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A B S T R A C T

Reinforcement learning and its extension with deep learning have led
to a field of research called deep reinforcement learning. Applications
of that research have recently shown the possibility to solve complex
decision-making tasks that were previously believed extremely diffi-
cult for a computer. Yet, deep reinforcement learning requires caution
and understanding of its inner mechanisms in order to be applied
successfully in the different settings.

As an introduction, we provide a general overview of the field of
deep reinforcement learning. The thesis is then divided in two parts.

In the first part, we provide an analysis of reinforcement learning
in the particular setting of a limited amount of data and in the general
context of partial observability. In this setting, we focus on the trade-
off between asymptotic bias (suboptimality with unlimited data) and
overfitting (additional suboptimality due to limited data), and theo-
retically show that while potentially increasing the asymptotic bias,
a smaller state representation decreases the risk of overfitting. An
original theoretical contribution relies on expressing the quality of a
state representation by bounding L1 error terms of the associated be-
lief states. We also discuss and empirically illustrate the role of other
parameters to optimize the bias-overfitting tradeoff: the function ap-
proximator (in particular deep learning) and the discount factor. In
addition, we investigate the specific case of the discount factor in the
deep reinforcement learning setting case where additional data can
be gathered through learning.

In the second part of this thesis, we focus on a smartgrids
application that falls in the context of a partially observable problem
and where a limited amount of data is available (as studied in the
first part of the thesis). We consider the case of microgrids featuring
photovoltaic panels (PV) associated with both long-term (hydrogen)
and short-term (batteries) storage devices. We propose a novel
formalization of the problem of building and operating microgrids
interacting with their surrounding environment. In the deterministic
assumption, we show how to optimally operate and size microgrids
using linear programming techniques. We then show how to use deep
reinforcement learning to solve the operation of microgrids under
uncertainty where, at every time-step, the uncertainty comes from the
lack of knowledge about future electricity consumption and weather
dependent PV production.
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1I N T R O D U C T I O N

A robot willing to open a door, a drone avoiding obstacles, a trader
managing portfolios, a dog trying to catch a ball, a chess player
considering the next moves, a teenager playing a computer game,
a man willing to paint a wall: in all of the previous cases, certain
sequences of actions will allow some objectives to be achieved.
To that end, every action has an influence on the next situation,
which possibly has short- and/or long-term effects. In addition, the
environment is usually not entirely predictable and it is not possible
to consider only one sequence of actions for a given task. Instead the
agent has to be able to act under uncertainty and be ready for any
possible situation.

A whole field of research is dedicated to learn how to act
in an environment from past experiences. This field is named
reinforcement learning and is inspired by behaviorist psychology. The
idea is that an artificial agent, similarly to a biological agent, may
learn by interacting with its environment. With experience gathered,
the artificial agent should be able to optimize some objectives. This
approach is extremely general and applies in principle to any type
of sequential decision-making problem relying on past experience
to take decisions. The environment may be stochastic, the agent
may only observe partial information about the current state, the
observations may be high-dimensional (e.g., frames and time series),
the agent may freely gather experience in the environment or, on the
contrary, the amount of data may be fixed or limited due to various
reasons, etc.

Over the past few years, reinforcement learning has become more
and more popular in addressing the most challenging sequential
decision-making problems. This happened mainly thanks to the
extension of reinforcement learning with deep learning which allows
learning different levels of abstractions from data (such as those
necessary to perform machine vision or natural language processing
tasks). The resulting field, known as deep reinforcement learning,
opens up the perspective to mimic some cognitive functions of
humans such as problem solving even in high-dimensional space—
which, only a few years ago, was difficult to conceive due to the curse
of dimensionality.

Thanks to these developments, new automatic decision-making
processes are likely to impact a wide variety of fields such as finance,
marketing, clinical trials, robotics, self-driving, smartgrids, etc.
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4 introduction

using deep reinforcement learning in smartgrids

In particular, in the domain of smartgrids, deep reinforcement learn-
ing algorithms open up the perspectives of significantly improving
current control schemes to solve decision and control problems asso-
ciated with electric power systems. Those improvements are particu-
larly important in the current context where the power system land-
scape evolves and faces new challenges with the integration of dis-
tributed renewable electricity generation capacities (e.g., photovoltaic
panels and wind turbines).

However, operation problems in the domain of smartgrids exhibit
in many cases the specificities of the most challenging problems of
sequential decision-making problems under uncertainty:

1. The problems are partially observable: the future evolution of
the system cannot be predicted accurately based solely on
the current observation as the agent has only access to some
observations of an actual hidden phenomenon. In this setting,
defining a policy based solely on the current observation
will likely lead to suboptimal solutions. It is therefore often
important to look at a history of past observations but the
longer the history, the more complex is the task and specific
tradeoffs have to be made to build a good operation.

2. Available data is constrained: the agent does not have the pos-
sibility to freely gather data due to two reasons. First, a cost
concern prevents making a large number of trials and errors
in the actual environment because this leads to suboptimal or
even unsafe operations (causing damage to the system). Second,
a time constraint requires to obtain a policy without having the
possibility to gather data for many years, thus limiting the infor-
mation about the environment (e.g., on the natural phenomena
involved).

methodological work in this thesis

In the partially observable case, few contributions in the field actually
provide clear and insightful explanations about some very general al-
gorithmic design choices, such as the impact of a particular choice
of the state representation (features chosen to build the policy). The
lack of theoretical understanding is particularly striking in the con-
text where the available data is constrained and that it can not be
phased out by gathering more data using strategies balancing the ex-
ploration/exploitation (E/E) tradeoff. Following these considerations,
the main goals of this thesis are to provide (i) an in-depth analysis of
the effect of limited data in reinforcement learning with a focus on
the partially observable setting, and (ii) investigate a concrete real-
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world application that makes use of this analysis in the domain of
smartgrids.

1.1 outlook and contributions

First, an introduction to the deep reinforcement learning field is
presented in Chapter 2. The thesis is then divided into two main parts:
(i) theoretical/methodological contributions to (deep) reinforcement
learning and (ii) the smartgrids application.

With regard to the theoretical and methodological aspects, we pro-
vide in chapter 3 an analysis in a particular setting where a limited
amount of data is available and in the general context of partial ob-
servability. In this setting, a tradeoff between asymptotic bias (subop-
timality with unlimited data) and overfitting (additional suboptimal-
ity due to limited data) is formalized. It is also theoretically shown
that a smaller state representation decreases the risk of overfitting
but potentially increases the asymptotic bias. This original analysis
relies on expressing the quality of a state representation by bound-
ing L1 error terms of the associated belief states. Theoretical results
are empirically illustrated when the state representation is a trun-
cated history of observations. We also discuss and empirically illus-
trate how using function approximators and adapting the discount
factor may enhance the tradeoff between asymptotic bias and overfit-
ting. In Chapter 4, the discussion is then extended to the role that the
discount factor may play in the quality of the learning process of a
deep Q-network (DQN) in the online setting case. When the discount
factor progressively increases up to its final value while gathering
new data, it is empirically shown that it is possible to significantly re-
duce the number of learning steps. This phenomenon is related to the
bias-overfitting tradeoff as well as the instabilities of neural networks
when used in a value-based reinforcement learning scheme.

In the second part of this thesis we focus on an application
in the domain of smartgrids. The case of a microgrid featuring
photovoltaic panels (PV) associated with both long-term (hydrogen)
and short-term (batteries) storage devices is considered. In Chapter 5,
a formalization of the problem of building and operating microgrids
interacting with their surrounding environment is proposed. In the
context where the consumption and the production are known,
how to optimally operate a microgrid using linear programming
techniques is studied. It appears that this optimization technique
can also be used to address the problem of optimal sizing of the
microgrid. In Chapter 6, we consider the question of activating the
storage devices in the more realistic context of a sequential decision-
making problem under uncertainty where, at every time-step, the
uncertainty stems from the lack of knowledge about future electricity
consumption and weather dependent PV production. This problem
is addressed using deep reinforcement learning. Making use of the
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methodological aspects developed in the first part of this thesis, a
specific deep reinforcement learning approach is designed in order
to extract knowledge from past consumption and production time
series, as well as any available forecasts.

1.2 publications

This dissertation is based on different contributions in the domain of
deep reinforcement learning and smartgrids:

• On overfitting and asymptotic bias in batch reinforcement learning
with partial observability, Vincent François-Lavet, Damien Ernst
and Raphael Fonteneau, to be published.

• [François-Lavet et al., 2015] How to Discount Deep Reinforcement
Learning: Towards New Dynamic Strategies, Vincent François-
Lavet, Raphael Fonteneau, and Damien Ernst. In NIPS 2015

Workshop on Deep Reinforcement Learning.

• [François-Lavet et al., 2016a] Towards the Minimization of the Lev-
elized Energy Costs of Microgrids using both Long-term and Short-
term Storage Devices, Vincent François-Lavet, Quentin Gemine,
Damien Ernst and Raphael Fonteneau. In Smart Grid: Network-
ing, Data Management, and Business Models, 295–319, 2016,
CRC Press.

• [François-Lavet et al., 2016b] Deep Reinforcement Learning Solu-
tions for Energy Microgrids Management, Vincent François-Lavet,
David Taralla, Damien Ernst and Raphael Fonteneau. In Euro-
pean Workshop on Reinforcement Learning, 2016.

During this thesis, other collaborations have also led to effective
contributions, even though they are not discussed within this thesis
(except the first one that is provided in Appendix A):

• [François-Lavet et al., 2014] Using approximate dynamic program-
ming for estimating the revenues of a hydrogen-based high-capacity
storage device, Vincent François-Lavet, Raphael Fonteneau, and
Damien Ernst. In IEEE International Symposium on Adaptive
Dynamic Programming and reinforcement Learning (ADPRL
2014), Orlando.

• [Sutera et al., 2014] Simple Connectome Inference from Partial
Correlation Statistics in Calcium Imaging, Antonio Sutera, Arnaud
Joly, Vincent François-Lavet, Zixiao Aaron Qiu, Gilles Louppe,
Damien Ernst, and Pierre Geurts. In Neural Connectomics. 2014,
23–34.

• [Grégoire et al., 2015] Electricity storage with liquid fuels in a
zone powered by 100% variable renewables, Grégoire Leonard,
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Vincent François-Lavet, Damien Ernst, Christoph J Meinrenken
and Klaus S Lackner. In European Energy Market (EEM), 2015

12th International Conference on the European Energy Market
(EEM), 1–5, 2015, IEEE.

• [Aittahar et al., 2015] Imitative Learning for Online Planning in Mi-
crogrids, Samy Aittahar, Vincent François-Lavet, Stefan Lodew-
eyckx, Damien Ernst and Raphael Fonteneau. In International
Workshop on Data Analytics for Renewable Energy Integration,
1–15, 2015, Springer.

• [Castronovo et al., 2017] Approximate Bayes Optimal Policy Search
using Neural Networks, Castronovo, Michaël and François-Lavet,
Vincent and Fonteneau, Raphaël and Ernst, Damien and Couë-
toux, Adrien. In 9th International Conference on Agents and
Artificial Intelligence (ICAART 2017).

The work related to the business cases of microgrids [François-
Lavet et al., 2016a] has also been featured in the Belgian business
newspaper "l’Echo" for which we have provided specific simulations:

• "Même sans compensation, les panneaux photovoltaïques sont
rentables", Christine Scharff, L’Echo, Nov, 2015.

This thesis has also motivated the development of the open-source
project DeeR (that stands for "deep reinforcement"), which served as
the basis of the work presented in Chapter 6:

http://deer.readthedocs.io

http://deer.readthedocs.io




2O V E RV I E W O F D E E P R E I N F O R C E M E N T L E A R N I N G

2.1 outline

In this chapter, the field of machine learning and the deep learning
approach are first introduced. The goal of that section is to provide
the general context of machine learning and explain briefly how and
why deep learning has a profound impact on the whole field of
machine learning. In the following of the chapter, the focus is on a
particular subfield of machine learning, that is (deep) reinforcement
learning (RL). The different components that an RL agent can use
to learn a task are examined. After this, the challenges in RL are
presented. The different settings of tasks that can be learned via RL
are also reviewed. Finally, how deep RL can be used to solve many
different types of real-world problems are discussed.

This chapter is not intended to be a self-contained overview but it
aims to introduce the main elements of deep RL and guide the reader
towards appropriate resources for the details.

2.2 general introduction to machine learning and

deep learning

Machine learning relates to the capability of computers to learn from
examples or interactions with an environment without following
explicitly defined rules. Three types of machine learning tasks can
be described:

• Supervised learning is the task of inferring a classification or
regression from labeled training data.

• Unsupervised learning is the task used to draw inferences from
datasets consisting of input data without labeled responses.

• Reinforcement learning (RL) is the task concerned with how
software agents ought to take actions in an environment in
order to maximize cumulative (delayed) rewards.

Mainly thanks to the recent development of deep learning, these
three types of tasks have undergone dramatic improvements when
working with high-dimensional data such as time series, images and
videos.

The resurgence of interest in deep learning mainly comes from
the following three aspects (which are complementary and lead to
a virtuous circle): (i) an exponential increase of computational power

9



10 overview of deep reinforcement learning

(with the use of GPUs), (ii) methodological breakthroughs in deep
learning (such as [Srivastava et al., 2014; Ioffe and Szegedy, 2015; He
et al., 2016; Szegedy et al., 2016; Klambauer et al., 2017]) and (iii) a
growing eco-system of softwares and datasets.

Deep learning finds its origin in the attempt to model the neural
processing in the brain of biological entities. Subsequently deep learn-
ing has become incompatible with current knowledge of neurobiol-
ogy [Bengio et al., 2015] but there exists nonetheless some parallels
such as the convolutional layers that are inspired by the organization
of the animal visual cortex [Fukushima and Miyake, 1982; LeCun
et al., 1998].

In its most abstract form, an artificial neural network (or simply
neural network) is a function f : X → Y parameterized with θ ∈ Rnθ

that takes as input x ∈ X and gives as output y ∈ Y (X and Y depend
on the application):

y = f(x; θ) (2.1)

The specificity of deep neural networks is their structures made of
multiple processing layers composed of non-linear transformations.
Within one given neural network, an arbitrarily large number of
layers is possible, and the trend in the last few years is to have an
ever-growing number of layers (>100 in supervised learning tasks).

In general, the complexity of the function approximator provides
upper bounds on the generalization error, which is defined empiri-
cally as the difference between the training and test errors (see Figure
2.1 for an illustration). The generalization error can be bounded by
making use of complexity measures, such as the Rademacher com-
plexity [Bartlett and Mendelson, 2002], or the VC-dimension [Vapnik,
1998]). However, even though it lacks strong theoretical foundations,
it has become clear in practice that the strength of deep neural net-
works is their generalization capabilities, even with a high number
of parameters nθ (hence a potentially high complexity) [Zhang et al.,
2016].

The simplest type of neural network is the one made entirely from
fully-connected layers. We will briefly describe such a neural network
with one hidden layer (see Fig 2.2). The first layer is given the input
values (i.e., the input features) x in the form of a column vector [nx]

(nx ∈ N). The values of the next hidden layer are a transformation
of these values by a non-linear parametric function, which is a matrix
multiplication by W1[nh × nx] (nh ∈ N), plus a bias term b1[nh],
followed by a non-linear transformation such as ReLu:

h = ReLu(W1 · x+ b1)

The hidden layer h[nh] can in turn be transformed to other sets of
values up to the last transformation that provides the output values
y. In this case:

y = (W2 · h+ b2)
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Figure 2.1: Illustration of overfitting and underfitting for a simple 1D
regression task in supervised learning (based on one example
from the library scikit-learn [Pedregosa et al., 2011]). In the left
figure, the degree 1 approximation is underfitting, which means
that it is not a good model, even for the training samples; on
the right, the degree 10 approximation is a very good model for
the training samples but is overly complex and fails to provide a
good generalization.

Hidden
layer
h

Inputs
x

Output
layer
y

Figure 2.2: Example of a neural network with two fully-connected layers.

with W2[ny ×nh] and b2[ny] (ny ∈N).
All these layers are trained in order to minimize a cost function

(e.g., RMS error for regression or cross-entropy for classification).
The most common methods to learn the levels of abstraction in
neural networks are based on gradient descent (the backpropagation
algorithm [Rumelhart et al., 1988]), which allows the algorithm to
change its internal parameters θ so as to fit the desired function.
Another approach that has been found successful in some settings
is the use of evolutionary strategies (e.g., in the RL context [Salimans
et al., 2017]). A combination of gradient descent and evolutionary
strategies can also provide some strong advantages [Fernando et al.,
2016; Real et al., 2017; Miikkulainen et al., 2017].

In current applications, many different types of layers have ap-
peared, each providing specific advantages depending on the appli-
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cation. We merely cite here two types of layers that are of particular
interest:

• Convolutional layers are particularly well suited for images
and sequential data (see Fig 2.3 and [LeCun et al., 1995]
for a complete description), mainly due to their property
of translation invariance (the same learnable filter is applied
everywhere on the input feature map). In fact, they are a
particular kind of feedforward layer where the difference with
the fully-connected layer is that many weights are set to 0 (not
learnable) and that other weights share the same value.
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Figure 2.3: Illustration of a convolutional layer with one input feature map
that is convolved by different filters to yield the output feature
maps. The parameters that are learned for this type of layer are
those of the filters. For illustration purposes, some results are
displayed for one of the output feature maps with a given filter
(in practice, that operation is followed by a non-linear activation
function).

• Recurrent layers are particularly well suited on sequential data
(see Fig 2.4). Many different variants can be of great interest
depending on the context. The "long short-term memory"
networks (LSTMs) [Hochreiter and Schmidhuber, 1997] have
gained a lot of interest because they are able to work on longer
sequences than basic recurrent layers. Over the last few years,
other variants with new properties have gained interest. For
instance, Neural Turing Machines (NTMs) [Graves et al., 2014]
are provided with differentiable "external memory" and are well
suited for inferring even longer-term dependencies than LSTMs
with low degradation.

Several other specific neural network architectures have also been
studied to improve generalization in deep learning. (i) It is possible
to design an architecture in such a way that it automatically focuses
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Figure 2.4: Illustration of a simple recurrent neural network. The layer
denoted by "h" may represent any non linear function that takes
two inputs and provides two outputs. On the left is the simplified
view of a recurrent neural network that is applied recursively
to (xt,yt) for increasing values of t and where the blue line
presents a delay of one time step. On the right, the neural
network is unfolded with the implicit requirement of presenting
all inputs and outputs simultaneously.

on only some parts of the inputs with a mechanism called "attention"
(e.g., [Xu et al., 2015; Vaswani et al., 2017]). (ii) Other approaches aim
at working with symbolic rules by learning to represent and execute
programs [Reed and De Freitas, 2015] and by creating programs
where the supervision is in the form of correct inputs/outputs of the
task [Neelakantan et al., 2015; Johnson et al., 2017; Chen et al., 2017].

In this introduction, we do not cover in depth the technical
part of deep learning, and the interested reader willing to have a
review of deep learning techniques can refer to [LeCun et al., 2015;
Schmidhuber, 2015; Goodfellow et al., 2016] as well as references
therein.

We conclude this section by giving a sense of what deep learning
is able to achieve in the fields of supervised learning, unsupervised
learning and reinforcement learning.

deep learning in supervised learning In the field of
supervised learning, deep learning has already exceeded human
capabilities in most types of tasks where enough data can be
provided. As an illustration, Figure 2.5 shows the error rate of
both humans and computers in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), which is the most well-known
competition in the field of image recognition.

deep learning in unsupervised learning The field of
unsupervised learning has also seen dramatic improvements, thanks
to the use of deep learning. One of the most promising approaches in
the field is the Generative Adversarial Networks (GAN) architecture
[Goodfellow et al., 2014]. The latest results in the field demonstrate
that these types of algorithms achieve impressive results on image
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Figure 2.5: Top-5 error rate on the ILSVRC challenge [Russakovsky et al.,
2015].

generation tasks, at resolutions up to 256× 256 pixels, as can be seen
in Figure 2.6.

Figure 2.6: Sample of generated images in an unsupervised way from
a dataset of 360K celebrity faces. This picture is taken from
[Berthelot et al., 2017].

deep learning in reinforcement learning Lastly, the
combination of RL and deep learning has recently shown its ability to
learn how to complete complex tasks from high-dimensional inputs
that were previously believed to be extremely difficult for a computer.
Among other fruitful applications, this family of algorithms is attain-
ing superhuman-level performance in playing ATARI games from the
pixels [Mnih et al., 2015] or mastering the game of Go [Silver et al.,
2016a]. It has already shown significant potential for real-world ap-
plications, such as robotics [Levine et al., 2016] and smartgrids as
discussed in the second part of this thesis.

In the following of this chapter, we will focus on the RL framework
and introduce how deep learning and RL can be used together.
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2.3 introduction to reinforcement learning

Reinforcement learning (see [Sutton and Barto, 2017] for an in-
depth overview) is, as already noted, the area of machine learning
for sequential decision-making under uncertainty. The key aspect
of RL is that it uses previous trial-and-error experience to learn
a good behavior. In that aspect, it is different from the idea of
evolutionary methods (genetic algorithms, genetic programming,
simulated annealing, etc.), since, in that case, the key aspect is to rely
on many non-learning agents where only the most promising genes
(according to some objectives) are transmitted with reproduction,
mutation or recombination to the next generation ([Fogel, 2006] for
an overview). Note that combining RL and evolutionary methods has
also received attention in the literature (e.g., [Whiteson and Stone,
2006; Singh et al., 2010]).

