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Abstract 

Several methods for modeling urban expansion are available. Most of them are based on a 
statistical, a cellular automaton (CA) and/or an agent-based (AB) approach. Statistical and CA 
approaches are based on the implicit assumption that people's behavior is not likely to change over 
the considered time horizon. Such assumption limits the ability to simulate long-term predictions as 
people’s behavior changes over time. An approach to consider people’s behavior is the use of an AB 
system, in which the decision-making process of agents needs to be parameterized. Most existing 
studies, which make use of empirical data to define the agents' decision-making criteria, rely on 
intensive data collection efforts. The considerable data requirements limit the AB-system's ability to 
model a large study area, as the number of agents for which data on decision-making criteria is 
required, increases with the size of the study area. This paper presents a hybrid urban expansion 
model (HUEM) that integrates logistic regression (Logit), CA and AB approaches to simulate future 
urban development. A key feature of HUEM lies in its ability to address various people behaviors that 
are variable over time through AB relying on a sample approach that combines Logit and CA. Three 
agent sets are defined; developer agents, farmer agents and planning permission authority agent. 
The agents’ decision-making process is parameterized using CA and Logit models. The interactions 
of the agents are simulated through a series of rules. To assess HUEM performance, it is calibrated 
for Wallonia (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are 
then assessed by comparing the 2000 simulated map and the actual 2000 land-use map. 
Furthermore, the performance of HUEM is compared to a number of typical spatial urban expansion 
models, i.e. Logit model, CA model and CA-Logit to assess the added-value of HUEM. The comparison 
shows the performance of HUEM is better than other models in terms of allocation ability. 
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1. Introduction 1 

The urban environment is a complex system, which includes a large number of inconstant 2 

parameters and several actors (e.g. households, developers, government, etc.). The complexity of 3 

such a system is well explored in (Batty, 2007, 2008). Urban expansion models are a tool to gain 4 

insight into the mechanisms of the urban environment. These models can project the expected 5 

future demands of urban lands and/or a geographical distribution of these demands. Urban 6 

expansion models have wide range applications, which expands from global warming (e.g. Haggert, 7 

1995) to response to flood risks (e.g. Beckers et al., 2013; Mustafa et al., 2016; Poelmans et al., 2010). 8 

Several statistical and geospatial approaches have been proposed and developed to model urban 9 

expansion, including logistic regression models (Logit) (e.g. Hu and Lo, 2007; Vermeiren et al., 10 

2012), cellular automata (CA) (e.g. Al-Ahmadi et al., 2009; Mitsova et al., 2011; Mustafa et al., 2014) 11 

and agent-based models (AB) (e.g. Hosseinali et al., 2013; Zhang et al., 2010).  12 

Often, the urbanization likelihood of a non-urban land is determined by static drivers related to 13 

accessibility, geophysical features, policies and socio-economic factors. Another important driver is 14 

neighborhood interactions because of the fact that urbanization can be regarded as a self-organizing 15 

system (Poelmans and Van Rompaey, 2010). The relative importance of different drivers as 16 

determinants of the urbanization likelihood can be based on different methods such as Logit and CA. 17 

In this study, we refer to the static drivers as global factors and to the neighborhood interactions as 18 

local factors. 19 

Logit models are a common approach to model urban expansion. They predict the outcome of a 20 

categorical variables using a set of quantitative and/or qualitative predictors. Logit can include 21 

geophysical as well as socio-economic factors. The model’s ability to include as many factors as 22 

necessary allows us to better understand the main drivers behind urbanization processes. 23 

Neighborhood interactions can also be captured in Logit models by including them as part of the 24 

explanatory variables as in Hu and Lo (2007) and Verburg et al. (2004). However, because Logit 25 

models are not temporally explicit, they cannot reveal the path-dependent and self-organizing 26 

development which is typical for urban expansion (Poelmans and Van Rompaey, 2010; Wu, 2002). 27 

The most well-known approach to calculating the neighborhood interactions on a dynamic basis is 28 

cellular automata (CA) based model, in which the neighborhood state is updated during each 29 

simulation step. Cellular models are simple and widely available (Clarke and Gaydos, 1998). 30 

However, pure CA models focus on the calculation of urbanization transitions by explicitly consider 31 

the immediate neighbors of each landscape unit, i.e. cell, rather than on the interpretation of 32 

urbanization drivers. Several studies try to overcome this limitation of CA models by integrating CA 33 

with other modeling methods to consider several urbanization drivers. In this context, Logit and CA 34 

are commonly combined to create a so-called ‘CA-Logit model’, which considers both the 35 

urbanization static drivers and the dynamic neighborhood interactions (e.g. Poelmans and Van 36 

Rompaey, 2010).  37 

One of the clear drawbacks of Logit, CA and CA-Logit approaches is related to the lack of the 38 

theoretical link between the spatial rules and agents’ decisions within the urban environment. 39 

Agent-Based (AB) models, which are less frequently used in the context of urban expansion 40 

modeling, forecast agents as goal-oriented entities capable of responding to their environment and 41 

interacting with each other. Agents in the model can play a role of individuals or groups of people, 42 

institutions, etc. They can exhibit different characteristics: they can be heterogeneous (e.g. economic 43 

state, age, family structure), autonomous (they take their own decisions based on analytical 44 

functions) and dynamic (they can learn and adapt to different conditions) (Valbuena et al., 2008). 45 

The agents are commonly grouped into homogeneous sets of individuals with comparable 46 
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characteristics and behaviors. Generally, the decision-making criteria of agents require a large 47 

amount of data stemming from surveys that depict people's choices and utilize experts’ knowledge. 48 

In a large study area, such an intensive data gathering is limited by a large number of agents 49 

(Valbuena et al., 2008).  50 

This paper introduces an urban expansion model, namely a hybrid urban expansion model 51 

