Chapter 27

Model Order Reduction of Nonlinear Eddy
Current Problems Using Missing Point
Estimation

Y. Paquay, O. Briils, and C. Geuzaine

Abstract In electromagnetics, the finite element method has become the most used
tool to study several applications from transformers and rotating machines in low
frequencies to antennas and photonic devices in high frequencies. Unfortunately,
this approach usually leads to (very) large systems of equations and is thus
very computationally demanding. This contribution compares three model order
reduction techniques for the solution of nonlinear low frequency electromagnetic
applications (in the so-called magnetoquasistatic regime) to efficiently reduce the
number of equations—Ieading to smaller and faster systems to solve.

27.1 Introduction

The Finite Element (FE) method has been used in numerous engineering fields to
simulate various phenomena, from structural analysis to combustion modelling to
electromagnetics. While its main advantage is to correctly represent dynamical and
nonlinear behaviours, the spatial discretization inherent to the FE method is also its
main drawback, as it usually leads to (very) large systems of (nonlinear) equations.
This extensive number of equations requires a lot of computational resources,
usually far too much for quasi-real time simulations.

In this paper, we propose to apply a methodology that combines the Proper
Orthogonal Decomposition (POD) [19] and the Missing Point Estimation (MPE)
[2] to reduce those large FE systems for nonlinear eddy current applications, e.g.
for the modeling of a 3-phase power transformer, to only dozens of equations—
and therefore allowing a drastic reduction in the computational time and required
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resources. This paper also presents a discussion on the use of the Discrete Empirical
Interpolation Method (DEIM) [6] in the magnetoquasistatic case, which has already
been efficiently used in the static case [7].

27.2 Eddy current problem

Let us consider a general spatial domain £2 (boundary I") where the nonlinear
eddy current problem is to be solved in the time domain during 7" seconds with
N; equispaced timesteps—the corresponding time increment Az = T/N,. In this
problem, the source is imposed directly as a current density j in a source domain
£2; C £2. This current density j generates a magnetic field h and a corresponding
induction field b = wh in £2 where u is the permeability of the medium (. = 1/v
with v the reluctivity). In general, £2 consists of linear and nonlinear magnetic
subdomains, £2! and £2" respectively. In £2/, the reluctivity is constant (e.g. v = vy
with vy the vacuum reluctivity) whereas in £2" it depends on the induction field b,
ie. v = v(b). Parts 2. C £2 (2. N §2; = @) can be conducting with conductivity
o, in which induced currents will arise if j is time varying. The conductivity and the
nonlinear reluctivity of a material are independent, e.g. a material can be conductive
and nonlinear and would be written as £2".

The general nonlinear eddy current problem is derived from Maxwell’s equations
where displacement currents are neglected, and can be formulated in terms of the
magnetic vector potential a € H(curl, £2) 2 {a e L*(R2);curla e LZ(Q)} such
that b = curla [4]:

o00d.a + curl [v(curla) curla] = jin £2, (27.1)
axn=0inT, (27.2)
where n is the outer unit normal vector. Multiplying Eq. (27.1) by appropriate test

functions and integrating by part over §2 leads to the following weak formulation:
find a such that

(aB,a,a’)QC + (veurla, curla’) , + (n x veurla,a’),, = (j,a’)gj_ (27.3)

holds for all test functions a’ € Hy(curl, 2) £ {a’ € H(curl, £2); a’ xn = 0|}.
The second term can be decomposed in the linear and nonlinear subdomains as

(veurla, curla’) , = (vocurla, curla’) ,, + (V(curla)curla, curla’) ,,, .