The RL problem is formalized as an agent that has to make
decisions in an environment to optimize a given notion of cumulative
rewards. As will be discussed, this framework applies to a wide
variety of tasks and captures many essential features of artificial
intelligence such as a sense of cause and effect as well as a sense
of uncertainty and nondeterminism.

2.3.1 Formal framework

One of the simplest problems conceptually is the k-armed bandit
problem (so named by analogy to a slot machine, except that it has k
levers instead of one) where the agent is faced with a choice among
k different options, or actions. After each choice, the agent receives
a numerical reward chosen from a stationary probability distribution
which depends on the action that the agent has selected. This type
of sequential decision-making has received a lot of attention in the
literature (see [Kuleshov and Precup, 2014] for a review of the most
popular multi-armed bandit algorithms) and has many applications
in the context of recommendations in clinical trials, marketing, etc.

The k-armed bandit problem is however a limiting case of a larger
family of problems and in the general case, actions may affect the
next situation (the agent does not stay in front of the same k levers).

The reinforcement learning framework

The full RL problem is formalized as a discrete time stochastic
control process where an agent interacts with its environment in
the following way: the agent starts, in a given state within its
environment s0 ∈ S, by gathering an initial observation ω0 ∈ Ω. At
each time step t, the agent has to take an action at ∈ A. As illustrated
in Figure 2.7, it follows three consequences: (i) the agent obtains a
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reward rt ∈ R, (ii) the state transitions to st+1 ∈ S, and (iii) the agent
obtains an observation ωt+1 ∈ Ω.

Agent

Environment
st → st+1

at ωt+1 rt

Figure 2.7: Agent-environment interaction in RL.

The Markov setting

For the sake of simplicity, let us in this introduction consider first the
case of Makovian stochastic control processes.

Definition 2.1 A discrete time stochastic control process is Makovian (i.e.,
it ensures the Markov property) if

• P(ωt+1 | ωt,at) = P(ωt+1 | ωt,at, . . . , ,ω0,a0), and

• P(rt | ωt,at) = P(rt | ωt,at, . . . , ,ω0,a0).

The Markov property means that the the future of the process is based
solely on the current observation, and the agent has no interest in
looking at the full history.

A Markov Decision Process (MDP) is a discrete time stochastic
control process defined as follows:

Definition 2.2 An MDP is a 5-tuple (S,A, T ,R,γ) where:

• S is a finite set of states {1, . . . ,NS},

• A is a finite set of actions {1, . . . ,NA},

• T : S×A× S → [0, 1] is the transition function (set of conditional
transition probabilities between states),

• R : S×A× S → R is the reward function, where R is a continuous
set of possible rewards in a range Rmax ∈ R+ (e.g., [0,Rmax]),

• γ ∈ [0, 1) is the discount factor.

The system is fully observable in an MDP, which means that the
observation is the same as the state of the environment: ωt = st.
At each time step t, the probability of moving to st+1 is given by
the state transition function T(st,at, st+1) and the reward is given by
a bounded reward function R(st,at, st+1) ∈ R. This is illustrated in
Figure 2.8.

Note that more general cases than MDPs are introduced in Section
2.5.1 and the partially observable case is formally considered from
Chapter 3 onwards.
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Figure 2.8: Illustration of a MDP.

Different categories of policies

A policy defines how an agent select actions. Policies can be catego-
rized under the criterion of being either stationary or non-stationary.
A non-stationary policy depends on the time-step and is mainly use-
ful for finite-horizon RL. In this thesis, the policies considered will be
stationary.

Policies can also be categorized under a second criterion of being
either deterministic or stochastic:

• In the deterministic case, the policy is described by π(s) : S→ A.

• In the stochastic case, the policy is described by π(s,a) : S×A→
[0, 1] where π(s,a) denotes the probability that action a may be
chosen in state s.

The expected return

In an MDP (S,A, T ,R,γ), let us consider the case of an RL agent
whose goal is to find a deterministic policy π(s) ∈ Π, so as to optimize
an expected return Vπ(s) : S→ R (also called V-value function) such
that

Vπ(s) = E

[∑H−1

k=0
αkrt+k | st = s,π

]
, (2.2)

where:

• rt = R
(
st,π(st), st+1

)
,

• P
(
st+1|st,π(st)

)
= T(st,π(st), st+1),

• H ∈ N is the horizon (infinite horizons will be used in this
thesis at the exception of experiments where finite horizons will
be used for computational reasons), and

• αk denotes time-step dependent weighting factors, set to αk =

γk for discounted RL 1.

1 Note that an alternative is to have αk = 1/H for the average reward case.
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From the definition of the expected return, the optimal expected
return can be defined as:

V∗(s) = max
π∈Π

Vπ(s). (2.3)

2.3.2 Different components to learn a policy

In general, an RL agent may include one or more of the following
components:

• a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

• a direct representation of the policy π(s) or π(s,a), or

• a model of the environment in conjunction with a planning
algorithm.

The first two components are often related to what is called "model-
free" RL and they are discussed in sections 2.3.4, 2.3.5 and 2.3.6. When
the latter component is used, the algorithm is referred to as "model-
based" RL, which is discussed in Section 2.3.7. A combination of both
is discussed in Section 2.3.8. A schema with all possible approaches
is provided in Figure 2.9.

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Figure 2.9: General schema of the different methods for RL.

2.3.3 Different approaches to learn a policy from data

Before going into the details of the different components that can
be used, we can already introduce why deep learning is key in
RL. The main motivation is to provide generalization capabilities
that practically remove the need for an exponential increase of data
when adding extra dimensions to the state or action space (curse of
dimensionality).

Let us define the following random variables for any given (s,a) ∈
S×A as

• T(s,a) with possible outcomes S :

T(s,a) ∼ T(s,a, ·)
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and,

• R(s,a) with possible outcomes R :

R(s,a) ∼
∑
s ′∈S

T(s,a, s ′)R(s,a, s ′).

The knowledge of the probability distribution of these two random
variables allows to know all the interesting information on the model.
Yet, in many types of tasks, the agent has to learn from limited data.
This appears in two main cases: (i) in the offline learning case where
only limited data on a given environment is available and (ii) in an
online learning case where, in parallel to learning, the agent gathers
experience in the environment with an exploration/exploitation
strategy (this will be discussed in Section 2.4.3). Formally, the finite
dataset available to the agentDs ∼ Ds is defined as a set of four-tuples
(s,a, r, s ′) ∈ S×A×R× S gathered by sampling independently and
identically (i.i.d.)2

• a given number of state-action pairs (s,a) from some fixed
distribution with P(s,a) > 0, ∀(s,a) ∈ S×A,

• a next state s ′ ∼ T(s,a, ·), and

• a reward r = R(s,a, s ′).

The particular case of a dataset Ds where the number of tuples tends
to infinity is denoted Ds,∞.

In a frequentist-based model, for every tuple (s,a), the relative fre-
quencies of occurrence in the datasetDs for the transition (s,a) → s ′

(resp. the reward R(s,a, s ′)) in the data is used as a measure of
the probability distribution of the transitions T(s,a) (resp. the reward
R(s,a)). Yet, scarcity on the data implies that the frequentist-based
model will only be approximate. Indeed, the frequencies of occur-
rence in a dataset are themselves random variables. If the limited
data have been gathered on the exact same task, it is an unbiased
estimator of the true transition probabilities of (s,a) → s ′ (or the
reward R(s,a, s ′)), yet a variance is associated to those estimates.

Two different approaches are possible. The Bayesian approach
explicitly models the uncertainty on the environment and provides
an elegant approach to this problem. It has two key advantages
(see [Ghavamzadeh et al., 2015] for an overview): (i) it provides
an elegant approach to the exploration/exploitation strategy in the
online setting, and (ii) it allows incorporating prior knowledge if
available in a principled way. The difficulty is that except for a limited

2 That i.i.d. assumption can, for instance, be obtained from a given distribution of
initial states by following a stochastic sampling policy that ensures a non-zero
probability of taking any action in any given state. That sampling policy should
be followed during at least H time steps with the assumption that all states of the
MDP can be reached in a number of steps smaller than H from the given distribution
of initial states.
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set of bandit environments, it is intractable to compute the Bayesian-
optimal strategy and one has to rely on heuristics. The other approach
is based on frequentist statistics without modeling explicitly the
uncertainty on the environment.

Deep RL is commonly derived from the latter approach. For most
problems approaching real-world complexity, the state space are
high-dimensional (and possibly continuous). In order to learn the
model, the value function or directly the policy, there are two main
advantages for RL algorithms to rely on deep learning:

• Neural networks are well suited for dealing with high-
dimensional sensory inputs (such as times series, frames, etc.)
without requiring an exponential increase of data (see Section
2.2).

• In addition, they work readily online, which means that they
can make use of additional samples obtained as learning
happens by incrementally improving the targeted function
approximator(s).

2.3.4 Value-based methods

This class of algorithms aims to build a value function, which
subsequently allows to define a policy. Many of these algorithms do
not work directly with the V-value function. Instead, they make use of
a Q-value function Qπ(s,a) : S×A→ R which is defined as follows:

Qπ(s,a) = E

[∑H−1

k=0
γkrt+k | st = s,at = a,π

]
. (2.4)

Note that this equation can be rewritten recursively in the case of an
MDP:

Qπ(s,a) =
∑
s ′∈S

T(s,a, s ′)
(
R(s,a, s ′) + γQπ(s ′,a = π(s ′))

)
. (2.5)

Similarly to the V-value function, Q∗(s,a) can also be defined as

Q∗(s,a) = max
π∈Π

Qπ(s,a). (2.6)

The particularity of the Q-value function as compared to the V-value
function is that the optimal policy may be obtained from Q∗(s,a) in
a fully model-free way:

π∗(s) = argmax
a∈A

Q∗(s,a). (2.7)

An illustration of V∗(s) and Q∗(s,a) is provided in Figure 2.10.
We discuss hereafter one of the simplest and most popular value-

based algorithm: the Q-learning algorithm. We also specifically
discuss the main elements of DQN [Mnih et al., 2015] (and its
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V∗(s) = Q∗(s,a = π∗) = Eπ∗ [r0 + γr1 + · · · ]
st

st+1

st+2

at, rt

at+1, rt+1

π∗,
r = r0

π∗,
r = r1

π∗

Figure 2.10: Value function illustration.

variants) which is the adaptation of the Q-learning algorithm with
neural networks as function approximators. We then discuss how the
Q-learning algorithm compares to other value-based methods and
provide specific resources for the details.

Q-learning algorithm

The basic version of Q-learning keeps a lookup table of values
Q(s,a) with one entry for every state-action pair. In order to build
the optimal Q-value function, the Q-learning algorithm makes use
of the fixed-point iteration of the Bellman equation for the Q-
value function [Bellman and Dreyfus, 1962] which has as a (unique)
solution Q∗(s,a):

Q∗(s,a) = (BQ∗)(s,a), (2.8)

where B is the Bellman operator mapping any function K : S×A→ R

into another function S × A → R and is defined as follows for an
MDP:

(BK)(s,a) =
∑
s ′∈S

T(s,a, s ′)
(
R(s,a, s ′) + γ max

a ′∈A
K(s ′,a ′)

)
. (2.9)

The fixed point of Equation 2.8 exists since the Bellman operator
is a contraction mapping3. In practice, when the environment is
only known from experience, a general proof of convergence to the

3 The Bellman operator is a contraction mapping because it can be shown that for any
pair of bounded functions K,K ′ : S×A→ R, the following condition is respected:

‖TK− TK ′‖∞6 γ‖K−K ′‖∞.
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optimum is available [Watkins and Dayan, 1992] at the conditions
that:

• the state-action pairs are represented discretely, and

• all actions are repeatedly sampled in all states.

As discussed earlier, this simple setting is often inapplicable due to
the high-dimensional (possibly continuous) state-action space. In that
context, a parameterized value function Q(s,a; θk) is needed, where
θk refers to the parameters at the kth iteration.

Experiences are gathered in the form of tuples (s,a, r, s ′) where the
reward r and the state at the next time-step s ′ follows the state-action
pair (s,a). At every iteration, the current value Q(s,a; θk) is updated
towards a target value

Y
Q
k = r+ γ max

a ′∈A
Q(s ′,a ′; θk). (2.10)

The Q-learning update when using the squared-loss amounts in
updating the parameters:

θk+1 = θk +α(Y
Q
k −Q(s,a; θk))∇θkQ(s,a; θk), (2.11)

where α is a scalar step size called the learning rate.
The Q-learning rule from Equation 2.11 can be directly imple-

mented online using a neural network Q(s,a; θk) to aim at conver-
gence towards Q∗(s,a), where the parameters θk may be updated by
stochastic gradient descent (or a variant). However, due to the gen-
eralization and extrapolation abilities of neural networks, they can
build unpredictable changes at different places in the state-action
space. Therefore, the contraction mapping property of the Bellman
operator in Equation 2.9 is not enough to guarantee convergence. It
is verified experimentally that these errors may propagate with this
online update rule and, as a consequence, convergence may be slow
or even unstable [Baird, 1995; Tsitsiklis and Van Roy, 1997; Gordon,
1999; Riedmiller, 2005] 4. Another related damaging side-effect of us-
ing function approximators is the fact that Q-values tend to be over-
estimated due to the argmax operator [Hasselt, 2010]. Because of the
instabilities and the risk of overestimation, specific care has be taken
to ensure proper learning.

The deep Q-learning algorithm introduced in [Mnih et al., 2015]
uses two important elements: a target Q-network and a replay
memory.

• The target Q-network in Equation 2.10 is replaced by
Q(s ′,a ′; θ−k ) where its parameters θ−k are updated only
every C iterations with the following assignment: θ−k = θk.

4 Note that this drawback does not happen when using kernel-based regressors (such
as k-nearest neighbors, linear and multilinear interpolation, etc.) [Gordon, 1999] or
tree-based ensemble methods [Ernst et al., 2005]. However, these methods have not
proved able to handle successfully high-dimensional inputs.
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• The replay memory keeps all information for the last Nreplay
time steps. The updates are then made on mini-batches of tuples
(s,a, r, s ′) selected within the replay memory.

Those elements limit instabilities or risks of divergence when a
nonlinear function approximator such as a neural network is used
in combination with value-based methods. A sketch of the algorithm
is given in Figure 2.11.

Update
Q(s,a; θk)

Every C:
θ−k := θk

r1, . . . , rNreplay

s1, . . . , sNreplay ,a1, . . . ,aNreplay

s1+1, . . . , sNreplay+1

rt + γmax
a ′∈A

(Q(st+1,a ′; θ−k ))

Policy

INs

OUTs

Figure 2.11: Sketch of the DQN algorithm. Q(s,a; θk) is initialized to close
to 0 everywhere on its domain; Nreplay is the size of the replay
memory; the target Q-network parameters θ−k are only updated
every C iterations with the Q-network parameters θk and are
held fixed between updates; the variable INs corresponds to a
mini-batch (e.g., 32 elements) of tuples (s,a) taken randomly in
the replay memory and the variable OUTs is the corresponding
mini-batch of target values for the tuples.

Many additional improvements can be found in the literature
and a few of them are cited hereafter. In [Wang et al., 2015],
the neural network architecture decouples value and advantage
function (defined as Aπ(s,a) = Qπ(s,a) − Vπ(s)) which leads to
improved performance. In [Van Hasselt et al., 2015], a specific update
scheme (variant to Equation 2.11) leads to less overestimation of
the Q-learning values, as well as improved stability, hence improved
performance. Parallel actor-learners [Mnih et al., 2016] or the use of
unsupervised auxiliary tasks [Jaderberg et al., 2016] also lead to faster
and more robust learning. In [Pritzel et al., 2017], a differentiable
memory module allows to rapidly integrate recent experience by
interpolating between Monte Carlo value estimates and backed up
off-policy estimates. Additional elements to improve learning are
discussed in Chapter 4.

How does Q-learning compare to other value-based methods

The Q-learning algorithm is characterized by the following two
characteristics:

• Q-learning is off-policy, which means that it builds a value
function (or in general a policy) independently of the policy
that is used to gather experiences. On the contrary, on-policy
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methods attempt to evaluate or improve the policy that is
used to make decisions (e.g., SARSA algorithm [Rummery and
Niranjan, 1994]).

• Q-learning uses bootstrapping, which means that it updates
the value estimates of future return from raw experiences by
using its own value estimate recursively (without waiting for
final outcome). Non-bootstrapping methods learn directly from
returns (Monte Carlo). An intermediate solution is the use of
eligibility traces [Singh and Sutton, 1996]. On the one hand,
value bootstrap methods are more readily applied to off-policy
data which is appealing because it can learn while exploring
safely. On the other hand, non-bootstrapping methods are
better behaved when combined with function approximation
(no instability) and propagate information more quickly from
delayed rewards. The interested reader can refer to [Munos
et al., 2016] for a discussion on the conditions required to learn
efficiently and safely from returns in the context of off-policy
learning.

2.3.5 Policy-based methods

The basic idea behind these algorithms is to learn a parameterized
policy πθ. When the policy is parametrized with a neural network, the
usual approach is to adjust the parameters θ in a direction that aims
to increase the expected return: ∆θ ∝ ∇θVπθ(·). These policy gradient
algorithms have the following interesting properties as compared to
value-based methods:

• they are able to work with continuous action space, and

• they can learn stochastic policies.

The main equations related to stochastic policy gradient and deter-
ministic policy gradient are introduced hereafter.

2.3.5.1 Stochastic policy gradient

The expected return of a stochastic policy π starting from state s0
from Equation 2.2 can be written as:

Vπ(s0) =

∫
S

ρπ(s)

∫
A

π(s,a)R ′(s,a)dads, (2.12)

where R ′(s,a) =
∑
s ′∈S T(s,a, s ′)R(s,a, s ′) and ρπ(s) is the dis-

counted state distribution defined as

ρπ(s) =

∞∑
t=0

γtPr{st = s|s0,π}.
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For a differentiable policy πθ, the fundamental result underlying
these algorithms is the policy gradient theorem (Sutton et al., 1999):

∇θVπθ(s0) =
∫
S

ρπθ(s)

∫
A

∇θπθ(s,a)Qπθ(s,a)dads. (2.13)

Note that this result is particularly interesting since the policy
gradient does not depend on the gradient of the state distribution
(even though one could have expected it to).

The following identity known as the likelihood ratio trick can then
be exploited:

∇θπθ(s,a) = πθ(s,a)
∇θπθ(s,a)
πθ(s,a)

= πθ(s,a)∇θ log(πθ(s,a)).
(2.14)

Thanks to Equation 2.14 and assuming that trajectories are gener-
ated from a system by roll-outs following policy πθ, it follows that

∇θVπθ(s0) = Es∼ρπ,a∼πθ [∇θ (log πθ)Q
πθ (s,a)] . (2.15)

Note that it is common to add an entropy regularizer to the gradient
in order to prevent the policy from becoming deterministic. It is also
interesting to replace the Q-value function by the advantage function
Aπθ(s,a) = Qπθ(s,a) − Vπθ(s,a) because this allows to have a lower
variance in the gradient estimate [Schulman et al., 2015b; Gu et al.,
2016]. An interesting idea is the one provided with the algorithm
TRPO that provides policy gradients with a KL divergence constraint
to prevent the new policy from diverging too far from the existing
policy [Schulman et al., 2015a].

One of the remaining challenges for policy gradient using function
approximator is how to estimate the action-value function Qπθ(s,a)
or the advantage function Aπθ(s,a). One straightforward possibility
is to estimate it with the return of rollouts on the environment while
following policy πθ ( “Monte Carlo policy gradient" or REINFORCE
algorithm [Williams, 1992]). Even though they are well-behaved when
used in conjunction with back-propagation of a neural approximator
of the policy, the main drawback is the large variance of the estimator.
Moreover they require a priori on-policy rollouts. Another possibility
is to use an actor-critic method as will be discussed in Section 2.3.6.

2.3.5.2 Deterministic policy gradient

The policy gradient methods may also be extended to deterministic
policies. Let us denote by π(s) the deterministic policy : π(s) : S → A.

In discrete action spaces, a direct approach is to build the policy
iteratively with:

πk+1(s) = argmax
a∈A

Qπk(s,a), (2.16)
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where πk is the policy at the kth iteration.
In continuous action spaces, a greedy policy improvement becomes

problematic, requiring a global maximisation at every step. Instead,
let us denote by πθ(s) a differentiable deterministic policy. In that
case, a simple and computationally attractive alternative is to move
the policy in the direction of the gradient of Q [Silver et al., 2014]
which leads to the Deep Deterministic Policy Gradient (DDPG)
algorithm [Lillicrap et al., 2015] :

∇θVπθ(s0) = Es∼ρπθ
[
∇θ (πθ)∇a (Qπθ(s,a)) |a=πθ(s)

]
. (2.17)

This implies relying on ∇a (Qπθ(s,a)) (in addition to ∇θπθ) which
usually requires using actor-critic methods (see Section 2.3.6).

2.3.6 Actor-Critic methods

Vanilla actor-critic consists of two eponymous components: (i) an
actor that adjusts the parameters θ of the policy πθ(s) while (ii) a critic
adjusts the parameters w of an action-value function Qπθ(s,a;w).
Current state of the art results using an actor-critic architecture are
described in [Gruslys et al., 2017].

Note that it has recently been shown that optimizing the policy
or the value function can be shown to be intimately related in some
specific settings, depending on the loss function and on the entropy
regularization used [O’Donoghue et al., 2016; Schulman et al., 2017].
In fact, all model-free methods can thus be thought of as different
facets of the same concept.

