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This article characterizes the cardiac autonomous electrical activity induced by the mechanical

deformations in the cardiac tissue through the mechano-electric feedback. A simplified and qualita-

tive model is used to describe the system and we also account for temperature effects. The analysis

emphasizes a very rich dynamics for the system, with periodic solutions, alternans, chaotic behav-

iors, etc. The possibility of self-sustained oscillations is analyzed in detail, particularly in terms of

the values of important parameters such as the dimension of the system and the importance of the

stretch-activated currents. It is also shown that high temperatures notably increase the parameter

ranges for which self-sustained oscillations are observed and that several attractors can appear,

depending on the location of the initial excitation of the system. Finally, the instability mechanisms

by which the periodic solutions are destabilized have been studied by a Floquet analysis, which has

revealed period-doubling phenomena and transient intermittencies. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.5000710]

Myocyte contraction is generated by an electrical signal

(action potential) that orchestrates the synchronization of

the cardiac tissue. The resulting deformation of the car-

diac myocytes influences the electrical characteristic of

the heart. This two-way coupling can induce auto-

oscillations in the system. In our work, this autonomous

activity is studied in terms of the temperature of the

heart and also in terms of the size of the system and of

the importance of the electro-mechanical coupling. In

particular, we show that bifurcations can occur that

destabilize the auto-oscillations and give rise to period-

doubling phenomena and transient intermittencies.

I. INTRODUCTION

The modelization of the heart dynamics poses outstand-

ing challenges. The heart modeling combines fluid, mechani-

cal, and electrical descriptions. To date, very few numerical

simulations have been able to combine those effects in a sin-

gle model and as an exception we can cite the remarkable

multiphysics model of Watanabe et al.1 Indeed, the cardiac

muscle involves sub-cellular and cellular processes (e.g.,

actin-myosin interaction) as well as mechanisms at the tissue

level [e.g., propagation of action potentials (APs)]. Large

scale and small scale processes are strongly intertwined.

Microscopic phenomena at the sub-cellular level will modify

the macroscopic properties at the tissue level and vice-

versa.2

However, simplified models have brought a great deal

of knowledge to the field of cardiac dynamics. It is now well

established that cardiac arrhythmias are characterized by an

incorrect propagation of the electrical action potentials.3

These arrhythmias may in some cases degenerate through

instabilities into the formation of spiral or scroll waves and

lead to life threatening situations.4–6 In most cases, studies

are done by neglecting the excitation-contraction coupling

that is present inside the heart.

Our work is mainly focused on the macroscopic electro-

mechanical behavior of the heart. We will in fact extend the

ideas put forward in a paper by Alvarez–Lacalle and

Echebarria,7 where a simple model is used to study the influ-

ence of the cardiac contraction on the stability of the action

potentials. Let us emphasize that our basic model is the same

as that proposed in Ref. 7, but our deduction of the equations

is different and corrects several inaccuracies. Note also that

in addition to the coupling between electrical and mechani-

cal phenomena which was considered in Ref. 7, we also

include the effects of temperature variations on the electrical

activity and the electromechanical behavior.

Temperature variations affect the cardiac dynamics. One

can cite, for example, the known relationship between the sud-

den cardiac death related to the Brugada syndrome and the

increase in patient body temperature.8 The study of tempera-

ture effects is also important because of the more common

usage of hypothermia in medical settings. Hypothermia has

been shown to be a beneficial effect in resuscitation therapy.

Recent modeling studies9,10 have put forward that fibrillation

is dependent on the system size and the body temperature.

These studies claim that fibrillation tends to be easier to initi-

ate at lower temperatures and that the frequency of fibrillation

decreases with lower temperatures.

The mechano-electric feedback (MEF) is the influence of

mechanical deformations on the electrical behavior of the

heart. This phenomenon has been studied for a long time, both

experimentally and theoretically (see for instance Refs. 7 and

11–22) and it is now well accepted that MEF can elicit sponta-

neous oscillatory behavior in muscle fibers. In the presenta)pc.dauby@ulg.ac.be
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work, we propose a theoretical and numerical analysis of such

oscillations. Our approach is based on a general and qualita-

tive model of the system which takes into account and com-

bines all the fundamental basic phenomena at work in these

oscillations. The model is developed from basic principles and

appropriate assumptions, before being used to describe the

bifurcation phenomena that can destabilize these oscillations.

We will also emphasize geometrical effects and analyze

the influence of the position of the pacemaker that generates

these oscillations.

The other main objective of this work is to study the

influence of the temperature on the self-sustained oscillations

that appear in an electromechanical model of the cardiac tis-

sue. We will confirm that temperature is indeed an important

parameter for the stability of such oscillatory behavior and

that the frequency of self-sustained oscillations decreases

together with the temperature. We will supplement the

numerical computation by a mathematical analysis that con-

firms the numerical results.

This paper is organized as follows. In Sec. II, we present

the equations that govern the dynamics of the heart muscle.

In particular, we take into account the thermo-electro-

mechanical (TEM) effects that are taking place in the cardiac

tissue. We then reduce the general model to a simplified one-

dimensional globally coupled model. In Sec. III, we analyze

the results obtained by the simplified model. In particular,

we study the influence of the temperature on the appearance

of the self-sustained dynamics in the system. We also con-

sider thoroughly the geometrical effect of the location of the

initial excitation on the subsequent dynamics. We conclude

Sec. III by a theoretical study of the stability of the periodic

solutions using the Floquet theory. In Sec. IV, we conclude

the paper and discuss future possible extensions of this

study.

II. MODEL AND METHODS

A. Governing equations

In the present section, we introduce a general time-

dependent thermo-electro-mechanical (TEM) model of the

heart muscle. The equations introduced below must be con-

sidered as a qualitative model of the heart, taking into

account the propagation of action potential, the electro-

mechanic feedback, and the influence of temperature, thus

allowing the study of the many couplings between these dif-

ferent phenomena. In our approach, we will assume that the

propagation of action potential is governed by a standard

monodomain equation.23,24 If �V is the dimensionless mem-

brane potential, this equation can be written as

@ �V

@t
¼ D0 @

@XM
J ðC�1ÞMN @ �V

@XN

� �
� iion � iapp ; (1)

where D0 is a diffusion coefficient often taken equal to

1 cm2 s�1.7 The XM are the material coordinates and the

matrix of contravariant components ðC�1ÞMN
is the inverse

of matrix CMN defining the right Cauchy-Green deformation

tensor C (boldface symbols are used to indicate tensorial

quantities). The symbol J denotes the volume ratio (ratio of

the deformed to the undeformed volume element). Finally,

the quantity iion describes the ionic currents through the cell

membrane, while iapp accounts for a possible externally

applied current (these currents are here expressed in s�1).

