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ABSTRACT 

Fire following earthquake (FFE), a cascading multi-hazard event, can cause major social and 

economical losses in a community. In this paper, two existing post-earthquake fire ignition 

models that are implemented in Geographic Information System (GIS) based platforms, Hazus 

and MAEViz/Ergo, are reviewed. The two platforms and their FFE modules have been studied 

for suitability in community resiliency evaluations. Based on the shortcomings in the existing 

literature, a new post-earthquake fire ignition model is proposed using historical FFE data and a 

probabilistic formulation. The procedure to create the database for the model using GIS-based 

tools is explained. The proposed model provides the probability of ignition at both census tract 

scale and individual buildings, and can be used to identify areas of a community with high risk of 

fire ignitions after an earthquake. The model also provides a breakdown of ignitions in different 

building types. Finally, the model is implemented in MAEViz/Ergo to demonstrate its 

application in a GIS-based software.  
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1. INTRODUCTION   

Our built environment and communities have been developed towards an interconnected social 

and economic network. Such interconnectivity between different aspects of a system leads to 

cascading effects. In many cases, an extreme hazard causes direct infrastructure and asset losses, 

while subsequent losses due to disruptions in operations and functions can exceed the direct 

damage [1]. If a city has to stay functional after a hazard and recover from the event, then the 

performance of individual elements, connectivity of critical infrastructure elements in the 
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system, and cascading effects on the system should be incorporated in the design of the 

community. 

This paper focuses on the problem of post-earthquake fires at the community scale. A study of 

20 previous earthquakes from seven countries, where 15 of which occurred between 1971 and 

2014, shows that fire events that followed the earthquakes caused considerable damage [2]. The 

likelihood of a fire event is typically amplified following seismic events due to an increase 

and/or introduction of available fuel and ignitions sources, such as ruptured utility lines or 

toppled appliances. On the other hand, active fire protection systems, such as sprinklers, may be 

ineffective due to ruptured water lines, loss of water pressure, or inadequate water supply due to 

widespread firefighting efforts for multiple neighboring fires. Passive fire protection systems, 

such as spray-applied materials or compartmentation partitions, can also be damaged in case of 

an earthquake and/or compromised by seismic shocks. 

The methodology to evaluate community resiliency for post-earthquake fires involves four main 

steps: (a) identifying areas of the community that may experience ignitions, (b) modeling spread 

of fire, from the burning area to the neighboring buildings, (c) modeling active suppression 

efforts by firefighters, which also affect the rate of fire spread, and (d) quantifying damage and 

performance of the buildings which experienced fire in the areas affected by ignition and spread. 

Within this context, ignition is defined as a structurally significant fire, which requires firefighter 

intervention. The fire spread quantifies the affected geographic area given the initial fire 

ignitions, while suppression is related to the work of extinguishing a fire, starting with the 

discovery time through the complete control of the fire by the firefighters. A holistic 

methodology has to consider the four steps mentioned above, in order to capture the performance 

of a community. The authors of this paper are working towards developing such a holistic 

approach considering different aspects of post-earthquake fires at individual buildings and at the 

community level. For example, in previous studies, the authors have adopted the concept of 

fragility function for quantifying fire damage in a building at system level [3,4]. Meanwhile, the 

authors are working towards developing a spread and suppression model that explicitly 

incorporates the available water for suppression efforts, given the earthquake damage to the 

water network [5]. As part of the holistic methodology, this paper focuses on modeling post-

earthquake fire ignitions in a community.  

The proposed model in this paper is based on empirical data from historical events in California 

to build a data-driven probabilistic model for predicting ignitions in a community. The empirical 

data are mainly obtained from firefighter reports, and are categorized as structurally significant 

fires, i.e. fires which ignited and grew to the point where a firefighter intervention was required. 

When a fire is developed in a building, the response not only depends on the structural behavior 

of elements, but also on the non-structural fire safety design of the building, such as the 

firefighting measures (e.g. sprinklers) or provision of compartments to prevent fire spread. When 

using the historical ignition data (structurally significant fires), it is implied that if active fire 

protection measures (e.g. sprinklers) were present, their probability of successful operation is 
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inherently encompassed in the data. Therefore, the outcome of the proposed model provides 

recommendation to firefighters for allocation of their resources to areas with high risk of 

ignitions, and to some extent helps them plan their resources (e.g. number of fire houses and fire 

engines) based on the number of ignitions.  

In recent years, a number of fire ignition models have been developed to simulate post-

earthquake ignitions [6]. Lee et al. [6] list and compare the existing ignition models and conclude 

that “[FFE] data include a great deal of uncertainty, only some of which is captured in reported 

statistics.” Among the existing models, two have been implemented in computer programs, 

Hazus [7] and MAEViz/Ergo [8]. Both computer programs are Geographical Information System 

(GIS) based platforms developed to estimate potential losses from hazards on communities. The 

U.S. Geological Survey recently led a group of over 300 scientists and engineers to study the 

consequences of a potential earthquake in California, which resulted in “the Shakeout Scenario” 

[9]. The Hazus-based study found that a hypothetical 7.8 magnitude earthquake on the southern 

San Andreas Fault could cause approximately 1600 fire ignitions, out of which 1200 would 

spread over large areas, and a few would grow into conflagrations [9]. Another example is the 

Hazard Mitigation Plan (HMP) released for the New York City in 2014 [10], which included a 

study [11] showing that a moderate earthquake could result in an estimated 1100-1200 deaths, 

and ignite up to 900 fires simultaneously in the NY-NJ-CT area. The study used Hazus, and 

compiled comprehensive soil information for the region, and a complete building inventory of 

Manhattan. 

This paper starts with an overview of Hazus and MAEViz/Ergo platforms. A discussion on the 

current FFE modules implemented in Hazus and MAEViz/Ergo is provided, and the 

shortcomings of the available FFE ignition modules are discussed. The original contribution of 

this paper is a new probabilistic post-earthquake fire ignition model that is proposed based on 

historical FFE events. The proposed model can be used to estimate the number of ignitions in a 

region after an earthquake. One of the objectives in developing the FFE ignition model is to have 

a model that can be implemented in GIS based programs for community resilience assessment. 

Therefore, the new ignition model is implemented in MAEViz/Ergo to show the application. 

