for the fundamental frequency harmonics and the bottom one
for twice that frequency. The RAS DDM algorithm is used with a coarse grid.
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Figure 5.15: Top view of the constant de�ection in the simulation of the 12x12 CMUT array. Dark
blue is 0 nm, dark red is 16 nm.

boundary are 
∂zux + 1

cs
∂ux

∂t = 0

∂zuy + 1
cs

∂uy

∂t = 0

∂zuz + 1
cp
∂uz

∂t = 0,

(5.8)

where cp and cs are respectively the propagation speed of the compression waves and of the shear

waves. The speeds can be computed using the Lamé parameters

λ = E ν
(1+ν)(1−2 ν)

µ = E
2(1+ν)

(5.9)

as follows:

cp =
√

µ
ρ

cs =
√

λ+2µ
ρ ,

(5.10)

so that for silicon cp = 9310 m/s and cs = 4980 m/s.

Because of the time derivative in the Kupraze interface conditions, supposing radiated pressure

waves will add harmonics to the Fourier series of the displacement �eld and lead to a heavier prob-

lem to solve. While doing so is computationally tractable it will be avoided in the simulations of

this section since the computing cluster used is designed for relatively low (4 GB) RAM per com-

puting unit. Perfect radiation conditions are thus considered, leading to a mechanical displacement

that can be written as
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Figure 5.16: Side view of the U c2 displacement harmonic and δPc2 pressure harmonic in the
simulation of the 12x12 CMUT array.
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(a) Us1, range is 0 to 27 nm (b) Uc1, range is 0 to 0.8 nm

(c) Us2, range is 0 to 6 nm (d) Uc2, range is 0 to 15 nm

(e) Us3, range is 0 to 0.005 nm (f) Uc3, range is 0 to 0.004 nm

Figure 5.17: Top view of the displacement harmonics considered in the simulation of the 12x12
CMUT array. The constant de�ection is not shown.
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(a) δPs1, range is −0.8 to 9.6 kPa (b) δPc1, range is −1.4 to 0.5 kPa

(c) δPs2, range is −12 to 10 kPa (d) δPc2, range is −19 to 13 kPa

(e) δPs3, range is −0.018 to 0.003 kPa (f) δPc3, range is −0.003 to 0.015 kPa

Figure 5.18: Top view of the 6 pressure harmonics considered in the simulation of the 12x12 CMUT
array. The pressure is shown at the membrane top.
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u(x, t) = U c0(x) +U s1(x) sin(2πf0) +U c2(x) cos(2 · 2πf0) + ... (5.11)

for the considered 70 V constant electric bias on all cells in the CMUT array and an additional

70 sin(2πf0) V excitation on a single cell.

Figure 5.20 shows the in�uence of the number of subdomains in the array on the convergence

of the RAS algorithm solving the elastoacoustic problem at the �rst staggered iteration. Since all

harmonic frequencies are decoupled for the elastoacoustic problem at a given staggered iteration

the convergence history is shown for the constant de�ection U c0, the vibration at the excitation

frequency U s1 and at twice that frequency U c2. The �rst three harmonics have been considered

in (5.11) while f0 is set to 1 MHz. To have an idea of the displacement �eld corresponding to the

considered settings the U c2 harmonic is illustrated in �gure 5.19.

Even though the crosstalk through elastic waves is much smaller than what was obtained

through �uid coupling the required number of iterations is still relatively high without coarse grid

correction. The general trend when the number of subdomains is increased is unsuprisingly a

convergence slowdown. Furthermore the higher order harmonics, vibrating faster, tend to have a

slower convergence, similarly to what was observed in 2D in �gure 4.11.

When the coarse grid is considered �gure 5.20 is obtained: the coarse grid works well, reducing

the iteration count by a factor 3 and making the convergence independent of the number of sub-

domains. This could have been expected since the coarse grid, even though only using order one

interpolations, is rather �ne compared to the wavelength in the bulk domain and thus produces a

rather accurate correction.