Note that the boundaries of the spatial domain are assumed

electrically insulating and we will thus use Neumann bound-

ary conditions in the numerical computations.

Considering the Nash-Panfilov monodomain model,20,21,25

the ionic current term can be written as

iion ¼ iion
�V ; v; isacð Þ ¼ jv �V �V � 1ð Þ �V � að Þ þ �V vþ isac ;

(2)

where jv and a are model parameters related to the excitabil-

ity properties of the system, while v and isac are quantities

whose meaning is described now. First, v is a recovery gate

variable whose dynamics in the Nash-Panfilov model is gov-

erned by the following equation:

dv

dt
¼ e �Vð Þ jv �V � vð Þ : (3)

In this equation, parameter jv allows controlling the ampli-

tude of the recovery variable v, while eð �VÞ describes the

time delay between the variations of the recovery variable

and those of the transmembrane potential. Following Ref.

21, this function is assumed to be piecewise constant and

equal to either e0 or e1 depending on �V being, respectively,

larger or smaller than a.

Let us now describe the mechano-electric feedback

(MEF) and the associated stretch-activated current (SAC)

isac, which represents the contribution to ionic currents

resulting from the stretching of the myocardial cells.

Detailed models of stretch activated currents (SACs) can be

found in the literature (see for instance Refs. 14, 17, and

19). However, since our approach is first qualitative and

interested in physical mechanisms, we will instead of well

accepted but rather complex models use a very simple and

generic description of the SACs, inspired by Ref. 22 and

also used in Ref. 7 and 20. If k denotes the ratio of the

lengths of the stretched and relaxed sarcomeres, we will

express the stretch activated current as

isac ¼ gsac
�V � esacð Þ k� 1ð ÞH k� 1ð Þ ; (4)

where gsac and esac describe the conductance and reversal

potential of the stretch-activated channels (following Refs.

20 and 21, we will set esac ¼ 1), while H denotes the stan-

dard Heaviside step function. This expression simply

describes a linear increase of the current with the stretch-

ing and also assumes that no current is present when the

sarcomere is compressed. Let us mention that in Refs. 7,

20, and 22, k in the above formula is replaced by the

deformed to undeformed volume ratio, which is a bit spe-

cious since these authors also use deformation energies

corresponding to incompressible materials, for which this

ratio is 1.

If external body forces are not taken into account and if

a quasi-static equilibrium is assumed, mechanics is described

by the following equation:
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0 ¼ Fm
N SMN

� �
jM ; (5)

where SMN is the second Piola-Kirchhoff stress tensor and

Fm
N is the deformation gradient tensor, with indices m and N

corresponding to, respectively, spatial and material coordi-

nates. Notation jM indicates a covariant derivative with

respect to XM.

Contraction and deformation of muscle tissue involve

both passive and active behaviors and several approaches are

possible to analyze this problem. Interesting, but rather com-

plex descriptions based on active strains and thermodynam-

ics have been proposed for instance in Refs. 26–29. Here, we

will instead consider the active stress approach, which

amounts to simply assume that the stress tensor can be

expressed as a linear superposition of an elastic contribution

SMN
elastic, describing the passive properties of cardiac tissue,

and an active part SMN
active, resulting from the contractile

behavior of the muscle

SMN ¼ SMN
elastic þ SMN

active : (6)

The elastic contribution SMN
elastic is obtained by considering a

compressible isotropic hyperelastic material and a Mooney-

Rivlin model30,31 and one gets

SMN
elastic ¼ 2 c1 GMN þ 2 c2 tr C GMN � GMOGNPCOP

� �
�J d ðC�1ÞMN ; (7)

where c1, c2, and d are elastic material constants,

tr C ¼ GOPCOP, while GMN are the contravariant components

of the metric tensor.32 To introduce the constitutive equation

for the active part of the stress tensor, we will consider first

the Cauchy stress tensor instead of the second Piola-

Kirchhoff. Indeed, the Cauchy stress tensor describes the

actual stress on the deformed configuration and can thus

more naturally be related to the cascade of phenomena link-

ing the electrophysiology to the contraction in the myocar-

dium. Under the simplifying assumption of isotropy, the

active tension can be accounted for by a scalar quantity that

will be denoted as ractive, and the active Cauchy stress tensor

ractive will be simply expressed as the product of this scalar

by the metric tensor g in the current configuration

ractive ¼ ractive g : (8)

This relationship can then be expressed in terms of second

Piola Kirchhoff stress tensor and one gets

SMN
active ¼ J ractive ðC�1ÞMN : (9)

As already mentioned earlier, contraction in a muscle

cell results from a cascade of phenomena involving many

actors, such as action potential propagation, calcium ion

flows, myosin dynamics, etc. In our qualitative approach, we

will simply describe this whole cascade of phenomena by

assuming that the generated scalar tension ractive is directly

related to the membrane potential, which is the very first

cause of all phenomena. Considering that the active tension

is driven by the variations of the membrane potential, the fol-

lowing evolution equation for ractive will be postulated7,25,33

dractive

dt
¼ e �Vð Þ jractive

�V � ractive

� �
; (10)

where jractive
is a parameter that controls the amplitude of the

active stress twitch and eð �VÞ, already introduced above,

accounts for the delay in the development and recovery of

the active tension with respect to the action potential.