(27.4)

Applying the standard Galerkin finite element method using Whitney edge elements
[9] on Eq.(27.3) leads to the spatially discretized system of differential algebraic
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equations [7]:
Mx + S(X)x = v, (27.5)

where x is the vector of unknowns of size N, M is the mass matrix that represents
the dynamics, S is the magnetic stiffness matrix and v depends on the source current

density j.
Applying an implicit Euler scheme for the time discretisation of Eq. (27.5) leads
to the discrete system of equations at time #, = kAt fork =1,--- ,N;:

with x; = x(#;) and v; = v(#).
A Newton-Raphson (NR) scheme is used to linearize Eq. (27.6) at each time step.
To this end, starting from an initial guess xg = X;—; and xg = 0, the linear system

J(x})8x, = r(x}) (27.7)
is solved and the solution is updated with
Xt = xt + 8x} (27.8)

fori = 1,---,n such that H SXZ H , = 1072, i.e. until the increment is sufficiently
small, at which point x; is taken as x}. In Eq.(27.7), J(x}) is the Jacobian matrix
depending on x} and rf, is the residual given by

: M M 7 .
r(x;) = Ale_l + Vi — |:At + S(xj():| X (27.9)

27.3 Model Order Reduction

The size of Eq. (27.7) equals the size N of the unknown vector x, which can be (very)
large for practical engineering simulations. This section aims at defining successful
techniques to reduce the system size (and thus the CPU time required to obtain
the solution). Three methods are considered: the Proper Orthogonal Decomposition
(POD) [18], the Discrete Empirical Interpolation Method (DEIM) [6] and the
Missing Point Estimation (MPE) [2].
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27.3.1 Proper Orthogonal Decomposition

The POD is applied to reduce the system of Eq.(27.6) or the NR system from
Eq. (27.7) by using a snapshot matrix X [19] that gathers the solutions for all time
steps (called snapshots):

X =[xi, X, -+, Xy, | € RV (27.10)

where N, is the number of time steps. Contrary to [7] where the calculation of the
SVD is made using the covariance matrix (i.e. X’ X), we directly perform a thin
singular value decomposition (SVD) on the snapshot matrix X—maintaining the
same efficiency but without computing the covariance matrix. Then

[U,, By, V] = thin svd(X) 27.11)

and the reduced basis is given by U,. The vector x € RV*! is reduced in the basis
U, to a vector X € R™! (r < N):

x = Uk (27.12)

The reduced solution X obtained by projecting x onto the reduced basis U, given by
the application of the SVD on a snapshot matrix has been shown as the optimal
(best) choice [21]. At this point, r equals N, and in typical cases N, < N.
Nevertheless, from [21], we could also truncate the reduced basis U, to its r < N;
first columns in order to approximate the original snapshot matrix with a given error
&,. Similarly, the reduced basis U, could be truncated based on the Kolmogorov
r-width K,, which measures the extent to which X can be approximated by a r-
dimensional subspace of a normed linear space [8, 13, 14]. In practice, K, and
&, decrease monotonically with r. Thanks to the singular values, the error ¢, is
computed as:

Z:l=r+l Slz

& = 27.1
Y& G
where §; is the ith singular value in the diagonal of &,. The lower ¢, (e.g. &, < 107%),
the better; graphically, this indicator measures the decay of the singular values: the
fastest, the better.
By injecting Eq. (27.12) into Eq. (27.6), the reduced system is overdetermined
with N equations for » unknowns:

M
tUxik_l =+ v (27.14)

M - -
|:At + S(Uxxk):| UxXk = A
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and by applying a Galerkin projection onto the same reduced basis [21], the reduced
system becomes:

+S(UX) Xp = Xi—1 + V (27 15)
A X .
‘ k k At k—1 k

where M = U'MU, (similarly for §) and ¥, = U’v;. By analogy for the NR
method, Eq. (27.7) becomes

J(®)8%L = F(RL) (27.16)
with the corresponding reduced matrices

J&) = UTJ(Ux)U,, (27.17)

r(x,) = A + Vi — |:At + S(Uxxk)] X (27.18)

The size of the reduced system of Eq. (27.16) is r < N as expected but the nonlinear
parts in Eqgs. (27.17) and (27.18) (i.e. S(U, x!) and J(U, x!)) still depend on the full
order solution x; = U,X!. Therefore the evaluation of these terms still requires to
expand the reduced states to the full order size solution at each nonlinear iteration.