2.3.7 Model-based methods

In model-based approaches, the model is either explicitly given (e.g.,
in the game of GO for which all the rules are known a priori) or
it can be learned from experience. To learn the model, the usage
of function approximators brings yet again significant advantages
with high-dimensional (possibly partially observable) environments
such as in [Oh et al., 2015; Mathieu et al., 2015; Finn et al., 2016a;
Kalchbrenner et al., 2016; Duchesne et al., 2017]. The model can then
act as a proxy for the actual environment.

When a generative model of the environment is available, planning
consists in interacting with the model using lookahead search. Monte-
Carlo tree search (MCTS) techniques [Browne et al., 2012] are among
the most popular approaches. They have gained popularity, among
other things, thanks to prolific achievements in the challenging task
of computer Go [Brügmann, 1993; Gelly et al., 2006; Silver et al.,
2016a]. The idea is to sample multiple trajectories from the current
state until a terminal condition is reached (e.g., a given maximum
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depth), and then to recommend an action based on those samples.
The main difficulty in sampling trajectories is to balance exploration
and exploitation. On the one hand, the purpose of exploration is to
gather more information on the part of the search tree where few
simulations have been performed (i.e., where the expected value has
a high variance). On the other hand, the purpose of exploitation is to
refine the expected value of the currently most promising moves. One
well-known simple but effective method for balancing exploitation
and exploration is called UCT [Kocsis and Szepesvári, 2006] (which
is based on UCB [Auer et al., 2002]).

2.3.8 Integrating learning and planning (i.e., model-free and model-based
methods)

Usually, RL algorithms have been categorized as being either model-
based or model-free. The respective strengths of the two approaches
depend on different factors.

First, it depends on the way the agent has access to the environ-
ment: (i) it can either directly have access to a generative model of
the environment (in the form of a simulator with the possibility to
gather data infinitely and in a flexible way), or (ii) it can know the
environment only through a (possibly finite) number of trajectories
within that environment. In the latter case, a model-based approach
is possible but requires an additional step of model estimation. Note
that learning the model can share the hidden-state representations
with a value-based approach [Li et al., 2015].

Second, the model-based approach requires a priori working in
conjunction with a planning algorithm, which is often computation-
ally demanding. When the model is available to the agent, a pure
planning approach can theoretically be optimal but would often be
impractical due to time constraints when computing the policy π(s)
(e.g., for applications with real-time decision-making or simply due
to resource limitations).

Third, for some tasks, the structure of the policy (or value function)
is the easiest one to learn but for other tasks, the model of the
environment may be learned more efficiently due to the particular
structure of the task (less complex/more regularity). Thus, the most
adapted approach also depends on the structure of the model and
on the structure of the policy/value function. Let us consider two
examples to better understand this key consideration. In a labyrinth
where the agent has full observability, it is clear how actions affect the
next state and the dynamic of the model may easily be generalized
by the agent from few tuples (i.e., the agent is blocked when trying
to cross a wall of the labyrinth, or it goes forward when trying to go
in an unblocked direction). Once the model is known, a planning
algorithm can then be used with high performance. Let us now
discuss another example where, on the contrary, planning is more
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difficult: an agent has to cross a road with random events happening
everywhere on the road and let us suppose that the best policy is
simply to move forward except when an object has just appeared in
front of the agent. In that case, the simple policy of moving forward
except for specific observations may be easily captured by a model-
free approach while developing a model of the environment and plan
within it would be more difficult (mainly due to the stochasticity of
the model which leads to many different possible situations, even for
one given sequence of actions).

Model-based

RL

Value-based

RL

Policy-based

RL

Figure 2.12: Venn diagram of the different types of RL algorithms.

As illustrated in Figure 2.12, there is a possibility to obtain
advantages from both worlds by integrating learning and planning
into one end-to-end training procedure so as to obtain an efficient
algorithm both in performance (sample efficient) and in computation
time.

When the model is available, one direct approach is to use tree
search techniques that make use of value and policy networks (e.g.,
[Silver et al., 2016a]). If the model is differentiable, one can also
directly compute an analytic policy gradient by backpropagation of
rewards along trajectories [Nguyen and Widrow, 1990].

When the model is not available and in the assumption that the
agent has only access to a limited number of trajectories, the key
property is to have an algorithm that generalizes well (see Section
2.4.1 for a discussion on generalization). Methods such as the Dyna-
Q method [Sutton, 1990] uses a learned model to generate additional
samples for the model-free algorithm (see also [Gu et al., 2016] for
an extension in deep RL). A recent work called the predictron [Silver
et al., 2016b] aims at developing a learnable internal model that is
effective in the context of planning. In the same spirit, in [Tamar
et al., 2016], a fully differentiable neural network with a planning
module embedded within is introduced which provides an elegant
approach to improve generalization with the integration of learning
and planning. Other works have also build architectures that combine
model-based and model-free [Oh et al., 2017; Weber et al., 2017]. Yet
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other works have developed a strategy to directly learn end-to-end
the model along with how to make the best use of it without relying
on explicit tree search techniques [Pascanu et al., 2017].

2.4 challenges in deep reinforcement learning

2.4.1 Generalization and transfer learning

Generalization is a central concept in the whole field of machine
learning and reinforcement learning is no exception. In an RL
algorithm (model-free or model-based), generalization refers to either

• the capacity to obtain a good performance in an environment
where previous limited data has been gathered, or

• the capacity to obtain a good performance in a slightly different
environment.

The former case is discussed in Section 2.4.1.1 and the latter is
discussed in Section 2.4.1.2.

2.4.1.1 Generalization with limited data

In the case where the agent has to learn how to behave in the same
environment it has been trained on, the idea of generalization is
direclty related to sample efficiency and it refers to the capacity
to learn a task without requiring a huge amount of experience in
the environment. Let us consider the case of a limited dataset Ds
obtained on the exact same task. The process of building a policy
can be seen as a function mapping a dataset Ds into a policy πDs
(independently of whether the policy comes from a model-based or a
model-free approach). The suboptimality of the expected return can
be decomposed as follows:

E
Ds∼Ds

[Vπ
∗
(s) − VπDs (s)] = (Vπ

∗
(s) − VπDs,∞ (s))︸ ︷︷ ︸
asymptotic bias

+ E
Ds∼Ds

[(VπDs,∞ (s) − VπDs (s))︸ ︷︷ ︸
error due to finite size of the dataset Ds

referred to as overfitting

]. (2.18)

This decomposition highlights two different terms: (i) an asymptotical
bias which is independent of the quantity of data and (ii) an
overfitting term directly related to the fact that the amount of data
is limited. The goal of building a policy πDs from a dataset Ds is
to obtain the lowest overall suboptimality which, as we will see, will
require to find a good tradeoff between these two terms.

A technical in-depth analysis of this question is provided in
Chapter 3 in the context of the partially observable setting and limited
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data but a simple example showing how deep RL deals with the
frequentist assumption is provided hereafter. This simple example
is, by no means, representative of the complexity of the real-world
problems but it is enlightening to simply illustrate the concepts that
will be discussed more formally in the following.

Let us consider an MDP with NS = 9+ 2 and NA = 4 illustrated in
Figure 2.13. Let us suppose that the main part of the environment
is a discretized square domain represented by 3 × 3 states (each
represented by a tuple (x,y) with x={0,1,2}, y={0,1,2}). The agent starts
in the central state (1, 1). In every state, it selects one of the 4 actions
corresponding to the 4 directions (up, down, left and right), which
leads the agent to transition deterministically in that direction to the
state immediately next to it, except when it tries to move out of the
domain. On the upper part and lower part of the domain, the agent
is stuck in the same state if it tries to move out of the domain. On the
left, the agent transitions deterministically to a given state that will
provide, at the next time step, a reward of 0.5 for any action while on
the right, the agent transitions with a probability 25% to another state
that will provide, at the next time step, a reward of 1 for any action
(the rewards are 0 for all other states). When a reward is obtained, the
agent transitions back to the central state.

y

x

P = 1 P = 0.25

r = 0.5 r = 1

Figure 2.13: Representation of a simple MDP that illustrates the need of
generalization.

In this example, it is obvious (if the agent has perfect knowledge
of its environment) that the best expected cumulative reward (for a
discount factor close to 1) would be to always go to the left direction
and repeatedly gather the 0.5 reward. Let us now suppose that only
limited information has been obtained on the MDP with only one
tuple of experience (s,a, r, s ′) for each couple (s,a). According to the
limited data, there is a rather high probability (∼ 58%) that at least
one transition from the right side seems to provide a deterministic
access to r = 1. An agent that would use the frequentist approach
of the training data without good generalization would thus have a
suboptimal policy in these cases.

Here are three key elements that are at stake when one wants to
improve generalization:
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1. Feature selection: When using non-informative features on
which to base the policy (in the example the y-coordinate
of the state), an RL algorithm may take into consideration
spurious correlations. In other words, it may base its decisions
on events or variables that are not dependent on the actual
goal that the agent seeks. Yet, it may be wrongly inferred that
they are correlated and lead to overfitting (in the example, the
agent may infer that the y-coordinate changes something to the
expected return). On the contrary, removing important features
will introduce an asymptotic bias.

2. Function approximator selection: This abstract level reasoning
can also be learned thanks to function approximators. If a too
simple function approximator for the value function and/or
the policy and/or the model is used, an asymptotic bias may
appear because the policy cannot discriminate efficiently the
different inputs. While on the other hand, when the function
approximator has a poor generalization, there will be a large
error due to the finite size of the dataset (overfitting). In the
example, a particularly good choice of model-based or model-
free approach associated with a good choice of a function
approximator could infer that the y-coordinate of the state is
less important than the x-coordinate and generalize that to the
policy. Note that the function approximator and the selection
of the features are linked since the function approximator
characterizes how the features will be treated into higher levels
of abstraction (a fortiori it can thus give more or less weight to
some features). One approach to avoid non-informative features
to affect negatively the performance is to force the agent to
acquire a set of symbolic rules adapted to the task and reason
on a more abstract level (e.g., [Garnelo et al., 2016]). This
abstract level reasoning and the improved generalization that
it allows are key to implement high-level cognitive functions
such as transfer learning, analogical reasoning, etc. For instance,
the function approximator may embed a relational learning
structure such as in [Santoro et al., 2017] and thus build on the
idea of relational reinforcement learning [Džeroski et al., 2001].

3. Optimization horizon: The optimization horizon controls the
complexity of the policy class [Petrik and Scherrer, 2009; Jiang
et al., 2015b]. There are two consequences. On the one hand, ar-
tificially reducing the optimization horizon leads to a potential
bias since some (potentially optimal) policies are discarded. On
the other hand, if a long optimization horizon is targeted (the
discount factor γ is close to 1), there is a higher risk of over-
fitting. This overfitting can intuitively be understood as linked
to the accumulation of the errors in the transitions and rewards
estimated from data as compared to the actual transition and re-
ward probabilities. In the example, in the case where the upper
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right or lower right states would seem to lead deterministically
to r = 1 from the limited data, one may take into account that
it requires more steps and thus more uncertainty on the tran-
sitions (and rewards). In that context, a low training discount
factor would lead to a policy that recommends the left action.

As discussed for these three elements, there is in practice a tradeoff to
be made between asymptotic bias and overfitting that we simply call
"bias-overfitting tradeoff". This is illustrated in Figure 2.14 and will
be discussed formally in Chapter 3.

Data
Policy

class

% of the

error

due to

overfitting

% of the

error due to

asymptotic

bias

Figure 2.14: Schematic representation of the bias-overfitting tradeoff.

2.4.1.2 Transfer learning

Generalization can also be seen as a form of transfer learning and
it then refers to the capacity of using efficiently previous knowledge
from a source environment to achieve new (slightly) different tasks in
a target environment. One of the main use case of transfer learning
is to learn a policy in a simulation environment and then use it in a
real-world context.

In general, transfer learning can make use of the deep learning
architecture to effectively transfer knowledge among tasks by sharing
parameters. The direct approach is to pre-train a model/policy/value
function in the source environment and then fine-tune it in the target
environment [Rusu et al., 2016]. In the same spirit, developments
such as [Kirkpatrick et al., 2016] opens up the perspective of learning
sequentially different types of tasks in different source environments
(while avoiding catastrophic forgetting) before using the policy in a
target environment.

Another approach is to use an idea similar to data augmentation
in supervised learning so as to make sense of variations that were
not encountered in the training data. The idea is that with enough
data augmentation on the simulator data, the actual (unseen) task
may appear to the agent as just another variation. In [Parisotto et al.,
2015], the agent is trained with deep RL techniques on different tasks
simultaneously, and it is shown that it can generalize to new related
domains. In [Tobin et al., 2017], the agent is trained in a simulated
environment while being provided with different renderings and



2.4 challenges in deep reinforcement learning 33

it is shown that the policy learned transfers well to real images
afterwards.

2.4.2 Hierarchical learning

The possibility of learning temporally extended actions (as opposed
to primitive actions that last for one time-step) has been formalized
under the name of options [Sutton et al., 1999] (Similar ideas have
also been denoted in the literature as macro-actions or abstract
actions). The usage of options is an important challenge in RL because
it is essential when the task at hand requires working on long
time scales while developing generalization capabilities and easier
transfer learning between the "strategies". A few recent works have
brought interesting results in the context of fully differentiable (hence
learnable in the context of deep RL) options discovery. In [Bacon
et al., 2016], an "option-critic" architecture is presented with the
capability of learning simultaneously the internal policies and the
termination conditions of options, as well as the policy over options.
In [Vezhnevets et al., 2016], the deep recurrent neural network is
made up of two main elements. The first module generates an action-
plan (stochastic plan of future actions) while the second module
maintains a commitment-plan which determines when the action-
plan has to be updated or terminated.

2.4.3 Exploration/Exploitation dilemma

The exploration-exploitation dilemma is a famous tradeoff in RL. As
an agent starts accumulating knowledge about its environment, it
has to make a tradeoff between learning more about its environment
(exploration) or pursuing what seems to be the most promising
strategy with the experience gathered so far (exploitation). There exist
mainly two different types of cases:

• the agent is expected to perform well without a separate
training phase and in that case, an explicit tradeoff between
exploration versus exploitation appears so that the agent should
explore only when the learning opportunities are valuable
enough for the future as compared to what direct exploitation
can provide.

• the agent follows a training policy during a first phase of
interactions with the environment so as to accumulate training
data and hence learn a test policy. The test policy should then
be able to maximize a cumulative sum of rewards in a separate
phase of interactions. The goal of the training policy is then to
ensure efficient exploration of the state space without constraint
directly related to the cumulative reward objective. Note that



34 overview of deep reinforcement learning

an implicit exploration/exploitation is still important. On the
one hand, we have to ensure that the lesser-known parts of
the environment are not promising (exploration). On the other
hand, the more promising is a part of the environment, the
more we are interested in gathering experience in that part of
the environment (exploitation) to refine the knowledge of the
dynamics.

The exploration techniques are split into two main categories: di-
rected exploration and undirected exploration [Thrun, 1992]. The di-
rected exploration techniques use a memory of the past interactions
with the system for guiding the exploration search while the undi-
rected exploration does not use any memory of the past interactions
(e.g., ε-greedy or softmax exploration which is also called Boltzmann
exploration). For finite deterministic domains, directed exploration
appears to scale polynomially with the size of the state space while
undirected exploration scales in general exponentially with the size
of the state space (e.g., E3 [Kearns and Singh, 2002], R-max [Braf-
man and Tennenholtz, 2003], ...). One of the key elements in directed
exploration is to maximize Shannon information gain thanks to ex-
ploration (e.g., [Sun et al., 2011]). Directed exploration is (or at least
was) however not easily applicable in the model-free approach with
high-dimensional state space (e.g., [Kakade et al., 2003]).

Recently with the development of RL techniques for large-scale
state space, some possibilities have been investigated. In [Stadie et al.,
2015] or [Houthooft et al., 2016], a directed exploration is encouraged
by giving the agent exploration bonuses thanks to heuristics that
assess novelty. A similar idea is also introduced in [Bellemare et al.,
2016] and it shows promising results on one of the most difficult Atari
2600 game, Montezuma’s revenge.

A different line of work in [Kaplan et al., 2017] suggests using
natural language to guide the agent by providing exploration bonuses
when an instruction is correctly executed. This approach requires
however a heavy manual work to provide the dataset (at least
instructions and exploration bonuses when correctly executed).

Yet a different line of work in [Florensa et al., 2017] suggests
learning useful skills in pre-training environments, which can then be
utilized in the actual environment to improve exploration and train a
high-level policy over these skills. A method called "Bootstrapped
DQN", close to an undirected scheme, has also been proposed.
It carries out exploration through the use of randomized value
functions which allows a "temporally-extended" exploration [Osband
et al., 2016].

A key challenge for the future developments of deep RL algorithms
is to handle, for high-dimensional spaces, the exploration/exploita-
tion tradeoff in a principled way.
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2.4.4 Managing experience replay

A replay memory [Lin, 1992] allows achieving a good data-efficiency
by storing the past experience of the agent in order to have the
opportunity to reprocess it at a later time. While a replay memory
allows processing the transitions in a different order than they are
experienced, there is also the possibility to use prioritized replay.
This allows considering the transitions with a different frequency
than they are experienced depending on their significance (that could
be which experiences to store and which ones to replay). In [Schaul
et al., 2015], the criterion for prioritized experience replay is based
on the magnitude of the transitions’ TD error, which indicates how
"unexpected" the transitions are.

2.5 different settings in reinforcement learning

2.5.1 POMDP and learning to learn/meta-learning

We have so far discussed how an agent is able to learn how to behave
in a given Markov environment where all the interesting information
(the state st ∈ S) is obtained at every time step t. By definition of
the Markov hypothesis, it was straightforward that the policy had
no interest to depend on what happened at previous time steps to
recommend an action (excluding through the experience gathered in
the dataset).

We now describe two different cases that complicate a bit the
simple Markov scenario:

• The partially observable scenario: in this setting, the agent only
gathers, at each time step, a partial observation of its environ-
ment that does not allow to recover the state with certainty.

• The distribution of possible (related) MDPs: in this setting, the
agent faces a distribution of different environments that differ
for instance in the reward function or on the probabilities of
transitions from one state to the other.

Those two problems are at first sight quite different conceptually.
However, in both cases, at each step in the sequential decision process,
the agent may have a benefit to take into account its whole observable
history up to the current time step t when deciding what action to
perform. In other words, an history of observations can be used as
a pseudo-state (pseudo-state because that refers to a different and
abstract stochastic control process). Any missing information in the
history of observations (potentially way before time t) can introduce
a bias in the RL algorithm.

The POMDP setting will be discussed in depth in Chapter 3 and
it is thus not discussed further here. Concerning the distribution
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of possible (related) MDPs, the problem that naturally arises is the
exploration-exploitation tradeoff. More specifically, the agent can
tend to give priority to either gathering valuable information on the
domain (exploration) or selecting an action that gives a good expected
reward according to the current knowledge of the environment
(exploitation). Two different approaches have been investigated in the
literature:

• The Bayesian approach has the possibility to explicitly model
the distribution of the different MDPs (if a prior is available).
As already noted, it is often intractable to compute the Bayesian-
optimal strategy and one has to rely on heuristics.

• The concept of "meta-learning" or "learning to learn" aims at
discovering, from experience, how to behave in a range of tasks
and it is able to negotiate the exploration-exploitation tradeoff
[Hochreiter et al., 2001]. In that case, deep RL techniques have
been investigated in, e.g., [Wang et al., 2016; Duan et al., 2016]
with the approach of using recurrent networks trained on a
set of environments drawn i.i.d. from the distribution. This
approach has been shown to provide a policy that performs
well on problems drawn from that distribution and to a certain
extent generalizes to related distributions (see Section 2.4.1 for
a discussion on generalization).

2.5.2 Inverse reinforcement learning and imitation learning

In some circumstances, the agent is only provided with trajectories,
without reward signal, of an expert agent (also called the teacher).
Given observed optimal behavior, the question is to know whether
the agent can perform similarly. Two approaches are possible:

• Imitation learning uses supervised learning to map the states
to the actions from the observations of optimal behavior (e.g.,
[Giusti et al., 2016]).

• Inverse reinforcement learning (IRL) is the problem of deter-
mining a possible reward function given observations of op-
timal behavior. When the system dynamics is known (except
the reward function), this is an appealing approach particularly
when the reward function provides the most generalizable def-
inition of the task [Ng et al., 2000; Abbeel and Ng, 2004]. For
example, let us consider a large MDP for which the expert al-
ways ends up transitioning to the same state. In that context,
one may be able to easily infer, from only a few trajectories,
what is the probable goal of the task (=a reward function that
explains the behavior of the teacher) while directly learning the
policy via imitation learning would be much less efficient. Note
that recent works bypass the requirement of the knowledge of
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the system dynamics [Boularias et al., 2011; Kalakrishnan et al.,
2013; Finn et al., 2016b].

A combination of the two approaches has also been investigated in
[Neu and Szepesvári, 2012; Ho and Ermon, 2016]. Note also that in
real-world applications, the teacher is not exactly in the same context
than the agent and transfer learning may be of crucial importance
[Schulman et al., 2016; Liu et al., 2017] (see Section 2.4.1.2 for more
information on transfer learning).

2.5.3 Multi-agent systems

A multi-agent system is composed of multiple interacting agents
within an environment. For this type of system, many different
settings can be considered.

• Decentralized versus centralized setting: in a decentralized set-
ting, each agent selects its own action conditioned only on its
local information. This setting is related to the emergence of
communication between agents in order to share information.

