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Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)
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Introduction

I Experience is gathered in the form of sequences of
observations ω ∈ Ω, actions a ∈ A and rewards r ∈ R :

ω0, a0, r0, ..., at−1, rt−1, ωt

I In a fully observable environment, the state of the system
st ∈ S is available to the agent.

st = ωt
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Definition of an MDP
An MDP is a 5-tuple (S,A,T ,R, γ) where :

I S is a finite set of states {1, . . . ,NS},
I A is a finite set of actions {1, . . . ,NA},
I T : S ×A× S → [0, 1] is the transition function (set of conditional

transition probabilities between states),

I R : S ×A× S → R is the reward function, where R is a continuous set
of possible rewards in a range Rmax ∈ R+ (e.g., [0,Rmax ]),

I γ ∈ [0, 1) is the discount factor.

s0 s1 s2

a0 a1r0 r1

. . .
Policy

Reward
function

R(s0, a0, s1)

Transition
function

T (s0, a0, s1)

Policy
Reward
function

R(s1, a1, s2)

Transition
function

T (s1, a1, s2)
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Performance evaluation

In an MDP (S,A,T ,R, γ), the expected return V π(s) : S → R (π ∈ Π)
is defined such that

V π(s) = E
[∑H−1

k=0
γk rt+k | st = s, π

]
, (1)

with γ ≤ 1(< 1 if H →∞).

From the definition of the expected return, the optimal expected return
can be defined as

V ∗(s) = max
π∈Π

V π(s). (2)

and the optimal policy can be defined as :

π∗(s) = argmax
π∈Π

V π(s). (3)
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Overview of deep RL
In general, an RL agent may include one or more of the following
components :

I a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

I a direct representation of the policy π(s) or π(s, a), or

I a model of the environment in conjunction with a planning
algorithm.

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

Deep learning has brought its generalization capabilities to RL.
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Contributions
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Asymptotic bias and overfitting in
the general partially observable case
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Partial observability
In a partially observable environment, the agent has to rely on
features from the history Ht

Ht = (ω0, r0, a0, ..., rt−1, at−1, ωt) ∈ H

s0 s1 s2

ω0 ω1 ω2

H0 H1 H2

a0 a1 a2r0 r1

. . .

Policy Policy

Hidden
dynamics

Policy

We’ll use a mapping φ : H → φ(H), where φ(H) = {φ(H)|H ∈ H}
is of finite cardinality |φ(H)|.
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Partial observability

We consider a discrete-time POMDP model M defined as follows :
A POMDP is a 7-tuple (S,A,T ,R,Ω,O, γ) where :

I S is a finite set of states {1, . . . ,NS},
I A is a finite set of actions {1, . . . ,NA},
I T : S ×A× S → [0, 1] is the transition function (set of

conditional transition probabilities between states),

I R : S ×A× S → R is the reward function, where R is a
continuous set of possible rewards in a range Rmax ∈ R+

(e.g., [0,Rmax ] without loss of generality),

I Ω is a finite set of observations {1, . . . ,NΩ},
I O : S × Ω→ [0, 1] is a set of conditional observation

probabilities, and

I γ ∈ [0, 1) is the discount factor.
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Importance of the feature space

Definition
The belief state b(s|Ht) (resp. bφ (s|φ(Ht))) is defined as the vector of
probabilities where the i th component (i ∈ {1, . . . ,NS}) is given by
P(st = i | Ht) (resp. P(st = i | φ(Ht))), for Ht ∈ H.

Definition
A mapping φ0 : H → φ0(H) is a particular mapping φ such that φ0(H) is a
sufficient statistic for the POMDP M :

b(s|Ht) = bφ0 (s|φ0(Ht)) ,∀Ht ∈ H. (4)

Definition
A mapping φε : H → φε(H) is a particular mapping φ such that φε(H) is an
ε-sufficient statistic for the POMDP M that satisfies the following condition
with ε ≥ 0 and with the L1 norm :

‖bφε(·|φε(Ht))− b(·|Ht)‖1≤ ε,∀Ht ∈ H. (5)
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Expected return

For stationary and deterministic control policies π ∈ Π : φ(H)→ A, we
introduce V π

M(φ(H)) with H ∈ H as the expected return obtained over
an infinite time horizon when the system is controlled using policy π in
the POMDP M :

V π
M(φ(H)) = E

[ ∞∑
k=0

γk rt+k |φ(Ht) = φ(H), π, b(s0)

]
, (6)

where P
(
st+1|st , π(φ(Ht))

)
= T (st , π(φ(Ht)), st+1) and

rt = R
(
st , π(φ(Ht)), st+1

)
.