In order to take into account the influence of temperature

in the system, we introduce two temperature-dependent func-

tions mimicking the thermo-electric coupling in the electro-

mechanical model. First, the gating kinetics of ion channels is

assumed to be temperature-dependent via temperature-

dependent rates for the conformational transitions of the subu-

nits constituting the ion channels. Assuming an exponential

dependence, the r.h.s. of Eq. (3) is multiplied by the following

nonlinear temperature-dependent function:34,35

u Tð Þ ¼ Q
T�T0

10

10 ; (11)

where T is the absolute temperature, T0 is a reference tem-

perature, and Q10 represents the well-known 10-degree tem-

perature coefficient that measures the change of rates due to

a temperature increase of ten degrees.36,37 Furthermore,

since the evolution equation (10), which describes the

dynamics of the active tension development, can also be con-

sidered as a biochemical process, the influence of tempera-

ture on this equation can be accounted for by multiplying the

r.h.s. of (10) by the same function uðTÞ which was intro-

duced in the modeling of the gating kinetics of ion channels.

The second temperature-dependent function is intro-

duced to model the changes in ionic conductances when the

temperature is not constant. If the conductances are assumed

to vary linearly,34,35 the ionic currents (2) are multiplied by

g Tð Þ ¼ 1þ B T � T0ð Þ ; (12)

where B is a constant parameter that describes the rate of

change of conductance with temperature. In the following,

one will take T0 ¼ 37 �C and the two parameters Q10 and B
will be fixed to values whose orders of magnitude corre-

spond to values from the literature10,34,35 Q10 ¼ 3 and

B ¼ 0:008 K�1.

B. 1-D model and global coupling

Even if the thermo-electrico-mechanical model devel-

oped above was kept as simple as possible, it involves many

physical phenomena of different origins and is thus rather

complex. Indeed electrical and mechanical phenomena inter-

play in a bidirectional way, via the excitation-contraction
coupling (ECC) and the MEF, while electrical and thermal

phenomena are coupled in a unidirectional fashion. In this

context, the role played by the MEF in the TEM behavior of

the cardiac muscle tissue and the underlying fundamental

mechanisms are not easy to characterize. In order to avoid

additional complexities related to the geometry and to con-

centrate on the physical mechanisms, we will in the follow-

ing consider a one-dimensional situation, corresponding to

an idealized one-dimensional cardiac fiber.
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In the case of the 1-D fiber, the gradient deformation

tensor, F, and the right Cauchy–Green deformation tensor,

C, are reduced to single scalar quantities

F ¼ F1
1 ¼

@x

@X
(13)

and

C ¼ C11 ¼ F2 : (14)

In Eq. (13), x and X are, respectively, spatial and material

Cartesian coordinates along the cardiac fiber. Note also

that the local stretching k is identical to F, and the trace

and the determinant of the right Cauchy–Green deforma-

tion tensor are reduced to F2. The stress tensors also reduce

to scalars and from (7), the only relevant component

S11
elastic, more simply denoted as Selastic, of the passive part

of the second Piola-Kirchhoff stress tensor, Selastic, can be

written as

Selastic ¼ 2 c1 �
d

F
: (15)

Let us now define the reference configuration of the fiber as

the state where no active tension is present and where no

extension or contraction of the fiber is imposed. In this situa-

tion, the fiber has its natural length and we will assume that

the (total) stress in the fiber is then equal to zero. Since the

total stress is equal to the elastic contribution in the reference

configuration, and since this configuration is characterized

by F¼ 1, one deduces from the equation above that d ¼ 2c1,

which allows writing

Selastic ¼ d 1� 1

F

� �
: (16)

From (9), one also deduces that Sactive ¼ S11
active ¼

JractiveðC�1Þ11 ¼ Jractive=C11 ¼ ractive=F and the unique rel-

evant component S ¼ S11 of the total stress tensor is given

by

S ¼ d 1� 1

F

� �
þ ractive

F
: (17)

Then, (5) becomes

@ F Sð Þ
@X

¼ 0 ; (18)

and F S is constant with respect to X. Introducing the nota-

tion F S ¼ A ¼ AðtÞ, and solving (17) with respect to F, one

obtains

F ¼ 1þ 1

d
A� ractiveð Þ : (19)

Considering that both ends of the 1-D fiber of length L are

held fixed, one has

ðL

0

F Xð Þ dX ¼ L : (20)

Introducing (19) in this relationship provides A ¼ �ractive,

where �ractive is the mean value of ractive over the fiber.

Equation (19) can thus be rewritten as

F ¼ 1þ 1

d
�ractive � ractiveð Þ : (21)

This relationship emphasizes what Alvarez et al.7 called a

“global coupling” in the system, the latter being character-

ized by the influence of the mean active tension (a global

notion) on the local stretching k ¼ F.

Introducing expression (21) of F ¼ k in (4) allows

rewriting the SACs in terms of ractive and one has

isac ¼
gsac

d
�V � 1ð Þ �ractive � ractiveð ÞH �ractive � ractiveð Þ:

(22)

From (3) and (10), it can be seen that v=jv and

ractive=jractive
obey the same ordinary differential equation

(ODE). Assuming similar initial conditions for v=jv and

ractive=jractive
, the following algebraic relationship between

ractive and v is then found

ractive ¼
jractive

jv
v : (23)

Thus, Eq. (22) can be rewritten as

isac ¼ ~gsac
�V � 1ð Þ �v � vð ÞH �v � vð Þ ; (24)

with �v the mean value of v and

~gsac ¼
gsac

d

jractive

jv
: (25)

In the one-dimensional problem, the first term of the

r.h.s. of (1) can be written as

D
@

@X

1

F

@ �V

@X

� �
: (26)

In the following, we will also assume that deformations

remain small, which allows writing F ¼ 1þ d, with d� 1.

Then, the diffusive term (26) can be developed in series of d
and all but the leading term can be neglected, which amounts

to approximating the above expression by D @2 �V=@X2. (Note

also that it was checked numerically in Ref. 38 that this

approximation is indeed quite good.) The whole set of equa-

tions that govern the 1-D thermo-electro-mechanical prob-

lem is then made up of the evolution equations of the

membrane potential and the relationships describing the

influence of temperature. The former equations take the form

@ �V

@t
¼ D

@2 �V

@X2
� f �V ; v; isacð Þ g Tð Þ � iapp ; (27)

dv

dt
¼ e �Vð Þ jv �V � vð Þu Tð Þ ; (28)

with

f �V ; v; isacð Þ ¼ jv �V �V � 1ð Þ �V � að Þ þ �Vvþ isac; (29)
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isac ¼ ~gsac
�V � 1ð Þ �v � vð ÞH �v � vð Þ; (30)

e �Vð Þ ¼ e0H �V � að Þ þ e1H a� �Vð Þ: (31)

The influence of temperature is described by the following

relationships:

g Tð Þ ¼ 1þ B T � T0ð Þ; (32)

u Tð Þ ¼ Q
T�T0

10

10 : (33)

In this globally coupled model, the mechanical proper-

ties do not appear explicitly but their influence is taken into

account by the specific form of the SACs. Note also that,

except for the temperature dependence, these equations are

the same as those presented in Ref. 7. However, the deduc-

tion is different here and in particular,, fewer hypotheses are

necessary to deduce the global coupling.