As a conclusion, crosstalk through elastic waves could also be simulated for large arrays. The

crosstalk that could be obtained in the considered simulations was much weaker than via �uid

coupling.
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Figure 5.19: Displacement harmonic U c2 at the top of the membrane (top) and 3D view on bulk
slices (bottom). Only a single cell is electrically excited at 2.5 MHz.
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Figure 5.20: In�uence of the number of subdomains on the convergence history for the 3D CMUT
array without �uid. The top �gure is for the U c0 harmonic, the middle one for U s1 and the bottom
one for U c2. The RAS DDM algorithm is used without coarse grid.
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Figure 5.21: In�uence of the number of subdomains on the convergence history for the 3D CMUT
array without �uid. The top �gure is for the U c0 harmonic, the middle one for U s1 and the bottom
one for U c2. The RAS DDM algorithm is used with a coarse grid.
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Conclusion

In this thesis a method to simulate in steady state large arrays of microelectromechanical devices

(MEMS) vibrating in a �uid (e.g. CMUTs) has been proposed and its practical viability has been

demonstrated. The method combines multiple ingredients which together make it possible to tackle

the challenging, tens of millions degrees of freedom large, multiharmonic, multiphysics, nonlinear

problem considered. The �nite element method has been used in all simulations.

The �rst ingredient is the domain decomposition method (DDM), enabling the parallel compu-

tation on a large number of computing units. The major linear as well as intrinsically nonlinear

DDM methods have been detailed and compared in terms of convergence rate, memory requirement

and reusability of already available algebraic matrix decompositions. The linear DDM methods

have been preferred for the rather smooth nonlinearity arising in microelectromechanical devices.

Both the weakly coupled staggered resolution and the strongly-coupled monolithic resolution with

Newton's method have been investigated in the DDM algorithms. The Newton iteration was pre-

ferred for large membrane de�ections, very close to the pull-in instability thanks to its quadratic

convergence for the nonlinear problem while in all other simulations the less memory demanding

and lighter staggered resolution was preferred.

The second ingredient is the multiharmonic resolution method to accurately simulate the steady

state vibration without the need of a time stepping method. A classical harmonic resolution could

not be performed since the nonlinearity created new vibration harmonics that were not part of

the electrical excitation signal and lead to a coupling of the harmonics corresponding to di�erent

frequencies. The multiharmonic method was implemented in an automatic way, computing the

required formulations without user e�ort. To simulate the steady state of the considered devices

it was observed that the multiharmonic resolution method is more systematic and requires much

less computation power than a classical Newmark time stepping method. It was furthermore

observed that the staggered nonlinear resolution approach enables to solve at every iteration the

elastoacoutic problem, the heaviest problem at a given staggered iteration, for every harmonic

frequency independently. Unlike with Newton's method this enabled to consider a large number

of harmonics for a very good accuracy without requiring more memory and with a computation

time proportional to the number of harmonic frequencies considered.

The third ingredient is to use the high-order �nite element method to get accurate simulations

with a dramatically reduced number of degrees of freedom. Even though the algebraic system to

solve becomes denser it was observed that for the resolution of the mechanical problem using an

order two interpolation instead of order one lead to a tenfold reduction of the number of degrees

of freedom for a same accuracy. Higher orders, up to order six, have been considered but order
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two and three have been preferred.

As a proof of concept simulations have been performed in a couple of hours on large arrays of up

to 196 elementary MEMS cells vibrating in water (CMUTs), with a 3D model of every cell leading

to a system with about 20 million degrees of freedom. The simulation was performed for a large

electrical excitation leading to a clearly nonlinear behaviour. With seven harmonics considered the

steady state could be accurately simulated. The �uid crosstalk between individual cells as well as

the nonlinear coupling between vibration harmonics could be clearly observed.

Perspectives

The simulation method proposed in this thesis has been applied to vibrating micromembranes and

to CMUTs. This should not be seen as a limitation of the method to these two devices but rather

as a guideline indicating to which devices the method is best suited. The DDM can be applied

as described to general micro devices as long as the wavelength of the propagating waves is not

much shorter than the size of an individual DDM subdomain. For such high frequency problems

the boundary conditions detailed are not competitive anymore and more appropriate conditions

[110, 83] should be used. The multiharmonic resolution method can be applied to a broad class

of devices as long as the �elds can be approximated with a reasonable number of harmonics.

As a general rule the multiharmonic method should be competitive compared to a classical time

resolution for low damping applications.

The improvements and extensions of this work can be classi�ed in two categories. The �rst

category concerns the numerical aspects and deals with speeding up the claculations. The second

category deals with the physical modeling of the devices to obtain simulation results that closely

match actual devices.

From a numerical point of view a major improvement would be to reduce the computation

time required to simulate large arrays of devices while implementing everything in a proven �nite

element software. The major sources of speedup are the following:

� Reduce the large communication cost by calling an e�cient message passing library.