2. GIS-BASED TOOLS FOR HAZARD RISK MANAGEMENT 

A general comparison of Hazus [7] vs. MAEViz/Ergo [8] is given in Table 1. Hazus, a GIS 

based platform, estimates potential losses from earthquakes, floods, or hurricanes based on the 

performance of buildings, essential facilities, transportation, or utilities, and can be obtained 

from the Federal Emergency Management Agency (FEMA) website. Hazus is a tool designed to 

provide local, state and regional officials with information for emergency response, recovery, 

and mitigation planning to reduce risk of disaster damage [7]. The program provides an 

inventory of data for the United States based on census tract areas. Hazus comprises an 

earthquake module with a fire following earthquake model embedded. The Hazus manual states 

that there are areas that the available research is limited, such as the fire following earthquake 
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area. The potential losses due to fire are not based on rigorous calculations, and therefore the 

program does not include the potential loss due to fire in estimating the total economic loss, 

casualties or loss of shelter. The fire following earthquake module is discussed further in 

Section 3.1.   

Table 1: Comparison of Hazus and MAEViz/Ergo 

  Hazus MAEViz/Ergo 

General 

Type of hazard Earthquake, floods, hurricanes Earthquake 

Accessibility 
Free but requires ArcGIS (not 

free) 
Free 

Source code Not available Available to user (open source) 

Inventory  
Includes default inventory data 

for U.S.A. 
Limited inventory data available 

Scale of analysis Census tract, county or state* Individual buildings 

FFE 

Model Empirical Analytical 

Components Ignition, spread, suppression Ignition 

Output No. of ignitions 
Probability of ignition for each 

building and no. of ignitions 

* Hazus has recently introduced an “Advanced Engineering Building Module” that performs 

analysis at the building level, but the user needs to provide the inventory data. 

 

MAEViz/Ergo is an open source platform for earthquake hazard risk management [8, 12] 

developed in association with the MAE Center (Multi-hazard Approach to Engineering) at the 

University of Illinois, Urbana Champaign. This is a tool designed to model earthquake events, 

evaluate risk and potential losses, and develop mitigation strategies. MAEViz/Ergo provides an 

extension to a post-earthquake fire plug-in that was developed by Turkish researchers [13]. 

Similar to Hazus, the accuracy of results greatly depends on the accuracy of the inventory data. 

MAEViz/Ergo does not provide a default inventory dataset, and it is up to the user to input the 

most recent and available detailed inventory for the analysis. The data for inventory should be 

collected and is available from a number of sources including the United States Census Bureau, 

the Bureau of Labor Statistics, the Department of Education, the Department of Agriculture, and 

the Federal Communications Commission. 

3. EXISTING FIRE FOLLOWING EARTHQUAKE IGNITION MODELS 

Table 1 provides a comparison of the Fire Following Earthquake (FFE) models available in 

Hazus and MAEViz/Ergo. The fire ignition models are discussed further in this section. 

3.1 Ignition Model in Hazus 

The FFE module in Hazus consists of three different components: (1) ignition, (2) spread, and 

(3) suppression [7]. The module requires, as inputs, general building stock inventory (i.e. square 

footage), essential facility inventory (i.e. fire stations and their available resources), and the Peak 

Ground Acceleration (PGA). In addition, the user should provide the wind condition, and 
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simulation properties such as the maximum simulation time. The module outputs the number of 

ignitions, total burned areas, population exposed to fire, and the building value consumed by the 

fire.  

The ignition model calculates the number of fires that are expected to occur after the earthquake 

in a region of interest [14]. In this model, ignition implies a fire that requires the fire department 

response to suppress. The ignition is provided in terms of ignition rate, or in other words the 

frequency of ignitions per million square feet of total building floor area per district under 

consideration. The model is empirical and is based on seven historical FFE events in the United 

States post 1970s. The historical events and their corresponding number of ignitions are shown 

in Table 2. 

Table 2: Historical FFE events for the ignition model in Hazus 

Earthquake No. of ignitions in dataset 

1971 San Fernando 91 

1983 Coalinga 3 

1984 Morgan Hill 6 

1986 N. Palm Spring 1 

1987 Whittier Narrows 20 

1989 Loma Prieta 36 

1994 Northridge 81 

Total Number of ignitions 238 

 

The ignition model was developed by selecting, for each FFE historical event, census tracts with 

PGA values larger than 0.13g and a population density of larger than 3000 persons per sq. km 

(7772 persons per sq. mile). The two criteria were selected as previous analysis showed that (1) 

ignition rates are negligible at MMI VI or less (on a Mercalli intensity scale), and (2) fire 

following earthquake is a problem in dense urban areas. The value of 3000 persons per sq.km 

(7772 persons per sq. mile) was selected based on the population density in large urban areas in 

California (such as Los Angeles and San Francisco). The selection included census tracts in the 

areas that did or did not experience ignition. A total of 1435 census tracts for the seven 

earthquakes were selected, with 155 of them experiencing ignition (some tracts have more than 

one ignition), and 1380 of them are zero-ignition points. A number of influencing factors on 

ignition (such as total floor area, population and etc.) were studied, and eventually an ignition 

model that uses a polynomial form to relate ignition rate (ignition per total floor area: Ign/TFA) 

to peak ground acceleration (PGA) was proposed, as shown in Eq. 1. All 1435 data points and 

the ignition model are shown in Fig. 1, with the fit having an R2 value of 0.084. 

   

Ign/TFA = 0.581895(PGA)2 − 0.029444(PGA)          (1) 
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Figure 1: Historical ignition data and the ignition model in Hazus (figure taken from [14]) 

 

The procedure to use Eq. 1 and to provide an estimate for the number of ignitions in a census 

tract in Hazus includes the following two steps: 

1. Given a PGA, Eq. 1 is used to calculate the mean ignition rate. Because of uncertainty 

and considerable variation in data (Fig. 1), the mean ignition rate is adjusted based on the 

standard deviation of the residuals (a process to incorporate the model error).  

2. The mean ignition rate is multiplied by the total building floor area of the census tract to 

get the mean number of ignitions. A Poisson process is then used, with the obtained mean 

number of ignitions, to estimate the probability of different number of ignitions. At this 

point, a table is constructed that contains the CDF for a range of potential number of 

ignitions. A random number is generated to represent the Poisson CDF that leads the 

program to choose the corresponding number of ignitions.   

Since both steps involve random number generations, the process has to be repeated several 

times to achieve more realistic results (Hazus technical manual recommends 10 times). The 

temporal distribution of ignitions (the time of ignitions) are also determined based on randomly 

generated numbers.  