27.3.2 Discrete Empirical Interpolation Method

The DEIM [6] (or its continuous version EIM [3]) is a nonlinear reduction technique
that projects a few evaluations of a large vector (or matrix) onto a smaller mapping
basis in order to reduce the computational time originally required to generate it.
Let us consider the large vector z(p) € R¥*! depending on some parameters p and
construct the snapshot matrix Z as:

= [z(p1). 2(p2)., -] (27.19)

One would like to write

z(p) ~ U.z(p) (27.20)
where U, € R¥*¢ is a mapping basis and z(p) € R?*! a reduced evaluation of z(p)
with ¢ < N. The matrix U, is computed as the reduced basis U, in Sect.27.3.1 by
applying a thin SVD on the snapshot matrix Z (and can be truncated by analyzing
the singular values decay in &):

[U,, &.,V,] = thin svd(Z) (27.21)
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The DEIM expresses z from the evaluation of only g components of z such that
= Ty \ ! pT
z(p) ~ (P'U.) P'z(p) (27.22)

with P € RY*4 a selection matrix for the ¢ rows of z(p) which is found by applying
the DEIM algorithm [6]. Here are the main steps of this procedure:

1. From Eq. (27.20), multiplying both sides by P to select g rows of z(p) leads to:
P'z(p) ~ (P'U.) z(p). (27.23)
2. If (P"U.) is invertible, then we can deduce the expression of z(p) (Eq.27.22) as:
i(p) = (P'U,) " Pa(p). (27.24)
3. Finally, by injecting Eq. (27.24) into Eq. (27.20), we obtain:
-1
z(p) ~ U. (P"U.) P'z(p). (27.25)
4. Since a FE element only depends on its neighbours (e.g. local influence), we
can restrict the computations to these g local components without generating
the overall vector z(p) (similarly with rows for matrices). Equation (27.25) can
therefore be written as:
—1
z(p) ~ U. (P'U.)  z(P'p). (27.26)
B In the magnjetoquasistatic case from Eqgs.(27.17) and (27.18), the vectors
S(U,x)X! and J(U,x})X; perfectly match the expression of z(p). Indeed, these

vectors need to evaluate S(x;) and J(x}) respectively at each nonlinear iteration. By
applying the DEIM with z(px) = S(x})x}, these expressions read:

S(x}) ~ U, (PTU,) "' S(P"x)), (2727
J(x) ~ U, (P"U,) " J(Px)), (27.28)
——
U*

where U} € RV can be computed once. By injecting Eq. (27.27) in Eq. (27.18),
the reduced residual becomes:

F(X) ~ A Nt + V- [ At UZU:S(PTUXX,()UX:| X, (27.29)
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As will be seen later in Sect.27.4.2, the combination of POD with DEIM lacks
robustness for the considered nonlinear eddy current problem. As an alternative, we
investigate below the use of the Missing Point Estimation technique [2].

27.3.3 Missing Point Estimation

The MPE approach [2] has the same goal as the DEIM: reducing the computation
of all entries of a general (nonlinear) vector or matrix. While the DEIM can
be used alone to approximate a vector z based on a small set of evaluations
projected onto a reduced basis U, computed from (nonlinear) snapshots Z of the
full size vector z, the MPE must be combined with the POD since it replaces the
projection subspace U” by another subspace defined as UTPP”. As a consequence,
the reduction procedure follows a Petrov-Galerkin approach with different left and
right projection subspaces. Other techniques use the same philosophy, e.g. Hyper-
Reduction [17] or Gappy POD [5], and differ in the determination of the reduced
number of evaluations.