The main purpose of the paper is the study of the set of

Eqs. (27)–(33). In the following, these equations will be

solved numerically and the behavior of the solutions as a

function of important parameters will be analyzed in detail.

C. Numerical techniques

The set of Eqs. (27)–(33) must be solved numerically

and we describe briefly now the method used in this paper.

The spatial discretization of the cardiac fiber is done on a

regular mesh where the spatial grid is fixed to DX ¼ 0:02

cm.39 The Laplacian is discretized using a standard second-

order central difference scheme and the spatial average

(denoted by an over-bar) in Eqs. (27)–(33) is computed using

Simpson’s rule.40 For the temporal integration of Eq. (27),

we have used the explicit Runge–Kutta method. In particu-

lar, we have used the fifth order Cash–Karp Runge–Kutta

method.41 This high order method is suitable for the initial

value problem having rapidly varying solutions as is the case

in the present problem. A time step of Dt ¼ 0:04 ms has

been chosen here and it has been checked to be sufficiently

small to give accurate results independent of the time step.

Note that we have also checked that the spatial grid is suffi-

ciently small to get consistent results. Indeed, using DX ¼
0:01 cm gives essentially the same results. The boundary

conditions imposed on the membrane potential �V at the

extremities of the fiber X¼ 0 and X¼ L is @X
�V ¼ 0 and they

correspond to boundaries in contact with an electrical insula-

tor. For the initial condition of Eq. (27), an external current,

iapp, is applied locally on a small region, which has a 5� DX
extension, and during a time interval of 5 ms. The amplitude

of the imposed stimulation current is set to iapp ¼ 0:06 ms�1.

III. RESULTS

A. Autonomous electrical activity (AEA)

In normal physiological conditions, the mechanical

feedback ensures the stability of the action potential propa-

gation. However, in pathological situations the coupling

between the electrical and mechanical parts of the cardiac

dynamics may lead to sustained oscillations even without an

external pacemaker. These self-sustained oscillations define

an autonomous electrical activity (AEA) of the heart, which

is illustrated in Fig. 1. The values of the parameters that

were used to obtain this figure are those given in Table I,

with L¼ 5 cm, ~gsac ¼ 0:05, and T ¼ 37 �C. In the situation

described by the figure, the action potential is initiated at

the lower end of the fiber (symmetrically around

X¼ 0.5 cm) by injecting the external current iapp into the

system. From this location, two waves are then elicited.

One wave is moving downwards and is rapidly eliminated

by hitting the lower boundary of the fiber. The wave going

up towards the boundary at X¼ 5 cm is first propagating at

a rather constant speed. The passage of the action potential

generates local shortening of the tissue. Due to the fact that

the fiber length is constant other locations of the fiber are

concomitantly stretched and SACs are generated. These

SACs have two important effects. First, when the action

potential is reaching approximately X¼ 4 cm, the SACs

that have been accumulating in the higher end of the fiber

are such that they generate a quasi instantaneous action

potential in the region from X¼ 4 to X¼ 5 cm. This phe-

nomenon, that looks like a quasi infinite speed propagation,

is a consequence of the global coupling in the system.

Indeed, the length of the fiber being constant, contraction

somewhere in the system generates stretching, and thus

SACs, in all other parts of the fiber.

FIG. 1. Space-time plot of the action potential showing perpetual AEA on

the cardiac fiber for T ¼ 37 �C, L¼ 5 cm, and ~gsac ¼ 0:05 (cf. symbolþ in

Fig. 2). The color-coding quantifies the values of the dimensionless mem-

brane potential �V (color bar).

TABLE I. Parameter values used for the simulations of the one-dimensional

model described by Eqs. (27)–(33).

Parameter Value Units

a 0.05 Dimensionless

D0 10�3 cm2 ms�1

e0 3� 10�3 ms�1

e1 90� 10�3 ms�1

jractive
0.5 N cm�2

jv 2 ms�1

~gsac ½0� 0:12� Dimensionless

d 1.6 N cm�2

T0 37 �C

B 0.008 K�1

Q10 3 Dimensionless

L ½2� 14� cm
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Second, this action potential in the region between

X¼ 4 cm to X¼ 5 cm will in turn generate important stretch-

ing in the lower end of the fiber and as a consequence a large

release of SACs. These SACs, resulting again from the

global coupling, are responsible for the triggering of a new

action potential at the lower end of the fiber and the cycle

can continue in a perpetual fashion. We observe the AEA in

Fig. 1 for as long as the numerical simulation is continued.

The SACs are of course responsible for the AEA

described before. In our model, the intensity of these currents

is proportional to ~gsac, which is thus an important parameter.

Moreover, to generate these currents, stretching of the fiber

is necessary, which is only possible if the length L of the

fiber is controlled in some way. Here, we maintain a constant

value to this length and the intensity of stretching will thus

directly depend on this quantity. As far as the AEA is con-

cerned, the two quantities ~gsac and L are thus the most impor-

tant parameters of our model and we will analyze in detail

their influence on the self-sustained oscillations.

For this purpose, the ðL; ~gsacÞ parameter space is

scanned in a systematic way in order to determine the values

of these parameters for which the AEA is sustained indefi-

nitely. The values of the other parameters of the model are

those given in Table I and the temperature is set to 37 �C.

The initial excitation is applied to the region of the fiber

ranging from L=10� 0:04 cm to L=10þ 0:04 cm. As indi-

cated in Table I, the analysis is carried out for L ranging

from 2 cm to 14 cm and ~gsac ranging from 0 to 0.12 with

increment steps of DL ¼ 0:04 cm and D~gsac ¼ 0:0005,

respectively. As a result, 72 000 numerical simulations have

been performed to scan all the ðL; ~gsacÞ parameter space.