• Collaborative versus non-collaborative setting: in a collabora-
tive setting, agents may have a shared reward measurement.

These topics have already been widely investigated and the interested
reader can refer to [Foerster et al., 2017; Sunehag et al., 2017] as well
as to the related work discussed in these papers.

2.6 applying reinforcement learning to real-world

problems

2.6.1 Successes of reinforcement learning

Deep RL techniques have demonstrated their ability to tackle a wide
range of problems that were previously unsolved. Some of the most
renowned achievements are

• attaining superhuman-level performance in playing ATARI
games from the pixels [Mnih et al., 2015],

• mastering the game of Go [Silver et al., 2016a],

• beating professional poker players in the game of heads up no-
limit Texas hold’em: Libratus [Brown and Sandholm, 2017] and
Deepstack [Moravčík et al., 2017], as well as

• beating world’s top professionals at 1v1 matches of Dota 2 (real-
time strategy game).
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These achievements in popular games are important mainly be-
cause they show the potential of deep RL in a wide variety of com-
plex and diverse tasks that require working from high-dimensional
inputs. In fact, deep RL has also already shown lots of potential for
real-world applications such as robotics [Levine et al., 2016; Gandhi
et al., 2017], self-driving cars [You et al., 2017], locomotion skills [Peng
et al., 2017], online marketing [Pednault et al., 2002], finance [Deng
et al., 2017], smartgrids (this thesis), etc. Virtual environments such
as the ones developed by OpenAI [Brockman et al., 2016] and Deep-
Mind [Beattie et al., 2016] will certainly allow to explore even further
the limits of the deep RL algorithms.

RL has also applications in fields where one could think that
supervised learning alone is sufficient such as sequence prediction
(e.g., text) [Ranzato et al., 2015; Bahdanau et al., 2016]. Designing
the right neural architecture for supervised learning tasks has also
been cast as an RL problem (e.g., [Zoph and Le, 2016] that uses
REINFORCE). Note that those types of tasks can also be tackled with
evolutionary strategies [Miikkulainen et al., 2017; Real et al., 2017].

Finally, it can be mentioned that deep RL has applications in classic
and fundamental algorithmic problems in the field of computer
science, such as the travelling salesman problem [Bello et al., 2016].
This is an NP-complete problem and the possibility to tackle it
with deep RL shows the potential impact that it could have on all
applications that can be cast as NP-complete problems.

2.6.2 Challenges of applying reinforcement learning to real-world problems

The deep RL algorithms discussed in Section 2.3 can, in principle,
be used to solve many different types of real-world problems. In
practice, there is however one fundamental difficulty: it is often not
possible to let an agent interact freely and sufficiently in the actual
environment (or set of environments). Two main cases may prevent
that ideal scenario in real-world applications:

1. The agent may not be able to interact with the true environment
but only with a simulation of it. Those constraints may be
subsequent to the fact that exploration is severely limited in the
actual environment due to safety/cost constraints. For instance,
that scenario occurs in smartgrids (see Chapter 6), robotics
[Zhu et al., 2016], etc. Note that other alternatives to deal with
safety/cost constraints also exist and readers are referred to the
following overview: [Garcıa and Fernández, 2015].

2. The acquisition of new observations may not be possible
anymore (the "batch" setting, see Section 2.4.1.1). That scenario
happens for instance in medical trials, in tasks with dependence
on weather conditions or in trading markets (energy markets,
stock markets, etc).
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Note that a combination of the two scenarios is also possible in
the case where the dynamics may be simulated but where the
dependence on an exogenous time series is only accessible via limited
data. That is the scenario we will discuss in the microgrids setting in
Chapter 6.

In order to deal with the ’reality gap’ between the simulation and
the actual environment (difficulty 1 from above), different elements
are important:

• One can aim to develop a simulator that is as accurate as
possible.

• One can design the learning algorithm so as to improve gen-
eralization and/or use transfer learning methods (see Section
2.4.1).

2.7 open-source software for deep rl : deer

A general schema of the different elements that can be found in
most deep RL algorithms (not applicable to inverse RL or imitation
learning) is provided in Figure 2.15.

Policies
Exploration/Exploitation

dilemna

• directed explortion

• undirected exploration

Controllers
• train/validation

and test phases

• hyper-parameters

management

Replay memory
• prioritized sampling

Learning
algorithms

Value-based RL

Policy-based RL

Model-based RL

Function
Approximators

• Convolutions

• Recurrent cells

• ...

ENVIRONMENT

AGENT

Figure 2.15: General schema of deep RL methods.

Many frameworks already exist for RL. Here is a list of some well-
known that use python:

• RL-Glue [Tanner and White, 2009] provides a standard interface
that allows to connect RL agents, environments, and experiment
programs together.
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• PyBrain [Schaul et al., 2010] Machine learning library focused
on neural networks with some RL support

• RLPy [Geramifard et al., 2015] is a framework focused on RL
based on value-function using linear function approximation
with discrete actions.

In the context of this thesis, DeeR has been developed. The library
combines out of the box RL and neural networks (similarly to
PyBrain). Particular elements unique to the DeeR framework are
emphasized here:

• It provides access to policy-based methods and value-based
methods that are readily available in the library (with advanced
techniques such as Double Q-learning and prioritized experi-
ence replay).

• It provides a general framework where the observation is made
up of any number of elements: scalars, vectors and frames. The
observations history that the agent is based on to build the
Q-function or the policy is made up of any truncated history
of each element provided in the observation (see Chapter 3

for more information on why it may be interesting to use a
truncated history of observations).

• It allows to easily add up a validation phase that allows to stop
the training process before overfitting. This possibility is useful
when the environment is dependent on scarce data (e.g., limited
time series).

The DeeR framework is built on top of the ongoing effort in deep
learning to provide an effective open-source eco-system. The objective
of DeeR is to maintain an interface that is (1) easily accessible to
anyone willing to start using existing algorithms, and (2) efficient
and modular for researchers.

The source code is available at https://github.com/VinF/deer.
The documentation is available at http://deer.readthedocs.io/.

2.8 conclusion

The important developments in the field of deep learning have
contributed to many new avenues when RL methods and deep
learning are combined. In particular, it has been emphasized that
deep learning has brought its generalization capabilities making
possible to work with large, high-dimensional state and/or action
spaces. An overview of the tremendous development in this field both
in terms of applications and algorithmic developments has also been
provided.

https://github.com/VinF/deer
http://deer.readthedocs.io/
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3B I A S - O V E R F I T T I N G I N B AT C H R E I N F O R C E M E N T
L E A R N I N G W I T H PA RT I A L O B S E RVA B I L I T Y

3.1 introduction

This chapter is dedicated to sequential decision-making problems
that may be modeled as Markov Decision Processes for which the sys-
tem dynamics may be partially observable, a class of problems often
called Partially Observable Markov Decision Processes (POMDPs).
Within this setting, we focus on decision-making strategies computed
using RL. RL approaches rely on observations gathered through inter-
actions with the (PO)MDP, and, although most RL approaches have
strong convergence properties, classic RL approaches are challenged
by data scarcity. When acquisition of new observations is possible (the
“online” case), data scarcity is gradually phased out using strategies
balancing the exploration / exploitation (E/E) tradeoff. The scientific
literature related to this topic is vast; in particular, Bayesian RL tech-
niques [Ross et al., 2011; Ghavamzadeh et al., 2015] offer an elegant
way of formalizing the E/E tradeoff.

However, such E/E strategies are not applicable when the acquisi-
tion of new observations is not possible anymore (the “batch” setting).
Within this context, we propose to revisit RL as a learning paradigm
that faces, similarly to supervised learning, a tradeoff between simul-
taneously minimizing two sources of error: an asymptotic bias and an
overfitting error. The asymptotic bias (also simply called bias in the
following) directly relates to the choice of the RL algorithm (and its
parameterization). Any RL algorithm defines a policy class as well as
a procedure to search within this class, and the bias may be defined
as the performance gap between best candidate optimal policies and
actual optimal policies. This bias does not depend on the set of obser-
vations. On the other hand, overfitting is an error term induced by the
fact that only a limited amount of data is available to the algorithm
that may potentially overfit suboptimal policies. This overfitting error
vanishes as the size and the quality of the dataset increase.

In this chapter, we focus on studying the interactions between
these two sources of error, in a setting where the system dynamics
is partially observable. Due to this particular setting, one needs to
build a state representation from a history of data. By increasing
the cardinality of the state representation, the algorithm may be
provided with a more informative representation of the POMDP,
but at the price of simultaneously increasing the size of the set of
candidate policies, thus also increasing the risk of overfitting. We
analyze this tradeoff in the case where the RL algorithm provides
an optimal solution to the frequentist-based MDP associated with
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the state representation (independently of the method used by the
learning algorithm to converge towards that solution). Our analysis
relies on expressing the quality of a state representation by bounding
L1 error terms of the associated belief states, thus defining ε-sufficient
statistics in the hidden state dynamics.

Experimental results illustrate the theoretical findings on a distri-
bution of POMDPs in the case where the state representations are
truncated histories of observations. In particular, we illustrate the link
between the variance observed when dealing with different datasets
(directly linked to the size of the dataset) and overfitting, where the
link is that variance leads to overfitting if we have a (too) large feature
space.

We also discuss and illustrate how using function approximators
and adapting the discount factor play a role in the tradeoff between
bias and overfitting. This provides the reader with an overview of key
elements involved in this tradeoff.

The remainder of the chapter is organized as follows. Section
3.2 formalizes POMDPs, (limited) sets of observations and state
representations. Section 3.3 details the main contribution of this
chapter: an analysis of the bias-overfitting tradeoff in batch POMDPs.
Section 3.4 empirically illustrates the main theoretical results, while
Section 3.5 concludes.

3.2 formalization

We consider a discrete-time POMDP model M defined as follows:

Definition 3.1 A POMDP is a 7-tuple (S,A, T ,R,Ω,O,γ) where:

• S is a finite set of states {1, . . . ,NS},

• A is a finite set of actions {1, . . . ,NA},

• T : S×A× S → [0, 1] is the transition function (set of conditional
transition probabilities between states),

• R : S×A×S→ R is the reward function, where R is a continuous set
of possible rewards in a range Rmax ∈ R+ (e.g., [0,Rmax] without
loss of generality),

• Ω is a finite set of observations {1, . . . ,NΩ},

• O : S×Ω → [0, 1] is a set of conditional observation probabilities,
and

• γ ∈ [0, 1) is the discount factor.

The environment starts in a distribution of initial states b(s0). At
each time step t ∈ N0, the environment is in a state st ∈ S. At the
same time, the agent receives an observation ωt ∈ Ω which depends
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on the state of the environment with probability O(st,ωt) and the
agent has to take an action at ∈ A. Then, the environment transitions
to state st+1 ∈ S with probability T(st,at, st+1) and the agent
receives a reward rt ∈ R equal to R(st,at, st+1). In this chapter, the
conditional transition probabilities T , the reward function R and the
conditional observation probabilitiesO are unknown (which prevents
using methods such as [Pineau et al., 2003]). The only information
available to the agent is the past experience gathered while interacting
with the POMDP.

3.2.1 Processing a history of data

Policies considered in this chapter are mappings from (a set of)
observation(s) into actions. In that context, a naive approach to build
a space of candidate policies is to consider the set of mappings
taking only the very last observation(s) as input. However, in a
POMDP setting, this leads to candidate policies that are likely not
rich enough to capture the system dynamics, thus suboptimal [Singh
et al., 1994; Wolfe, 2006]. there is no alternative to using a history
of previously observed features Ht ∈ H to better estimate the hidden
state dynamics (see Figure 3.1). We denote by Ht = Ω× (A×R×Ω)t

the set of histories observed up to time t for t ∈ N0, and by

H =
∞⋃
t=0

Ht the space of all possible observable histories.

s0 s1 s2

ω0 ω1 ω2

H0 H1 H2

a0 a1 a2r0 r1

. . .

Policy Policy

Hidden
dynamics

Policy

Figure 3.1: Illustration of a POMDP.

A straightforward approach is to take the whole history Ht ∈ H

as input of candidate policies [Braziunas, 2003]. However, taking
a too long history may have several drawbacks. Indeed, increasing
the size of the set of candidate optimal policies generally implies:
(i) more computation to search within this set [Singh et al., 1994;
McCallum, 1996] and (ii) an increased risk of including candidate
policies suffering overfitting (see Section 3.3). In this chapter, we are
specifically interested in minimizing the latter overfitting drawback
while keeping an informative state representation.
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We define a mapping φ : H → φ(H), where φ(H) = {φ(H)|H ∈ H}

is of finite cardinality |φ(H)|. Note that a mapping φ(·) induces an up-
per bound on the number of candidate policies: |Πφ(H)| 6 |A||φ(H)|.

Definition 3.2 The belief state b(s|Ht) (resp. bφ (s|φ(Ht))) is defined as
the vector of probabilities where the ith component (i ∈ {1, . . . ,NS}) is given
by P(st = i | Ht) (resp. P(st = i | φ(Ht))), for all sequences Ht ∈ H.

Definition 3.3 A mapping φ0 : H → φ0(H) is a particular mapping φ
such that φ0(H) is a sufficient statistic for the POMDP M:

P(st | Ht) = P(st | φ0(Ht)), (3.1)

for all states st ∈ S and for all sequences Ht ∈ H.

Note that P(st|φ(H)) is a well-defined probability distribution even
if φ(H) is not a sufficient statistic in the case where we consider a
well-defined probability distribution of H.

Definition 3.4 A mapping φε : H → φε(H) is a particular mapping φ
such that φε(H) is an ε-sufficient statistic for the POMDP M that satisfies
the following condition with ε > 0 and with the L1 norm:

‖bφε(·|φε(Ht)) − b(·|Ht)‖16 ε, (3.2)

for all sequences Ht ∈ H.

3.2.2 Working with a limited dataset

Let M(S,A,Ω,γ) be a set of POMDPs with fixed S, A, Ω, and
γ. For any M(T ,R,O) ∈ M, we denote by DM,πs,Ntr,Nl a random
dataset generated according to a probability distribution DM,πs,Ntr,Nl
over the set of Ntr (unordered) trajectories of length Nl. One such
trajectory is defined as the observable history HNl ∈ HNl obtained in
M when starting from s0 and following a stochastic sampling policy
πs that ensures a non-zero probability of taking any action given an
observable history H ∈ H. For simplicity we will denoteDM,πs,Ntr,Nl ,
simply as D. For the purpose of the analysis, we also introduce
the asymptotic dataset D∞ = DM,πs,Ntr→∞,Nl→∞ that would be
theoretically obtained in the case where one could generate an infinite
number of observations (Ntr →∞ and Nl →∞).

In this chapter, the algorithm cannot generate additional data. The
challenge is to determine a high-performance policy (in the actual
environment) while having only access to a fixed dataset D.

3.2.3 Assessing the performance of a policy

In this chapter, we will consider stationary and deterministic control
policies π ∈ Π : φ(H) → A. Any particular choice of φ induces a
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particular definition of the policy space Π. We introduce VπM(φ(H))

with H ∈ H as the expected return obtained over an infinite time
horizon when the system is controlled using policy π in the POMDP
M:

VπM(φ(H)) = E

[ ∞∑
k=0

γkrt+k|φ(Ht) = φ(H),π,b(s0)

]
, (3.3)

where P
(
st+1|st,π(φ(Ht))

)
= T(st,π(φ(Ht)), st+1) and

rt = R
(
st,π(φ(Ht)), st+1

)
.

Note that Equation 3.3 is well defined even if φ(H) is not a
sufficient statistic at the condition that P(st|φ(H)) is a well-defined
probability distribution.

Let π∗ be an optimal policy in M defined as:

π∗ ∈ argmax
π:φ0(H)→A

VπM(φ0(H0)), (3.4)

where H0 is the distribution of initial observations (compatible
with the distribution b(s0) of initial states through the conditional
observation probabilities). Note that, as it will become clear in the
following, the definition of π∗ is the same as it is usually defined in
a POMDP (when known T ,R and O and known initial belief state),
such as in [Sondik, 1978].

3.3 bias-overfitting in rl with partial observability

Importance of the feature space

This section introduces and analyzes a bias-overfitting decomposition
of the performance gap of RL policies computed from the frequentist-
based augmented MDP built from the dataset D. In that setting,
the agent behaves optimally with respect to the maximum-likelihood
model estimated from the data under the chosen abstraction, which
allows removing from the analysis how the RL algorithm converges.
Let us first define the frequentist-based augmented MDP:

Definition 3.5 With M defined by (S,A, T ,R,Ω,O,γ) and the dataset
D built from interactions with M while following a policy πs, the
frequentist-based augmented MDP M̂D,φ also denoted for simplicity
M̂D = (Σ, A, T̂ , R̂, Γ) is defined with:

• the state space: Σ = φ(H),

• the action space: A = A,

• the estimated transition function: for σ,σ ′ ∈ Σ and a ∈ A, T̂(σ,a,σ ′)
is the number of times we observe the transition (σ,a)×σ ′ → [0, 1] in
D divided by the number of times we observe (σ,a); if any (σ,a) has
never been encountered in a dataset, we set T̂(σ,a,σ ′) = 1/|Σ|,∀σ ′,
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• the estimated reward function: for σ,σ ′ ∈ Σ and a ∈ A, R̂(σ,a,σ ′)
is the mean of the rewards observed at (σ,a,σ ′); if any (σ,a,σ ′) has
never been encountered in a dataset, we set R̂(σ,a,σ ′) to the average
of rewards observed over the whole dataset D, and

• the discount factor Γ 6 γ.

By definition of φ0 and as long as φ = φ0, the asymptotic
frequentist-based MDP (when unlimited data is available) actually
gathers the relevant information from the actual POMDP. Indeed,
in the model-based context when the POMDP dynamics is known
(i.e., T ,R,O), the knowledge of Ht allows calculating the belief state
b(st|Ht) (calculated recursively thanks to the Bayes rule based on
b(st|Ht) = P (st|ωt,at,b(st−1|Ht−1))). It is then possible to define,
from the history H ∈ H and for any action a ∈ A, the expected
immediate reward as well as a transition function into the next
observation ω ′:

• Rmodel−based(H,a) =
∑
s ′∈S
∑
s∈S b(s|H)T(s,a, s ′)R(s,a, s ′),

and

• Tmodel−based(H,a,ω ′) =
∑
s ′∈S
∑
s∈S

b(s|H)T(s,a, s ′)︸ ︷︷ ︸
next belief state

O
(
s ′,ω ′

)
.

In the frequentist approach, this information is actually estimated
from interactions with the POMDP in R̂ and T̂ without any explicit
knowledge of the dynamics of the POMDP.

We introduce Vπ
M̂D

(σ) with σ ∈ Σ as the expected return obtained
over an infinite time horizon when the system is controlled using a
policy π s.t. at = π(σt) : Σ→ A,∀t in the augmented decision process
M̂D:

Vπ
M̂D

(σ) = E

[ ∞∑
k=0

Γkr̂t+k|σt = σ,π,b(s0)

]
, (3.5)

where r̂t is a reward s.t. r̂t = R̂(σt,at,σt+1) and the dynamics is
given by P(σt+1|σt,at) = T̂(σt,at,σt+1).

Definition 3.6 The frequentist-based policy πD,φ is an optimal policy of
the augmented MDP M̂D defined as: πD,φ ∈ argmax

π:Σ→A
Vπ
M̂D

(σ0) where

σ0 = φ(H0).
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s(0)

s(1)

s(2)

r = 0

r = 1

r = 1

r = 0

Same
observation

Figure 3.2: Example of a POMDP that illustrates the importance of πs:
at each time step, the agent can choose between action 1

(dashed line) and 2 (solid line). In states s(1) and s(2), the
agent obtains the same observation. An agent that would only
rely on the current observation (such that it can’t discriminate
between s(1) or s(2)) would have its policy heavily impacted
depending on πs used to build the dataset D because it changes
the occupancy distribution of states for each observation. In
this case, depending if πs visits s(1) more often than s(2),
the recommended action when visiting those states would be
different.

Let us now decompose the error of using a frequentist-based policy
πD,φ:

E
D∼D

[
Vπ

∗
M (φ0(H)) −V

πD,φ
M (φ(H))

]
=(

Vπ
∗
M (φ0(H)) − V

πD∞ ,φ
M (φ(H))

)
︸ ︷︷ ︸

bias function of dataset D∞ (function of πs)
and frequentist-based policy πD∞ ,φ (function of φ and Γ )

+ E
D∼D

[
V
πD∞ ,φ
M (φ(H)) − V

πD,φ
M (φ(H))

]
︸ ︷︷ ︸

overfitting due to finite dataset D (function of πs, Nl, Ntr)
in the context of frequentist-based policy πD,φ (function of φ and Γ )

(3.6)

The term bias actually refers to an asymptotical bias when the size
of the dataset tends to infinity while the term overfitting refers to the
expected suboptimality due to a finite size of the dataset.

The role of the sampling policy πs is illustrated in Figure 3.2.
Selecting carefully the feature space φ(H) allows building a class

of policies that have the potential to accurately capture information
from data (low bias), but also generalize well (low overfitting).
On the one hand, using too many non-informative features will
increase overfitting, as stated in Theorem 3.2. On the other hand,
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a mapping φ(H) that discards useful available information will
suffer an asymptotic bias, as stated in Theorem 3.1 (arbitrarily large
depending on the POMDP and on the features discarded).