Let π∗ be an optimal policy in M defined as :

π∗ ∈ argmax
π:φ0(H)→A

V π
M(φ0(H0)), (7)

where H0 is the distribution of initial observations.
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Finite dataset

For any POMDP M, we denote by D ∼ D a random dataset
generated

I from Ntr (unordered) trajectories

I where a trajectory is the observable history HNl
∈ HNl

obtained

I following a stochastic sampling policy πs that ensures a
non-zero probability of taking any action given an observable
history H ∈ H.

For the purpose of the analysis, we also introduce the asymptotic
dataset D∞ when Ntr →∞ and Nl →∞.
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Frequentist approach

Definition
The frequentist-based augmented MDP (Σ,A, T̂ , R̂, Γ) denoted M̂D,φ or

simply M̂D is defined with :

I the state space : Σ = φ(H),

I the action space : A = A,

I the estimated transition function : for σ, σ′ ∈ Σ and a ∈ A,
T̂ (σ, a, σ′) is the number of times we observe the transition
(σ, a)× σ′ → [0, 1] in D divided by the number of times we observe
(σ, a) ; if any (σ, a) has never been encountered in a dataset, we set
T̂ (σ, a, σ′) = 1/|Σ|,∀σ′,

I the estimated reward function : for σ, σ′ ∈ Σ and a ∈ A, R̂(σ, a, σ′)
is the mean of the rewards observed at (σ, a, σ′) ; if any (σ, a, σ′)
has never been encountered in a dataset, we set R̂(σ, a, σ′) to the
average of rewards observed over the whole dataset D, and

I the discount factor Γ ≤ γ (called training discount factor).

17/60



Frequentist approach

We introduce Vπ
M̂D

(σ) with σ ∈ Σ as the expected return obtained over

an infinite time horizon when the system is controlled using a policy π
s.t. at = π(σt) : Σ→ A,∀t in the augmented decision process M̂D :

Vπ
M̂D

(σ) = E

[ ∞∑
k=0

Γk r̂t+k |σt = σ, π, b(s0)

]
, (8)

where r̂t is a reward s.t. r̂t = R̂(σt , at , σt+1) and the dynamics is given by

P(σt+1|σt , at) = T̂ (σt , at , σt+1).

Definition
The frequentist-based policy πD,φ is an optimal policy of the

augmented MDP M̂D defined as : πD,φ ∈ argmax
π:Σ→A

Vπ
M̂D

(σ0) where

σ0 = φ(H0).
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Bias-overfitting tradeoff

Let us now decompose the error of using a frequentist-based policy
πD,φ :

E
D∼D

[
V π∗
M (φ0(H)) −V πD,φ

M (φ(H))
]

=(
V π∗
M (φ0(H))− V

πD∞,φ
M (φ(H))

)
︸ ︷︷ ︸

asymptotic bias function of dataset D∞ (function of πs)

and frequentist-based policy πD∞,φ (function of φ and Γ)

+ E
D∼D

[
V
πD∞,φ
M (φ(H))− V

πD,φ
M (φ(H))

]
︸ ︷︷ ︸

overfitting due to finite dataset D

in the context of dataset D (function of πs ,Nl ,Ntr )

and frequentist-based policy πD,φ (function of φ and Γ)

.

(9)
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Bound on the asymptotic bias

Theorem
The asymptotic bias can be bounded as follows :

max
H∈H

(
V π∗
M (φ0(H))− V

πD∞,φ
M (φ(H))

)
≤ 2εRmax

(1− γ)3
, (10)

where ε is such that the mapping φ(H) is an ε-sufficient statistics.

This bound is an original result based on the belief states (which
was not considered in other works) via the ε-sufficient statistic.
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Sketch of the proof

History space H

Space of the
ε-sufficient statistics

Belief space

φε(H)

b(· | H)

H(1)

H(2)
b(s | H(1))

b(s | H(2))

‖·‖1 ≤ 2ε

φε(H
(1)) = φε(H

(2))

Figure: Illustration of the φε mapping and the belief for
H(1),H(2) ∈ H : φε(H

(1)) = φε(H
(2)).
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Bound on the overfitting

Theorem
With the assumption that D has n transitions from any possible
pair (φ(H), a) ∈ (φ(H),A). Then the overfitting term can be
bounded as follows :

max
H∈H

(
V
πD∞,φ
M (φ(H))−V πD,φ

M (φ(H))
)

≤ 2Rmax

(1− γ)2

√
1

2n
ln

(
2|φ(H)||A|1+|φ(H)|

δ

)
,

(11)
with probability at least 1− δ.

