

Feasibility study of a UV photometer onboard a 3U Cubesat for the study of bright massive stars

STAR Meeting 15/09/2017

Richard Desselle

Introduction

- PhD Research topic
 - Feasibility study of a UV photometer on-board a 3U Cubesat. The scientific purpose of the payload is to collect time series of photometric measurements of bright massive stars.
- Time schedule: from December 2013 to December 2017
- This research is funded through the ARC grant for Concerted Research Actions, financed by the Federation Wallonia-Brussels

Near-UV Photometer requirements

- Optical performances needed:
 - Collect and focus star light from 250 to 350 nm (no wavelength dispersion)
 - Signal to noise ratio ≥ 1000 in less than 5 minutes for star magnitude $V \leq 5$
- Scientific optical requirements: FoV \geq 1°, $\Delta \theta \leq$ 15"
- Geometrical constraints:
 - □ Entrance pupil diameter ≤ 90 mm
 - Payload volume ≤ 1.5U (from entrance pupil to focal plane)

Near-UV Photometer design

Near-UV Photometer characteristics

- Optimized FoV = 1°
- Entrance pupil diameter = 90 mm
- Effective diameter = 80 mm
- Angular resolution = 11 arcsec

Detector: back-thinned CCD with 13X13 μm pixel size working in 2X2

binning mode

Worst case for **photometric budget**:

- « Cold » star $(T_{eff} \approx 15000K)$
- Hot observational case $(T_{CCD}$ is max)

3U Overview

3U Overview

Conclusion

- 3U Cubesat project demonstrates that a high level scientific mission is achievable with very small spacecraft platforms
- Heritage from the 3U Cubesat project:
 - The 3U study is extended to a 6U study that will carry a UV spectropolarimeter for the study of bright massive stars
 - The polarimeter is a static system that allows measuring the entire polarimetric state of the incident light. It could be used as a technology demonstrator.

Thank you!