Theorem 3.1 Let M be a POMDP described by the 7-tuple
(S,A, T ,R,Ω,O,γ). Let M̂D∞ be an augmented MDP (Σ, A, T̂ , R̂, Γ = γ)

estimated, according to Definition 3.5, from a dataset D∞. Then the
asymptotic bias can be bounded as follows:

max
H∈H

(
Vπ

∗
M (φ0(H)) − V

πD∞ ,φ
M (φ(H))

)
6
2εRmax

(1− γ)3
, (3.7)

where ε is such that the mapping φ respects the conditions to be φε.

The proof is deferred to Appendix 3.6.1. This bound is an original
result based on the belief states (which was not considered in
other works) via the ε-sufficient statistic (L1 norm error). Note that
bisimulation metrics ([Ferns et al., 2004]) may also be used to take
into account how the errors on the belief states may have less of an
impact at the condition that the hidden states affected by these errors
are close according to the bisimulation metrics.

We now provide a bound on the overfitting error that monotoni-
cally grows with |φ(H)|.

Theorem 3.2 Let M be a POMDP described by the 7-tuple
(S,A, T ,R,Ω,O,γ). Let M̂D be an augmented MDP (Σ, A, T̂ , R̂, Γ = γ)

estimated, according to Definition 3.5, from a datasetD with the assumption
that D has n transitions from any possible pair (φ(H),a) ∈ (φ(H), A).
Then the overfitting due to using the frequentist-based policy πD,φ instead
of πD∞,φ in the PODMP M can be bounded as follows:

max
H∈H

(
V
πD∞ ,φ
M (φ(H)) − V

πD,φ
M (φ(H))

)
6
2Rmax

(1− γ)2

√
1

2n
ln

(
2|φ(H)||A|1+|φ(H)|

δ

)
,

(3.8)

with probability at least 1− δ.

The proof is deferred to Appendix 3.6.2. Theorem 3.2 shows that
using a large set of features allows a larger policy class, hence
potentially leading to a stronger drop in performance when the
available dataset D is limited (the bound decreases proportionally
to 1√

n
). A theoretical analysis in the context of MDPs with a finite

dataset was performed in [Jiang et al., 2015a].
Overall Theorems 3.1 and 3.2 can help to choose a good state

representation for POMDPs as they provide bounds on the two
terms that appear in the bias-overfitting decomposition of Equation
3.6. For example, an additional feature in the mapping φ has an
overall positive effect only if it provides a significant increase of
information on the belief state (i.e., if it allows obtaining a more
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accurate knowledge of the underlying state of the MDP defined by
T and R when given φ(H)). This increase of information must be
significant enough to compensate for the additional risk of overfitting
when choosing a large cardinality of φ(H). Note that one could
combine the two bounds to theoretically define an optimal choice of
the state representation with lower bound guarantees regarding the
bias-overfitting tradeoff.

However, as the two bounds are loose, it is not at all assured that a
general and efficient algorithm can result directly from these bounds
in practice. Here are two examples that illustrate how these bounds
will be more or less loose depending on the problem:

• One can consider a problem where a given φε provides in fact
sufficient statistics in a large part of the history space H. In that
case, the bound on the bias would a priori be very loose.

• One can consider a problem where one or several of the
features given by φ(H) are duplicates of other features (or
even linear combinations of other features). In that case, the
overfitting bound will be higher due to these additional features,
even though the actual risk of overfitting does not increase as
compared to the problem where these features are removed.

Importance of function approximators

As described earlier, a straightforward mapping φ(·) may be obtained
by discarding a few features from the observable history. However,
it is often more efficient to rely on a smarter processing of the
features by selecting a suitable function approximator structure (e.g.,
in a Q-learning scheme) that constrains policies to have interesting
generalization properties. This analysis can be captured in a theorem
similar to Theorem 3.2 which takes into account the complexity of the
function approximator and uses the Rademacher complexity measure
in order to provide a bound potentially much tighter:

Theorem 3.3 Let M be a POMDP described by the 7-tuple
(S,A, T ,R,Ω,O,γ). Let M̂D be an augmented MDP (Σ, A, T̂ , R̂, Γ = γ)

estimated, according to Definition 3.5, from a datasetD with the assumption
that D has n transitions from any possible pair (φ(H),a), a ∈ A. Then the
overfitting due to using the frequentist-based policy πD,φ instead of πD∞,φ
in the PODMP M can be bounded as follows:

max
H∈H

(
V
πD∞ ,φ
M (φ(H)) − V

πD,φ
M (φ(H))

)
6

2

1− γ

(
2 max
ϕ∈φ(H),a∈A

R̂Dϕ,a(FM,φ)

+3
Rmax

1− γ

√
1

2n
ln
(
4|φ(H)||A|

δ

) )
, (3.9)

with probability at least 1− δ, where
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• FM,φ = {fπM,φ : π ∈ φ(H) → A}, with fπM,φ(r,ϕ
′) = r +

γVπM(ϕ ′), and

• R̂Dϕ,a(FM,φ) is the empirical Rademacher complexity of the function
class FM,φ with respect to input points Dϕ,a:

E
σi∼unif{−1,1}
i=1,...,n

 sup
f∈FM,φ

1

n

∑
(r,ϕ ′)∈Dϕ,a

σif(r,ϕ ′)


where Dϕ,a is the set of n pairs of immediate reward r and next-state
representation ϕ ′ sampled from (ϕ,a) in dataset D.

The proof is deferred to Appendix 3.6.3.
It is worth noting that in the case of neural networks, architectures

such as convolutional layers or recurrency are particularly well-suited
to deal with a large input space because they offer interesting gen-
eralization properties that are adapted to high-dimensional sensory
inputs for which hierarchical patterns can be found [LeCun et al.,
2015]. A few recent successes make use of convolutional layers [Mnih
et al., 2015] and/or recurrent layers [Hausknecht and Stone, 2015]
(e.g., LSTMs [Hochreiter and Schmidhuber, 1997]) to solve large scale
POMDPs.

Importance of the discount factor Γ used in the training phase:

Artificially lowering the discount factor has been shown to improve
the performance of the policy when solving MDPs with limited
data [Petrik and Scherrer, 2009; Jiang et al., 2015b]. In the partially
observable setting, these results may be transferred to the frequentist-
based MDP (Σ, A, T̂ , R̂, Γ).

Selection of the parameters with validation or cross-validation to balance the
bias-overfitting tradeoff

In the batch setting case, the selection of the policy parameters to
effectively balance the bias-overfitting tradeoff can be done similarly
to that in supervised learning (e.g., cross-validation) as long as
the performance criterion can be estimated from a subset of the
trajectories from the dataset D not used during training (validation
set). One possibility is to fit an MDP model from data via the
frequentist approach (or regression), and evaluate the policy against
the model. Another approach is to use the idea of importance
sampling [Precup, 2000]. A mix of the two approaches can be found in
[Jiang and Li, 2016; Thomas and Brunskill, 2016]. Another approach
is to perform a policy evaluation based solely on a set of tuples with
techniques based on Lipschitz continuity assumptions on the system
dynamics, which are in described in [Fonteneau et al., 2010].

Note that there exists a particular case where the system is
modeled through a dynamics that is available to the agent but with
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a dependence on an exogenous time series (e.g., trading, weather-
dependent dynamics) for which the agent only has finite data. In
that case, the exogenous signal can be broken down so as to allow a
validation strategy, as done in Chapter 6.

3.4 experiments

3.4.1 Protocol

We randomly sample NP POMDPs such that NS = 5, NA = 2 and
NΩ = 5 (except when stated otherwise) from a distribution P that we
refer to as Random POMDP. The distribution P is fully determined by
specifying a distribution over the set of possible transition functions
T(·, ·, ·), a distribution over the set of reward functions R(·, ·, ·),
and a distribution over the set of possible conditional observation
probabilities O(·, ·).

Random transition functions T(·, ·, ·) are drawn by assigning, for
each entry (s,a, s ′), a zero value with probability 3/4, and, with
probability 1/4, a non-zero entry with a probability drawn uniformly
in [0, 1]. For all (s,a), if all T(s,a, s ′) are zeros, we enforce one non-
zero value for a random s ′ ∈ S. Values are normalized.

Random reward functions are generated by associating to all
possible (s,a, s ′) a reward sampled uniformly and independently
from [−1, 1].

Random conditional observation probabilities O(·, ·) are generated
the following way: the probability to observe o(i) when being in
state s(i) is equal to 0.5, while all other values are chosen uniformly
randomly so that it is normalized for any s.

For all POMDPs, we fixed γ = 1 and Γ = 0.95 if not stated
otherwise and we truncate the trajectories to a length of Nl = 100

time steps.
For each generated POMDP P ∼ P, we generate 20 datasets D ∈ DP

where DP is a probability distribution over all possible sets of n
trajectories (n ∈ [2, 5000]); where each trajectory is made up of an
history H100 of 100 time steps, when starting from an initial state
s0 ∈ S while taking uniformly random decisions. Each dataset D
induces a policy πD,φ, and we want to evaluate the expected return
of this policy while discarding the variance related to the stochasticity
of the transitions, observations and rewards. To do so, policies are
tested with 1000 rollouts of the policy. For each POMDP P, we are
then able to get an estimate of the average score µP which is defined
as:

µP = E
D∼DP

E
rollouts

[
Nl∑
t=0

γtrt|s0,πD,φ

]
. (3.10)
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We are also able to get an estimate of a parametric variance σ2P defined
as:

σ2P = var
D∼DP

E
rollouts

[
Nl∑
t=0

γtrt|s0,πD,φ

]
. (3.11)

3.4.2 History processing

In this section, we show experimentally that any additional feature
is likely to reduce the asymptotic bias, but may also increase the
overfitting. For each dataset D, we define the policy πD,φ according
to Definition 3.6 for every history of interest h ∈ {1, 2, 3}. When
h = 1 (resp. h = 2) (resp. h = 3), only the current observation (resp.
the last two observations as well as the last action) (resp. the three last
observations and the two last actions) is (resp. are) used for building
the state of the frequentist-based augmented MDP.
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Figure 3.3: Evolution (as a function of the size of the dataset) of estimated
values of E

P∼P
µP ± E

P∼P
σP computed from a sample of NP = 50

POMDPs drawn from P. The bars are used to represent the
variance observed when dealing with different datasets drawn
from a distribution; note that this is not a usual error bar.

The values E
P∼P

µP and E
P∼P

σP are displayed in Figure 3.3. One

can observe that a small set of features (small history) appears to
be a better choice (in terms of total bias) when the dataset is poor
(only a few trajectories). With an increasing number of trajectories,
the optimal choice in terms of number of features (h = 1, 2 or 3)
also increases. In addition, one can also observe that the expected
variance of the score decreases as the number of samples increases.
As the variance decreases, the risk of overfitting also decreases, and it
becomes possible to target a larger policy class (using a larger feature
set).

The overfitting error is also linked to the variance of the value func-
tion estimates in the frequentist-based MDP. When these estimates
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have a large variance, an overfitting term appears because of a higher
chance of picking one of the suboptimal policies (when using Defi-
nition 3.6), as illustrated in Figure 3.4. Note that this variance term
has already been studied in the context of estimating value functions
in finite MDPs using frequentist approximations of the parameters of
the MDPs (R̂ and T̂ ) [Mannor et al., 2007].
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Figure 3.4: Illustrations of the return estimates in the augmented MDP M̂D
(h = 2) for three different policies. The policies are selected
specifically for illustration purpose based on the criterion VπDM ;
the best performing (in green), the worst performing (in red) and
the median performing were selected in a set of 50 policies built
when D ∼ D has 5 trajectories of data from the actual POMDP.
On the actual POMDP, the expected returns are V

π1
M = 28,

V
π2
M = 33, Vπ3M = 42 (in general, these values need not be the

same as the expected value of the probability distribution in the
two graphs).

3.4.3 Function approximator and discount factor

We also illustrate the effect of using function approximators on the
bias-overfitting tradeoff. To do so, we process the output of the state
representation φ(·) into a deep Q-learning scheme (technical details
are given in appendix 3.6.4). We can see in Figure 3.5 that Deep Q-
learning policies suffer less overfitting (better performance in the low
data regime) while avoiding introducing an important asymptotic
bias (identical performance when lots of data is available). Note that
the variance is slightly larger than in Figure 3.3, and does not vanish
to 0 with additional data. This is due to the additional stochasticity
induced when building the Q-value function with neural networks
(note that when performing the same experiments while taking the
average recommendation of several Q-value functions, this variance
decreases with the number of Q-value functions).
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Figure 3.5: Evolution (as a function of the size of the dataset) of estimated
values of E

P∼P
µP ± E

P∼P
σP computed from a sample of NP = 50

POMDPs drawn from P (same as Figure 3.3) with neural network
as a function approximator. The bars are used to represent the
variance observed when dealing with different datasets drawn
from a distribution; note that this is not a usual error bar.

Finally, we empirically illustrate in Figure 3.6 the effect of the
discount factor. When a training discount factor is lower than the one
used in the actual POMDP (Γ < γ), there is an additional bias term,
while when a high discount factor is used with a limited amount
of data, overfitting increases. In our experiments, the influence of
the discount factor is more subtle as compared to the impact of the
state representation and the function approximator. The influence is
nonetheless clear: it is better to have a low discount factor when only
a few data is available, and it is better to have a high discount factor
when a lot of data is available.

101 102 103

Number of training trajectories

5

10

15

20

25

30

35

40

45

Av
er

ag
e 

sc
or

e 
pe

r e
pi

so
de

 a
t t

es
t t

im
e

random policy score

optimal policy score assuming 
 access to the true state

= 0.5
= 0.8
= 0.95

Figure 3.6: Evolution in the frequentist-based case (as a function of the size
of the dataset) of estimated values of E

P∼P
µP ± E
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σP computed

from a sample of NP = 10 POMDPs drawn from P with NS = 8
and NΩ = 8 (h = 3). The bars are used to represent the variance
observed when dealing with different datasets drawn from a
distribution; note that this is not a usual error bar.
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3.5 conclusion and future works

This chapter discusses the bias-overfitting tradeoff of batch RL
algorithms in the context of POMDPs. We propose an analysis
showing that, similarly to supervised learning techniques, RL may
face a bias-overfitting dilemma in situations where the policy class
is too large compared to the batch of data. In such situations, we
show that it may be preferable to concede an asymptotic bias in
order to reduce overfitting. This (favorable) asymptotic bias may
be introduced through different manners: (i) downsizing the state
representation, (ii) using specific types of function approximators and
(iii) lowering the discount factor.

The originality of the setting proposed in this chapter compared
to [Maillard et al., 2011; Ortner et al., 2014] and the related work is
mainly to formalize the problem in a batch setting (limited set of
tuples) instead of the online setting. As compared to [Jiang et al.,
2015b], the originality is to consider a partially observable setting.

The work proposed in this chapter may also be of interest in on-
line settings because at each stage, obtaining a performant policy
from given data is part of the solution to an efficient exploration/-
exploitation tradeoff. For instance, this sheds lights on the interest of
progressively increasing the discount factor (which will be discussed
in the next chapter). Besides, optimizing the bias-overfitting tradeoff
suggests to dynamically (along learning) adapt the feature space and
the function approximator (e.g., through ad hoc regularization, or
by adapting the neural network architecture, using for instance the
NET2NET transformation [Chen et al., 2015]).

3.6 appendix

3.6.1 Proof of Theorem 3.1

Sketch of the proof

The idea of this proof is to consider two different histories that lead
to the same ε-sufficient statistic. We then show that the belief state
of these two histories (knowing the full histories or the sufficient
statitics) is bounded in L1 norm linearly with ε (which is subsequent
to our definition of the ε-sufficient statistics). In that context we can
calculate a bound on the optimal Q-value function when faced with
those two histories. Using the Lemma 1 from [Abel et al., 2016], the
theorem follows.
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In the frequentist-based MDP M̂D∞,φ0(Σ0, A, T̂ , R̂, Γ = γ), for H ∈ H,
let us define

Q
πD∞ ,φ0
M̂D∞ ,φ0

(φ0(H),a) =

R̂ ′(φ0(H),a) + γ
∑

ϕ∈φ0(H)

T̂(φ0(H),a,ϕ)V
πD∞ ,φ0
M̂D∞ ,φ0

(ϕ)

where R̂ ′(φ0(H),a) =
∑
ϕ∈φ0(H) T̂(φ0(H),a,ϕ)R̂(φ0(H),a,ϕ). Then

∀H(1),H(2) ∈ H: φε(H(1)) = φε(H
(2)), it follows that

max
H(1),H(2),a

∣∣∣∣QπD∞ ,φ0
M̂D∞ ,φ0

(φ0(H
(1)),a) −Q

πD∞ ,φ0
M̂D∞ ,φ0

(φ0(H
(2)),a)

∣∣∣∣
= max
H(1),H(2),a

∣∣∣R̂ ′(φ0(H(1)),a) − R̂ ′(φ0(H(2)),a) + γ∑
ϕ∈φ0(H)

(
T̂(φ0(H

(1)),a,ϕ) − T̂(φ0(H(2)),a,ϕ)
)
V
πD∞ ,φ0
M̂D∞ ,φ0

(ϕ)
∣∣∣

History space H

Space of the
ε-sufficient statistics

Belief space

φε(H)

b(· | H)
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b(s | H(1))
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‖·‖1 6 2ε

φε(H
(1)) = φε(H
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Figure 3.7: Illustration of the φε mapping and the belief for H(1),H(2) ∈ H:
φε(H

(1)) = φε(H
(2)).

As illustrated in Figure 3.7 and by using the definition of the ε-
sufficient statistics, we have∥∥∥b(· | H(1)) − b(· | H(2))

∥∥∥
1
=
∥∥∥b(· | H(1)) − bφε

(
· | φε(H(1))

)
+bφε

(
· | φε(H(2))

)
− b(· | H(2))

∥∥∥
1

6
∥∥∥b(· | H(1)) − bφε

(
· | φε(H(1))

)∥∥∥
1

+
∥∥∥bφε (· | φε(H(2))

)
− b(· | H(2))

∥∥∥
1

62ε,
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which has the consequence that

max
H(1),H(2),a

∣∣∣R̂ ′(φ0(H(1)),a) − R̂ ′(φ0(H(2)),a)
∣∣∣ 6 εRmax

It follows that:

max
H(1),H(2),a

∣∣∣∣QπD∞ ,φ0
M̂D∞ ,φ0

(φ0(H
(1)),a) −Q

πD∞ ,φ0
M̂D∞ ,φ0

(φ0(H
(2)),a)

∣∣∣∣
6 εRmax + γ max

H(1),H(2),a∑
ϕ∈φ0(H)

∣∣∣∣(T̂(φ0(H(1)),a,ϕ) − T̂(φ0(H(2)),a,ϕ)
)
V
πD∞ ,φ0
M̂D∞ ,φ0

(ϕ)

∣∣∣∣
= εRmax + γε

Rmax

1− γ
= ε

Rmax

1− γ

where the last line is obtained by noticing that the transition functions
are always normalized such that∑

ϕ∈φ0(H)

(
T̂(φ0(H

(1)),a,ϕ) − T̂(φ0(H(2)),a,ϕ)
)
= 0

and that

0 6 max
ϕ∈φ0(H)

∣∣∣∣VπD∞ ,φ0
M̂D∞ ,φ0

(ϕ)

∣∣∣∣ 6 Rmax

1− γ
,

with R ∈ [0,Rmax].
Applying Lemma 1 from [Abel et al., 2016], we obtain:∥∥∥∥Vπ∗D∞ ,φ0

MD∞ ,φ0
−V

π∗D∞ ,φε
MD∞ ,φ0

∥∥∥∥∞ 6
2εRmax1−γ

(1− γ)2
=
2εRmax

(1− γ)3
.

By further noticing that the dynamics provided by M̂D∞,φ0 and M
when starting in s0 provide an identical value function for a given
policy πD,φ and that πD∞,φ0 ∼ π∗, thus Vπ

∗
M = V

πD∞ ,φ0
M , the theorem

follows.

3.6.2 Proof of Theorem 3.2

Sketch of the proof

The idea of the proof is first to bound the difference between value
functions following different policies by a bound between value
functions estimated in different environments but following the
same policy (more precisely a max over a set of policies of such a
bound). Once that is done, a bound in probability using Hoeffding’s
inequality can be obtained.
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Let us denote ϕ ∈ φ(H):

V
πD∞ ,φ
M (ϕ) − V

πD,φ
M (ϕ) =(V

πD∞ ,φ
M (ϕ) −V

πD∞ ,φ

M̂D
(ϕ))

− (V
πD,φ
M (ϕ) −V

πD,φ

M̂D
(ϕ))

+ (V
πD∞ ,φ

M̂D
(ϕ) −V

πD,φ

M̂D
(ϕ))

6 (V
πD∞ ,φ
M (ϕ) −V

πD∞ ,φ

M̂D
(ϕ))

− (V
πD,φ
M (ϕ) −V

πD,φ

M̂D
(ϕ))

6 2 max
π∈{πD∞ ,φ,πD,φ}

∣∣∣VπM(ϕ) −Vπ
M̂D

(ϕ)
∣∣∣ .