Sketch of the proof :

1. Find a bound between value functions estimated in different
environments but following the same policy.

2. A bound in probability using Hoeffding’s inequality can be
obtained.
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Experiments

Sample of NP POMDPs from a distribution P :

I transition functions T (·, ·, ·)
I non-zero entry in [0, 1] with proba 1/4, and it then ensures at least one

non-zero for given (s, a) (then normalized),

I reward functions R(·, ·, ·),

I i.i.d uniformly in [−1, 1],

I conditional observation probabilities O(·, ·).

I probability to observe o(i) when being in state s(i) is equal to 0.5, while

all other values are chosen uniformly randomly so that it is normalized for

any s.
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Experiments

For each POMDP P, estimate of the average score µP :

µP = E
D∼DP

E
rollouts

[
Nl∑
t=0

γtrt |s0, πD,φ

]
. (12)

Estimate of a parametric variance σ2
P :

σ2
P = var

D∼DP

E
rollouts

[
Nl∑
t=0

γtrt |s0, πD,φ

]
. (13)

I Trajectories truncated to a length of Nl = 100 time steps

I γ = 1 and Γ = 0.95

I 20 datasets D ∈ DP where DP is a probability distribution over all
possible sets of n trajectories (n ∈ [2, 5000]) while taking uniformly
random decisions

I 1000 rollouts for the estimators

24/60



Experiments with the frequentist-based policies
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Figure: Estimated values of E
P∼P

µP ± E
P∼P

σP computed from a sample of

NP = 50 POMDPs drawn from P. The bars are used to represent the parametric

variance. NS = 5, NA = 2, NΩ = 5.

When h = 1 (resp. h = 2) (resp. h = 3), only the current observation (resp. last two

observations and last action) (resp. three last observations and two last actions) is

(resp. are) used for building the state of the frequentist-based augmented MDP. 25/60



Experiments with a function approximator
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Figure: Estimated values of E
P∼P

µP ± E
P∼P

σP computed from a sample of

NP = 50 POMDPs drawn from P with neural network as a function approximator.

The bars are used to represent the parametric variance (when dealing with different

datasets drawn from the distribution).
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Experiments with the frequentist-based policies : effect of
the discount factor
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Figure: Estimated values of E
P∼P

µP ± E
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σP computed from a sample of

NP = 10 POMDPs drawn from P with NS = 8 and NΩ = 8 (h = 3). The bars are

used to represent the variance observed when dealing with different datasets drawn

from a distribution ; note that this is not a usual error bar.
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How to discount deep RL
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Motivations

Effect of the discount factor in an online setting (value iteration
algorithm).

I Empirical studies of cognitive mechanisms in delay of
gratification : The capacity to wait longer for the preferred
rewards seems to develop markedly only at about ages 3-4
(“marshmallow experiment”).

I In addition to the role that the discount factor has on the
bias-overfitting error, its study is also interesting because it
plays a key role in the instabilities (and overestimations) of
the value iteration algorithm.

29/60



Main equations of DQN

We investigate the possibility to work with an adaptive discount
factor γ, hence targeting a moving optimal Q-value function :

Q∗(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + . . . |st = s, at = a, π]

At every iteration, the current value Q(s, a; θk) is updated towards
a target value

Y Q
k = r + γmax

a′∈A
Q(s ′, a′; θ−k ). (14)

where θ−k are updated every C iterations with the following
assignment : θ−k = θk .
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Example

Figure: Example of an ATARI game : Seaquest

31/60



Increasing discount factor

Figure: Illustration for the game q-bert of a discount factor γ held fixed on the
right and an adaptive discount factor on the right.
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Results

20 0 20 40 60 80
Relative improvement (%)

Breakout

Beam Rider

Space Invaders

Enduro

Seaquest

Q * bert

-1%

+11%

+12%

+17%

+49%

+63%

Figure: Summary of the results for an increasing discount factor.
Reported scores are the relative improvements after 20M steps between
an increasing discount factor and a constant discount factor set to its
final value γ = 0.99.
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Decreasing learning rate

Possibility to use a more aggressive learning rate in the neural
network (when low γ). The learning rate is then reduced to
improve stability of the neural Q-learning function.

Figure: Illustration for the game space invaders. On the left, the deep
Q-network with α = 0.00025 and on the right with a decreasing learning rate.
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Results

101 102

Relative improvement (%)

Q-bert

Breakout

Beam_rider

Enduro

Space invaders

Seaquest

+5%

+15%

+29%

+38%

+39%

+162%

Figure: Summary of the results for a decreasing learning rate. Reported
scores are the relative improvement after 50M steps between a dynamic
discount factor with a dynamic learning rate versus a dynamic discount
factor only.
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Risk of local optima

Figure: Illustration for the game Seaquest. On the left, the flat exploration rate
fails in some cases to get the agent out of a local optimum. On the right,
illustration that a simple rule that increases exploration may allow the agent to
get out of the local optimum.
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Application to smartgrids
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The microgrid benchmark
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Microgrid
A microgrid is an electrical system that includes multiple loads and
distributed energy resources that can be operated in parallel with
the broader utility grid or as an electrical island.