3.2 Turkish Ignition Model in MAEViz/Ergo 

The FFE model in MAEViz/Ergo is based on the work of Turkish scholars, Yildiz and Karaman 

[13], and will be referred to as the “Turkish FFE model” in this work. The Turkish FFE model 

provides a probabilistic post-earthquake ignition model that considers the damage level in 

buildings’ internal gas and electric systems and overturning of appliances [13]. Compared to the 

empirical ignition model in Hazus, the Turkish ignition model in MAEViz/Ergo is built upon an 

analytical approach. The model consists of three main components: utility systems (gas and 

electric systems), hazardous appliances and contents (industrial products, flammable material, 

cooking stove, portable heater, water heater), and the less hazardous appliances and contents 
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(lighting fixtures, refrigerator, computers, television, microwave). The ignition model provides 

the probability of ignition for every building in the region of interest. The calculated probability 

for every building is compared to a defined threshold to determine if the building will experience 

ignition or not. The defined thresholds change for different building occupancy types.  

The relationship between damage to gas pipelines and wiring systems, and ignition due to gas 

leakage and electrical sparks are formulated based on the works of Peyghaleh [15] and 

Zolfaghari et al. [16]. The dataset for formulating the ignitions due to utility systems come from 

non-U.S. sources [15]. 

Ignitions due to overturning of appliances and contents are modeled using the motion of 

appliances due to acceleration, and the formulation is based on the work of Reinoso et al. [17]. 

The overall ignition model incorporates the importance of the three components by assigning a 

weight to each component, having more weight on the ignitions due to utilities, compared to 

ignitions due to hazardous and less hazardous appliances. The weights are based on 

questionnaires given to scientists. The methodology to have a different level of significance 

(weights) in each component and subcomponent of the model is based on an Analytical 

Hierarchy Process.  

The implemented Turkish ignition model in MAEViz/Ergo is applied to a case study to evaluate 

FFE ignitions in a region in Turkey [13]. The results from Yildiz and Karaman’s study [13] 

provide the probability of ignition for every building, ranging from 0.15 to 0.46. Such values can 

be used to compare probability of ignition for different buildings in the region; however, the 

predicted total number of ignitions in the region is not realistic. The probability of ignition for 

individual buildings in a community with thousands of buildings is expected to be in the order of 

10-5 or 10-6. Therefore, the model is suitable for comparative purposes (sensitivity studies) but 

not for predicting loss estimations from an FFE event. 

4. PROPOSED FFE MODEL 

The two FFE models discussed in Section 3.0 use different approaches to quantify ignitions after 

an earthquake. The model in Hazus is comprehensive in a sense that it includes the three phases 

namely ignition, spread, and suppression of fire. However, the ignition model in relation to data 

(Fig. 1) can be improved by introducing additional parameters and probabilistic factors into the 

model to capture the uncertainty and the spread in the data. Meanwhile, the Turkish probabilistic 

model in MAEViz/Ergo can be used to calculate the probability of ignition in individual 

buildings and compare their performance, but the model is not validated against historical FFE 

events, and the total number of ignitions in the region is unrealistic. Also, some of the datasets in 

developing the models came from non-U.S. sources. This section proposes a new probabilistic 

ignition model to address the above shortcomings. Fig. 2 provides an overview of the four main 

steps required to develop the new model in conjunction with Sections 4.1 to 4.4.  
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Figure 2: Overview of the proposed FFE ignition model 

4.1 Inventory of Historical Data 

The proposed probabilistic model is derived based on FFE historical data. Analytical models, 

such as the one implemented in MAEViz/Ergo, generally use event trees that are based on 

logical occurrence of events after an earthquake and certainly have a significant value. However, 

the type of data that is needed to derive the components of such analytical models is not easily 

available. Therefore, a probabilistic ignition model is proposed based on seven historical FFE 

events, all of which occurred in the U.S. and after 1983. Similar to Hazus, only U.S. data are 

included as the construction types, safety and building standards, and the built environment is 

different in the U.S. compared to other countries such as Japan that has experienced FFE. In 

addition, older data are excluded since building standards, appliances, and the nature of urban 

environment have changed such that older events (going back as far as 1906 San Francisco FFE) 

may not be valid any longer. The selected events include Coalinga (1983), Morgan Hill (1983), 

North Palm Spring (1986), Whittier Narrows (1987), Loma Prieta (1989), Northridge (1994), and 

the recent earthquake in South Napa (August 2014). A listing of the earthquakes and a summary 

of compiled dataset used in this study is provided in Table 3.  
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Table 3: Summary of the compiled dataset for the proposed ignition model 

Earthquake 
Counties with 

ignition 

No. of census tracts 

w/ PGA>0.08 

No. of census 

tracts w/ ignition 

Total No. of 

ignitions 

1983 Coalinga Fresno 63 1 3 

1984 Morgan Hill Santa Clara 472 6 6 

1986 N. Palm 

Spring 
Riverside 344 1 1 

1987 Whittier 

Narrows 
Los Angeles 2196 20 20 

1989 Loma Prieta 

San Francisco, 

Alameda, 

Santa Cruz 

1578 31 36 

1994 Northridge 
Los Angeles, 

Orange 
2944 68 82* 

2014 Napa Napa 80 4 6 

Total 7677 131 154 

* The dataset includes one additional ignition, based on the work of Davidson [18], compared 

to the 81 ignitions in Hazus dataset. 

 

Six of the earthquakes chosen in this study are the same as those from Hazus (Table 2 in Section 

3.1). The only earthquake, that is included in the Hazus study, but not in this work is the 1971 

San Fernando earthquake. The detailed data for all the other six earthquakes are found and 

compiled for this work, except the San Fernando earthquake, for which the Hazus study states 

that the data is based on unpublished sources. As the unpublished data is not available, the San 

Fernando earthquake was excluded from the compiled database in this study. In addition, 

nowadays the communities will most likely have a different response compared to an event back 

in 1971. Finally, a recent earthquake that occurred on August 24, 2014 in Napa (California) and 

was the source of six fire incidents is added to the collection [19].  

It should be noted that although the proposed ignition model will be implemented in 

MAEViz/Ergo as will be discussed in Section 5.0, Hazus and ArcGIS are used to collect and 

compile the data to develop the ignition model. This includes three main steps (3 layers of data in 

ArcGIS), as illustrated in Fig. 3: 

1. Information on the ignition incidents was compiled. In order to collect the required 

information for the ignition points, the location of ignition in the form of street address, 

geographical longitude/latitude, or the corresponding census tract at which the ignition point 

occurred was required.  

2. Hazus inventory was used to compile geographic and demographic information grouped 

based on census tracts for regions that experienced the earthquake events. ArcGIS was 

employed to combine the Hazus inventory with the ignition data (from the previous step). 