(HUEM), combining the simulation capabilities of Logit, CA and AB approaches. HUEM is a predictive 52 

model, which simulates future urban expansion. Agents' decisions are governed by a series of 53 

different possible behaviors, which are themselves variable over time. The non-urban to urban 54 

conversions of Wallonia (south Belgium) between 1990 and 2000 is used as a case study to 55 

demonstrate the applicability of HUEM to urban expansion modeling. Engelen et al. (2016) 56 

developed a spatial land-use change model for Flanders (north Belgium), called RuimteModel 57 

(Poelmans et al., 2013; White et al., 2015). It is a CA-based model that simulates annual changes of 58 

several land-use classes, with a resolution of 1 hectare. When compared to this approach, our model 59 

couples AG and CA, which allows us to compare the performances of different modeling approaches. 60 

The behavior of urban agents is established based on AB model. In AB model, urban developers 61 

(DevA) seek to develop non-urban cells with the highest urbanization probability and they do so if 62 

the urbanization probability exceeds a farmer (FarmA) satisfaction threshold and is approved by the 63 

planning permission authority (PPA) who tries to ensure that future urban expansions are in 64 

accordance with the official zoning plan. CA and Logit are embedded into the AB for calculating the 65 

urbanization probability and farmers satisfaction instead of gathering data from surveys. In addition, 66 

HUEM facilitates the incorporation of different ancillary data (e.g. how strictly should urban 67 

regulations enforce urban expansion).  68 

The main contribution of this paper is the added-value of combining agents’ behavior and 69 

decisions into a typical CA-Logit model, in which spatial entities are the basic units of simulation. To 70 

this end, HUEM and CA-Logit models are compared. In addition, both models are compared with 71 

Logit and CA models to decide whether the added complexity of the combination is worth reduction 72 

in degrees of freedom. 73 

The following sections describe model specifications, case study, results, and then give 74 

conclusions as well as suggestions for future study.  75 

2. The Hybrid Urban Expansion Model (HUEM) 76 

In this section, we describe the main components of HUEM model. The overall workflow is shown 77 

in Fig. 1.  78 
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Fig. 1. Methodological flowchart of the Hybrid Urban Expansion Model (HUEM).  

The model’s space consists of a 2D array of cells of the same dimensions. Three groups of agents 79 

are included in the model: developer (DevA), which represent firms and households; farmer 80 

(FarmA) and the planning permission authority (PPA). Actually one of the predominant forms of 81 

land-use change is the transformation of agriculture-related lands to built-up lands (e.g. Poelmans 82 

and Van Rompaey, 2009; Sang et al., 2011). Consequently, some FarmAs may decide to stop their 83 

activity as farmers and switch their type to DevAs. 84 

 In HUEM model, the development of non-urban cells is realized by DevA and controlled by PPA. 85 

FarmAs, owning agriculture-related cells, will decide to keep or to sell their own cells. 86 

A non-urban cell can be developed when three conditions are simultaneously satisfied: (i) the 87 

profitability of urban development is high, (ii) PPA allows construction in this cell and (iii) there are 88 

no constraints. The constraints are restrictive cases for urban development. Such constraints could 89 

include but are not limited to, flood-prone zones. Besides, it is defined that if a cell state is urban in a 90 

specific time-step, it automatically remains the same in the next time-steps.  91 

HUEM is first calibrated and assessed with real land-use data of at least two-time frames and is 92 

then used to project possible future urban expansion scenarios at a specific time horizon. Generally, 93 

the key features for understanding the design concept of HUEM are observation, tuning, and 94 

uncertainty. 95 

 Observation. We consider that the evolution of urban development is based on several 96 

socioeconomic, geographic and even political aspects that are referred to as urbanization 97 

driving factors. HUEM calculates the probability of urban development combining three layers 98 

that define cell probability for urban development: the local urban development probability 99 

(LUDP), the global urban development probability (GUDP) and the farming profitability 100 

(FarmProft). The LUDP and the FarmProft layers are developed using CA model. The GUDP 101 

layer is developed using Logit model. These layers are based on the exploring of past land-uses. 102 
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 Automatic calibration. The model does not require any prior knowledge about a specific study 103 

area. It employs Logit model and genetic algorithm (GA) to automatically calibrate all model’s 104 

parameters. 105 

 Uncertainty. Urban expansion models have inherent uncertainties related to the future values of 106 

model parameters. HUEM considers uncertainties through a set of various possible agents’ 107 

behaviors.  108 

HUEM consists of two modules: (i) a demand module and (ii) an allocation module. The demand 109 

module calculates the quantity of new urban cells at each time-step, whereas the allocation module 110 

spatially distributes this quantity over space. Generally, the quantity of new urban cells can be 111 

computed by several means including the Markov chain model (MC) (e.g. Sang et al., 2011; Yang et 112 

al., 2014), linear extrapolation (e.g. Mustafa et al., 2014; Poelmans and Van Rompaey, 2009) and/or 113 

based on socioeconomic factors (e.g. White and Engelen, 2000). It is hard to estimate a highly 114 

accurate projection of urban land demand in the future because of the complexity of the urban 115 

system and its related socioeconomic dynamics (He et al., 2008).  116 

HUEM can either be fed with the expected quantity of new urban cells or computes the quantity 117 

based on past trend using the MC model to develop a so-called business-as-usual scenario. The MC 118 

model is explored in a number of studies such as (Guan et al., 2011; Puertas et al., 2014; Sang et al., 119 