Microgrid
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Microgrids and storage

There exist opportunities with microgrids featuring :

I A short term storage capacity (typically batteries),

I A long term storage capacity (e.g., hydrogen).
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PV

Load

+ δt = −pBt − pH2
t − dt

H2 Storage

Battery

ψt

ct

dt

pH2
t

pBt

Production and
consumption

Storage system

Figure: Schema of the microgrid featuring PV panels associated with a
battery and a hydrogen storage device.
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Formalisation and problem statement : exogenous variables

Et = (ct , it ,µt , e
PV
1,t , ..., e

PV
K ,t , e

B
1,t , ..., e

B
L,t , e

H2
1,t , ..., e

H2
M,t) ∈ E , ∀t ∈ T

and with E = R+2 × I ×
K∏

k=1

EPVk ×
L∏

l=1

EBl ×
M∏

m=1

EH2
m ,

where :
I ct [W ] ∈ R+ is the electricity demand within the microgrid ;
I it [W /m or W /Wp] ∈ R+ denotes the solar irradiance

incident to the PV panels ;
I µt ∈ I represents the model of interaction (buying price

k[e/kWh], selling price β [e/kWh]) ;
I ePVk,t ∈ EPVk , ∀k ∈ {1, ...,K}, models a photovoltaic

technology ;
I eBl ,t ∈ EBl , ∀l ∈ {1, ..., L}, represents a battery technology ;

I eH2
m,t ∈ EH2

m , ∀m ∈ {1, ...,M}, denotes a hydrogen storage
technology ;
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Working hypotheses

As a first step, we make the hypothesis that the future
consumption and production are known so as to obtain lower
bounds on the operational cost.

Main hypotheses on the model :

I we consider one type of battery with a cost proportional to its
capacity and one type of hydrogen storage with a cost
proportional to the maximum power flows,

I for the storage devices, we considered a charging and a
discharging dynamics with constant efficiencies (independent
of the power) and without aging (only limited lifetime), and

I for the PV panels, we considered a production to be
proportional to the solar irradiance, also without any aging
effect on the dynamics (only limited lifetime).
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Linear programming
The overall optimization of the operation can be written as :

Mop(T ,∆t,n,τ1,...,τn,r ,E1,...,ET ,s
(s)) = min

∑n
y=1

My

(1+ρ)y∑n
y=1

∑
t∈τy ct∆t

(1+ρ)y

(15a)

s.t. ∀y ∈ {1, . . . , n} : (15b)

My =
∑
t∈τy

(
k δ−t − β δ+

t

)
∆t , (15c)

∀t ∈{1, . . . ,T} : (15d)

0 ≤ sBt ≤ xB , (15e)

0 ≤ sH2
t ≤ RH2 , (15f)

− PB ≤ pBt ≤ PB , (15g)

− xH2 ≤ pH2
t ≤ xH2 , (15h)

δt = −pBt − pH2
t − ct + ηPV xPV it , (15i)

pBt = pB,+t − pB,−t , (15j)

pH2
t = pH2,+

t − pH2,−
t , (15k)

δt = δ+
t − δ−t , (15l)

pB,+t , pB,−t , pH2,+
t , pH2,−

t , δ+
t , δ

−
t ≥ 0 , (15m)

sB1 = 0, sH2
1 = 0, (15n)

∀t ∈ {2, . . . ,T} : (15o)

sBt = rBsBt−1 + ηBpB,+t−1 −
pB,−t−1

ζB
, (15p)

sH2
t = rH2sH2

t−1 + ηH2pH2,+
t−1 −

p
H2,−
t−1

ζH2
, (15q)

− ζBsBT ≤ pBT ≤
xB−sBT
ηB

, (15r)

− ζH2sH2
T ≤ pH2

T ≤
RH2−sH2

T

ηH2
. (15s)
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The overall optimization of the operation and sizing :

Msize(T ,∆t,n,τ1,...,τn,r ,E0,E1,...,ET) = min
I0 +

∑n
y=1

My

(1+ρ)y∑n
y=1

∑
t∈τy

ct∆t

(1+ρ)y

(16a)

s.t. I0 = aPV0 cPV0 + aB0 c
B
0 + aH2

0 cH2
0 , (16b)