Note also that since the solutions of our equations can only

be obtained numerically, we need to introduce an (arbitrary)

practical definition of the permanency of a sustained oscilla-

tion. In the following, we will consider the AEA as

“perpetual” if it lasts at least 200 s. Of course, this does not

mean that “transient” oscillations, lasting less than 200 s in a

real patient’s heart, could not be life-threatening phenomena.

The results are presented in Fig. 2, where a color-plot of

the duration of the AEA in terms of L (horizontal axis) and

~gsac (vertical axis) is given. The central area (CA) (red

online) in Fig. 2 corresponds to regions where the AEA is

sustained indefinitely. This area is surrounded by (blue

online) regions in which self-sustained oscillations cannot be

triggered, even for a short time interval and by regions in

which the AEA is sustained for a finite time interval (all

other colored regions). The transitions between the regions

in which the AEA is indefinitely sustained and those in

which the AEA does not occur at all are quite sharp on the

left and lower boundaries of the CA. On these boundaries,

the disappearance of the self-sustained oscillations can be

explained as follows.

For values of L smaller than those corresponding to the

left boundary of the main CA, the APD is too long to enable

the SACs to generate an AP. After the propagation of the

first AP due to the initial excitation, all the fiber is in a

refractory state and therefore, even if the SACs are very

large (large value of ~gsac), the electrical activity ends. For

values of ~gsac smaller than those corresponding to the lower

boundary of the main CA, SACs are not large enough to trig-

ger a new AP after the propagation of the first one induced

by initial excitation applied to the fiber. Thus, no AEA

occurs in this region.

For the upper boundary of the CA, the transitions are dif-

ferent. These transitions are from a perpetual AEA to finite

AEA. Later, the Floquet stability analysis, conducted in Sec.

III D, will corroborate that the transitions at the lower and

upper boundaries of the CA are actually intrinsically different.

Note also that above the CA, some “islands” exist, which cor-

respond to sustained oscillations of finite or infinite duration.

Figure 1 has already shown an illustration of the typical

spatio-temporal behavior of the system when the parameters

ðL; ~gsacÞ remain within the CA, not ’too’ close to the bound-

aries. In this situation, this representation reveals that the

AEA behaves in a periodic way with period-1 cycles.

However, several examples show that the very rich dynamics

of the system is not limited to such a rather simple behavior.

Figure 3 describes the space–time behavior correspond-

ing to an “island” above the main CA (~gsac ¼ 0:0745 and

L ¼ 3:2 cm). For these values of the parameters, the AEA is

still indefinitely sustained and periodic, but it takes the form

of a period-11 cycle. Note however that by slightly modify-

ing the value of ~gsac, and keeping constant the values of other

FIG. 2. Map of the persistence of the AEA induced by the MEF as a func-

tion of the parameter L and ~gsac at T ¼ 37 �C. The color scale ranges from 0

to 200 s. Note that the symbolsþ and � indicate the parameters correspond-

ing to Figs. 1 and 3, respectively.

FIG. 3. Space–time plot of the dimensionless membrane potential, �V , for

L ¼ 3:2 cm and ~gsac ¼ 0:0745, and with T ¼ 37 �C (cf. symbol * in Fig. 2).

Note that the time units (horizontal axis) are in seconds.
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parameters, the AEA disappears. It is also interesting to ana-

lyse the transient behavior that can sometimes take place

before the oscillations vanish. As an example, consider the

time evolution of the fiber when L ¼ 12 cm; ~gsac ¼ 0:21, and

with T ¼ 37 �C. For these values of the parameters, the

stretch-activated current isac is too strong and the dynamics

becomes unstable. However, Fig. 4 shows that a few oscilla-

tions are generated after the first imposed activation but no

periodic dynamics is ever reached and the system eventually

tends to rest. In Fig. 4(a), the initial excitation is located at the

lower end of the system and in Fig. 4(b), the initial excitation

is shifted one grid point up with respect to the previous case

of Fig. 4(a). This very small difference between the location

of the initial excitation becomes visible in the space–time

plots in Fig. 4 after approximately 1.5 s. Figure 4 thus illus-

trates the transient space-time chaotic dynamics that is present

for large values of the ~gsac parameter. This last result is in

agreement with one of the conclusions of the paper by Gizzi

et al.42 There the authors stated that the complex spatiotempo-

ral patterns observed during alternans are very sensitive to

both the site of stimulation and the stimulation history.42

In Secs. III B–III D, we examine how the AEA is influ-

enced by temperature variations and also by changing the

location of the initial excitation imposed to the fiber. Finally,

we develop a Floquet analysis which will provide a much

deeper insight into the disappearance of the AEA at the

boundaries of the CA.

B. Influence of the temperature on the AEA

We describe now how temperature variations modify the

behavior of the system. Before considering a thorough explora-

tion of the (L, ~gsac) parameter space we can get some quantita-

tive insight of the influence of the temperature on the AEA by

fixing L¼ 5 cm and ~gsac ¼ 0:037 and computing characteris-

tics of the periodic oscillations. In Fig. 5, we have displayed

the period of the oscillation Tp (in ms), the action potential

duration APD80 (in ms), and the wave speed c (cm s–1) as a

function of the temperature. The measurements are dependent

on the location on the fiber (especially for c) and we have cho-

sen to measure at the middle of the fiber, i.e., X¼ 2.5 cm where

the boundary effects are the least pronounced. The wave veloc-

ity (black dashed line) in Fig. 5 has larger measurement errors

and we compute the mean wave speed for 20 oscillations after

a transient time of 40 s has elapsed. The standard deviations

for the wave speed are also displayed as error bars in Fig. 5.

As the temperature is increased the wave speed increases sub-

stantially (vertical axis on the right-hand-side of Fig. 5).

The oscillation periods Tp (red solid line in Fig. 5) and

the action potential duration APD80 (green dotted-dashed

line in Fig. 5) follow the same trend (vertical axis on the left-

hand-side of Fig. 5). An increase of the temperature leads to

shorter periods and shorter action potentials. Here again, we

have averaged the measurements on 20 oscillations after a

long transient time (40 s) has elapsed. The standard devia-

tions for Tp and APD80 are not shown in Fig. 5 because they

are too small to be noticeable.