2011; Shafizadeh Moghadam and Helbich, 2013; Yang et al., 2014).  120 

In the model, each time-step corresponds to one year which would be adequate in a model of 121 

land-use change (White and Engelen, 2000). At the initialization of the model, the actual land-use 122 

maps of at least two time-steps are uploaded into the model and the agents are created. FarmA 123 

controls all agricultural-related cells. PPA controls other land-uses except for urban cells and sets 124 

zoning constraints for the entire study area based on three categories of urban development; (1) 125 

permitted, (2) severely restricted and (3) forbidden. 126 

2.1. Allocation module 127 

The allocation module is the key part of the model representing the decision-making criteria of the 128 

agents to address the location of the estimated quantity of new urban cells between different points 129 

in time. Once the estimated quantity is reached, the module stops the allocation process. This 130 

module is typically calibrated using training data (i.e., past land-use maps).  131 

2.1.1. Agents’ decisions and interactions 132 

The first step of the allocation module is the determination of the ideal non-urban cells to be 133 

developed in the next time-step to meet the required demand. To this end, the agents have to 134 

interact and decide which cells to develop. DevAs visit all non-urban cells and calculate the 135 

probability score of urban development for each cell. DevAs record the positions, the states and the 136 

probability scores of the visited cells and learn FarmAs and PPAs. 137 

Commonly, authors consider various parameters representing decision-making criteria of agents 138 

to select cells for urban development based on qualitative and/or quantitative approaches (e.g. 139 

Matthews et al., 2007; Parker and Meretsky, 2004; Ralha et al., 2013). A quantitative approach is 140 

used in HUEM to parametrize the decision-making criteria. When DevAs have the opportunity to 141 

make a decision about urban development, they first form an urban development probability score. 142 

The probability score is calculated as follows:  143 

𝑠𝑐𝑜𝑟𝑒𝑐𝑖,𝑗

𝑡 = 𝐿𝑈𝐷𝑃𝑐𝑖,𝑗

𝑡 × 𝐺𝑈𝐷𝑃𝑐𝑖,𝑗

𝑡  (1) 
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where scoreci,j

t is the probability score of the urban development assigned to cell ci,j at time t, 144 

𝐿𝑈𝐷𝑃𝑐𝑖,𝑗

𝑡  is the local urban development probability according to the neighborhood effects on the cell 145 

and 𝐺𝑈𝐷𝑃𝑐𝑖,𝑗

𝑡  is the global urban development probability according to the geo-physical and socio-146 

economic factors.  147 

In this stage, DevAs know the expected demands of urban area based on demand module and 148 

understand the profit-maximizing of global and local factors. When DevA selects an agricultural-149 

related cell to develop, FarmA will make a decision on selling or preserving her/his cell. In principle, 150 

FarmA aims to maintain or increase her/his profitability, and to keep or even expand her/his 151 

cropped area. FarmAs imitate the land-use of their neighbors and therefore they are highly affected 152 

by urban neighbors. Increasing urban neighbors of a farmland may result in FarmAs dissatisfaction 153 

as operating small farmlands are economically infeasible (Bert et al., 2011). We assumed that the 154 

FarmAs’ cells are negatively or positively affected in terms of agriculture profits by spatial 155 

externalities generated their neighbors. These externalities result in a loss or gain in FarmA's 156 

profitability ω. If FarmA’s profitability drops below the probability score of urban development, s/he 157 

must exit farming at the current time-step as follows: 158 

𝐹𝑎𝑟𝑚𝐴𝐷𝑒𝑐𝑐𝑖,𝑗

𝑡 = {
𝑎𝑐𝑐𝑒𝑝𝑡, 𝜔𝑐𝑖,𝑗

𝑡 < 𝑠𝑐𝑜𝑟𝑒𝑐𝑖,𝑗

𝑡

𝑟𝑒𝑗𝑒𝑐𝑡, 𝜔𝑐𝑖,𝑗

𝑡 ≥ 𝑠𝑐𝑜𝑟𝑒𝑐𝑖,𝑗

𝑡  (2) 

where 𝐹𝑎𝑟𝑚𝐴𝐷𝑒𝑐𝑐𝑖,𝑗

𝑡  is FarmA decision on selling or keeping her/his cell. When DevAs determined 159 

which cells to develop, they have to ask for a development permission from PPA. PPA realizes that 160 

policies are not always strictly enforced. If a cell is in a permitted or in a forbidden zone, PPA will 161 

instantaneously grant or reject the permission respectively. Otherwise, if the cell is in a severely 162 

restricted zone, a sort of competition will be carried out to find the development decision. The model 163 

defines the winner of the competition based on the number of times that PPA has lost cells in the 164 

previous competitions. In other words, PPA will give permissions for a specific percentage of the 165 

amount of required new urban cells (allowed rate) to be developed within the severely restricted 166 

zones as the follows:  167 

𝐺𝑜𝑣𝐴𝐷𝑒𝑐𝑐𝑖,𝑗

𝑡 = {
𝑎𝑐𝑐𝑒𝑝𝑡, 𝐿𝑅𝑡 < 𝐴𝑅𝑡

𝑟𝑒𝑗𝑒𝑐𝑡, 𝐿𝑅𝑡 ≥ 𝐴𝑅𝑡
 (3) 

where 𝐺𝑜𝑣𝐴𝐷𝑒𝑐𝑐𝑖,𝑗

𝑡  is the decision within the severely restricted zones, 𝐿𝑅𝑡 is the loss rate and 𝐴𝑅𝑡  is 168 

the allowed rate.  169 

2.1.2. LUDP and FarmProft layers 170 

In human-based systems, the idea of locality is hard to realize clearly, since agents are aware of their 171 

surroundings in a wide space. Thus, it is desirable to set a neighborhood large enough to capture the 172 

operational range of the local processes being modeled (White and Engelen, 2000). In some land-use 173 

change models (e.g. Poelmans and Van Rompaey, 2009; White and Engelen, 2000; Wu, 2002) the 174 

neighborhood is defined using all surrounding cells within a radius between one to eight cells.  175 