Every ignition point, based on its location, was located at a census tract, for which Hazus 

inventory provided square footage, population density, and building counts.  
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3. As a final step, an additional map layer was added in ArcGIS, which included the recorded 

PGA values for historical earthquakes in the region of study. ShakeMap archives are 

available on the USGS website in a “shape file” format that is readable to ArcGIS. The PGA 

map layer was overlaid on the Hazus inventory, to extract PGA values for every census tract. 

The ShakeMaps provide contours of PGA values. In this study, the mean value of PGA in 

every census tract was selected as the PGA corresponding to that census tract. This way, 

PGA was related to the census tracts, and consequently to the ignition data as well as 

characteristics of the tracts.   

 

 

Figure 3: Process to compile dataset for ignition model (a) required layers, (b) combined 

With the exception of the Napa earthquake, the ignition data are obtained from the work of 

Davidson [18]. In her work, ignition data from earthquake-specific reconnaissance reports were 

compiled. After Davidson’s study, Scawthorn [14] led a study to improve the ignition model in 

Hazus that used the same historical earthquake events as Davidson’s (with the addition of San 

Fernando in Hazus). It should be noted that in both studies, the datasets include only those 

ignitions that: (1) became structural fires, (2) required fire department help to extinguish, (3) 

occurred within 10 days of the earthquake, and (4) were identified as earthquake-related [18]. 

This paper uses Davidson’s data for six of the historical events between 1983 and 1994, while 

the ignition data for the 2014 Napa earthquake are based on the reconnaissance report prepared 

in September 2014 [19].  

The ignition data reported by reconnaissance studies, and the inventory in Hazus are based on 

different census tracts (Hazus is based on the year 2000 census tracts, while the reported ignition 

data are based on the year 1990 census tracts). There were a few ignition points that had to be re-

mapped; therefore, the street address of the ignition point, provided by Davidson [18], was used 

to locate and map the ignitions in the corresponding census tracts in Hazus.  

The compiled dataset for every historical earthquake includes census tract, population density, 

total building square footage, building counts and their type, and PGA. The minimum PGA in a 
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census tract with an ignition is 0.08g; therefore, census tracts with PGA of smaller than 0.08g are 

excluded. As shown in Table 3, with the seven considered earthquakes, a total of 7677 census 

tracts are selected, 131 of which experienced at least one ignition. The total number of recorded 

ignitions is 154, implying that some tracts have more than one ignition.  Overall, 7546 (7677-

131=7546) tracts have zero ignitions.  

The zero-ignition census tracts are included in the dataset to properly capture probability of 

ignition; as such tracts experience no ignition while having a reasonable PGA (larger than 

0.08g). Table 3 summarizes the counties with ignitions, number of census tracts, and ignition 

statistics for the seven considered earthquakes. It should be noted that the counties provided in 

Table 3 are only those that experienced ignition; however, census tracts from other counties that 

experienced PGA larger than 0.08 are included in the dataset as well. The proposed approach for 

collecting the inventory data is similar to that of Davidson [18]. Davidson was the first to 

incorporate ‘zero’ ignition data in a thorough process, and she compiled two sets of data with 

different filters: Dataset “A” had about 3,200 data points and dataset “B” included many lower 

intensity data, totaling almost 8,000 points. The second dataset (B) is in line with the process 

used for this work.  

4.2 Probability of Ignition in Census Tract 

The Hazus ignition model relates ignition rate to PGA and total building floor area in a census 

tract, and Davidson’s study includes five covariates in her ignition model (earthquake intensity; 

land area that is commercial, industrial, or transportation; total building square footage; building 

area that is unreinforced masonry; and population density). It should be noted that Davidson 

proposes alternative models that considers additional covariates such as land area that is high 

intensity residential and the median year built over all housing units. This paper proposes a 

probabilistic ignition model that predicts probability of ignition in a census tract based on three 

covariates: PGA, total building square footage, and population density of the census tract. The 

correlation coefficient between total building square footage and population density, for the 

collected data including zero-ignition points, is calculated to be -0.264. Although, it was 

expected that the total building area and population density would be closely correlated, the 

correlation coefficient of -0.264 indicates the proper inclusion of both covariates in the model. 

This probabilistic independence between the two parameters at the census tract level, for the 

considered region, was confirmed in Davidson’s study [18], where the correlation coefficient for 

her collected dataset was calculated as -0.22. 

In order to develop the model, the compiled dataset is treated as a binary data, where a value of 

“one” represents an ignition in a census tract, and value of “zero” represents no-ignition. The 

census tracts that have more than one ignition are repeated for the number of ignitions in the tract 

(meaning a census tract with two ignitions represents two “ones”), if the ignitions are 

independent. The ignition locations in census tracts that experience more than one ignition are 

individually examined. The investigation shows that all ignition cases that occur in the same 

census tract are located far enough from each other (in the order of miles) that they can be 
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considered to be independent ignitions. The locations for which the source and time of the 

ignition are available further confirm that these ignitions are independent. The only exception is 

the case of two ignitions in the Napa earthquake that are correlated (same ignition source and 

nearby locations), for which the two ignitions are represented as one.  

With the binary data and the covariates selected as PGA, population density (PD), and square 

footage (SF), the logistic function is used to develop the model for probability of ignition in a 

census tract (PIg_tract), as shown qualitatively in Fig. 4. There is a cluster of “one” data at larger 

PGA, PD, and SF values, and a cluster of “zero” data at smaller PGA, PD, and SF. The model 

has a general form of Eq. 2, where it always has a value between zero and one (suited to model 

probability). The program “R” [20] is used to estimate the unknown parameters in Eq. 2 based on 

the collected dataset.  

 

𝑃𝐼𝑔_𝑡𝑟𝑎𝑐𝑡 =
exp⁡(𝜃1+𝜃2×PGA+𝜃3×𝑃𝐷+𝜃4×𝑆𝐹)

1+exp⁡(𝜃1+𝜃2×PGA+𝜃3×𝑃𝐷+𝜃4×𝑆𝐹)
           (2) 

 

 

Figure 4: Qualitative representation of binary ignition data and logistic function  

Table 4 shows the outputs of the program “R” for each unknown parameter in Eq. 2. The outputs 

of “significance test” in program “R” showed that there is a significant relationship between 

probability of ignition and each considered covariate. The final form of the ignition model is 

presented in Eq. 3, where PGA is in units of g, PD is the population density in population per 

square km area of the census tract, and SF is the total building area in thousands of square feet. 

All units are consistent with the inventory in Hazus.  