It follows that ∀H,

V
πD∞ ,φ
M (ϕ) − V

πD,φ
M (ϕ)

62 max
π∈{πD∞ ,φ,πD,φ}

max
ϕ∈φ(H)

∣∣∣QπM(ϕ,π(ϕ)) −Qπ
M̂D

(ϕ,π(ϕ))
∣∣∣

62 max
π∈{πD∞ ,φ,πD,φ}

max
ϕ∈φ(H),a∈A

∣∣∣QπM(ϕ,a) −Qπ
M̂D

(ϕ,a)
∣∣∣ ,

where QπM(ϕ,a) is the action-value function for policy π in M with
a ∈ A. Similarly Qπ

M̂
(ϕ,a) is the action-value function for policy π in

M̂.
By Lemma 1, we have:

V
πD∞ ,φ
M (ϕ) − V

πD,φ
M (ϕ) 6

2

1− γ
max

π∈{πD∞ ,φ,πD,φ}
max

ϕ∈φ(H),a∈A∣∣∣∣∣∣R̂ ′(ϕ,a) + γ
∑

ϕ ′∈φ(H)

T̂(ϕ,a,ϕ ′)VπM(ϕ ′) −QπM(ϕ,a)

∣∣∣∣∣∣ .
(3.12)

where R̂ ′(φ0(H),a) =
∑
ϕ∈φ0(H) T̂(φ0(H),a,ϕ)R̂(φ0(H),a,ϕ).

The right-hand side of that equation can be bounded in probability
by using Hoeffding’s inequality. An adversarial setting is illustrated
in Figure 3.8.

With R ∈ [0,Rmax], we notice that R̂ ′(ϕ,a)+γ
∑
ϕ ′∈φ(H) T̂(ϕ,a,ϕ ′)VπM(ϕ ′)

is the mean of i.i.d. variables bounded in the interval [0,Rmax1−γ ] and
with mean QπM(ϕ,a) for any policy π : φ(H) → A. Therefore,
according to Hoeffding’s inequality [Hoeffding, 1963], we have with
n the number of tuples for every pair (ϕ,a):

P


∣∣∣∣∣∣R̂ ′(ϕ,a) + γ

∑
ϕ ′∈φ(H)

T̂(ϕ,a,ϕ ′)VπM(ϕ ′) −QπM(ϕ,a)

∣∣∣∣∣∣ > t


6 2 exp

(
−2nt2

(Rmax/(1− γ))
2

)
.

(3.13)
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H(·)

r = Rmax

r = Rmax

r = Rmax

r = 0

...

Figure 3.8: Example of a POMDP with an adversarial setting for the
overfitting bound (only one action is represented here). Dotted
and dashed lines represent transition probabilities p with 0 <
p < 1 and solid lines represent a transition probability 1.

As we want to obtain a bound over all pairs (ϕ,a) and a union
bound on all policies π ∈ Π s.t. |Π| = |A||φ(H)| (indeed Equation
3.13 does not hold for πD,φ alone because that policy is not chosen
randomly), we want the right-hand side of equation 3.13 to be

δ
|Π||φ(H)||A|

. This gives t(δ) =
(
Rmax
1−γ

)√(
1
2n ln

(
2|Π||φ(H)||A|

δ

))
and

we conclude that:

max
ϕ∈φ(H)

(
V
πD∞ ,φ
M (ϕ) − V

πD,φ
M (ϕ)

)
6
2Rmax

(1− γ)2

√
1

2n
ln

(
2|φ(H)||A|1+|φ(H)|

δ

)
,

with probability at least 1− δ.

lemma 1 For any M =< S,A, T ,R,Ω,O,γ > and the frequentist-
based augmented MDP M̂ =< Σ, A, T̂ , R̂, Γ > defined from M

according to definition 3.5, we have ∀π : φ(H)→ A that

max
ϕ∈φ(H),a∈A

∣∣∣QπM(ϕ,a) −Qπ
M̂D

(ϕ,a)
∣∣∣ 6 1

1− γ
max

ϕ∈φ(H),a∈A∣∣∣∣∣∣R̂ ′(ϕ,a) + γ
∑

ϕ ′∈φ(H)

T̂(ϕ,a,ϕ ′)VπM(ϕ ′) −QπM(ϕ,a)

∣∣∣∣∣∣ . (3.14)

proof of lemma 1 Given any policy π, let us define Q0,Q1, ...,Qm
s.t.

• Q0(ϕ,a) = QπM(ϕ,a) and
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• Qm(ϕ,a) = R̂ ′(ϕ,a) + γ
∑
ϕ ′∈φ(H) T̂(ϕ,a,ϕ ′)Vm−1(ϕ

′),

where Vm−1(ϕ) = Qm−1 (ϕ,π(ϕ)). Therefore, we have

‖Qm− Qm−1‖∞
6 γ max

ϕ∈φ(H),a∈A

∣∣∣∣∣∣
∑

ϕ ′∈φ(H)

T̂(ϕ,a,ϕ ′)(Vm−1 −Vm−2)(ϕ
′)

∣∣∣∣∣∣
6 γ ‖(Vm−1 −Vm−2)(ϕ)‖∞
6 γ ‖(Qm−1 −Qm−2)(ϕ,a)‖∞ .

Taking the limit of m→∞,Qm → Qπ
M̂

, we have∥∥∥Qπ
M̂D

−QπM

∥∥∥∞ 6
1

1− γ
‖Q1 −Q0‖∞ ,

which completes the proof.

3.6.3 Proof of Theorem 3.3

Sketch of the proof

The first steps of the proof are identical to the proof of Theorem
3.2 and we start directly from Equation 3.12. Instead of using the
general Hoeffding’s inequality and then taking a union bound over
all policies, this theorem makes use of the Rademacher complexity
(which constrains the set of policies for a given Rademacher complex-
ity) so as to provide a bound in probability which is potentially much
tighter.

Let us denote ϕ,ϕ ′ ∈ φ(H) and fπM,φ as the mapping of (r,ϕ ′) →
r + γVπM(ϕ ′). Equation 3.12 can be rewritten by making use of the
following equation for a given ϕ, a and π:

∥∥∥∥∥∥R̂(ϕ,a) + γ
∑

ϕ ′∈φ(H)

T̂(ϕ,a,ϕ ′)VπM(ϕ ′) −QπM(ϕ,a)

∥∥∥∥∥∥∞
=

∥∥∥∥∥∥ 1n
∑

r,ϕ ′∈Dφ,a

fπM,φ(r,ϕ
′) − E

r,ϕ ′∼Pϕ,a

(
fπM,φ(r,ϕ

′)
)∥∥∥∥∥∥∞ ,

where

• r,ϕ ′ ∈ Dϕ,a means that (r,ϕ ′) is a pair of reward r, next state
representation ϕ ′ corresponding to the pair state representation
and action (ϕ,a) in the dataset D;
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• Pϕ,a is the true distribution of reward r, next history ϕ ′

corresponding to the pair history-action (ϕ,a) (i.e., when D =

D∞).

By noticing that fπM,φ is bounded in [0,Rmax/(1 − γ)] (with R ∈
[0,Rmax]), we have the following bound that makes use of the
Rademacher complexity (see [Bartlett and Mendelson, 2002]) for each
(ϕ,a) w.p. > 1− δ/ (|φ(H)||A|):

∀fπM,φ ∈ FM,φ :

∥∥∥∥∥∥ 1n
∑

r,ϕ ′∈Dϕ,a

fπM,φ(r,ϕ
′) − E

r,ϕ ′∼P(ϕ,a)
(fπM,φ(r,ϕ

′))

∥∥∥∥∥∥∞
6 2R̂Dϕ,a(FM,φ) + 3

Rmax

1− γ

√
1

2n
ln(

4|φ(H)||A|

δ
),

where R̂D is the empirical Rademacher complexity and theorem 3.3
follows by taking a union bound on all (ϕ,a).

3.6.4 Q-learning with neural network as a function approximator: techni-
cal details of Figure 3.5

The neural network is made up of three intermediate fully connected
layers with 20, 50 and 20 neurons with ReLu activation function
and is trained with Q-learning. Weights are initialized with a Glorot
uniform initializer [Glorot and Bengio, 2010]. It is trained using a
target Q-network with a freeze interval (see [Mnih et al., 2015]) of 100

mini-batch gradient descent steps. It uses an RMSprop update rule
[Tieleman, 2012] (learning rate of 0.005, rho=0.9), mini-batches of size
32 and 20000 mini-batch gradient descent steps.





4H O W T O D I S C O U N T D E E P R E I N F O R C E M E N T
L E A R N I N G

4.1 introduction

In the previous chapter, the sequential decision-making task has been
considered in the context of limited data. It was described why it
may be favorable to concede a bias so as to reduce overfitting (and
thus obtain an overall improved performance). These considerations
are also of interest in online settings (i.e., when additional data are
gathered while learning the policy). Indeed, in that context, the data
obtained at the beginning is severely limited because (i) only a few
tuples have been gathered and (ii) the tuples gathered are usually
rather uninformative because the agent does not have directly a good
exploration/exploitation policy. In this chapter, we investigate the
role of a dynamic discount factor in the online setting. In a first phase
in the online learning, choosing a low discount factor may help avoid
overfitting. When the data gathered become more informative, the
ideal approach is then to target a higher discount factor to lower the
asymptotic bias of the policy.

In addition to the bias-overfitting tradeoff, the discount factor also
plays a key role in the value iteration algorithms. In particular, when
bootstrapping is used in conjunction with neural networks, the risk
of instabilities (and overestimation of the value function) is stronger
when the discount factor is close to one. This effect is due to the
mappings used in the value iteration algorithms (Equation 2.9 for
the Q-learning algorithm) that propagate errors more strongly with a
high discount factor. This effect is discussed in [Gordon, 1999] with
the notion of non-expansion/expansion mappings.

In this chapter, we investigate the possibility of reducing both over-
fitting and instabilities during learning by working on an increasing
discount factor. The goal is to reduce errors and instabilities during
the deep Q-learning iterations while still targeting a low asymptotic
bias. To illustrate our approach, we use the benchmark proposed in
[Mnih et al., 2015]. In this context, we empirically show that an in-
creasing discount factor improves the quality of the learning process.
We also discuss the role of the learning rate as well as the level of
exploration.

Besides the technical motivations from bias-overfitting and propa-
gation of errors, another motivation for this work comes from cogni-
tive science and, in particular, from empirical studies about the atten-
tional and cognitive mechanisms in delay of gratification. One well-
known experiment in the domain was a series of studies in which a
child was offered a choice between one small reward provided im-
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mediately or two small rewards if they waited for a short period
("marshmallow experiment" [Mischel et al., 1972]). The capacity to
wait longer for the preferred rewards seems to develop markedly
only until about ages 3-4. By 5 years old, most children are able to
demonstrate better self-control by gaining control over their immedi-
ate desires. According to this theory, it seems plausible that following
immediate desires at a young age is a better way to develop children’s
abilities and that delaying strategies is only advantageous afterwards
when pursuing longer term goals. Similarly, reinforcement learning
may also have an advantage of starting to learn by maximizing re-
wards on a short-term horizon and progressively giving more weights
to delayed rewards.

4.2 benchmark description

In this chapter, the task is described by a stochastic discrete-time
system whose dynamics can be described by the following equation:

Ht+1 = f(Ht,at,wt), (4.1)

where for all t, Ht is an history of observations up to time t, the action
at is an element of the action space A and the random disturbance
wt is an element of the disturbance space W generated by a
conditional probability distribution wt ∼ P(.|Ht). In our experiments,
the dynamics will be provided by the Atari emulator, the action space
is the set of legal game actions A = {1, ...,NA} and the policies will be
built from a mapping φ(Ht) that is made up of the last four frames
of the observed pixels from the screen.

4.3 experiments

The deep Q-learning algorithm described in [Mnih et al., 2015]
is used as a benchmark (see Section 2.3.4 for an overview). All
hyperparameters are kept identical if not stated differently. The main
modification is the discount factor, which is increased at every epoch
(250000 steps) with the following formula:

γk+1 = 1− 0.98(1− γk). (4.2)

At every epoch, the learned policies are evaluated for 125000 steps
with an ε-greedy policy identical to the original benchmark with
εtest = 0.05. The reported scores are the average episode score
(the evaluation episodes were not truncated at 5 minutes as in the
reported results in [Mnih et al., 2015]). Each game is simulated 5

times for each configuration with varying seeds, and the results are
reported in Figure 4.1. It can be observed that by simply using an
increasing discount factor, learning is faster for four out of the five
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tested games and similar for the remaining game. We attribute this
faster policy improvement to less errors and instability in the learning
process. As a side note, another advantage of starting with a low
discount factor is that it provides more robustness with respect to the
initialization of the neural network weights.

20 0 20 40 60 80
Relative improvement (%)

Breakout

Beam Rider

Space Invaders

Enduro

Seaquest

Q * bert

-1%

+11%

+12%

+17%

+49%

+63%

Figure 4.1: Summary of the results for an increasing discount factor. Re-
ported scores are the relative improvements after 20M steps be-
tween an increasing discount factor and a constant discount fac-
tor set to its final value γ = 0.99. Details are given in Appendix
- Table 4.1. The reported scores are the highest average episode
scores during the evaluation step.

4.3.1 Divergence of DQN

We are now interested in obtaining more insights on what happens
in the learning process at low and high discount factors. We use the
experimental rule from Equation 4.2 and either let the discount factor
increase or keep it constant when it attains 0.99 (at 20M steps). The
results are illustrated on Figure 4.2 for two different games. It is
shown that increasing γ without additional care severely degrades
the score obtained beyond γ ≈ 0.99. By looking at the average V
value, it can be seen that overestimation is particularly severe.

4.3.2 Further improvement with an adaptive learning rate

Since overfitting and instability are only severe when the discount
factor is high, we now study the possibility to use a more aggressive
learning rate in the neural network when working at a low discount
factor because potential errors would have less impact at this stage.
The learning rate is then reduced along with the increasing discount
factor so as to end up with a (more) stable neural Q-learning function.
Note that a lower learning rate also allows the neural network to
suffer less forgetting of past batches of data, thus it takes into
account an artificially larger replay memory, which limits the risk
of overfitting (see previous chapter).



68 how to discount deep reinforcement learning

Figure 4.2: Illustration for the game Q∗bert (top) and Seaquest (bottom) for a
discount factor γ kept at 0.99 after 20M learning steps (two plots
on the left), as well as a discount factor that keeps increasing to
a value close to 1 (two plots on the right). The average V-value
function over the test epochs is provided in light blue.

We start with a learning rate of 0.005, twice as big as the one
considered in the original benchmark, and we use the following
simple rule at every epoch:

αk+1 = 0.98αk.

With γ that follows Equation 4.2 and is kept constant when it attains
0.99, we manage to improve further the score obtained on all of the
games tested. Results are reported in Figure 4.3, and an illustration
is given for two different games in Figure 4.4. It can be noted that
the average value function V decreases when γ is held fixed and
when the learning rate is lowered. This is a sign of a decrease of
the overestimations of the Q-value function.

4.3.3 Exploration / exploitation dilemma

One potential side effect of our approach comes from the fact that
errors and instabilitites in the policy may also have positive im-
pacts. Indeed they implicitly increase exploration in a way that allows
"temporally-extended" exploration similar to what is described in [Os-
band et al., 2016]. When using a lower discount factor, it reduces er-
rors and instabilitites, and it therefore actually decreases exploration.
This opens up the risk of falling into a local optimum in the value it-
eration learning. This was particularly striking for the game Seaquest
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101 102

Relative improvement (%)

Q-bert
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Enduro
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+5%

+15%

+29%

+38%

+39%

+162%

Figure 4.3: Summary of the results for a decreasing learning rate. Reported
scores are the improvement after 50M steps when using both
a dynamic discount factor and a dynamic learning rate as
compared to only a dynamic discount factor. Details are given
in Appendix - Table 4.2.

Figure 4.4: Illustration for the game Seaquest (top) and space invaders
(bottom). On the left is the deep Q-network with original
learning rate (α = 0.00025) and on the right is the setting with a
decreasing learning rate.

where the agent gets a score lower than the optimal while being un-
able to discover some parts of the environment. An algorithm that
increases the level of exploration may overcome this problem. In or-
der to illustrate this, a simple rule has been applied in the case of the
game Seaquest as can be seen on Figure 4.5. This rule adapts the ex-
ploration during the training process in the ε-greedy action selection
until the agent was able to get out of the local optimum (the same
behavior has been obtained with different seeds).
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Figure 4.5: Illustration for the game Seaquest. On the left, the flat explo-
ration rate fails to get the agent out of a local optimum. On the
right, a simple rule that increases exploration allows the agent to
get out of the local optimum.

4.3.4 Towards an adaptive algorithm

Building on the ideas discussed in the previous chapter and in this
chapter, Figure 4.6 represents a general update scheme that could
further improve the performance of deep reinforcement learning al-
gorithms (with the value-based approach in this figure). In particular,
in the hypothesis that the main difficulty is to gather a lot of tuples,
a robust algorithm should be able to adapt the discount factor along
with the learning rate and possibly the level of exploration (or even
e.g., the neural network architecture). In general, an adaptive algo-
rithm could compare several set of hyperparameters in parallel and
the hyperparameters could move towards the set of hyperparame-
ters of the best performing one(s). For instance, one can expect that,
following the results described above, the discount factor would auto-
matically be rather low at the beginning of learning and would then
increase when more informative data becomes available.

Update
Q(s,a; θ)

Every C:
θ− := θ

r1, . . . , rNreplay

s1, . . . , sNreplay ,a1, . . . ,aNreplay

s1+1, . . . , sNreplay+1

rt + γmax
a ′∈A

(Q(st+1,a ′; θ−))

Policy
& Update

of γ, α and ε

il

ol

Figure 4.6: Sketch of the adaptive algorithm for deep reinforcement learning
that dynamically modifies the discount rate γ, the learning rate
α as well as the level of exploration ε.
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4.4 conclusion

This chapter introduced an approach to speed up the convergence
and improve the quality of the learned Q-function in deep reinforce-
ment learning algorithms. It works by adapting the discount factor
and possibly the learning rate along the way to convergence. We used
the deep Q-learning algorithms for Atari 2600 computer games as a
benchmark, and our approach showed improved performances for
the 6 tested games. As future work, it would be of interest to com-
bine this approach with the recent advances in deep reinforcement
learning (see Chapter 2 for an overview of methodological improve-
ments to DQN and alternatives).

4.5 appendix

Seaquest Q∗bert Breakout Enduro Beam Rider
Space

Invaders

γ = 0.99, 4766 7930 346 817 8379 2023

20M steps 4774 8262 359 950 9013 1071

2941 7527 372 821 9201 1473

3597 8214 374 863 8496 1844

4280 7867 365 777 8408 1352

Average 4072 7960 363 846 8699 1553

Increasing γ, 2570 13073 351 929 9011 1807

20M steps 2575 12873 361 1031 10160 1759

11717 13351 362 1099 9880 1723

11030 12828 354 978 9263 1761

2583 13063 351 945 10389 1671

Average 6095 13031 356 996 9741 1744

Table 4.1: Summary of the results for an increasing discount factor.

Seaquest Q∗bert Breakout Enduro Beam Rider Space Invaders

Fixed γ and α,

50M steps
6150 12958 401 817 9606 1976

Varying γ, fixed α,

50M steps
6016 13997 389 929 10677 1954

Variable γ and α,

50M steps
16124 14996 423 1129 12473 2750

Table 4.2: Summary of the results for an increasing discount factor associ-
ated with a decreasing learning rate.
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5T O WA R D S T H E M I N I M I Z AT I O N O F T H E
L E V E L I Z E D E N E R G Y C O S T S O F M I C R O G R I D S
U S I N G B O T H L O N G - T E R M A N D S H O RT- T E R M
S T O R A G E D E V I C E S

5.1 introduction

Economies of scale of conventional power plants have progressively
led to the development of the very large and complex electrical net-
works that we know today. These networks transmit and distribute
the power generated by these power plants to the consumers. Over re-
cent years, a new trend opposing this centralization of power facilities
has been observed, resulting from the drop in price of distributed gen-
eration, mainly solar photovoltaic (PV) panels [Bazilian et al., 2013].
Due to this effect, it is expected that in the future, small scale indus-
tries and residential consumers of electricity will rely more and more
on local renewable energy production capacities for covering, at least
partially, their need for electrical power. This leads to the creation
of the so-called microgrids that are electrical systems which include
loads and distributed energy resources that can be operated in par-
allel with the broader utility grid or as an electrical island. State-of-
the-art issues and feasible solutions associated with the deployment
of microgrids are discussed in [Ustun et al., 2011].

Due to the fluctuating nature of renewable energy sources (RES)
(mainly solar and wind energy), small businesses and residential
consumers of electricity may also be tempted to combine their local
power plants with storage capacities. In principle, this would, at
least partially, allow themselves freedom from using the network,
enabling balancing their own electricity generation with their own
consumption. This would result in paying less in transmission and
distribution fees which typically make up around 50% of their
electricity bill. Many different technologies are available for energy
storage as discussed in the literature (e.g., [Ferreira et al., 2013]). On
the one hand, hydrogen is often considered as a storage solution to
be combined with RES [Krajačić et al., 2009; Connolly et al., 2011],
mainly due to its high capacity potential that makes it suitable for
long-term storage [François-Lavet et al., 2014; Armaroli and Balzani,
2011]. On the other hand, batteries are often used to ensure sufficient
peak power storage and peak power generation [Schoenung, 2001].
In this chapter we focus on the specific case of microgrids that are
powered by PV panels combined with both hydrogen-based storage
technologies (electrolysis combined with fuel cells) and batteries
(such as, for instance, LiFePO4 batteries). These two types of storage
aim at fulfilling, at best, the demand by addressing the seasonal and
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daily fluctuations of solar irradiance. Distinguishing short- from long-
term storage is mainly a question of cost: batteries are currently too
expensive to be used for addressing seasonal variations.

One of the main problems to be addressed in the field of microgrids
is how to perform optimal sizing. The main challenge when sizing
microgrids comes from the need to determine and simulate their
operation (the dispatch strategy) using historical data of the loads
and of the RES.