In the simulations all communication was done by writing and reading �les on disk, leading

to a large share of the computation time lost in communication. Calling a message passing

library such as MPI can be the solution.

� Using an optimised hp-fem code as well as an optimised mesh.

The mesh used in the 3D simulations of section 5.2 was obtained by extruding a 2D mesh

and can thus be optimised to get the same accuracy at a lower computational cost. Using

di�erent interpolation orders for the mechanical displacement, the electric potential and the

acoustic pressure �eld would provide an additional speedup.

� Implementing in an e�cient and general way the multiharmonic method.

As mentionned in section 3.3 the multiharmonic resolution method can be implemented for

general nonlinear problems using external FFT libraries. Combined with a more e�cient
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implementation avoiding the recomputation of terms that can be reused, the multiharmonic

resolution can be accelerated.

From a physical modeling point of view a more accurate representation of actual MEMS devices

can be obtained by taking into account:

� Mechanical and acoustic damping sources.

The only damping source considered in this work comes from the radiated pressure waves. In

practical devices the losses in the �uid and the membrane vibration provide extra damping,

in particular for close to resonance excitations.

� Squeeze �lm e�ect.

In practical CMUTs the vacuum gap below the membrane might be �lled with some gas. As

the membrane vibrates the gas alternatively expands and contracts. Taking into account this

e�ect and the associated damping source will not only provide more accurate simulations but

also allow the simulation of a wider class of MEMS.

� Residual stresses.

The micromachining technologies used to produce the MEMS devices can create residual

stresses in the device that in�uence its characteristics.

� The geometrical nonlinearity in the membrane deformation.

Thin membranes exhibit in general a strong geometrical nonlinearity since their bending

sti�ness is tiny in the undeformed con�guration and dramatically increases with the bending.

Even though the membrane thickness considered in the simulations performed in this work

is relatively large, a closer match with reality will be obtained by taking into account the

geometrical nonlinearity.
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Appendix A

Overview of the high order �nite

element method

A.1 Weak formulation and discretisation

Solving numerically a partial di�erential equation with the �nite element method [72] always

requires a discretisation of the problem. As an example when we are to solve the electrostatic

model (1.4) for the electric potential v

 div(ε∇v) = −ρv on Ω,

v = 0 on Γ,
(A.1)

using the Galerkin method the strong form (A.1) is not solved as such. It is instead solved in weak

form: the �rst relation implies that

∫
Ω

div(ε∇v) v′ dΩ =

∫
Ω

− ρv v′ dΩ, (A.2)

holds for any appropriate function v′, called test function. In (A.2) the unknown �eld v is then

discretised as follows

v =

m∑
i=1

ciNi, (A.3)

as a sum of products of constant coe�cients ci and space dependant shape functions Ni(x). A well

known example of an appropriate order one nodal shape function Ni is a piecewise linear function

equal to one on a mesh node i and zero on all others. Figure A.1 illustrates such a shape function

in 1D. As can be seen the shape function is non zero on only two mesh elements.

Because v′ in (A.2) can be any appropriate function one can simply use v′i = Ni (i = 1...m) so

as to get m equations for the m unknown coe�cients ci:
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Figure A.1: First order 1D Lagrange shape function for node i


K1,1 · · · K1,m

...
. . .

...

Km,1 · · · Km,m




c1
...

cm

 =


b1
...

bm

 . (A.4)

It is worth noting that since the shape functions in the �nite element method are chosen with a

compact support the matrix K corresponding to the system of m equations will be sparse.

As can be seen in (A.2), for the piecewise linear shape functions described the left side of

the equation equals zero because of the second order space derivative. Fortunately one can apply

Green's formula and get:

−
∫

Ω

ε∇v · ∇v′dΩ +

∫
∂Ω

ε v′ ∂nv d∂Ω =

∫
Ω

− ρv v′ dΩ, (A.5)

where ∂Ω is the boundary of Ω and ∂nv = n · ∇v is the normal derivative of v. This form not

only enables the use of linear shape functions but also gives easy access to the normal derivative:

it will be used throughout the thesis.

Form (A.5) with the piecewise linear shape function can readily be assembled on all mesh

elements to give a system of the form (A.4). As an example the left term assembled on a single

line mesh element Ωe ∈ Ω

−
∫

Ωe

ε∇v · ∇v′dΩ = −
∫

Ωe

ε∇(

2∑
i=1

ciNi) · ∇v′dΩ, (A.6)

leads to an elementary matrix Ke equal to

−
∫

Ωe

ε

[
∇N1 · ∇N1 ∇N2 · ∇N1

∇N1 · ∇N2 ∇N2 · ∇N2

]
dΩ, (A.7)

where the �rst (second) row corresponds to the �rst (second) test function v′ = N1 (v′ = N2) while

the �rst (second) column corresponds to the �rst (second) interpolation function v = N1 (v = N2).