 

𝑃𝐼𝑔_𝑡𝑟𝑎𝑐𝑡 =
exp⁡(−6.755+8.463×PGA+98.4×10−6×𝑃𝐷+152.3×10−6𝑆𝐹)

1+exp⁡(−6.755+8.463×PGA+98.4×10−6×𝑃𝐷+152.3×10−6𝑆𝐹)
     (3) 

  



Author Preprint version – Paper published by Elsevier as: 

N. Elhami Khorasani, T. Gernay, M. Garlock, Fire Safety Journal 94 (2017) 33-44 

 Data-driven probabilistic post-earthquake fire ignition model for a community 13 

Table 4: The R output for parameters of the ignition model 

Variable Parameter Estimate Std. Error 

Constant 𝜃1 -6.755 0.252 

PGA 𝜃2 8.463 0.561 

PD 𝜃3 98.4e-06 14.00e-06 

SF 𝜃4 152.3e-06 29.12e-06 

 

The range of data for the input parameters to the model is investigated to identify appropriate 

lower and upper bounds for the inputs, and to characterize where the model is more robust. In 

general, the minimum PGA in a census tract with an ignition is recorded to be 0.08g, while the 

historical data include census tracts experiencing ignition with a maximum PGA of 0.655.  At 

small PGA values, ignition is more probable for tracts with larger population density and/or 

square footage. The upper bound values for population density and square footage in the 

historical data are approximately 37000 people per sq.km (95800 people per sq. mile) and 22000 

thousands of ft2 (2044 thousands of m2) respectively. On the other hand, at larger PGA values, 

the probability of ignition becomes higher and less dependent on population density and square 

footage. The lower bound for population density and square footage, at larger PGA values, are 

approximately 653 people per sq.km (1690 people per sq. mile) and 1360 thousands of ft2 (126 

thousands of m2).  

Table 5 provides a breakdown of the ignition data and the range of values for the observed 

population density and building square footage given a PGA range. It can be seen that the 

number of ignitions are significant in relation to the total number of census tracts when PGA is 

larger than 0.6 (4 ignitions in 19 census tracts where the maximum population density and square 

footage are smaller than those for lower PGA brackets). 

 

Table 5: Breakdown of ignition data given the input parameters  

PGA 
Total no. of 

census tracts 

No. of 

ignitions 

PD for census tracts 

with ignition  

(people per sq.km) 

SF for census tracts 

with ignition 

(thousands of ft2) 

Min Max Min Max 

PGA<=0.20 5809 53 411 37026 1424 21998 

0.20<PGA<=0.40 1625 59 80 18237 810 11686 

0.40<PGA<=0.60 224 38 441 10400 1361 7735 

PGA>0.60 19 4 653 1538 3214 6835 

 

Fig. 5 shows the probability of ignition (Eq. 3) for a range of population density [0 to 40,000 

people per sq. km (103,627 people per sq. mile)] and total building square footage [0 to 15,000 

thousands of ft2 (1395 thousands of m2)] in a census tract for different PGA values. The range of 

values for population density and square footage that is used in Fig. 5 is based on census data 

from cities in California, including San Francisco and Los Angeles. It is shown that at very low 
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PGA (0.08g), the probability of ignition is small, whereas at a high PGA (0.655g), the 

probability may reach to values close to 1.0. Meanwhile, for intermediate intensity earthquakes 

with PGAs in the range of 0.2 and 0.4, the effect of PD and SF on the chance of fire ignition is 

more significant than for extreme values of PGA. Larger building square footage increases the 

chance of having an ignition in the area, while for two census tracts with the same square footage 

but different population density, a larger population density implies a higher chance of ignition 

due to presence of more ignition sources such as appliances.  

 

  

  

Figure 5: Probability of ignition for a census tract based on Eq. 3 

Eq. 3 can also be used to find probability of ignition of any region under study (not necessarily a 

census tract); however, the model is derived based on a dataset at the level of census tracts. As 

the region of study becomes considerably larger than a census tract, the level of accuracy of the 

ignition model may be affected. 
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4.3 Probability of Ignition in Individual Buildings 

The discussion so far has been focusing on post-earthquake fire ignitions at the level of a census 

tract. The next step in advancing the ignition model further is to estimate the probability of 

ignition for individual buildings in a region. This would provide officials with the distribution of 

ignitions within a census tract and help identify vulnerable parts of the region. One parameter 

that affects the probability of ignition for individual buildings is the general building 

construction type (concrete, steel, masonry, wood, and or mobile homes). In this work, buildings 

will be grouped into three categories according to their construction type: wood (W), mobile 

homes (MH), and noncombustible (NC) such as concrete, steel, and masonry buildings. 

It is assumed that probabilities of ignition for the three building types are related as given in Eq. 

4a, with PIg as a common factor and αW, αMH, and αNC as the ignition factors for each building 

type. Note that PIg itself is physically meaningless unless multiplied by the ignition factors to 

obtain the probability of ignition in each building type, as shown in Eq. 4b, where 𝑃𝐼𝑔_𝑊, 𝑃𝐼𝑔_𝑀𝐻, 

and 𝑃𝐼𝑔_𝑁𝐶 are the probability of ignition in a wood building, a mobile home, and a 

noncombustible building, respectively. 

  

𝑃𝐼𝑔_𝑊

𝛼𝑊
=

𝑃𝐼𝑔_𝑀𝐻

𝛼𝑀𝐻
=

𝑃𝐼𝑔_𝑁𝐶

𝛼𝑁𝐶
= 𝑃𝐼𝑔           (4a)   

𝑃𝐼𝑔_𝑊 = 𝛼𝑊𝑃𝐼𝑔 , 𝑃𝐼𝑔_𝑀𝐻 = 𝛼𝑀𝐻𝑃𝐼𝑔 , 𝑃𝐼𝑔_𝑁𝐶 = 𝛼𝑁𝐶𝑃𝐼𝑔        (4b) 

 

The building construction type for individual ignition data points is available for part of the 

dataset that was compiled to develop the ignition model (explained in Section 4.1).  Table 6 

provides the number of buildings and their construction type that experienced ignition in four 

historical FFE events based on [19, 21, 22, 23]. Table 6 also shows the total number of buildings 

for each construction type from the census tracts in Table 3 (statistics are obtained from the 

inventory in Hazus). The building ignition factors (αW, αMH, and αNC) are calculated by (a) first 

taking the ratio of the number of buildings that experience ignition to the total number of 

buildings for each category of building construction type, and (b) then normalizing the three 

ratios (for the three categories) with respect to the largest value (that corresponds to the ratio for 

mobile homes). The process and the building ignition factors are shown in Table 7. 