Let us consider the term S(x}) = U7S(x})U, with S(x}) that still depends on the
full size order solution x;. Applying the MPE on S(x}) gives a reduced set of its
rows S(x}):

S(xt) = PTS(x}) (27.30)

with P € RV*Y (g < N) a selection matrix that gathers g rows of S (as previously
explained, only the ¢ rows of S are computed, i.e. S(P'x})). Since ¢ rows are
selected in S, only the corresponding g rows in the POD basis are useful and then
kept:

U, = P'U, (27.31)

with U, € R?" computed once (or offline). By applying the MPE on Eq. (27.16) it
reads:

UTJ(x1)U, 8% = UTir(x}) (27.32)

with J(xi) = PTJ(x}) = J(P'x}) and F(x}) = P'r(x}) = r(P’x). The overall
system is reduced to an r-dimensional subspace (with the application of the POD
basis Uy) but only by considering ¢ components of the FE model (using P) with
r,q < N. Contrary to the DEIM greedy algorithm which selects the points based
on the snapshots matrix Z, the MPE greedy algorithm tends to verify

U0, ~ 1 (27.33)
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by increasing sequentially ¢ with the most contributing rows [2] (this procedure
may be long and should be done during an offline stage). While the DEIM strongly
depends on the number of snapshots to determine the reduced set of unknowns, the
MPE considers the original N FE degrees of freedom. In the worst case, g = N, with
the DEIM and may be too small to correctly represent the nonlinear vector/matrix
or ¢ = N with the MPE and all the degrees of freedom are taken into account. The
selection is based on the criteria of Eq. (27.33) and can be equivalently seen as the
decay of the condition number of UT'U, to 1. The closest the condition number is to
1, the better the criteria is fulfilled.

27.4 Numerical Results

As a test case, we consider a 2-D nonlinear model of a 3-phase power transformer
such as depicted in Fig.27.1 [10]. The model has N = 7300 unknowns and is
simulated at no load. The nonlinear core reluctivity is given by the Brauer law:

v(b) = y + a exp(Bb?) (27.34)

with y = 80.47, « = 0.05 and 8 = 4.21 (from core material V330-50A [10]). The
(laminated) core conductivity is either chosen as zero (nonconducting) or as

2

d
0 = |,0ion = 4.16-107" S/m (27.35)

where d is the thickness of the laminations (0.5 mm) and Giyon = 2 - 107 S/m [11].
A single period at 50 Hz (T = 20 ms) with N, = 20 time steps is analyzed and the
input current density is given for phase i by:

i= (—1)”; cos(2rft + ¢i)e, (27.36)

c

Fig. 27.1 FE model of the
3-phase transformer
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Table 27.1 Subdomains of

> Domain Physical region Legend in Fig. 27.1
the 3-phase transformer in o - -
Fig.27.1 M\ 2, |Core (if o0 # 0) White
Q! Air Lined
.Q‘”Z Core (if o = 0) White
£2; Windings Filled
Phase Phase delay ¢ [rad] |Legend in Fig.27.1
A 0 Black
B 47/3 Gray
C 27/3 Light gray
109
1|
107!
1078
1 0715
2 4 6 8 10 12 14 16 18 20

Singular value

Fig. 27.2 Singular values of snapshot matrix X, i.e. =\ (circled with line) and snapshot matrix Z,
i.e. &, (squared with line) with = 0.3 A & 0 = 4.16- 10! S/m

where n = 0 (resp. n = 1) for left (resp. right) part of the coil (representing
the direction of the current), I € [0.1,0.3] is the input peak current (/ = 0.1 A
induces linear magnetic behaviour whereas I = 0.3 A causes the core to saturate,
see Fig.27.9), S. the coil surface, ¢; the phase delay of phase i and €, the unit vector
along the z-axis. A full-order time domain simulation of 20 ms takes around 1 min
to compute. The subdomains description is given in Table 27.1.