Adding together all elementary matrices at the right indexes leads to the full matrix K.

A.2 High order discretisation

The �nite element-computed approximation on a given mesh converges asymptotically to the actual

solution as hp+1 where h quanti�es the mesh size and decreases as the mesh is re�ned and p is

the polynomial interpolation order of the �elds on a mesh element. As a consequence for a given
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1

Figure A.2: Order 1 (left) and 2 (right) Lagrange shape functions on a 1D (line) element

mesh size a much more accurate approximation can be obtained by increasing the order p of the

element shape functions. A classical high order shape function choice is Lagrange polynomials as

already introduced in the previous section. The Lagrange shape function for node i on an n node

1D element is

Ni =

n∏
j=1,j 6=i

x− xj
xi − xj

, (A.8)

where x is the 1D coordinate. In other words the shape function equals zero on all nodes but the

ith on which it equals one. Figure A.2 illustrates the Lagrange shape functions for orders 1 and 2

on a 1D (line) element. As can be seen the shape functions associated to the external nodes in the

�rst order and second order line element are not the same. In higher dimension elements this leads

to shape function discontinuities at the interface of adjacent elements of di�erent orders: Lagrange

shape functions are not hierarchical and di�erent interpolation orders cannot be combined in the

same mesh.

Work [130] conveniently provides high order hierarchical shape functions for all classical el-

ements but the pyramid and will be used throughout this thesis. In this case the set of shape

functions for an order p + 1 element includes the shape functions for the order p element which

makes them hierarchical. The shape functions can be classi�ed into 4 categories: those associated

to

� nodes (Nn): a shape function associated to node i is non zero on node i and zero on all

other nodes in the element

� edges (Ne): a shape function associated to edge i is non zero on edge i and zero on all other

edges in the element

� surfaces (Ns): a shape function associated to surface i is non zero on surface i and zero on

all other surfaces in the element

� volumes (Nv): a shape function associated to volume i is non zero on volume i and zero on

all other volumes in the element

An unknown �eld v can be spatially interpolated as

v =

#nodes∑
i=1

cniNni +

#edges∑
i=1

ceiNei +

#faces∑
i=1

csiNsi +

#volumes∑
i=1

cviNvi. (A.9)

The scalar nodal shape functions for a second order quadrilateral element are illustrated in �gure

A.3 (associated to a node, edge and surface from left to right). The number of node, edge, surface
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Figure A.3: Illustration of quadrilateral order two hierarchical shape functions associated to a
node, edge and surface (from left to right)

Table A.1: Number of node, edge, surface and volume shape functions for order 1 through 5
quadrangle and hexahedron element

Quad. order 1 2 3 4 5

Node 4 4 4 4 4

Edge 0 4 8 12 16

Surface 0 1 4 9 16

Volume 0 0 0 0 0

Sum 4 9 16 25 36

Hex. order 1 2 3 4 5

Node 8 8 8 8 8

Edge 0 12 24 36 48

Surface 0 6 24 54 96

Volume 0 1 8 27 64

Sum 8 27 64 125 216

and volume shape functions versus element order is shown in �gure A.1 for the quadrangle and

hexahedron element.

A.3 Orientation

The edge and surface associated shape functions de�ned in [130] depend on the edge and surface

orientation. Orienting the edges (and surfaces in 3D) in a same way on all adjacent elements is

of crucial importance to guarantee shape function continuity at the element interfaces. For the

quadrangle in �gure A.4 for example the order 3 left edge associated shape function can have two

forms depicted in �gure A.5 depending on the left edge orientation 1→ 2 or 2→ 1: any orientation

is valid but the same orientation must be chosen for the adjacent edge of the neighbouring element.

In case of surface associated shape functions there are 24 = 8 possible orientations in theory. In

2D however any choice of orientation is appropriate since the surface shape function equals zero

at the element interface. Similarly in 3D any orientation of volume associated shape functions is

valid.