A CA model is applied to define the LUDP for each cell at the next time-step according to the 176 

procedure proposed by White and Engelen (2000): 177 

𝐿𝑈𝐷𝑃𝑐𝑖,𝑗

𝑡 = ∑ ∑ 𝑢𝑤𝑘𝑥𝑑

𝑥𝑑

 (4) 
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where uwkxd is the weighting parameter applied to land-use k at position x in distance zone d to 178 

represent the interaction with urban cell. The CA model is also applied to set the FarmProft 179 

according to the following formula: 180 

𝜔𝑐𝑖,𝑗

𝑡 = ∑ ∑ 𝑎𝑤𝑘𝑥𝑑

𝑥𝑑

 (5) 

where awkxd is the weighting parameter applied to land-use k at position x in distance zone d to 181 

represent the interaction with agricultural-related cell. 182 

The weighting values that define the neighborhood’s attraction or repulsion for urban and 183 

agriculture land-uses are calibrated based on GA. 184 

2.1.3. GUDP layer 185 

We consider that the GUDP are driven by several social, economic, geographic and politic factors. 186 

Many of these factors are difficult to be modeled and predicted. Notwithstanding certain factors, 187 

referred to as urbanization driving factors, can be taken into account to predict future urban 188 

expansion. (Bic ıḱ et al., 2001; Bu rgi et al., 2005; Li et al., 2013; Mustafa et al., 2015; Verburg et al., 189 

2004), among others, reviewed such factors.  190 

Logit model is used to capture the relative contribution of each factor, focusing on the changes 191 

from non-urban to urban land-use. The input dependent variable (Y) is a is a binary map showing 192 

the observed changes from non-urban to urban cells (coded as 1) and cells whose status remains 193 

non-urban (coded as 0). The independent variables (Xn) are a set of urban development driving 194 

factors. Logit analysis yields coefficients for each Xn, which can be interpreted as weights in a 195 

formula that generates a GUDP map depicting the probability of each cell to be developed into urban 196 

as: 197 

𝐺𝑈𝐷𝑃𝑐𝑖,𝑗

𝑡 =
𝑒𝑥𝑝(𝛼 + ∑ 𝛽𝑛𝑋𝑛𝑛 )

1 + 𝑒𝑥𝑝(𝛼 + ∑ 𝛽𝑛𝑋𝑛𝑛 )
 (6) 

where α is the intercept and βn are the regression coefficients. HUEM evaluates the goodness-of-fit 198 

using the relative operating characteristic (ROC) procedure.  199 

Prior to estimating Logit model parameters, it is important to check for three aspects that may 200 

exist in Xn: disparity in units, autocorrelation, and multicollinearity (Mustafa et al., 2015). It is quite 201 

common to have a disparity in units and even scale of Xn, for instance, some Xn may be measured in 202 

meter (such as distances to roads) and others in percentage (such as slope). As a result, all 203 

continuous Xn will be standardized before performing Logit model. 204 

Spatial autocorrelation in one or more Xn will bias the results of the regression analysis. 205 

Autocorrelation is the propensity of a cell value to be nearly similar to other nearby cells. Normally, 206 

almost all Xn can show a strong degree of spatial autocorrelation (Cammerer et al., 2013; Crk et al., 207 

2009; Li et al., 2013). To overcome this problem, a number of authors suggested to selecting a 208 

structured or random sample from the study area (Cammerer et al., 2013; Li et al., 2013). HUEM 209 

selects a random sample of the study area with an equal number of 0 (no change) and 1 (change) 210 

observations of the dependent variable. Unequal sampling rates do not affect the estimation of βn, 211 

but only affect the intercept (Allison, 1999).  212 

Multicollinearity shows a high degree of dependency among a number of Xn because some of Xn 213 

may measure the same phenomena (Mustafa et al., 2015). Strong degree of multicollinearity causes 214 

the erroneous estimation of parameters (Lin et al., 2014). HUEM uses variance inflation factors (VIF) 215 

to detect multicollinearity. Montgomery and Runger (2003) recommended the VIFs should not 216 

exceed 4. HUEM suppresses all Xn with VIF of 4 or larger.  217 
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After performing Logit model, the GUDP layer is computed based on the βn of the Xn that represent 218 

agents' responses in terms of global urban development attractiveness. In order to capture the 219 

extensive range of agents’ responses, we pick 1000 random samples of cells and estimate the βn for 220 

each set. By using a range of possible values of βn, we can capture a more realistic picture of agents’ 221 

responses. Selecting a value from the 1000 different sets of coefficients to compute the GUDP layer 222 

can be done by using a measure of central tendency, e.g. the mean or median value, or by selecting a 223 

value from the samples randomly. 224 

2.2. Calibration of model parameters 225 

The purpose of the calibration process is to set the optimal values of parameters combination that 226 

can achieve the highest accuracy rate. The accuracy rate is measured in this phase using the cell-to-227 

cell location agreement (CTC). 228 

Calibration of model parameters includes the allowed rate of urban development within the 229 

restricted zones (Eq. 3), neighborhood weights of the LUDP and the FarmProft layers (Eq. 4, 5) and 230 

the GUDP parameters (Eq. 6). HUEM considers the influence of uncertainty about future behaviors 231 

through a combination of various possible agents’ behaviors. The possible agents’ behaviors can be 232 

captured through ranges of the model’s parameters. To set the best ranges, a comprehensive 233 

uncertainty sensitivity analysis should be done which is outside of the scope of this paper. However, 234 

for our case study, we select the optimal values of parameters in order to develop HUEM, CA-Logit, 235 

CA and Logit simulations of 2000. GUDP parameters α and βn are calibrated using Logit based on a 236 

maximum likelihood estimation procedure. Other parameters are automatically calibrated using the 237 

genetic algorithm (GA).  238 

Recently, GAs are employed to calibrate urban expansion models (e.g. Al-Ahmadi et al., 2009; 239 