Let us now turn to the effect of temperature on the AEA

regions in the (L, ~gsac) parameter space. In particular, we are

interested in showing if the size of the regions where oscilla-

tions are indefinitely sustained (CA) varies with temperature.

The results are displayed in Fig. 6, which provides the same

information as Fig. 2, but for values of the temperature fixed

to 33 �C; 35 �C; 39 �C, and 41 �C. By analyzing panels (a) to

(d) in Fig. 6, and also Fig. 2, we observe that i) the area in

the ðL; ~gsacÞ space where the AEA is indefinitely sustained

becomes larger when the temperature is increased; ii) the left

boundary of the main CA is shifted to a smaller system size

when the temperature is increased; iii) the number of islands

of the AEA for large values of the ~gsac is increased at higher

temperature; iv) the lower and upper boundaries of the main

CA are steeper for higher temperature.

C. Effect of the location of the initial excitation

1. Different dynamical attractors

Another important parameter of the dynamics of the sys-

tem governed by Eqs. (27)–(33) is linked to the location of

FIG. 4. Space–time plot of the dimen-

sionless membrane potential, �V , for

L ¼ 12 cm and ~gsac ¼ 0:21, and with

T ¼ 37 �C. The upper graph (a) corre-

sponds to an initial excitation at the

lower end X¼ 0, the lower graph (b)

corresponds to an initial excitation

shifted up by one grid point with

respect to case (a).

FIG. 5. Variation of the period Tp (red solid line), APD80 (green dotted-

dashed line), and wave speed c (black dashed line) measured at the middle

of the fiber as a function of temperature. Here, L¼ 5 cm and ~gsac ¼ 0:037

are fixed.
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the initial excitation in the cardiac fiber. In this section, we

illustrate the difference of behavior of the system when one

modifies the location of the initial condition. Here, we have

fixed the parameters L¼ 7 cm, ~gsac ¼ 0:044, and T ¼ 37 �C
but we have systematically varied the dimensionless location

of the initial excitation. This location is defined as the center

of the initially excited region and is denoted by
~Xini ¼ Xini=L. In Fig. 7, we have reported the final location

of the pacemaker ~Xend, i.e., the position of the region from

which the waves are emitted after 200 s.

One interesting feature of Fig. 7 is that one gets three

distinct types of behaviors by systematically varying the

location of the initial excitation. In order to illustrate each

one of these three families of solutions, we show three exam-

ples denoted by letters A, B, and C in Fig. 7, which corre-

spond to initial excitation at ~Xini ¼ 0:1; 0:234; 0:38,

respectively. It is also important to note the obvious symme-

try with respect to the center of the fiber ~X ¼ 0:5. If the ini-

tial excitation is located close to the lower boundary
~Xini < 0:22, the final state ~Xend � 0 stays close to the bound-

ary. If the initial excitation is located further apart from the

boundary 0:22 	 ~Xini 	 0:25, the final location of pace-

maker is no longer at the border but is displaced around

~Xend � 0:25. In this situation, it is worth mentioning that the

myocells making up a large part of the fiber fire almost

simultaneously (see the almost “vertical” firing in picture B

from Fig. 7). For this reason, the precise position of the pace-

maker is not easy to determine numerically, which is indi-

cated in Fig. 7 by the rather large “numerical error bar” for
~Xend � 0:25. Note that for cases A and C, the numerical error

bar is very small, because the pacemaker can easily be

located. The oscillation period corresponding to case B is

Tp � 188:1 ms (shown in the upper panel in Fig. 7) and is

clearly larger than the period associated with the first case

(A) where the oscillation period is Tp � 170:4 ms. The third

case (C) corresponds to an initial excitation located further

apart from the border ~Xini > 0:25. In this case, the final pace-

maker ~Xend stays at the same location as the initial excitation
~Xini and the system does not have a real attractor. From this

systematic study of the influence of the initial excitation ~Xini,

we conclude that there are two distinct discrete attractors (A

and B) and a continuous family of solutions (case C) that are

critically dependent on the initial excitation. This shows the

complexity of the system governed by Eqs. (27)–(33). This

is a rather common situation when dealing with integro-

differential equations.43,44 Here, the global spatial coupling

through the mean value of v is responsible for such rich

dynamics. Let us mention that at higher temperatures T ¼
39 �C and T ¼ 41 �C we have observed that the dynamics is

even richer and we have obtained a similar pattern but with

three distinct discrete attractors plus a continuous family of

solutions depending on the initial excitation imposed on the

system.38

2. Influence of initial excitation on the AEA

We have seen in the subsection above that for a given

length of the fiber and a given value of parameter ~gsac, the

location of the initial excitation can notably influence the

long-term behavior of the system. We will here study this in

more detail by scanning the L; ~gsac for different initial posi-

tions of the excitation. We will fix the temperature to T ¼
39 �C and determine the persistence of periodic dynamics for

four different initial locations of the excitation, which are,

respectively, centered on (a) L=10; (b) L=5; (c) L=3; and (d)

2L=5. The results of our analyses are displayed in Fig. 8, of

which panel (a) is in fact the same as panel (c) from Fig. 6.

It clearly appears that the four panels in Fig. 8 are sub-

stantially different and therefore, the location of the initial

excitation happens to be a crucial parameter in selecting the

dynamics.

FIG. 6. Maps of the persistence of the

AEA as a function of the parameter L
and ~gsac at four different temperatures.

(a) T ¼ 33 �C, (b) T ¼ 35 �C, (c)

T ¼ 39 �C, and (d) T ¼ 41 �C (see Fig.

2 for T ¼ 37 �C).

FIG. 7. Influence of the initial location of the excitation ~Xini on the final

location of the pacemaker ~Xend after 200 s. The corresponding oscillation

period Tp (in ms) is also plotted as a function of ~Xini in the top left panel.

Three characteristic situations (denoted by A, B, and C) have their corre-

sponding space–time plots shown in the right panels. Parameters are set to

T ¼ 37 �C, L¼ 7 cm, and ~gsac ¼ 0:044. Note the expected symmetry with

respect to the fiber center ~X ¼ 0:5.
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As illustrations, Figs. 9 and 10 show two space-time

plots of the dynamics obtained with an initial excitation

located at L=3 and for different system sizes. The first one

corresponds to an everlasting self-sustained periodic behav-

ior, while the second describes the instability and disappear-

ance of the oscillations after a long transient.