(xB , xH2 , xPV ) = (aB0 , a
H2
0 , aPV0 ) , (16c)

15b − 15s . (16d)

A robust optimization model that integrates a set
E = {(E 1

t )t=1...T , ..., (E
N
t )t=1...T} of candidate trajectories of the

environment vectors can be obtained with two additional levels of
optimization :

Mrob(T ,∆t,n,τ1,...,τn,r ,E0,E) = (17a)

min
aB0 ,a

H2
0 ,aPV0

max
i∈1,...,N

Msize(T ,∆t,n,τ1,...,τn,r ,E0,E
(i)
1 ,...,E

(i)
T ) . (17b)
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Results : characteristics of the different components

Parameter Value

cPV 1e/Wp

ηPV 18%
LPV 20 years

Table: Characteristics used for the
PV panels.

Parameter Value

cB 500 e/kWh
ηB0 90%
ζB0 90%
PB >10kW
rB 99%/month
LB 20 years

Table: Data used for the
LiFePO4battery.

Parameter Value

cH2 14 e/Wp

ηH2
0 65%

ζH2
0 65%
rH2 99%/month
LH2 20 years
RH2 ∞

Table: Data used for the Hydrogen storage device.
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Results : consumption and production profiles
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Figure: Representative residential consumption profile.
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Figure: Production for the PV panels in Belgium
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Results - Belgium
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Figure: LEC (ρ = 2%) in Belgium over 20 years for different investment
strategies as a function of the cost endured per kWh not supplied within
the microgrid(NB :β = 0 e/kWh).
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Results - Spain
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Figure: LEC (ρ = 2%) in Spain over 20 years for different investment
strategies as a function of the cost endured per kWh not supplied within
the microgrid (β = 0 e/kWh).
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Deep RL solution
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We remove the hypothesis that the future consumption and
production are known (realistic setting).

The goal of this is two-fold :

I obtaining an operation that can actually be used in practice.

I determine the additional costs as compared to the lower
bounds (when known future production and consumption)
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Setting considered

The only required assumptions, rather realistic, are that

I the dynamics of the different constituting elements of the
microgrid are known and

I past time series providing the weather dependent PV
production and consumption within the microgrid are
available (one year of data is used for training, one year for
validation, and one year is used for the test environment).

The setting considered is as follows :

I Fixed sizing of the microgrid (corresponding to the robust sizing :
xPV = 12kWp, xB = 15kWh, xH2 = 1.1kW )

I Cost k incurred per kWh not supplied within the microgrid set to
2 e/kWh (corresponding to a value of loss load).

I Revenue (resp. cost) per Wh of hydrogen produced (resp. used) set
to 0.1 e/kWh.
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Overview

Policies
Exploration/Exploitation

via ε-greedy

Controllers
• train/validation
and test phases
• hyper-parameters
management

Replay memory

Learning
algorithms

Value-based RL
with DQN

Function
Approximators

based on convolutions

ENVIRONMENT

AGENT

Related to the methodological/theoretical contributions :

I validation phase to obtain the best bias-overfitting tradeoff (and to
select the Q-network when instabilities are not too harmful),

I increasing discount factor to improve training time and stability

Implementation : https ://github.com/VinF/deer
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Structure of the Q-network

Input #1

Input #2

Input #3

...

Fully-connected
layersConvolutions Outputs

Figure: Sketch of the structure of the neural network architecture. The
neural network processes the time series using a set of convolutional
layers. The output of the convolutions and the other inputs are followed
by fully-connected layers and the ouput layer. Architectures based on
LSTMs instead of convolutions obtain similar results.
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Example
Illustration of the policy on the test data with the following features :

I past 12 hours for the production and consumption, and

I charge level of the battery.
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Example
Illustration of the policy on the test data with the following features :

I past 12 hours for the production and consumption,
I level of the battery, and
I Accurate forecast for the mean production of the next 24h and 48h.
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Results
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Figure: LEC on the test data function of the sizings of the microgrid.
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Conclusions
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Contributions of the thesis

I Review of the domain of reinforcement learning with a focus
on deep RL.

I Theoretical and experimental contributions to the partially
observable context (POMDP setting) where only limited data
is available (batch RL).

I Case of the discount factor in a value iteration algorithm with
deep learning (online RL).

I Linear optimization techniques to solve both the optimal
operation and the optimal sizing of a microgrid with PV,
long-term and short-term storage (deterministic hypothesis).

I Deep RL techniques can be used to obtain a performant
real-time operation (realistic setting).

I Open source library DeeR (http://deer.readthedocs.io)
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Thank you
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