García et al., 2013; Shan, Alkheder, & Wang, 2008). García et al. (2013) claimed that the GA is one of 240 

the most robust heuristics automated methods to calibrate urban expansion models. GA is an 241 

evolutionary algorithm and is inspired by natural selection and adaptation (Holland, 1975). It seeks 242 

to find the global, or near global, optimal solution without ever requiring knowledge of search space 243 

being optimized. GA begins with a random initial population in which many solutions participate in 244 

an iteration (generation). It then employs a set of operators to reveal interesting regions of the 245 

search space using fitness function of the solutions at hand to produce a new generation. These 246 

operators are the selection of parents for the next generation, crossover, and mutation.  247 

GA selects the best individuals in the current generation for mating so as to produce superior 248 

solutions by combining parts of parent solutions. Tournament selection is a robust selection method 249 

commonly used by GAs (García et al., 2013; Miller et al., 1995). Tournament method selects a 250 

number of individuals from the population at random and selects the best out of these to become a 251 

parent. Each two parents are combined based on a crossover operator and generate two children. 252 

Each child is then perturbed in its vicinity by a mutation operator that adds a small random number 253 

to each gene.  254 

There is no general guide available to set the GA parameters. One approach for parameter settings 255 

is by undertaking empirical experiments on different values of the parameters using a small number 256 

of generations and population and choosing the best ones (Al-Ahmadi et al., 2009). Based on these 257 

empirical experiments, we set GA parameters for the final run. In the final GA run, the population 258 

size is set at 100 per generation while the algorithm terminates the run if the weighted average 259 

change in the best fitness value for 10 consecutive generations is less than 0.0001. The tournament 260 

selection is set at 4 individuals. The crossover operator generates two children that lie on the line 261 

representing both parents and inherit at least 65% genes from the parent with the better fitness 262 
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value. In order to fulfill a good balance between the exploration of the entire search space and the 263 

convergence of the population towards the globally optimal solution, the mutation operator selects a 264 

random number from a Gaussian distribution with a center of zero and a standard deviation of 1.2 at 265 

the first generation. This standard deviation is shrunk to 0 linearly as generation 100 is reached. 266 

Consequently, the GA explores much more search space at the beginning of the optimization process 267 

and ensures the convergence of the population towards the global optimal solution by the end of the 268 

process. 269 

The objective function for the GA is based on CTC. The parameters’ values that lead to maximizing 270 

the objective function will be selected as the best calibration outcome. 271 

2.3. Model assessment 272 

The assessment of the model is the process of measuring the model predictive performance. The 273 

assessment procedure consists of (i) the evaluation of the GUDP layer computed by Logit model 274 

using the ROC procedure and (ii) the comparison of the simulated urban maps of 2000 with the real 275 

map of 2000. 276 

First, the ROC is used to compare the outcomes of Eq. 6 to a map with the real changes of urban 277 

cells from 1990 to 2000. ROC calculates the proportion true-positives and false-positives for a 278 

number of thresholds and relates them to each other in a graph. It then measures the area under the 279 

curve which should vary between 0.5 (random fit) and 1 (perfect fit). 280 

Second, to evaluate the simulated urban map, we applied two statistical techniques of map 281 

comparison: (i) CTC and (ii) evaluation of the structure of new urban pattern in terms of landscape 282 

compactness and complexity. CTC is one of the most explicit ways to evaluate the outcome of urban 283 

expansion models. It produces a stringent test of simulation as it measures on a cell basis (Wu, 284 

2002). Consequently, it cannot evaluate the morphology of the urban spatial structures. To address 285 

the landscape morphology of our model outcomes, we evaluated how a model simulates spatial 286 

properties. Two matrices measuring fragmentation (number of patches and mean patch area), one 287 

matrix measuring the complexity (area-weighted mean shape index) and one matrix measuring 288 

dispersion (patch cohesion index) are selected to evaluate the model’s outcome landscape pattern. 289 

Small differences on these metrics show a good correspondence between the simulated and real 290 

patterns in terms of landscape structure. 291 

3. Case study: Wallonia, Belgium  292 

3.1. Study area 293 

To demonstrate the feasibility of HUEM model, Wallonia, Belgium is taken as an example 294 

application. Wallonia is situated in the southern part of Belgium at 49°28' to 50°49' N latitudes and 295 

2°50' to 6°28' E longitudes, Fig. 2. Wallonia is the predominantly French-speaking region of Belgium. 296 

It accounts for 55% of the territory of Belgium with a total area of 16,844 km². The population in 297 

2010 was 3,498,384 inhabitants that makes up a third of Belgium population (Belgian Federal 298 

Government, 2015). Administratively, it comprises five provinces: Hainaut, Liège, Luxembourg, 299 

Namur, and Walloon Brabant. With its 866 km roads, 1,605 km of railway lines, 453 km waterway 300 

network and two regional airports, Wallonia is so very accessible. Wallonia has a pronounced 301 

undulating topography. The topography goes from flat to hilly with altitude ranges from 0 to 693 m 302 

above sea-level. This means cycling is almost non-existent in Wallonia (Dujardin et al., 2012). Major 303 

cities in Wallonia are characterized by a strong center–periphery structure with well-off households 304 

located in the peripheries (Verhetsel et al., 2010). The main urban areas are Charleroi, Liège, Mons 305 
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and Namur. They are all characterized by a historical city-center, around which the urban 306 

development was spread. Urban sprawl has affected Wallonia for decades leading to fragmented and 307 

isolated landscapes that were developed in space and time (Antrop, 2004).  308 

During the 1970ies and early 1980ies, Belgium adopted a zoning plan covering the entire territory 309 

of the country (plan de secteur). This plan regulates the types of activities that can be accommodated 310 

on a specific zone. This plan is routinely updated. One of the deficiencies of this plan is the lack of 311 

realistic scenarios of future urban expansion. Consequently, there are serious failures to comply with 312 

the plan. This situation necessitates a better understanding of the mechanisms of urban expansion in 313 

Belgium to develop a more feasible zoning plan. Table 1 summarizes zoning information and urban 314 

expansion in Wallonia. 315 

 

 
Fig. 2. Study area 

Table 1. Zoning and urban expansion between 1990 and 2000. 