In this chapter, we first propose a novel and detailed formalization
of the problem of sizing and operating microgrids under different as-
sumptions on the components used (PV panels and storage systems).
In that context, we show how to optimally operate a microgrid so
that it minimizes a levelized energy cost (LEC) criterion in the con-
text where the energy production and demand are known. We show
that this optimization step can be achieved efficiently using linear pro-
gramming techniques (thanks to the assumptions on the components
used and with the help of auxiliary variables in the linear program).
We then show that this optimization step can also be used to address
the problem of optimal sizing of the microgrid (still with the hypoth-
esis that production and demand are known), for which we propose
a (potentially) robust approach by considering several energy produc-
tion and consumption scenarios. We run experiments using real data
corresponding to the case of typical residential consumers of electric-
ity located in Spain and in Belgium. Note that this chapter focuses on
the production planning and optimal sizing of the microgrid without
uncertainty. The real-time control under uncertainty of microgrids is
studied in the next chapter.

Subsequently, the chapter is organized as follows. A detailed for-
malization of the microgrid framework is proposed in Section 5.2
and several optimization schemes for minimizing the LEC are intro-
duced in Section 5.3. The simulation results for Belgium and Spain
are finally reported in Section 5.4 while Section 5.5 provides the con-
clusion.

5.2 formalization and problem statement

In this section we provide a generic model of a microgrid powered
by PV panels combined with batteries and hydrogen-based storage
technologies. We formalize its constitutive elements as well as its
dynamics within the surrounding environment. For the sake of
clarity, we first define the space of exogenous variables and then
gradually build the state and action spaces of the system. The
components of these two latter spaces will be related to either the
notion of infrastructure or the notion of operation of the microgrid.
We then characterize the problem of sizing and control that we
want to address using an optimality criterion, which leads to the
formalization of an optimal sequential decision-making problem. The
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evolution of the system is described as a discrete-time process over a
finite time-horizon. We denote by T the set {1, ...,H} of time periods
and by ∆t the duration of one time step. We use subscript t to
reference exogenous variables, state and actions at time step t. Finally
we introduce the notion of LEC and discuss how it can be used as an
optimality criterion.

5.2.1 Exogenous variables

We start with a definition of the microgrid’s environment by defining
the space of exogenous variables that affect the microgrid but
on which the latter has no control. Assuming that there exists,
respectively, J, L, and M different photovoltaic, battery, and hydrogen
storage technologies, and denoting the environment space by E, we
can define the time-varying environment vector Et as:

Et = (ct, it, ePV1,t , ..., ePVJ,t , eB1,t, ..., eBL,t, eH21,t , ..., eH2M,t,µt) ∈ E, ∀t ∈ T

and with E = R+2 ×
J∏
j=1

EPVj ×
L∏
l=1

EBl ×
M∏
m=1

EH2m × I ,

(5.1)

where:

• ct [W] ∈ R+ is the electricity demand within the microgrid;

• it [W/m2 or W/Wp] ∈ R+ denotes the solar irradiance incident
to the PV panels;

• ePVj,t ∈ EPVj , ∀j ∈ {1, ..., J}, models a photovoltaic technology in
terms of cost cPVj,t [e/m2], lifetime LPVj,t [s] and efficiency ηPVj,t to
convert solar irradiance to electrical power:

ePVj,t = (cPVj,t ,LPVj,t ,ηPVj,t ) ∈ EPVj , ∀j ∈ {1, ..., J}

and with EPVj = R+2× ]0, 1] ;
(5.2)

• eBl,t ∈ EBl , ∀l ∈ {1, ...,L}, represents a battery technology in terms
of cost cBl,t [e/Wh], lifetime LBl [s], cycle durability DBl,t, power
limit for charge and discharge PBl,t [W], charge efficiency ηBl,t,
discharge efficiency ζBl,t, and charge retention rate rBl,t [s−1]:

eBl,t = (cBl,t,L
B
l,t,P

B
l,t,η

B
l,t, ζ

B
l,t, r

B
l,t) ∈ EBl , ∀l ∈ {1, ...,L}

and with EBl = R+3× ]0, 1]3 ;
(5.3)

• eH2m,t ∈ E
H2
m , ∀m ∈ {1, ...,M}, denotes a hydrogen storage tech-

nology in terms of cost cH2m,t [e/Wp], lifetime LH2m,t [s], maxi-
mum capacity RH2m,t [Wh], electrolysis efficiency ηH2m,t (i.e., when
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storing energy), fuel cells efficiency ζH2m,t (i.e., when delivering
energy), and charge retention rate rH2m,t [s−1]:

eH2m,t = (cH2m,t,L
H2
m,t,R

H2
m,t,η

H2
m,t, ζ

H2
m,t, r

H2
m,t) ∈ EH2m , ∀m ∈ {1, ...,M}

and with EH2m = R+3× ]0, 1]3 .
(5.4)

Finally, the components denoted by µt ∈ I represent the model of
interaction. By model of interaction we mean all the information that
is required to manage and evaluate the costs (or benefits) related
to electricity exchanges between the microgrid and the rest of the
system. We assume that µt is composed of two components k and β:

µt = (k,β) ∈ I, ∀ t ∈ T and with I = R+2 . (5.5)

The variable β characterizes the price per kWh at which it is possible
to sell energy to the grid (it is set to 0 in the case of an off-grid
microgrid). The variable k refers to the cost incurred per kWh that
is not supplied within the microgrid. In a connected microgrid, k
corresponds to the price at which electricity can be bought from
outside the microgrid. In the case of an off-grid microgrid, the
variable k characterizes the penalty associated with a failure of the
microgrid to fulfill the demand. This penalty is known as the value of
loss load and corresponds to the amount that consumers of electricity
would be willing to pay to avoid a disruption to their electricity
supply.

5.2.2 State space

Let st ∈ S denote a time varying vector characterizing the microgrid’s
state at time t ∈ T:

st = (s(s)t , s(o)t ) ∈ S, ∀t ∈ T and with S = S(s) × S(o) , (5.6)

where s(s)t ∈ S(s) and s(o)t ∈ S(o) respectively represent the state
information related to the infrastructure and to the operation of the
microgrid.

5.2.2.1 Infrastructure state

The infrastructure state vector s(s)t ∈ S(s) gathers all the information
about the physical and electrical properties of the devices that
constitute the microgrid. Its components can only change because
of investment decisions or due to aging of the devices. In particular,
we define this vector as:

s(s)t = (xPVt , xBt , xH2t ,LPVt ,LBt ,LH2t ,PBt ,RH2t ,ηPVt ,ηBt ,
ηH2t , ζBt , ζH2t , rBt , rH2t ) ∈ S(s) , ∀t ∈ T and with S(s) = R+8× ]0, 1]7 ,
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(5.7)

where xPVt [m2], xBt [Wh], and xH2t [Wp] denote, respectively, the
sizing of the PV panels, battery and hydrogen storage. The other
components have the same meaning than the exogenous variables
using a similar symbol, with the difference here that they are specific
to the devices that are present at time t ∈ T in the microgrid.
Note that by using such a representation, we consider that, for each
device type, a single device can operate in the microgrid. In other
words, an investment decision for a device type substitutes any prior
investment.

5.2.2.2 Operation state

For the devices with storage capacities (i.e., battery and hydrogen
storage) the information provided by the environment vector Et and
by the infrastructure state vector s(s)t is not sufficient to determine
the set of their feasible power injections or demands. Additional
information that corresponds to the amount of energy stored in these
devices for each time period is required. For this reason we introduce
the operation state vector s(o)t :

s(o)t = (sBt , sH2t ) ∈ S(o), ∀t ∈ T and with S(o) = R+2 , (5.8)

where sBt [Wh] is the level of charge of the battery and with sH2t [Wh]
the level of charge of the hydrogen storage.

5.2.3 Action space

As for the state space, each component of the action vector at ∈ A

can be related to either sizing or control, the former affecting the
infrastructure of the microgrid while the latter affects its operation.
We define the action vector as:

at = (a(s)t , a(o)t ) ∈ At, ∀t ∈ T and with A = A(s) ×A
(o)
t , (5.9)

where a(s)t ∈ A(s) relates to sizing actions and a(o)t ∈ A
(o)
t to control

actions.

5.2.3.1 Sizing actions

The sizing actions correspond to investment decisions. For each
device type, it defines the sizing of the device to install in the
microgrid and its technology:

a(s)t = (aPVt ,aBt ,aH2t , jt, lt,mt) ∈ A(s), ∀t ∈ T (5.10)

and with A(s) = R+3 × {1, ..., J}× {1, ...,L}× {1, ...,M} , (5.11)
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where aPVt [m2], aBt [Wh], and aH2t [Wp] denote, respectively, the
new sizing at time t+ 1 ∈ T of the PV panels, battery and hydrogen
storage. Discrete variables jt, lt, and mt correspond to indices that
indicate the selected technology from the environment vector for PV
panels, battery, and hydrogen storage, respectively. When a sizing
variable (i.e., aPVt , aBt , or aH2t ) is equal to zero, it means that there
is no new installation for the corresponding device type and that the
present device, if it exists, remains in operation.

5.2.3.2 Operational planning

A microgrid featuring PV, battery and storage using H2 has two
control variables that correspond to the power exchanges between
the battery, the hydrogen storage, and the rest of the system:

a(o)t = (pBt ,pH2t ) ∈ A
(o)
t ,∀t ∈ T , (5.12)

where pBt [W] is the power provided to the battery and where pH2t
[W] is the power provided to the hydrogen storage device. These
variables are positive when the power flows from the system to the
devices and negative if it flows in the other direction. Note that the
set A

(o)
t of control actions is time dependent. This comes from the

fact that the feasible power exchanges with these devices depend on
their capacity and level of charge. We have, ∀t ∈ T:

A
(o)
t =

(
[−ζBt s

B
t ,
xBt − sBt
ηBt

]∩ [−PBt ,PBt ]
)

×

(
[−ζH2t sH2t ,

RH2t − sH2t

ηH2t
]∩ [−xH2t , xH2t ]

)
,

(5.13)

which expresses that the bounds on the power flows of the storing
devices are, at each time step t ∈ T, the most constraining among the
ones induced by the charge levels and the power limits.

5.2.4 Dynamics

Using the formalism proposed above, the dynamics of the microgrid
follows the following discrete-time equation:

st+1 = f(st, at), ∀t ∈ T and with (st, at, st+1) ∈ S×At × S .
(5.14)

The dynamics specific to the infrastructure state s(s)t ∈ S(s) are
straightforward and can be written, ∀t ∈ T:

(xPVt+1,LPVt+1,ηPVt+1)

=


(aPVt ,LPVjt,t,η

PV
jt,t) if aPVt > 0,

(0, 0,ηPVt ) if LPVt 6 1,

(xPVt ,LPVt − 1,ηPVt ) otherwise,

(5.15)
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(xBt+1,LBt+1,PBt+1,ηBt+1, ζBt+1, rBt+1)

=


(aBt ,LBlt,t,P

B
lt,t,η

B
lt,t, ζ

B
lt,t, r

B
lt,t) if aBt > 0,

(0, 0, 0,ηBt , ζBt , rBt ) if LBt 6 1,

(xBt ,LBt − 1,PBt ,ηBt , ζBt , rBt ) otherwise,

(5.16)

(xH2t+1,LH2t+1,RH2t+1,ηH2t+1, ζH2t+1, rH2t+1)

=


(aH2t ,LH2mt,t,R

H2
mt,t,η

H2
mt,t, ζ

H2
mt,t, r

H2
mt,t) if aH2t > 0,

(0, 0, 0,ηH2t , ζH2t , rH2t ) if LH2t 6 1,

(xH2t ,LH2t − 1,RH2t ,ηH2t , ζH2t , rH2t ) otherwise,

(5.17)

which describes that a device is either replaced because of a new
investment or because of aging. At the end of the device’s lifetime, it
is discarded from the microgrid. Note that a more advanced model
could include aging rules for the other physical properties of the
devices (i.e., efficiency, energy retention, capacity and power limit)
but this is outside the scope of the present work.

Concerning the dynamics of the operation state s(o)t ∈ S(o), we
have to ensure that the charge level of a storage device is reset to
zero when it is replaced by a new investment. In addition, the correct
efficiency factor differs depending on the direction of the power flow:

sBt+1 =


0 if aBt > 0,

rBt s
B
t + ηBt p

B
t ∆t if pBt > 0,

rBt s
B
t +

pBt ∆t

ζBt
otherwise,

(5.18)

sH2t+1 =


0 if aH2t > 0,

rH2t sH2t + ηH2t pH2t ∆t if pH2t > 0,

rH2t sH2t +
p
H2
t ∆t

ζ
H2
t

otherwise.

(5.19)

5.2.5 Problem statement formalization

We now rely on the introduced formalism to define three optimiza-
tion problems of increasing complexity. The first one focuses on the
optimal operation of a microgrid, while the two others respectively
include the optimal and robust sizing of the microgrid.

5.2.5.1 Optimal operation

Let GT be the set of all positive scalar functions defined over the set
of ordered lists of T triplets (state, action, environment) :

GT =
{
GT : (S×At × E)T → R+

}
. (5.20)



82 microgrids using both long-term and short-term storages

Problem 1 Given a function GT ∈ GT and a trajectory (E1, . . . ,ET )
of T environment vectors, we formalize the problem of optimal operation
of a microgrid in the following way:

min
at∈At,∀t∈T
st∈S,∀t∈T\{1}

GT ((s1,a1,E1), . . . , (sT ,aT ,ET ))

s.t. st = f(st−1, at−1), ∀t ∈ T\{1} ,

(aPVt ,aBt ,aH2t ) = (0, 0, 0), ∀t ∈ T .

This problem determines the sequence of control variables that leads
to the minimization of GT when the sizing decisions are made once
for all at a prior stage t = 0. The initial state s1 of the system contains
the sizing information of the microgrid and stands as a parameter of
this problem.

5.2.5.2 Optimal sizing under optimal operation

Let G0 be the set of all positive scalar functions defined over the set
of (action, environment, T -long environment trajectory) triplets:

G0 =
{
G0 : (At × E× ET )→ R+

}
. (5.21)

Problem 2 Given a function G0 ∈ G0, a function GT ∈ GT , an
initial environment E0 that describes the available technologies at the
sizing step, and a trajectory (E1, . . . ,ET ) of T environment vectors
(compatible with E0 and a0), we formalize the problem of optimal sizing
of a microgrid under optimal operation in the following way:

min
at∈At,st∈S,
∀t∈{0}∪T

G0(a0,E0,E1, . . . ,ET )+
GT ((s1,a1,E1), . . . , (sT ,aT ,ET ))

s.t. st = f(st−1, at−1), ∀t ∈ T ,

s0 = 0 ,

(aPVt ,aBt ,aH2t ) = (0, 0, 0), ∀t ∈ T ,

with s0 being the null vector to model that we start from an empty
microgrid.

This problem determines an initial sizing decision a0 such that,
together with the sequence of control variables over {1, . . . , T }, it leads
to the minimization of G0 +GT .
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5.2.5.3 Robust sizing under optimal operation

Let E be a set of environment trajectories:

E = {(E1t)t=1...T , ..., (ENt )t=1...T } , (5.22)

with Eit ∈ E, ∀(t, i) ∈ T × {1, . . . ,N} .

Problem 3 Given a function G0 ∈ G0, a function GT ∈ GT , an initial
environment E0, and a set E of trajectories of T environment vectors
that describes the potential scenarios of operation that the microgrid
could face, we formalize the problem of robust sizing of a microgrid
under optimal operation in the following way:

min
a0∈A0

max
i∈{1,...,N}

min
ai,t∈Ai,t,
si,t∈S,
∀t∈T

G0(a0,E0,Ei1, . . . ,EiT )+
GT ((si,1,ai,1,Ei1), . . . , (si,T ,ai,T ,EiT ))

s.t. si,t = f(si,t−1, ai,t−1) , ∀t ∈ T\{1} ,

si,1 = f(s0, a0) ,

s0 = 0 ,

(aPVi,t ,aBi,t,a
H2
i,t ) = (0, 0, 0), ∀t ∈ T .

This robust optimization considers a microgrid under optimal opera-
tion and determines the sizing so that, in the worst case scenario, it
minimizes the objective function. The innermost min is for the opti-
mal operation, the max is for the worst environment trajectory and
the outermost min is the minimization over the investment decisions.
The outermost min-max succession is classic in robust optimizations
(e.g., [Ben-Tal and Nemirovski, 2002]).

5.2.6 The specific case of the Levelized Energy Cost

In this section, we introduce the ρ-discounted levelized energy cost
(LEC), denoted LECρ, which is an economic assessment of the cost
that covers all the expenses over the lifetime of the microgrid (i.e.,
initial investment, operation, maintenance and cost of capital). We
then show how to choose functions G0 ∈ G0 and GT ∈ GT such
that Problems 1, 2, and 3 result in the optimization of this economic
assessment. Focusing on the decision processes that consist only with
an initial investment (i.e., a single sizing decision taking place at t = 0)
for the microgrid, followed by the control of its operation, we can
write the expression for LECρ as

LECρ =
I0 +

∑n
y=1

My

(1+ρ)y∑n
y=1

εy
(1+ρ)y

, (5.23)

where
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• n denotes the lifetime of the system in years;

• I0 corresponds to the initial investment expenditures;

• My represents the operational expenses in the year y;

• εy is electricity consumption in the year y;

• ρ denotes the discount rate which may refer to the interest rate
or to the discounted cash flow.

Note that, in the more common context of an electrical generation
facility, the LECρ can be interpreted as the price at which the
electricity generated must be sold to break even over the lifetime
of the project. For this reason, it is often used to compare the
costs of different electrical generation technologies. When applied
to the microgrid case, it can also be interpreted as the retail price
at which the electricity from the grid must be bought in order to
face the same costs when supplying a sequence (ε1, . . . , εn) of yearly
consumptions.

The initial investment expenditures I0 and the yearly consumptions
εy are simple to express as a function of the initial sizing decision a0
and environment vector E0 for the former, and of the environment
trajectory (E1, . . . ,ET ) for the latter. Let τy ⊂ T denotes, ∀y ∈
{1, . . . ,n}, the set of time steps t belonging to year y, we have:

I0 = a
PV
0 cPV0 + aB0 c

B
0 + aH20 cH20 (5.24)

εy =
∑
t∈τy

ct ∆t, ∀y ∈ {1, . . . ,n} . (5.25)

From these two quantities, we can define the function G0 ∈ G0 that
implements the LEC case as:

G0(a0,E0,E1, . . . ,ET ) =
I0∑n

y=1
εy

(1+ρ)y

=
aPV0 cPV0 + aB0 c

B
0 + aH20 cH20∑n

y=1

∑
t∈τy ct∆t

(1+ρ)y

,
(5.26)

while the remaining term of LECρ defines GT ∈ GT :

GT ((s1,a1,E1), . . . , (sT ,aT ,ET )) =

∑n
y=1

My

(1+ρ)y∑n
y=1

εy
(1+ρ)y

. (5.27)

The last quantities to specify are the yearly operational expenses My,
which correspond to the opposite of the sum over the year y ∈ Y of
the revenues rt observed at each time step t ∈ τy when operating the
microgrid:

My = −
∑
t∈τy

rt . (5.28)

These revenues are more complex to determine than the investment
expenditures and depend, among other elements, on the model of
interaction µt at the time of the operation.
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5.2.6.1 Operational revenues

The instantaneous operational revenues rt at time step t ∈ T

correspond to the reward function of the system. This is a function of
the electricity demand ct, of the solar irradiance it, of the model of
interaction µt = (k,β), and of the control actions a(o)t :

rt : (ct, it,µt, a(o)t )→ R .

We now introduce three quantities that are prerequisites to the
definition of the reward function:

• ψt [kW] ∈ R+ is the electricity generated locally by the
photovoltaic installation, we have:

ψt = η
PV
t xPVt it ; (5.29)

• dt [kW] ∈ R denotes the net electricity demand, which is
the difference between the local consumption and the local
production of electricity:

dt = ct −ψt ; (5.30)

• δt [kW] ∈ R represents the power balance within the microgrid,
taking into account the contributions of the demand and of the
storage devices:

δt = −pBt − pH2t − dt . (5.31)

These quantities are illustrated in a diagram of the system in Figure
5.1, which allows for a more intuitive understanding of the power
flows within the microgrid.

PV

Load

+ δt = −pBt −p
H2
t −dt

H2 Storage

Battery

ψt

ct

dt

pH2t

pBt

Figure 5.1: Schema of the microgrid featuring PV panels associated with a
battery and a hydrogen storage device.

At each time step t ∈ T, a positive power balance δt reflects a sur-
plus of production within the microgrid, while it is negative when
the power demand is not met. As the law of conservation of energy
requires that the net power within the microgrid must be null, com-
pensation measures are required when δt differs from zero. In the
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case of a connected microgrid, this corresponds to a power exchange
with the grid. In the case of an off-grid system, a production curtail-
ment or a load shedding is required. The instantaneous operational
revenues we consider correspond to the financial impact of a surplus
or lack of production. The reward function rt is a linear function of
the power balance δt and, because the price β at which the energy
surplus can be sold to the grid usually differs from the retail price k
to buy electricity from the grid, the definition of the reward function
at time step t ∈ T depends of the sign of δt:

rt =

β δt∆t if δt > 0 ,

k δt∆t otherwise.
(5.32)

Using Equations 5.29, 5.30, and 5.31, the reward function can be
expressed as a function of the system variables:

rt =



if − pBt − pH2t − ct + η
PV
t xPVt it > 0 :

β (−pBt − pH2t − ct + η
PV
t xPVt it) ∆t,

otherwise:

k (−pBt − pH2t − ct + η
PV
t xPVt it) ∆t.