Table 7 shows that mobile homes have the largest ignition factor (i.e. frequency of ignition), 

followed by wood and noncombustible buildings. It is expected and logical to have the lowest 

ignition factor for the noncombustible buildings. Wood buildings have, by far, the largest 

number of ignitions, but as the total number of wood buildings is significantly larger than the 

two other categories, the ignition factor for wood construction is comparable with the 

noncombustible buildings. Meanwhile, the higher propensity of mobile homes to experience 

post-earthquake ignitions could be attributed to the fire safety strategies associated to this 
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particular type of construction such as construction materials (higher flammability), absence of 

active fire protection measures, or a more vulnerable gas and electric connections. 

 

Table 6: Statistics of building types for historical events: with ignition and total count 

Earthquake 
Historical ignition data Total no. of Buildings in census tracts(1) 

W MH  NC NA Total W MH NC Total 

Coalinga 2 0 1 0 3 251742 15144 27420 294306 

Morgan Hill 2 2 0 2 6 644264 32728 69773 746766 

Northridge 67 0 6 9 82 3316841 120704 387628 3825173 

Napa 2 4 0 0 6 127247 6757 13016 147019 

Total 73 6 7 11 97 4340094 175333 497837 5013264 

Note (1): No. of buildings in all census tracts from Table 3.  

 

Table 7: Building ignition factors 

 𝛼1 (wood) 𝛼2 (mobile home) 𝛼3 (noncombustible) 

Absolute value 73/4340076=16x10-6 6/175333=34 x10-6 7/497837=14 x10-6 

Normalized value 16/34=0.471 34/34=1.0 14/34=0.411 

 

Having defined building ignition factors and Eqs. 4(a) and (b), probability of ignition in a census 

tract can now be related to probability of ignition in each building. The probability of ignition in 

a census tract is the complement of having no ignition in that tract (Eq. 5). The probability of no 

ignition in one wood building is (1 − 𝑃𝐼𝑔_𝑊), while the probability of no ignition in NW wood 

buildings in a tract is [(1 − 𝑃𝐼𝑔_𝑊)|𝑃𝐺𝐴]
𝑁𝑤 , assuming ignitions in buildings of the same type are 

independent, conditional on the PGA. The same formulation holds for mobile homes and 

noncombustible buildings with a total of NMH and NNC mobile home buildings and 

noncombustible buildings in a tract respectively. Eq. 5 can be rewritten as Eq. 6 based on the 

probability of no ignition in each building type. Eq. 6 relates the probability of ignition at a 

census tract to probability of ignition for individual buildings considering their construction type. 

Combining Eqs. 6 and 4b with building ignition factors from Table 7, result in Eq. 7 where the 

only unknown is PIg. PIg_tract is known through Eq. 3, NW, NMH and NNC are obtained from the 

inventory for the region of interest (Section 4.1).  

 

𝑃𝐼𝑔_𝑡𝑟𝑎𝑐𝑡 = 1 − 𝑃𝑁𝑜⁡𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛                  (5) 

𝑃𝐼𝑔_𝑡𝑟𝑎𝑐𝑡 = 1 − [(1 − 𝑃𝐼𝑔_𝑊)|PGA]
𝑁𝑊 × [(1 − 𝑃𝐼𝑔_𝑀𝐻)|PGA]

𝑁𝑀𝐻 × [(1 − 𝑃𝐼𝑔_𝑁𝐶)|PGA]
𝑁𝑁𝐶             (6) 

𝑃𝐼𝑔_𝑡𝑟𝑎𝑐𝑡 = 1 − [(1 − 0.471𝑃𝐼𝑔)|PGA]
𝑁𝑊 × [(1 − 1.0𝑃𝐼𝑔)|PGA]

𝑁𝑀𝐻 × [(1 − 0.411𝑃𝐼𝑔)|PGA]
𝑁𝑁𝐶   (7) 

 

Eqs. 3 and 7 are the final form of the proposed ignition model. Eq. 7 cannot be rearranged to 

explicitly solve for PIg, meaning that if the probability of ignition in a census tract (PIg_tract) is 

known, the probability of ignition for buildings should be calculated using a numerical 
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procedure, such as Bisection Method or trial and error. Once PIg is obtained from Eq. 7, the 

probability of ignition in individual buildings is calculated from Eq. 4b as a function of the 

building type.  

Finally, the available data for individual building construction type is further analyzed for the 

occupancy type. The following table provides a breakdown of the occupancy type, based on 

three categories of residential (Res), commercial (Comm), and other (including educational 

facilities). Out of 87 available data points, a total of 75 ignitions were recorded in residential 

category, 9 ignitions in commercial category, and 2 ignitions in others. The results show that, 

given an ignition in wood or mobile home categories, it is more likely that the fire occurs in a 

residential building. On the other hand, given a structurally significant fire in a noncombustible 

category, it is less likely that the building is residential. Therefore, it appears that there is a strong 

correlation between general building construction type and occupancy, for the analyzed events. 

Besides, the data about occupancy is only partially available. For these reasons, it was decided 

not to include occupancy as a factor for the probability of ignition at the building level. 

    

Table 8: Statistics of building and occupancy types for historical events 

Earthquake 
Wood Mobile Home Noncombustible Not 

Available Res Comm Other Res Comm Other Res Comm Other 

Coalinga 2 0 0 0 0 0 0 1 0 0 

Morgan Hill 1 1 0 2 0 0 0 0 0 2 

Northridge 62 5 0 0 0 0 2 2 2 9 

Napa 2 0 0 4 0 0 0 0 0 0 

Total  67 6 0 6 0 0 2 3 2 11 

 

It should be noted that the problem of fire following earthquake is a function of many 

parameters, including soil type, types of structural system, degree of seismic damage, etc. 

However, in order to create a model that captures all those parameters, reliable validation data 

from previous events are needed, which is not readily available. Meanwhile, when applying such 

models, the user needs to collect the information for the input parameters. Based on the 

experience of the authors, particular information about individual buildings, their structural 

system, retrofits over time, etc. is not available and require extensive effort and time to collect 

the information, if possible at all. Therefore, for practicality, a model to predict the number of 

ignitions following an earthquake cannot include all these parameters at this time. 

4.4 Expected Total Number of Ignitions 

The process to estimate the number of ignitions for any region, using the proposed ignition 

model, is shown in a flowchart in Fig. 6 and can be described as the following: 

1. Compile an inventory of census tracts for the region of study. The inventory should 

include:  

(a) Population density (PD),  

(b) Total building square footage (SF),  
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(c) Number of wood buildings (NW), number of mobile homes (NMH), and number of 

noncombustible buildings (NNC).  