 1990 (cells in 

thousands) 

2000 (cells in 

thousands) 

Expansion rate (in 

percentage) 

Total 1689.69 1689.69  

urban 241.08 281.23 - 

permitted 132.10 108.09 59.79 

severely restricted 1313.10 1297.20 39.91 

forbidden 3.42 3.18 0.30 

 316 

3.2. Data 317 

The CORINE Land-Cover (CLC) datasets give a detailed inventory of the biophysical land cover in 318 

Europe using 44 classes. It is made available by the European Environment Agency (EEA) 319 
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(http://www.eea.europa.eu/data-and-maps) at resolutions of 100×100m and 250×250m grid cells. 320 

In this case study, the original 44 land-use classes are reclassified into seven aggregate land-use 321 

classes: 1.Urban lands, 2.Arable lands, 3.Grasslands, 4.Forests, 5.Wetlands, 6.Water bodies and 322 

7.Others. The Navteq streets of 2002 dataset are used to calculated Euclidean distances to four 323 

functional road classes in meters: 1.high speed roads, 2.quick travel between and through cities, 324 

3.moderate speed travel within cities and 4.moderate speed travel between neighborhoods.  325 

Euclidean distances to cities are calculated for the major 11 Belgian cities, including major cities in 326 

Brussels and Flanders regions (Fig. 2). The border effect of Brussels and Flanders regions is implicitly 327 

considered in our case study through this variable. Access to jobs is measured as the number of jobs 328 

available within 20km for each municipality. 329 

Digital Elevation Model (DEM) provided by the Belgian National Geographic Institute is used to 330 

calculate slope in percentage for each cell. 331 

According to the most recent zoning plan of Wallonia, urban development is only allowed in those 332 

zones that are designated for residential, economic or leisure development. In other zones, such as 333 

agricultural and forest areas, urban development is not permitted unless specific conditions. The 334 

zoning map is developed by discerning zones where urban development is not permitted (code 0) 335 

and zones that are designated for urban development (code 1). All maps are created as raster grids 336 

with a resolution of 100×100m.  337 

3.3. Results and discussion 338 

The CLC of years 1990 and 2000 are used in this paper to calibrate and assess the model framework. 339 

The urban class in our model configuration consists of land that is covered by buildings and other 340 

man-made elements such as residential areas and related functions services, industries, firms, and 341 

transport infrastructure. Among the 1,448,553 cells that can be converted into urban land-use 342 

between 1990 and 2000, 40,151 cells were converted into urban lands over those ten years. The PPA 343 

sets three zones categories: (1) permitted (urban zones), (2) severely restricted (arable lands, 344 

grasslands, forests, wetlands and other classes) and (3) forbidden (water bodies). 345 

The result of a calibration shows that the optimal value of the allowed rate of development within 346 

the restricted zones (Eq. 3) is 0.16%. With regard to the LUDP and the FarmProft layers, the 347 

neighborhood space is set as a square region around the cell under evaluation and contains nine 348 

cells, including the central cell, that are arranged in one square distance zones d. The best weighting 349 

values that define neighborhood interactions for the LUDP and the FarmProft are shown in table 2. 350 

Table 2. Calibrated weighting values of the neighborhood. 

 LUDP FarmProft 

Distance (cells) 0 1 0 1 

Urban land - 12.91 - -6.17 

Arable land 10.31 -6.77 1.60 3.83 

Grassland 1.81 -6.21 1.28 1.84 

Forest -3.27 -6.62 - 10.78 

Wetlands 0.09 -4.59 - 1.91 

Water bodies - 1.54 - 0.43 

Others -0.22 -1.52 - -1.52 

The LUDP weighting values that represent the interaction between different land-uses and urban 351 

cell imply that arable lands play an obvious role at the zero-distance. The urban development of 352 

arable lands is quite common. Grasslands are also easy to be developed into urban land but less 353 

common than arable lands. On the contrary, the conversion from forestland to urban land is rare. 354 
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This calibration is somewhat in line with the actual number of changed cells from each land-use. The 355 

original land-uses in 1990 of the new urban cells in 2000 were 62%, 22%, 12% and 4% arable lands, 356 

grasslands, forests and others respectively. The calibration also shows that the impact of existing 357 

urban land on new urban development is extremely significant in the immediate neighborhood of 358 

the cell. 359 

Concerning the FarmProft, that defines externalities effects on FarmA's profitability, arable and 360 

grasslands show a positive effect at distance zero. Urban land in the immediate neighborhood has a 361 

strong negative effect on FarmA profitability, while grassland, arable land, and forest have a positive 362 

effect. 363 

The urban development driving factors (Xn) considered to develop the GUDP layer are distance to 364 

four road classes, distance to major cities, slope, access to jobs and zoning. All Xn are standardized 365 

and shown a very low degree of multicollinearity (variance inflation factors ranging from 1.01 to 366 

2.76). Consequently, all selected Xn are used in Logit model. Logit is calibrated using a random 367 

sample of 50,000 cells with an equal number of 0 (non-urban cells in 1990 and 2000) and 1 (non-368 

urban cells in 1990 and urban cells in 2000) observations of the dependent variable (Y) to minimize 369 

spatial autocorrelation, after standardization of Xn. The model selects the median value of each 370 

coefficient set. Table 3 gives the mean values, standard deviation, mean P-values and mean standard 371 

errors of coefficient sets.  372 

Table 3. Coefficient values of the driving factors. 