The following procedure to orient edges (and surfaces in 3D), based on the element node

numbering given by the meshing software, is based on [130]:

� edges de�ned by node with numbers a and b are oriented a→ b with a > b
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Figure A.4: Quadrangle with two possible edge orientations

Figure A.5: Order 3 shape function for two opposite edge orientations

� triangular surfaces de�ned by nodes with numbers a, b and c are oriented a → b → c with

a > b > c

� quadrangular surfaces de�ned by nodes with numbers a, b, c and d are oriented as a→ b→
c→ d with a = max(a, b, c, d), a and c correspond to opposite corners and b > d

Because mesh node numbers are shared by adjacent elements the above procedure guarantees shape

function continuity at the interface.

In this thesis computations will have to be performed on multiple overlapping meshes with

same elements and node coordinates on the overlap but di�erent node numbering. In such a

con�guration the above procedure cannot be used as such and an extra step is �rst performed:

1. Remove the node coordinates roundo� noise

2. Sort the nodes according to their coordinates with coordinate priority x > y > z

3. Renumber nodes accordingly

Figure A.6 illustrates this step for two overlapping meshes with 2 quadrangles in each. The

renumbering guarantees same > and < relations between node numbers on the overlap for the

di�erent meshes. Edge and surface shape functions are thus guaranteed to be identical. The

renumbering and orientation steps are performed once and for all when the mesh is loaded.
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Figure A.6: Coordinate-wise node renumbering procedure for an overlapping mesh

A.4 Mapping on the reference element
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Figure A.7: Physical quadrangle brought back to the reference quadrangle

In the �nite element method the actual computation is performed on standard reference ele-

ments. Figure A.7 illustrates a real quadrangle in the mesh brought back to the reference quadran-

gle element. Doing so simpli�es the spatial derivation and numerical integration as the reference

is the same for any quadrangle in the mesh. The formulations have however to be adapted by

introducing a variable change Jacobian matrix. Considering only straight �nite elements one can

use the already introduced order 1 Lagrange shape functions N to write the coordinate change

relation: 
x =

4∑
i=1

xiNi(ξ, η),

y =

4∑
i=1

yiNi(ξ, η),

(A.10)

so that the Jacobian is

J =
∂(x, y)

∂(ξ, η)
=

4∑
i=1

[
xi
∂Ni(ξ,η)

∂ξ yi
∂Ni(ξ,η)

∂ξ

xi
∂Ni(ξ,η)

∂η yi
∂Ni(ξ,η)

∂η

]
, (A.11)

where ∂Ni(ξ,η)
∂ξ and ∂Ni(ξ,η)

∂η are the Lagrange shape function derivatives in the reference element.

The two quantities can be easily derived analytically since the shape functions are simple polyno-

mials in ξ and η.

A spatial derivative in the formulation can be rewritten using reference derivatives and elements
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of the inverse Jacobian matrix since J−1 = ∂(ξ,η)
∂(x,y) . As an example the left term in (A.5) computed

on a quadrangle element Ωe can be computed on the reference element Ωref as follows:

−
∫

Ωe

ε∇v · ∇v′dΩ = −
∫

Ωref

εJ−1∇v · J−1∇v′|J |dΩref , (A.12)

where |J | is the Jacobian determinant taking into account the local surface change.

In this thesis the mesh will be deformed by a known mechanical displacement �eld u de�ned in

the already mentionned high order hierarchical basis (u does not distort the elements). In order

to take the induced curvature on the element into account the new Jacobian, called J ′, becomes

J ′ =
∂(x+ ux, y + uy)

∂(ξ, η)
= J +

∂(ux, uy)

∂(ξ, η)
= J + Ju, (A.13)

where Ju can be easily evaluated pointwise while fully taking into account the curvature in the

high order interpolation of u.

A.5 Numerical integration

Numerical integration in �nite elements is typically performed on the reference element using a

Gaussian quadrature method. For the reference quadrangle in �gure A.7 it consists in computing

∫ 1

−1

∫ 1

−1

f(ξ, η) dξdη =

n∑
i=1

wif(ξi, ηi), (A.14)

only requiring n pointwise evaluations of f at the Gauss points of coordinates (ξi, ηi). Quantity

wi gives a weight to every Gauss point.

For a high order element the function f is a high order polynomial and a high number of Gauss

points are required for an exact integration. For a linear f however a single Gauss point is required

at (ξ, η) = (0, 0) with a weight w = 4 for the reference quadrangle in �gure A.7. Figure A.8

illustrates the Gauss points positions for order 0 through 5 (less nodes can sometimes be used with

an optimised choice of point coordinates).