27.4.1 Proper Orthogonal Decomposition

First, in the reduction process, one must verify that the problem can be mapped onto
a smaller r-dimensional subspace. Since the singular values of the snapshot matrix
X quickly decay (circled with line in Fig.27.2), the POD can indeed be used to
reduce the system while preserving a small error. In the following tests, the POD
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basis is truncated after the 11th singular value to fulfill &, = 107! with r = 11.
As explained in [16] for an inductor-core system, varying the input current does
not always require to recompute the POD basis if the model is well trained with
an appropriate current to correctly capture the nonlinear behaviour. By defining the
reduced snapshot matrix X as:

X =[%, %, -, Xy, | € R™M, (27.37)

and using Eq. (27.12), we define the relative error of method i as:

x-uxl.

Vi = , (27.38)
11Xl

where X; collects the reduction states obtained by reduction technique i. In this
3-phase transformer, a single POD basis can achieve a small relative error for
all input currents—below 5% from an engineering point of view (dashed line in
Fig. 27.3). Unfortunately, the perfect choice of that basis is very sensitive. Secondly,
changing the conductivity value requires another POD basis due to a change in the
eddy current distribution—similar to a change in frequency [16] (straight line in
Fig.27.4). For practical applications though, contrary to the input current, once the
transformer is built, the conductivity is fixed and is no longer a parameter. If a local

Fig. 27.3 Relative error ypop 10! °
according to input peak

current (basis generated with N\ LR S

input current / = 0.01 A

dotted line, 0.25 A dashed 10!

line, 0.5 A straight line). E

Circled with line represents B

the transition between linear :
. . 1 073

and nonlinear regimes

~

-
' 1
! !
! 1
! 1

0 02 0.4
Input peak current [A]

Fig. 27.4 Relative error ypop 10!
according to core
conductivity (basis generated
with o = 1 S/m)
10!

1073

10! 103 10 107

Core conductivity o [S/m]
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basis cannot correctly represent all the dynamics in a single low dimensional space,
one would build a global basis by gathering all the snapshots of all parameter values
[7] or interpolate between the local reduced bases in the parameter space [1, 16].

The POD reduces the magnetoquasistatic case to 11 equations leading to a
theoretical speedup between 663 and 440,413 (the computational time plummets
to between 90 and 0.1 ms) depending on the linear solver [12]. But the nonlinear
terms still need the full order size: much of the computational gain is lost there, and
the application of the POD alone is thus not sufficient.

27.4.2 Discrete Empirical Interpolation Method

In [7], the POD-DEIM has been used to efficiently reduce a static (0 = 0S/m) 3D
3-phase transformer with an error lower than 0.1% by using 55 DEIM components
(representing edges in the model). Once the core conductivity is no longer zero,
however, the stability of the DEIM suffers and becomes more and more dependent
on a priori independent parameters such as the number of time steps N, or the
conductivity o [15, 20]. An alternative to the original DEIM algorithm is proposed
in [22], i.e. DIME, but also presents the same issues in this eddy current problem
(3-phase transformer,/ = 0.3 Aand o = 4.16- 10~" S/m). This lack of robustness
is illustrated in Figs. 27.5 and 27.6 where changing the number of time steps highly
impacts the relative error obtained with the POD-DEIM squared with line and
POD-DIME squared with dashed line techniques whereas the POD-MPE straight
line approach keeps a quasi constant relative error. In Fig.27.5, the DEIM/DIME
reduced size ¢ is obtained by truncating the nonlinear basis U, through the SVD
to maintain ¢ < 107'°, In practice, the 25 first modes are significant (i.e. when
N; > 25). In Fig.27.6, no truncation is performed on U, and ¢ = N,. The results
remain unchanged for N; > 90. In both figures, the MPE reduced size is kept
constant as the influence of the MPE reduced size on the error is analysed in
Fig. 27.8 in the following section. By looking at the singular values of the nonlinear

Fig. 27.5 Relative errors

ypop-DEM (Squared with line), 10°
YpoD-DIME (Squared with

dashed line) with

¢ = min(25, N,) and

ypop-MmpE (Straight line) 1073

1068

-9
10 20 40 60 80
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Fig. 27.6 Relative errors

ypop-DEM (Squared with line), 100
YpoD-DIME (Squared with

dashed line) with ¢ = N, and

YpoD-MpE (Straight line)
POD-MPE 10-3

10-65

-9
10 20 40 60 80

N,

contribution, one can find a decay similar to the one depicted by squared with line
in Fig. 27.2 where a small projection error is not achievable with a low number of
modes (or similarly the Kolmogorov g-width is too large) to effectively represent
the nonlinear term onto a g-dimensional subspace with ¢ << N. Consequently, the
POD-DEIM (and POD-DIME) can not correctly be used to reduce the computation
of the nonlinear terms.