PD and SF are used in Eq. 3, while NW, NMH, and NNC are used in Eq. 7. 

2. Select an earthquake scenario. For the selected ground motion, the PGA values for every 

census tract should be calculated. PGA is an input to Eq. 3. 

3. Using Eq. 3, calculate the probability of ignition in a census tract. This calculation is 

performed for “m” number of census tracts in the region of study. 

4. Given the probability of ignition in each census tract (Step 3), and the number of each 

building type, calculate probability of ignition for each individual building using Eq. 7.  

The expected number of ignitions in each census tract equals to the sum of probabilities of 

ignitions for all buildings in that census tract. The number of ignitions in the region of study is 

the sum of ignitions in all census tracts, shown in Eqs. 8(a) and (b): 

 

Number⁡of⁡Ignitions = ∑ [𝑁𝑤 × 𝑃𝐼𝑔_𝑊 + 𝑁𝑀𝐻 × 𝑃𝐼𝑔_𝑀𝐻 + 𝑁𝑁𝐶 × 𝑃𝐼𝑔_𝑁𝐶]𝑖
𝑚
𝑖=1                          (8a) 

Number⁡of⁡Ignitions = ∑ [𝑁𝑤 × (0.471𝑃𝐼𝑔) + 𝑁𝑀𝐻 × (1.0𝑃𝐼𝑔) + 𝑁𝑁𝐶 × (0.411𝑃𝐼𝑔)]𝑖
𝑚
𝑖=1     (8b) 

 

 

Figure 6: Flowchart for using the proposed ignition model 
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At the building level, the model can also be used to perform a sensitivity analysis and compare 

probability of ignitions between buildings in an area, given the properties of the region and the 

type of the buildings. The model is suitable for implementation in a GIS-based platform, to 

visually present the distribution of ignitions in the area of study. In addition, the model can be 

employed to estimate the total number of expected ignitions after an earthquake (Eq. 8b), 

providing an overall performance of the region in case of an FFE event. 

In order to validate the model, Eqs. 3, 7, and 8b are used to estimate the number of ignitions after 

the available FFE historical events. The same historical events that were collected to develop the 

model are used as part of the validation study since no other real event is available. Hazus had 

previously used the same approach for validating the FFE ignition model in the program. Fig. 7 

illustrates the results at an intermediate step in the validation study. The figure shows the 

breakdown of census tracts for different range of PIg_tract, which is a step before calculating the 

probability of ignition in individual buildings. The total number of tracts for each event is the 

number of census tracts where a PGA higher than 0.08g was observed. 

The number of ignitions from the proposed model is calculated for all seven considered 

earthquakes and given in Table 9, where it is compared with the actual reported number of 

ignitions. Table 9 also gives the number of ignitions calculated using Eq. 1 from Hazus, and the 

number given in a validation study by Hazus that followed the procedure explained in Section 

3.1. If only Eq. 1 is used to obtain the number of ignitions in census tracts with PGA larger than 

0.13 and population density larger than 3000 per sq km, and given the total building square 

footage, the total number of ignition for all the historical earthquakes are considerably different 

from the actual number of ignitions recorded in the events. When Eq.1 is adjusted as discussed in 

Section 3.1, Hazus provides a range for the number of ignitions as the program suggests running 

the analysis a number of times to capture uncertainties in the process. This again reflects the 

complications in incorporating uncertainties in the Hazus model, while the proposed model 

inherently incorporates a probabilistic approach and is robust. Note that the Hazus validation 

study goes back to a study that was completed in 2001 [24], while the fire ignition model in 

Hazus was updated in 2009. It is therefore possible that the Hazus predictions have been 

improved compared to the predictions provided in Table 9. Overall, the proposed probabilistic 

model in this work captures the number of fire events after an earthquake reasonably well, given 

the level of uncertainty that exists in the problem. In addition, the proposed model has the 

advantage of providing the breakdown in the number of ignitions for different considered 

building types. 
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Figure 7: Statistics of obtained probability values at the census track level (PIg_tract) using the 

proposed model 

 

Table 9: Validation study for the ignition model, and in comparison with Hazus 

Earthquake 

Number of Ignitions 

Actual 
Hazus 

(Eq. 1) 

Hazus 

(Complete 

process) 

Proposed Model 

Total W MH NC 

1983 Coalinga 3 0 1 0.5 0.5 0 0 

1984 Morgan Hill 6 1 N/A 4 4 0 0 

1986 N. Palm Spring 1 0 N/A 3 2 1 0 

1987 Whittier Narrows 20 40 33-43 32 27 1 4 

1989 Loma Prieta 36 23 14-38 27 22 2 3 

1994 Northridge 82 98 72-101 90 75 3 12 

2014 Napa 6 1 N/A 3 3 0 0 

TOTAL 154 163 N/A 160 134 7 19 

 

The proposed model is valid for areas in the U.S. other than California, as long as the safety and 

building standards, appliances, and the nature of urban environment is similar. The input 

parameters for the model at the census tract level (PGA, population density, and square footage) 

directly influence the probability of ignition, regardless of the location. At the building level, the 

construction type and building standards are to be similar to those in California in order for the 

model to be valid. 

Similarity in the source of ignition is another parameter to be investigated when validating the 

model for different regions. Therefore, the source of 154 ignitions in California were 

investigated, and it was deduced that 41 ignitions happened due to gas leaks, 65 ignitions 

occurred due to electric arcing, and 48 ignitions due to other reasons such as chemical spills, 

building damage, and etc. Table 10 provides the breakdown of ignition source for each historical 

event. It should be noted the source of ignition for some of the data points are not recorded, those 
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point are counted in the “others” category. It is evident that electricity and gas leaks are the 

primary reasons for the post-earthquake ignitions. 

 

Table 10: Source of ignition in historical events 

Earthquake Ignition source 

Gas Electric Others 

1983 Coalinga 0 2 1 

1984 Morgan Hill 2 2 2 

1986 N. Palm Spring 0 1 0 

1987 Whittier Narrows 8 11 1 

1989 Loma Prieta 13 14 9 

1994 Northridge 16 34 32 

2014 Napa 2 1 3 

Total 41 65 48 

  

5. IMPLEMENTATION OF FIRE IGNITION MODEL IN MAEVIZ/ERGO 

One of the objectives in developing the proposed FFE ignition model was to have a model that 

can be implemented in GIS-based platforms. Therefore, as an example of application, the new 

proposed fire ignition model is implemented in MAEViz/Ergo. The existing fire ignition plug-in 

in MAEViz/Ergo, discussed in section 3.2, is adopted for the implementation of the proposed 

model. The main parts of the code that are modified in the fire ignition plug-in, aside from 

adding required descriptions and defining public variables, include (1) BuildingFireIgnition.java, 

(2) gisMetadata, (3) gisSchemas. Eclipse Luna, with the programming language Java was used 

for the implementation. 