D. Floquet stability analysis

Many tools of nonlinear dynamics and chaos theory have

been used in the study of cardiac dynamics.45 The Floquet the-

ory (also known as Bloch’s theorem in solid-state physics)46–48

is a convenient tool to study the linear stability of periodic sol-

utions of dynamical systems. The main point of the Floquet

theory consists of computing the eigenvalues of the mono-

dromy matrix. Those eigenvalues are also known as Floquet

multipliers and the linear stability of the periodic solution is

ensured if all but one of the multipliers stay inside the unit cir-

cle in the complex plane. Indeed, for autonomous dynamical

systems, due to time translation symmetry one has always one

trivial Floquet multiplier equal to unity. By varying the control

parameters of the system, one can follow the values of the

Floquet multipliers and determine the type of bifurcation that

leads to the destabilization of the periodic orbit.

In this section, we will address the stability of the peri-

odic solutions shown in Secs. III B and III C and illustrated,

for instance, in Fig. 1 or Fig. 9. More precisely, we will deter-

mine the dynamical phenomenon, i.e., the type of bifurcation,

that makes these periodic solutions unstable at the boundaries

of the CA of Fig. 2. The standard Floquet theory allows study-

ing the stability of periodic solutions of systems of ODEs but

the system analyzed in this work is a spatially extended

dynamical system and our mathematical model Eqs. (27)–(33)

is made up by one partial differential equation (PDE) coupled

with ODEs. However, the spatial discretization of the problem

leads to a dynamical system of dimension 2�M, with M the

number of spatial points (two ODEs for each grid point).

Therefore, as a first approach, it can be reasonably assumed

that the study of the linear stability of the dynamical system,

resulting from the discretization of the spatially extended sys-

tem examined in this work, can provide significant informa-

tion about the linear stability of this spatially extended

system. For instance, assuming that the cardiac fiber has a

length of L ¼ 7 cm, the spatial discretization with

DX ¼ 0:02 cm, leads to M¼ 350. Thus, the corresponding

monodromy matrix has a dimension of 700� 700.

However, we do not need to compute the whole spec-

trum of the monodromy matrix and can only study the most

dangerous eigenvalues. For this particular case, a suitable

approach, which also reduces greatly the computational cost,

is used: the Arnoldi iteration.49 This method is based on an

iterative procedure that relies on Krylov subspaces of dimen-

sion p. Here, from a pragmatic point of view, p is taken equal

to 40 to approximate accurately the 20 eigenvalues of the

monodromy matrix with the largest magnitudes.

To provide a general idea about the bifurcations that

take place at the boundaries of the CA of Fig. 2, we have

considered 10 paths starting inside the CA and moving

“vertically” in both directions towards the boundaries (see

Fig. 11). These paths are defined by 5 different lengths of the

fiber that were chosen as 3:5 cm; 5 cm; 6:5 cm; 8 cm, and

9:5 cm. Along these paths, the Floquet multipliers have been

calculated until that with the largest modulus (the “most

FIG. 8. Maps of the persistence of the

AEA as a function of the parameter L
and ~gsac for four different locations of

the initial excitation. (a) L=10, (b) L=5,

(c) L=3, and (d) 2L=5. Note that the

symbolsþ and� in panel (c) refer to

the parameters used in Figs. 8 and 9,

respectively. Here, we fix T ¼ 39 �C.

FIG. 9. Space–time plot of the dimensionless membrane potential, �V , for

L ¼ 6:5 cm and ~gsac ¼ 0:07, and with T ¼ 39 �C. This figure corresponds to

theþ symbol in Fig. 8(c).

FIG. 10. Space–time plot of the dimensionless membrane potential, �V , for

L ¼ 5 cm and ~gsac ¼ 0:07, and with T ¼ 39 �C. This figure corresponds to

the� symbol in Fig. 8(c).
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dangerous” Floquet multiplier) reach the unit circle of the

complex plane, i.e., until the periodic solution get unstable.

Figure 12 describes the results for 2 particular values of

L. The variation of the magnitude jkjmax, and the phase

hmax=2p of the most dangerous Floquet multiplier are plotted

as functions of ~gsac, which can be considered as the parameter

of the paths inside the CA. Figure 12(a) corresponds to a sys-

tem size of L ¼ 3:5 cm and shows that in this case the Floquet

multiplier kmax crosses the unit circle at –1 for the lower criti-

cal value of ~gsac ¼ 0:03255 (flip bifurcation, see for

instance48). For the upper critical value of ~gsac ¼ 0:04845, the

crossing of the unit circle takes place atþ 1. These results

thus highlights that for L ¼ 3:5 cm, the type of bifurcation

leading to the loss of stability is different depending on

whether the upper or the lower boundary of the CA is reached.

Figure 12(b) corresponds to L ¼ 8 cm, and the stability win-

dow of the period-1 solution ranges from ~gsac ¼ 0:03205 to

~gsac ¼ 0:0569. The loss of stability is again induced by a flip

bifurcation at the lower boundary of the CA. At the upper

value of the stability range of ~gsac, the destabilization of the

solution corresponds to a Neimark–Sacker bifurcation, where

two complex conjugate Floquet multipliers cross the unit cir-

cle at exp ð6i hÞ with h � 6:58 �.
Before summarizing the results for the 5 values of L, it

is interesting to examine behavior of the system beyond the

thresholds corresponding to the crossings of the unit circle.

Let us consider two examples. Consider first L ¼ 3:5 cm and

a value of ~gsac ¼ 0:0305, which is just below the critical

value 0.03255 given above. The corresponding space-time

plot of the dimensionless membrane potential is given in Fig.

13. The observed AEA is characterized by a periodic spatio-

temporal pattern with a period-2 cycle and the spatially aver-

aged time periods of these alternans are equal to 197:3 ms

and 180:8 ms. We can thus deduce that the loss of stability of

the branch of period-1 solution takes place through a super-

critical flip bifurcation. Note that other period-doubling phe-

nomena could also be present further from the threshold, but

it was not possible to observe these solutions numerically

and the AEA permanently stops very close to the boundary

of the CA.