27.4.3 Missing Point Estimation

The application of the MPE consists in the determination of the g rows to keep in
Eq. (27.16) to obtain Eq. (27.32). Contrary to the DEIM, it can be seen in Fig.27.5
that the number of time steps N, does not significantly influence the reduction.
Similar results were obtained by varying the number of simulated periods T or the
conductivity.

The POD-MPE is applied to the same 3-phase power transformer as the POD-
DEIM (Fig.27.1), using both the small (I = 0.1 A) and the large (I = 0.3 A)
current values and either a zero (¢ = 0 S/m) or nonzero (¢ = 4.16 - 10~! S/m)
conductivity for the core. The condition number of I_Jf[_JX, for both extreme cases,
decays very fast to 1 (see Fig.27.7). However, the relative error ypop.mpe With
respect to the reduction ratio seems to be independent of this criteria (see Fig. 27.8)
where g ranges from 50 to 350 (depending on the configuration) for a relative error
below 0.1%. This important reduction allows a high gain in the computational time
and resources but a better criterion should be investigated. By applying the POD-
MPE, the assembly of the nonlinear terms is limited to g € [50,---,350] rows
instead of N = 7300 and the projection of them onto the reduced basis U, at each
nonlinear iteration is also computed faster compared to the original matrix products.
The reduction ratios are comprised between 99% and 95% allowing a computational
time from 0.6 to 3 s, still limited by the assembly time compared to the resolution
time of 90 ms (obtained with the use of the POD allowing a drastic reduction to
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10 :
\ —o—/=0.1A&0=0S/m
\ —0—7=01A&0=4.16-10"! S/m
8 \ — =03A&0=0S/m
\ --=-1=03A&0=4.16-10"! S/m
6
4
2
0
0 100 200 300 400

10! .
L—. . - /=01A&0=0S/m
10! ! —0—/=0.1A&0=416-10"" S/m
! —/=03A&0=0S/m
. ---1=03A&0=4.16-10"! S/m
1073 y
1
1
103 \
1
1
1
107 :
1
1
1
10-° o - N
\\
10~ el EBE
0 100 200 300 400

Fig. 27.8 Relative error ypop.mpE

r =

11). The induction field b for the different setups, i.e. I = 0.1 A (top)—

I = 0.3 A (middle) and 0 = 0 S/m (lefty—0c = 4.16- 10" S/m (right), and the
MPE selected points (bottom) are shown in Fig. 27.9.



452 Y. Paquay et al.

| I |
Ll I

[ — —
I — -
I —

TIT—T1 71

(I .
LI I

. I_ll_.-"._l
) -
[ ]
===

¢ o I_ll_.j_|

Fig. 27.9 20th time step of induction field b for I = 0.1 A (top) - I = 0.3 A (middle) and
o = 0S/m(left) -0 = 4.16-10~" S/m (right). Legend: linear scale from O T (blue-small arrows)
to 1.52 T (red-large arrows) . 50 first MPE points (bottom)
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27.5 Conclusion

In this paper, we investigated a combined approach of the Proper Orthogonal
Decomposition and the Missing Point Estimation to efficiently and drastically
reduce both nonlinear static and eddy current models of a 3-phase power trans-
former. The reduction ratios, comprised between 99% and 95% for the assembly
and around 99.9% for the resolution, allow a reduced computational time of 0.6—
5s compared to the original finite element model resolution time of about 60s.
However, further work should investigate a better suited criterion on the a priori
reduced size to ensure a sufficiently small error.
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