Eqs. 3 and 7 are coded in BuildingFireIgnition.java. Eq. 3 is used for PGA values larger than 

0.08, since previous historical data showed that ignitions at low PGA values can be ignored 

(discussed in Section 4.1). With the global probability of ignition calculated from Eq. 3 and as an 

input to Eq. 7, the “Bisection Method” is used to solve for the probability of ignition in 

individual buildings. The bisection method is a root-finding method that repeatedly bisects an 

interval and then selects a subinterval in which a root must lie for further processing. The 

acceptable threshold for the error in solving for the probability of ignition in individual buildings 

(𝑃𝐼𝑔_𝑊, 𝑃𝐼𝑔_𝑀𝐻, and 𝑃𝐼𝑔_𝑁𝐶) is set to be 10-12. 

The required inputs for Eqs. 3 and 7 include population density, total building square footage, 

number of different building types, and the PGA at the census tract level. The framework is 

coded such that the user is asked to provide a dataset that includes all the relevant parameters for 

census tracts in the area of the study. In order to allow the user to input a new dataset, the 

gisSchemas is extended and a new xml-based schema description file is added (this is the 

standard procedure to add any new dataset to MAEViz/Ergo). The description file includes the 

variables, and the data attributes (e.g. integer or double for storing numerical values). The user 
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can obtain the required dataset for the analysis from Hazus, given that the required dataset is at 

the census tract level.  

Every building in the inventory dataset of MAEViz/Ergo should have a corresponding census 

tract number. The ignition model is coded such that the census tract ID is used to map the input 

data by the user (at the census tract level) to individual buildings. The output is the probability of 

ignition at the tract level (Eq. 3) and for every building (from Eq. 7). 

The above setup is based on PGA values that are input by the user for every census tract, i.e. all 

of the buildings in a census tract have the same PGA value. One advantage of the above setup is 

that existing shakemaps from historical earthquakes can be used to obtain the actual PGA values 

for the area of interest, rather than using simulated values. However, the ultimate goal is to have 

the user define an earthquake scenario and allow MAEViz/Ergo to perform the earthquake 

simulation to obtain PGA. In that case, the earthquake analysis is performed before running the 

fire ignition module and the output PGA values from the earthquake analysis is an input to the 

fire ignition module. Both options for providing PGA to the fire ignition module (by user or from 

running earthquake simulations) can be programmed in MAEViz/Ergo. Overall, the accuracy of 

results is dependent on the accuracy of the provided dataset by the user, as well as the inventory 

data. Gathering accurate data is one of the most important and critical steps in evaluating and 

predicting performance of a community during and after an earthquake. 

Fig. 8 shows the flow of analysis when using the fire following earthquake plug-in in 

MAEViz/Ergo. The required inputs including building damage, appliance existence probabilities, 

and ignition threshold are the default inputs for the Turkish ignition model (Section 3.2). The 

required input for the proposed ignition model is at the census tract level circled in red in Fig. 8. 

Fig. 9 shows a sample of results based on the new fire ignition model. Fig. 9 shows the census 

tract ID (column loc3) for every building that is identified with an ID (column parid). The output 

from the ignition model includes probability of ignition for the census tract where the building is 

located (PIg_tract in Eq. 3 shown in the column labeled as p_ig_tr in Fig. 9), and the probability of 

ignition for individual buildings (𝑃𝐼𝑔_𝑊, 𝑃𝐼𝑔_𝑀𝐻, or 𝑃𝐼𝑔_𝑁𝐶, shown in the column labeled as 

p_ig_bldg in Fig. 9). MAEViz/Ergo provides a statistical tool for the tabulated data; the tool can 

be used to obtain the sum of the probability values for individual buildings that represents the 

expected number of ignitions in the region of interest.  
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Figure 8: Flow of analysis for fire following earthquake in MAEViz/Ergo 

 

 

Figure 9: Sample results from the implemented proposed ignition model in MAEViz/Ergo 

 

6. SUMMARY AND CONCLUSIONS 

This paper started with an overview of the existing Fire Following Earthquake (FFE) models to 

evaluate the number of fire ignitions after an earthquake in a community. Two such models exist: 

Hazus and a plug-in for MAEViz/Ergo based on the work of Turkish researchers. The ignition 

model in the FFE module of Hazus is an empirical one that was developed based on historical 

FFE events. The model provides the number of ignitions in a census tract; however, the 

formulation includes random number generation and the setup requires the user to run the 

analysis a number of times (10 times is recommended) to capture the uncertainties in the process. 

The model fit to the ignition data in Hazus has an R2 value of 0.084 so that the model can be 
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improved considerably in relation to the historical data. On the other hand, a FFE plug-in is 

incorporated in MAEViz/Ergo, which relates fire ignitions to potential ignition sources such as 

utilities and appliances based on analytical procedure. The ignition model provides probability of 

ignition in individual buildings in a community, but the outcome can be used for comparative 

purposes rather than for realistic estimate of the total number of ignitions within a community. 

Also, parts of the ignition model were developed using non-U.S. sources and should be adjusted 

for U.S. application. 

The paper proposed a novel ignition model based on historical FFE data. The model relates 

probability of ignition in a census tract to PGA, population density, and total building square 

footage in a census tract. The probability of ignition in a census tract is then related to probability 

of ignition of individual buildings in the census tract based on the building construction type 

(wood, mobile home, and noncombustible). The formulation can be used to obtain the total 

number of ignitions in a region of interest, as well as the breakdown of ignitions in the 

considered building types. The model was validated against historical FFE events and showed 

good agreement with the historical data. 

The proposed fire ignition model was implemented in MAEViz/Ergo to demonstrate its 

application in a GIS-based platform. The ignition model can be used together with a GIS-based 

platform to evaluate the expected number of fire ignitions after an earthquake and identify areas 

of a community with high risk of fire ignitions. This way, resources in a community can be 

properly allocated and appropriate mitigation techniques can be implemented. As part of future 

research, inventory data will be collected for an earthquake prone community and a case study 

will be conducted using the proposed post-earthquake fire ignition model in MAEViz/Ergo. In 

future, the ignition model will be integrated with fire spread and suppression models that could 

be used by firefighters for mitigation planning and allocation of resources.   
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