In order to illustrate the dynamics past the threshold of

the Neimark–Sacker bifurcation, we have considered the

case with L ¼ 8 cm and a value of ~gsac ¼ 0:05707. In this

case, the system becomes unstable, but after a long transient.

In order to analyze the solution, we have represented in Fig.

14 the period Tp along the fiber and measured at each beat

FIG. 11. Bifurcations leading to the loss of stability of the branches of period-

1 solutions at the upper and lower boundaries of the main CA (T ¼ 37 �C) for

five different lengths of the fiber: L ¼ 3:5 cm; 5 cm; 6:5 cm; 8 cm, and

9:5 cm. A supercritical flip bifurcation is denoted by F, while SN corresponds

to a saddle-node bifurcation (and transient type-I intermittency), and NS to a

Neimark–Sacker bifurcation (and transient type-II intermittency). The “x”

symbols correspond to the initial solutions used to track the branches of

period-1 solutions and the doubleheaded arrows indicate that the branches are

tracked in both directions. Here, we fix T ¼ 37 �C.

FIG. 12. Magnitude jkjmax (square symbols) and phase hmax=2p (circle sym-

bols) of the most dangerous Floquet multiplier as a function of the parameter
~gsac for system size L ¼ 3:5 cm (a) and L ¼ 8 cm (b).

FIG. 13. Space–time plot of the dimensionless membrane potential, �V , for

L ¼ 3:5 cm and ~gsac ¼ 0:0305 showing an alternans dynamics. White seg-

ments were added to the figure to illustrate the alternating behavior.

FIG. 14. Spatial variation of the periods Tp from one beat to the next during an

episode of intermittency. The parameters are L ¼ 8 cm and ~gsac ¼ 0:05707, and

with T ¼ 37 �C. This figure corresponds to unstable values of ~gsac in Fig. 12(b).
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number (i.e., a stroboscopic measurement of the period).

Figure 15 shows the last 55 periods of the solution before the

final instability takes place.

Figure 14 permits to illustrate the beat-to-beat changes

of the period. We observe a succession of long time intervals

during which Tp changes very slowly from one beat to the

next, while being uniform in space, interrupted by brief epi-

sodes of abrupt variations of Tp, both in time and in space

(see also the space-time plot of the membrane potential in

Fig. 15). This kind of behavior is reminiscent of intermitten-

cies, for which slowly drifting regular solutions alternate

with chaotic bursts.48 In these situations, the chaotic bursts

induce large excursions of the system in the phase-space,

before a possible “relaminarisation”48 occurs, that brings the

system back to a seemingly regular evolution. In our prob-

lem, the relaminarisation actually takes place until beat num-

ber 758 (corresponding to a time interval of approximately

129.2 s) and afterwards the AEA disappears (Fig. 15). The

Neimark–Sacker bifurcation is thus associated with a tran-

sient type-II intermittency.48

Similar analyses have been carried out38 for the 10 paths

introduced above and the complete results are summarized

in Fig. 11. At the lower boundary of the CA, supercritical

flip bifurcations are observed for the 5 values of L. At the

upper limit of the CA, a Neimark–Sacker bifurcation and

transient type-II intermittency are observed for large L, while

small L gives rise to saddle-node bifurcations and transient

type-I intermittencies.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied a simple globally coupled

model of the electromechanical dynamics of the cardiac tissue.

This system exhibits very rich dynamics, with periodic solu-

tions, alternans, chaotic behaviors, etc. Furthermore the influ-

ence of the temperature has been taken into account through

the modifications of the gating dynamics and the conductance.

Through intensive numerical simulations, we have system-

atically scanned the ðL; ~gsacÞ parameter space, where L is the

dimension of the system and ~gsac is a parameter that assesses

the importance of the stretch activated currents (SACs).

We observe that permanent self-sustained oscillatory

behavior is stable in a finite domain of the parameter space.

Indeed too small values of the stretch-activated current are

unable to sustain the oscillatory behavior. Also, too large values

of the stretch-activated current lead to unstable behavior (as

exemplified in Fig. 4) and therefore, there is a necessary trade-

off in the value of the stretch-activated current to sustain the

oscillatory behavior indefinitely. It is apparent from Fig. 6 that

the area in the parameter space where this oscillatory behavior

is observed grows dramatically with the temperature. This leads

us to hypothesize that in our model an increase of temperature

has a pro-arrhythmic effect. We have also analyzed the kinds of

bifurcations that make the self-sustained oscillations unstable.

The instabilities that take place for small values of parameter

ðL; ~gsacÞ are supercritical flip (period-doubling) bifurcations,

while for large values of this parameter, the instability gives

rise to transient intermittencies, associated with saddle-node

(small L) or Neimark-Saker (large L) bifurcations.

With respect to the inclusion of the temperature effects

in the model, a limitation is that we have always considered

uniformly distributed temperature in the system. It is clear

that the local temperature effect would generate heterogene-

ities and most likely would create a more pro-arrhythmic sit-

uations.50 We leave for a further study the influence of a

spatially dependent temperature field.

Another interesting behavior of the model presented

here is that it has many different dynamical attractors, asso-

ciated with the position of the pacemaker within the system.

A slight change in initial conditions may lead to a very dif-

ferent dynamical trajectory. This geometrical effect and

associated complexity are in part related to the global cou-

pling that renders our system integro-differential and

increases its complexity. The coexistence of attractors is

common in cardiac models and it has also been put forward

in cell models without any spatial component.51

We are aware that the present model of cardiac contrac-

tion is limited for several reasons. Among those reasons, one

can mention that we did not include the calcium dynamics,

which is a basic ingredient in the biochemical description of

the cardiac contraction.52,53 Also the electrophysiological

model should be more accurate and even patient-specific,54

if we want to generate results that could be translated to the

medical practice. It would of course be interesting to get rid

of these hypotheses but we believe that qualitatively most of

the results obtained here will be retained. Let us also recall

that our bifurcation analysis and solution tracking was lim-

ited to stable branches and that it would be interesting to

extend the approach and determine also unstable branches

and secondary bifurcations. Finally, let us mention that

experimental confirmations of the dynamical scenarios

described above would be welcome, but the corresponding

study is beyond the scope of the present paper.
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