η

ξ

η

ξ

η

ξ

Figure A.8: Gauss point position to integrate order 0 and 1 (left), 2 and 3 (middle), 4 and 5 (right)

In this thesis some high order �nite element formulations will be underintegrated [131, 132], i.e.

the number of Gauss points will be lower than for an exact integration. This allows to speed up

the �nite element matrix generation. The integration degree will however be chosen high enough

so that the e�ect on the simulation is negligeable.
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A.6 Matrix assembly

In order to get the �nite element approximate solution of a problem a system in the form (A.4)

in which the sti�ness matrix K contains all equations ruling the set of unknown shape function

coe�cients has to be assembled and solved. K is the sum (at the right indexes) of elementary

matrices Ke assembled at the element level. The elementary matrix of an element with n shape

functions is a dense n by n size matrix as illustrated in A.7. For high order elements the number of

shape functions dramatically increases as reported in table A.1 while the number of Gauss points

follows the same trend. As a result care has to be taken when writing a high order �nite element

assembler otherwise the matrix generation time might well exceed the system solve time. Because

in this thesis a Matlab code is used any for loop at this step has to be avoided. The assembling

step is fully vectorised for an orders of magnitude faster assembly.

Assembling any elementary matrix contribution (previously scalarised, with or without spatial

unknown or test function derivatives) ∫
Ωe

c v v′ dΩe, (A.15)

on element Ωe where c includes all terms but the unknown v and the test function v′ is done at

once for all elements of the same type in a single Matlab line using the speed optimised binary

singleton expansion function bsxfun:

a=sum(bsxfun(@times,bsxfun(@times,coefmatrix,testfunmatrix),

permute(interpolfunmatrix,[1 2 4 3])),2)

a=permute(a, [1 3 4 2]);

where

� coefmatrix(i, j) equals c evaluated at element i, Gauss point j. It includes the Gauss point

weights and all coordinate change Jacobian terms

� interpolfunmatrix(i, j, k) is the kth shape function (or its derivative on the reference element)

on element i, computed at Gauss point j and associated to the unknown v

� testfunmatrix(i, j, k) is the kth shape function (or its derivative on the reference element) on

element i, computed at Gauss point j and associated to the test function v′

After this call a(i, j, k) gives the element corresponding to the jth test function and kth interpola-

tion function in the elementary matrix of element i. Retrieving the interpolation and test function

adresses in the full matrix is fully vectorised as well. Getting the sparse sti�ness matrix uses the

sparse Matlab function whose main inputs are the values in all elementary matrices and their cor-

responding row and column indexes in the global assembled matrix. Figure A.10 shows assembly

times (computation of the sti�ness terms and sparse call) for the left term in the electrostatic

formulation (A.5) for several triangle/tetrahedron orders and mesh densities in 2D and 3D. Table

A.2 shows the number of elements assembled per second. Dirichlet boundary conditions are taken

into account. The number of Gauss points is such that a polynomial of degree twice the element
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Order 1 2 3 4 5

2D triangles 287000 77000 25000 11000 5000

3D tetrahedra 140000 21000 4000 1000 400

Table A.2: Number of triangles and tetrahedra assembled per second for the 2D and 3D electrostatic
formulation (2.66) (without volumic charges but with Dirichlet conditions instead) versus element
order. The number of Gauss integration points is such that twice the element order can be exactly
integrated.

order can be exactly integrated. The mesh is unstructured and the symmetry property of the

generated matrix is not exploited. Computations are performed on a modern laptop with 16 GB

RAM.

A.7 High order element validation

High order quadrangles and hexahedra are used throughout the thesis. They have been validated

in the homemade Matlab code via the drop rate of the error (L2 norm) between the �nite element

approximation v ∫
Ω

v v′ dΩ =

∫
Ω

sin(10x) cos(10y) v′ dΩ, (A.16)

and the actual solution sin(10x) cos(10y) on a square/cubic geometry with a structured mesh. The

error should asymptotically decrease at a rate hp+1 where p is the element order and h the number

of elements in each space direction x, y (and z). The convergence curve is plotted in �gure A.9

for the quadrangle element as an illustration. The slopes for the highest h are −2.003, −3.005,

−4.016, −5.029, −6.065 for order 1 through 5 respectively, as expected.
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Figure A.9: Convergence curve for a high order quadrangle
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Figure A.10: Time to compute the terms of the electrostatic sti�ness matrix (top) and to build the
sparse matrix (bottom) on a 2D triangular (left) and 3D tetrahedral (right) mesh with increasing
element order. Total generation time is the sum of top and bottom.
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