Driving factor Mean coefficient StDev* Mean P-value Mean S.E.** 

Intercept -0.4887 0.0070 - 0.0135 

Slope 0.0002 0.0005 0.5330 0.0005 

Dist to cities -0.1979 0.0114 0.0000 0.0143 

Dist to road 1 -0.1965 0.0125 0.0000 0.0152 

Dist to road 2 -0.2292 0.0132 0.0000 0.0155 

Dist to road 3 -0.3187 0.0123 0.0000 0.0141 

Dist to road 4 -0.5678 0.0155 0.0000 0.0178 

Access to jobs  0.0005 0.0026 0.5103 0.0009 

Zoning 1.0379 0.0113 0.0000 0.0122 
*StDev: standard deviation 373 

**Mean S.E.: mean standard error 374 

The small standard deviations in table 3 indicate that the mean tendency of the coefficient sets is 375 

very stable. Thus, the impact of the sampling procedure is negligible. 376 

These coefficients reveal that the location of a new urban development is strongly correlated with 377 

the zoning status. Distances to different road classes and cities also play an important role in 378 

explaining urban development at a specific location. Furthermore, urban expansion tends to occur 379 

close to job locations and on relatively hilly terrains. However, the contribution of the variables 380 

slope and access to jobs to the urban development is small. 381 

The ROC value of the GUDP layer is 0.78. The modest ROC value is understandable, as there will be 382 

other factors that can influence the location decision of urban development. However, the GUDP 383 

layer can still be used for reliable predictions of the future urban development in the Wallonia. ROC 384 

values higher than 0.70 are considered as a reasonable fit and can be introduced in further analyses 385 

(Cammerer et al., 2013; Jr and Lemeshow, 2004).  386 

To evaluate the added-value of HUEM model for simulating urban expansion, a number of urban 387 

expansion simulations are tested based on (1) HUEM model, (2) CA-Logit (3) CA, and (4) Logit. Logit 388 

model is based on the GUDP layer, CA model is based on the LUDP layer and CA-Logit is based on the 389 

probability map produced by Eq.1. CA-Logit can be viewed as a matter of complexity. The AB rules 390 
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which are applied by DevA, FarmA and PPA agents can be viewed as a methodology rather than just 391 

a combination of different methods. The initial state and the number of changed cells are kept 392 

constant in all simulations.  393 

In the four models, cells with the best urban probability scores are selected at each time-step. In 394 

order to set the change rate per time step, a number of studies define the change rate by considering 395 

the total quantity of new urban cells divided evenly over the number of time steps (e.g. Mustafa et al., 396 

2014; Poelmans and Van Rompaey, 2010). However, one could ask why the number of changed cells 397 

should be the same each year instead of, for example, being higher during earlier stages of 398 

development so that the more attractive development sites get developed earlier. We examine seven 399 

cases in which the number of changed cells at the first time-step are +/- 25%, +/- 10%, +/- 5% and 400 

+/- 0% of the number of changed cells in case of equal change rate per time-step. For instance, in 401 

case of +25%, the model converts 5018 non-urban cells in the year 1991 (time-step 1), comparing to 402 

4015 cells in case of equal change rate per time-step, and decreases this number linearly till the year 403 

2000. The results reveal that in all modeling approaches, different change rates produce almost the 404 

same results as an equal change quantity per time step. Figure 3 illustrates the CLC accuracy rates 405 

for different change rates per time step for HUEM as an example. 406 

    407 

Fig. 3. Different change rates per time step (from +25% to -25% of the equal change rate per time-step) 

Table 4. CTC agreement (%)between 1990 and 2000 (simulation vs. actual); and for a number of 

previous studies. 

 Overall (all urban cells) New urban cells 

HUEM 91.08 37.50 

CA-Logit 90.64 34.44 

CA 90.18 31.25 

Logit 89.01 22.97 

Wang et al. (2013) - 16.40 

Poelmans and Van Rompaey (2009) 93.99 - 

Liu et al. (2008) 78.30 - 

Yang et al. (2008) 71.09 - 

Jantz et al. (2003) 93.1 19 

Wu (2002) 76.6 - 

The outcome of each model is assessed under the same conditions in order to assess the 408 

performance of each model. Table 4 gives the CTC agreements for all simulations. The CTC of HUEM 409 

of the entire urban cells is 91%. This high CTC agreement is a result of the persistence of cells, which 410 

were already urban in 1990. To have a more fair comparison of the real performance, we focus only 411 

on the newly developed urban cells between 1990 and 2000. The CTC agreements reveal that Logit 412 
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model showed the lowest agreement rate. The case study described in this paper is based on a set of 413 

predicting variables without any insights into the urbanization driving factors in the Wallonia. That 414 

could result in underestimating the process of urban development in the Wallonia through Logit 415 

analysis. The performance of CA model is better than Logit model, which is against expectations. 416 

Generally, CA models are only able to capture the part of the processes that govern urban expansion, 417 

while Logit models are better able to capture the full complexity of the urban expansion processes 418 

(Verburg and Overmars, 2007). A possible explanation for the results in our paper is the fact that CA 419 

calibration is based on the real land-uses of 1990 and 2000, which implicitly considers the 420 

urbanization driving factors.  421 

The CTC results, for new urban cells, of all simulations are somewhat poor. It is common for urban 422 

expansion models, to have a low accuracy rate due to the complexity of the urban environment. 423 

Table 4 presents results of a number of developed urban expansion models. Surely, the results of 424 

other studies listed in table 4 are not conducted for our study area and cannot be directly compared 425 

because they are dependent on the purpose of the model, the model context, and the performance 426 

criteria. However, table 4 could roughly indicate the common accuracy rates in the urban expansion 427 

modeling domain. 428 

Many urban expansion models have employed spatial metrics to analyze their results (e.g. García 429 

et al., 2011; Liu et al., 2008; Mustafa et al., 2014). We analyze the spatial pattern of different 430 

simulations focusing on landscape compactness and complexity. Fig. 4 indicates that HUEM performs 431 

well in terms of landscape structural conformity. The fragmentation rate (the number of patches 432 

(NP) and the mean patch area (MPA)) in HUEM simulation is close to the reality. CA-Logit and CA 433 

show moderate and high fragmentation rate comparing to the reality respectively (higher NP and 434 

lower MPA). Contrary, Logit model shows a very low rate of fragmentation (lower NP and higher 435 

MPA).  436 

 
Fig. 4. Spatial matrices outcomes in Wallonia (simulation VS actual changes). 

An area-weighted mean shape index (AWMSI) value of 1 represents a perfect regular shape (i.e. 437 

rectangle). HUEM generates urban patches close to the actual urban patches between 1990 and 2000 438 

in terms of complexity. Both CA-Logit and CA have a rate of complexity smaller than the reality. Logit 439 

model presents a too high level of complexity.  440 
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In Logit model, according to the patch cohesion index (PCI), about 78% of the simulated cells are 441 

confined in patches, which results in a highly cohesive urban pattern. HUEM simulation presents a 442 

cohesion rate close to the reality. On the other hand, CA-Logit and CA generate low cohesive urban 443 

patterns in comparison to HUEM.  444 

The analysis of landscape structural indices highlights the role of zoning status in Logit model. 445 

According to section 3.3, the location of new urban cells is strongly influenced by the zoning status. 446 

That means the new urban cells tend to be allocated within the permitted urban zones. 447 

Consequently, Logit model simulation pattern tends to be less fragmented, highly complex and very 448 

cohesive.  449 

In order to examine spatial variability of the differences between actual urban change pattern and 450 

simulated patterns, a series of moving windows each sized 50x50 cells are used to calculate the 451 

landscape indices along with the abstract indices presented in Fig. 4. The results show that the 452 

absolute errors between actual change pattern and simulated patterns vary over space as Fig. 5. 453 

HUEM also produces areas with zero errors larger than other models. Fig. 5 demonstrates the 454 

absolute differences between simulated change patterns and the real one. 455 

Fig. 6 shows allocation misclassification of the new urban cells between 1990 and 2000 in Namur 456 

metropolitan area, as an example. 457 

 
NP (HUEM) NP (CA_Logit) 

 
NP (CA) 

 
NP (Logit) 
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PCI (CA) 

 
PCI (Logit) 

 

 

 

Fig. 5. The absolute differences between simulated change patterns and the real one based on a series of 

moving windows each sized 50x50 cells.  

 
Fig. 6. Allocation misclassification of the new urban cells between 1990 and 2000 in Namur metropolitan 

area.  
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4. Conclusions 458 

The expansion of urban areas is a global issue affecting water quality degradation, air pollution, 459 

socio-economic disparities, etc. Thus, there is a need to monitor urban expansions to support 460 

efficient planning visions for judicious use of natural resources and environment protection. The 461 

present study attempts to advance the applications of urban expansion modeling.  462 

This paper presents a new model, named HUEM, to simulate future urban expansion. The model is 463 

based on an integrated approach that combines logistic regression, cellular automata, and agent-464 

based approaches. The model has advantages in dealing with complex relationships among many of 465 

spatial variables, as well as stakeholders in the urban environment, which can capture the 466 

complexity of urban system better than traditional urban expansion models. Nonetheless, HUEM 467 

cannot capture all urbanization drivers and dynamics. 468 

HUEM is successfully applied to Wallonia, Belgium to simulate the known urban expansion from 469 

1990 to 2000. It is assessed using the cell-to-cell location agreement and landscape indices. In 470 

addition, HUEM is compared with typical spatial urban expansion models including Logit, CA and 471 

CA-Logit. Logit models are useful in explaining and determining the most important urbanization 472 

drivers because of the ability to consider several geophysical, socioeconomic and policy factors. 473 

However, Logit models are static and therefore they are not able to simulate self-organization of 474 

urban system over time (Poelmans and Van Rompaey, 2010). By contrast, CA models are dynamic 475 

and able to simulate self-organizing urban system by considering local neighboring interactions at 476 

each time step of the simulation. This study shows that CA model produces a better result than Logit 477 

model. Combining CA and Logit improves the results. This is in line with  (Poelmans and Van 478 

Rompaey, 2010; Wu, 2002) who claimed that combining CA and Logit model produces a better 479 

result. HUEM integrates human behavior into a spatial CA-Logit model by considering interactions of 480 

various stakeholders who have contradictory values and priorities. The findings of this study 481 

confirm that these interactions, which are addressed by agents, can provide a better understanding, 482 

analysis, and forecasts of the future urban expansion. 483 

The calibration of HUEM model is an automatic process based on Logit and genetic algorithm 484 

which makes the model generic and can be applied to other case studies. In this case, an explicit 485 

investigation of the transferability of the model parameters is an interesting direction for further 486 

research. Logit considers 1000 different sets of random samples. Each set represents different 487 

agents’ responses. In addition, GA is a population-based algorithm implying that it has a multiple 488 

start research points. This nature of GA allows the optimization process maintain a population of 489 

possible solutions, which resulted in obtaining a number of best solutions (Pérez et al., 2003). 490 

Considering a series of possible agents’ behavior is important in handling modifications of those 491 

behaviors over time. This is an essential feature for developing a methodology that will address the 492 

influence of uncertainty about future behaviors in our model.  493 

Currently, the number of agents included in HUEM has been limited to three categories: urban 494 

developers, farmers, and planning permission authority. It might be interesting to include more 495 

agents, for instance, urban developers can be re-categorized into two different types of agents, 496 

namely households, and developers. This would require a better understanding of the settlement 497 

preferences of each of these agents in the specific case study, which is outside of the scope of this 498 

paper.  499 
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