(5.33)

5.3 optimisation

In this section, we detail how to implement the LEC version of Prob-
lems 1, 2, and 3, to obtain an optimal solution using mathematical
programming techniques. Even though the formalization of the prob-
lem includes non-linear relations (e.g., Equations 5.18, 5.19, and 5.33),
we show how to obtain a linear program by using auxiliary variables.
The presented approach assumes the following conditions:

• a single candidate technology is considered for each device type
(i.e., J = L =M = 1);

• the lifetime of the devices is at least as long as the considered
time-horizon (i.e., LPV ,LB,LH2 > T ) and the aging of the
devices can thus be ignored;

• the whole trajectory E1, . . . ,ET of environment vectors is known
at the time of operation (i.e., when minimizing GT ).

These assumptions could be removed at the price of a non-linear
optimization (possibly increasing significantly the computation time).

5.3.1 Optimal operation over a known trajectory of the exogenous variables

We first consider the implementation as a linear program of Problem 1

with GT defined by Equation 5.27. The output of this program is
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the optimal sequence of control actions a(o)t = (pH2t ,pBt ) and the
corresponding minimal value of GT over the considered time-horizon
T . Before writing the optimization model, we introduce, ∀t ∈ T, the
following auxiliary variables:

pB,+
t ,pB,−

t ,pH2,+
t ,pH2,−

t , δ+t , δ−t ∈ R+,

such that


pBt = pB,+

t − pB,−
t

pH2t = pH2,+
t − pH2,−

t

δt = δ
+
t − δ−t

which allows the use of the adequate efficiency factor (i.e., η or ξ) and
price (i.e., k or β) depending on the direction of the power flows. The
overall linear program Mop, having as parameters the time-horizon T ,
the time step ∆t, the number of years n spanned by the time-horizon,
the sets τ1, . . . , τn mapping years to time steps, the discount rate
ρ, a trajectory E1, . . . , ET of the exogenous variables, and the time-
invariant sizing state s(s) = (xPV ,xB,xH2 ,PB,RH2 ,ηPV ,ηB,ηH2 ,ζB,ζH2 ,rB,rH2)

of the devices, can be written as:

Mop(T ,∆t,n,τ1,...,τn,r,E1,...,ET ,s(s)) = min

∑n
y=1

My

(1+ρ)y∑n
y=1

∑
t∈τy ct∆t

(1+ρ)y

(5.34a)

s.t. ∀y ∈ {1, . . . ,n} : (5.34b)

My =
∑
t∈τy

(
k δ−t −βδ+t

)
∆t , (5.34c)

∀t ∈{1, . . . , T } : (5.34d)

0 6 sBt 6 xB , (5.34e)

0 6 sH2t 6 RH2 , (5.34f)

− PB 6 pBt 6 PB , (5.34g)

− xH2 6 pH2t 6 xH2 , (5.34h)

δt = −pBt − pH2t − ct + η
PVxPV it , (5.34i)

pBt = pB,+
t − pB,−

t , (5.34j)

pH2t = pH2,+
t − pH2,−

t , (5.34k)

δt = δ
+
t − δ−t , (5.34l)

pB,+
t ,pB,−

t ,pH2,+
t ,pH2,−

t , δ+t , δ−t > 0 , (5.34m)

sB1 = 0, sH21 = 0, (5.34n)

∀t ∈ {2, . . . , T } : (5.34o)

sBt = rBsBt−1 + η
BpB,+
t−1 −

pB,−
t−1

ζB
, (5.34p)

sH2t = rH2sH2t−1 + η
H2pH2,+

t−1 −
p
H2 ,−
t−1

ζH2
, (5.34q)

− ζBsBT 6 pBT 6 xB−sBT
ηB

, (5.34r)

− ζH2sH2T 6 pH2T 6
RH2−s

H2
T

ηH2
. (5.34s)
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The physical limits of the storage devices are modeled by Constraints
5.34e to 5.34h, while the transition laws of their state correspond to
Constraints 5.34p and 5.34q. Because of the absence of time step T + 1,
there is no guarantee that the charge levels that immediately follow
the time-horizon are positive, which is why Constraints 5.34r and
5.34s ensure that the last action a(o)T is compatible with the last charge
level of the devices. Finally, Constraints 5.34i and 5.34c respectively
denote the power balance within the microgrid and the cost it induces
on a yearly scale.

5.3.2 Optimal sizing under optimal operation

In Problem 2, the initial sizing of the microgrid becomes an output
of the optimization model and the function G0, here defined by
Equation 5.26, integrates the objective function. We denote this new
problem by Msize, which is still a linear program:

Msize(T ,∆t,n,τ1,...,τn,r,E0,E1,...,ET) = min
I0 +

∑n
y=1

My

(1+ρ)y∑n
y=1

∑
t∈τy ct∆t

(1+ρ)y

(5.35a)

s.t. I0 = aPV0 cPV0 + aB0 c
B
0 + aH20 cH20 , (5.35b)

(xB, xH2 , xPV) = (aB0 ,aH20 ,aPV0 ) , (5.35c)

5.34b− 5.34s . (5.35d)

This new model includes all the constraints from Mop, as well as the
definition of the sizing of the devices from the initial sizing decisions
(i.e., Constraint 5.35c) and the expression of the initial investment as
a function of these sizing decisions (i.e., Constraint 5.35b). Note that
the value of physical properties of the devices other than variables
xB, xH2 , xPV is provided by the initial environment vector E0, which
also provides the cost of the available technology for every device
type.

5.3.3 Robust optimization of the sizing under optimal operation

The extension of linear program Msize to an optimization model Mrob
that integrates a set
E = {(E1t)t=1...T , ..., (ENt )t=1...T } of candidate trajectories of the
environment vectors (i.e., to the implementation of Problem 3) is
straightforward and requires two additional levels of optimization:

Mrob(T ,∆t,n,τ1,...,τn,r,E0,E) =
min

aB0 ,aH20 ,aPV0

max
i∈1,...,N

Msize(T ,∆t,n,τ1,...,τn,r,E0,E(i)
1 ,...,E(i)

T ) . (5.36)

This mathematical program cannot be solved using only linear pro-
gramming techniques. In particular, the numerical results reported
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further in this chapter relied on an exhaustive search approach to ad-
dress the outer min max, considering a discretized version of sizing
variables.

5.4 simulations

This section presents case studies of the proposed operation and siz-
ing problems of a microgrid. We first detail the considered technolo-
gies, specify the corresponding parameter values, and showcase the
optimal operation of a fixed-size microgrid. The optimal sizing ap-
proaches are then run using realistic price assumptions and using his-
torical measures of residential demand and of solar irradiance with
∆t = 1h. By comparing the solutions for irradiance data of both Bel-
gium and Spain, we observe that they depend heavily on this exoge-
nous variable. Finally, we compare the obtained LEC values with the
current retail price of electricity and stress the precautions to be taken
when interpreting the results.

5.4.1 Technologies

In this subsection, we describe the parameters that we consider for
the PV panels, the battery and the hydrogen storage device. The
physical parameters are selected to fit, at best, the state-of-the-art
manufacturing technologies, and the costs that we specify are for self-
sufficient devices, i.e., including the required converters or inverters
to enable their correct operation.

pv panels . The electricity is generated by converting sunlight
into direct current (DC) electricity using materials that exhibit the
photovoltaic effect. Driven by advances in technology as well as
economies of manufacturing scale, the cost of PV panels has steadily
declined and is about to reach a price of 1e/Wp with inverters and
balance of systems included [Ossenbrink et al., 2013]. The parameters
that are taken into account in the simulations can be found in
Table 5.1.

Parameter Value

cPV 1e/Wp

ηPV 18%

LPV 20 years

Table 5.1: Characteristics used for the PV panels.

battery The purpose of the battery is to act as a short-term
storage device; it must therefore have good charging and discharging
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efficiencies as well as enough specific power to handle all the short-
term fluctuations. The charge retention rate and the energy density
are not major concerns for this device. A battery’s characteristics may
vary due to many factors, including internal chemistry, current drain
and temperature, resulting in a wide range of available performance
characteristics. Compared to lead-acid batteries, LiFePO4 batteries
are more expensive but offer a better capacity, a longer lifetime and a
better power density [Chih-Chiang and Zong-Wei, 2010]. We consider
this latter technology and Table 5.2 summarizes the parameters that
we deem to be representative. LiFePO4 batteries are assumed to have
a power density that is sufficient to accommodate the instantaneous
power supply of the microgrid. It is also assumed to have a charging
efficiency (ηc) and discharging efficiency (ζB0 ) of 90% for a round trip
efficiency of 81%. Finally, we consider a cost of 500 e per usable kWh
of storage capacity (cB).

Parameter Value

cB 500 e/kWh

ηB0 90%

ζB0 90%

PB > 10kW

rB 99%/month

LB 20 years

Table 5.2: Data used for the LiFePO4battery.

hydrogen storage device The long-term storage device must
store a large quantity of energy at a low cost while its specific power is
less critical than that for the battery. In this chapter we will consider a
hydrogen-based storage technology composed of three main parts: (i)
an electrolyzer that transforms water into hydrogen using electricity
(ii) a tank where the hydrogen is stored (iii) a fuel cell where the
hydrogen is transformed into electricity (note that a (combined heat
and) power engine could be used instead). This hydrogen storage
device is such that the maximum input power of the fuel cell before
losses is equal to the maximum output power of the electrolyzer after
losses. The considered parameters are presented in Table 5.3.

5.4.2 Optimal operation

An example of output of the optimal operation program Mop in
Figure 5.2b illustrates well the role of each storage device. The figure
sketches the evolution of the charge levels of the battery and of the
hydrogen storage device when facing the net demand defined in
Figure 5.2a. In this example, the battery has a capacity of 3kWh and
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Parameter Value

cH2 14 e/Wp

ηH20 65%

ζH20 65%

rH2 99%/month

LH2 20 years

RH2 ∞
Table 5.3: Data used for the Hydrogen storage device.

the hydrogen storage device has a power limit of 1kW. The role of
each storage device is clear as we observe that the battery handles
the short fluctuations, while the hydrogen device accumulates the
excesses of production on a longer time-scale. Overall, since the
production is higher than the consumption by a significant margin,
the optimization problem is not constrained and hydrogen is left in
the tank at the end of the simulation.

(a) Net demand (negative demand represents a
production higher than the consumption)

(b) Optimal operation of the storage devices

Figure 5.2: Figure (b) shows the evolution of the charge levels within a
microgrid that faces the given net demand given in Figure (a).
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5.4.3 Production and consumption profiles

In this subsection, we describe the PV production profiles and the
consumption profiles that will be used in the remaining simulations.

5.4.3.1 PV production

Solar irradiance varies throughout the year depending on the seasons,
and it also varies throughout the day depending on the weather
and the position of the sun in the sky relative to the PV panels.
Therefore, the production profile varies strongly as a function of the
geographical area, mainly as a function of the latitude of the location.
The two cases considered in this chapter are a residential consumer of
electricity in the south of Spain and in Belgium. The main distinction
between these profiles is the difference between summer and winter
PV production. In particular, production in the south of Spain varies
with a factor 1:2 between winter and summer (see Figure 5.3) and
changes to a factor of about 1:5 in Belgium or in the Netherlands (see
Figure 5.4).

5.4.3.2 Consumption

A simple residential consumption profile is considered with a daily
consumption of 18kWh. The profile can be seen on Figure 5.5. In a
more realistic case, particular precautions should be taken in the case
of high consumption peaks to ensure that the battery will be able
to handle large power outputs. In addition, the consumption profile
may have higher daily average consumption during winter than in
summer, which may substantially affect the sizing and operation
solutions.

5.4.4 Optimal sizing and robust sizing

For the optimal sizing under optimal operation of the microgrid,
as defined by Problem 2, we use a unique scenario built from the
data described in Section 5.4.3 for the consumption and production
profiles. Since the available data are shorter than the time-horizon, we
repeat them so as to obtain a twenty-year-long time-horizon. In the
following we make the hypothesis that β = 0 e/kWh.

For the robust optimization of the sizing, we refer to the Problem 3.
This approach requires the selection of a set of different environment
trajectories and, for computational purposes, to discretize the sizing
states. The three different scenarios considered are the following:

• The production is 10% lower and the consumption is 10% higher
than the representative residential production/consumption
profile.
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Figure 5.3: Simulated production of PV panels in the South of Spain (Data
from Solargis [Šúri et al., 2011] for the solar platform of Almeria
in Spain).
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Figure 5.4: Measurements of PV panels production for a residential cus-
tomer located in Belgium.
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Figure 5.5: Representative residential consumption profile.

• The production and the consumption are conform to the repre-
sentative residential production/consumption profile (scenario
used in the non-robust optimisation)

• The production is 10% higher and the consumption is 10% lower
than the representative residential production/consumption
profile.

To build the discretized sizing states we start by solving Problem 2

on the mean scenario. For our simulations we then select all possible
variations compared to the sizing of each variable xB, xH2 and xPV

by +0%, +10% and +20%. This leaves us with 27 possible sizings that
are used to build the discretized sizing space. Equation 5.36 is solved
by performing an exhaustive search over this set of potential sizings
so as to obtain the robust LEC.

5.4.4.1 The Spanish case

We first considered a residential consumer of electricity located in
Spain. For different values of costs k incurred per kWh not supplied
within the microgrid, we performed the optimal sizing and the
robust-type optimization schemes described above. We reported the
obtained LEC in Figure 5.6. We observed the following : (i) for a retail
price of 0.2e/kWh, the residential consumer of electricity benefits
from a LEC of slightly more than 0.10e/kWh; (ii) in the fully off-
grid case, the microgrid is still more profitable than buying electricity
at all times from the utility grid for all configurations as long as k
is lower than approximately 3e/kWh (i.e., with a value of loss load
smaller than 3 e/kWh, it is preferable to go fully off-grid if the only
other alternative is to buy all the electricity from the grid); (iii) due to
the relatively low inter-seasonal fluctuations (compared to Belgium
for instance (see later)) investing in a hydrogen storage system is not
actually profitable for low values of k.
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Figure 5.6: LEC (ρ = 2%) in Spain over 20 years for different investment
strategies as a function of the cost incurred per kWh not supplied
within the microgrid.

5.4.4.2 The Belgian case

We then considered a residential consumer of electricity located in
Belgium and we reported the obtained LEC for different values of k.
As can be seen from Figure 5.7, a residential consumer of electricity in
Belgium has incentives to invest in his own microgrid system (at least
PV panels) since the obtained LEC while operating in parallel with
the main utility grid at a retail price of 0.2e/kWh gives the residential
consumer of electricity a lower electricity price than buying it from
the grid at all times. With the current state of the technology however,
it is not yet profitable for a residential consumer of electricity in
Belgium to go fully off-grid in the considered setting since they
would then suffer from a higher overall cost. Contrary to the results
observed for Spain, in Belgium there is an important potential gain
in combining both short-term and long-term energy storage devices.
This is due to the critical inter-seasonal fluctuations of PV electrical
production in Belgium.

We also investigate how the LEC evolves as a function of the
price decrease of the elements in the microgrid. Figure 5.8 shows
the reported LEC as a function of a uniform price decrease of the
elements of the microgrid while assuming a value of loss load of
0.2e/kWh and a robust sizing. It is shown that when the prices
of constitutive elements of the microgrid are less than half of those
given in Tables 5.1,5.2 and 5.3, the business case for a fully off-grid
microgrid in Belgium may actually become cost-effective.
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Figure 5.7: LEC (ρ = 2%) in Belgium over 20 years for different investment
strategies as a function of the cost incurred per kWh not supplied
within the microgrid.
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Figure 5.8: LEC (ρ = 2%) in Belgium over 20 years for a value of loss load
of 2e/kWh as a function of a uniform price decrease for all the
constitutive elements of the microgrid.

5.5 conclusion

This chapter has proposed a novel formulation of electrical micro-
grids featuring PV, long-term (hydrogen) and short-term (batteries)
storage devices. This formulation relied on different assumptions con-
cerning the components. The main hypotheses are that : (i) we con-
sidered one type of battery with a cost proportional to its capacity
and one type of hydrogen storage with a cost proportional to the
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maximum power flows, (ii) for the storage devices, we considered a
charging and a discharging dynamics with constant efficiencies (inde-
pendent of the power) and without aging (only limited lifetime), and
(iii) for the PV panels, we considered a production to be proportional
to the solar irradiance, also without any aging effect on the dynam-
ics (only limited lifetime). In that context and with the hypothesis
that the future consumption and production were known, we man-
aged to set up an algorithm using linear programming for optimally
sizing and operating microgrids under some (potentially robust) hy-
potheses on the surrounding environment. The approach has been
illustrated in the context of Belgium and Spain, for which we have
evaluated the values of the LEC and compared it with the cost of
electricity from traditional electricity networks. Experimental results
have shown that there was an important benefit in combining bat-
teries and hydrogen-based storage, in particular when (i) there was
an important difference in electricity production from the PV panels
between summer and winter (e.g., in Belgium) and (ii) the cost for
interruption (value of loss load) in the supply was high.

In the next chapter, we will relax the assumption that the future
consumption and production are known when computing the opera-
tion. This will provide a realistic setting where the main challenge is
to determine a real-time operation under uncertainty. One important
question that will be answered concerns the additional costs subse-
quent to the relaxation of the hypothesis that the future production
and future consumption are known at the time of operation.



6D E E P R E I N F O R C E M E N T L E A R N I N G S O L U T I O N S
F O R E N E R G Y M I C R O G R I D S M A N A G E M E N T

6.1 introduction

Energy microgrids face a dual stochastic-deterministic structure: one
of the main challenges to meet when operating microgrids is to find
storage strategies capable of handling uncertainties related to future
electricity production and consumption; besides this, a characteristic
of microgrids is that their dynamics deterministically react to storage
management actions.

In this chapter, we propose to design a storage management strat-
egy that exploits this characteristic. We assume that we have access
to: (i) an accurate simulator of the (deterministic) dynamics of a mi-
crogrid and (ii) time series describing past load and production pro-
files, which are realizations of some unknown stochastic processes.
This setting is original in the sense that the environment is partly de-
scribed with a deterministic simulator (from which we can generate
as much data as necessary), and partly with a limited batch of real
stochastic time series (load and production). In this context, we pro-
pose to specifically design a deep RL algorithm (based on the DQN
algorithm introduced in Section 2.3.4) for approximating the optimal
storage strategy through interaction with the environment. Unlike
[Kuznetsova et al., 2013], our specific deep neural network architec-
ture is built upon a large, continuous, non-handcrafted feature space
that uses convolutional layers to extract meaningful features from the
time series. Compared to the approach in [Mnih et al., 2015], we pro-
pose a validation strategy that periodically evaluates how well the
policy performs on unseen time series to ensure that the agent does
not overfit on the limited training data. Finally, our approach also
aims at minimizing sources of errors that may appear in other related
approaches: for instance, positive bias generated when learning from
imitation of optimal solutions ([Aittahar et al., 2015]) or errors associ-
ated with scenarios aggregation in stochastic programming ([Moham-
madi et al., 2014]).

This chapter is organized as follows: Section 6.2 introduces the
control problem of the microgrid management. Section 6.3 describes
the deep RL framework as well as empirical results corresponding
to the case of a residential customer located in Belgium. Section 6.4
concludes this chapter.
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6.2 control problem of the microgrid management

We consider the case of a residential electricity prosumer (i.e. both
consumer and producer) located in Belgium and operating an off-
grid microgrid. The microgrid model and the microgrid parameters
considered in this chapter are the same as the ones provided in
Chapter 5, except for a few elements explicitly stated hereafter.

First, the consumption profile keeps an average consumption of
18kWh/day as in Chapter 5, but the profile is varied randomly by a
factor of ±25% for each day (see Figure 6.1). This slightly different
setting is chosen to demonstrate, without ambiguity, that the DQN
algorithm is able to handle uncertainty coming from the consumption
profile. Concerning the production profile, it is directly taken from
Chapter 5, which already presents strong variations.
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Figure 6.1: Representative residential consumption profile.

Second, a careful observation of the problem allows removing one
degree of freedom in the action space (without introducing bias), thus
simplifying the control problem. The only possible action considered
in the control scheme relates to how the hydrogen storage device
is controlled (pH2t ), while the control of the battery (pBt ) follows
deterministically by avoiding any direct value of loss load (except
when the battery is at its lowest allowed level) and by avoiding
wasting energy (except when the battery is full). As illustrated in
Figure 6.2, we consider three discretized actions at ∈ A for the
hydrogen storage device: (i) charge it at maximum rate, (ii) keep
it idle or (iii) discharge it at maximum rate. This discretization is
sufficiently flexible and without any major drawbacks since the time
steps are sufficiently small (∆t = 1h).

Third, the instantaneous reward signal rt is obtained by adding the
revenues generated by the hydrogen production rH2 and the penalties
r− due to the value of loss load:

rt = r(at,dt) = rH2(at) + r−(at,dt), (6.1)
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Figure 6.2: Sketch of the simplification of the control space. The green lines
are the possible control actions where one degree of freedom has
been removed and the green dots are the considered discretized
actions.

where, as noted in the previous chapter, dt denotes the net electricity
demand, which is the difference between the local consumption ct
and the local production of electricity ψt. The penalty r− is propor-
tional to the total amount of energy that was not supplied to meet
the demand, with the cost k incurred per kWh not supplied within
the microgrid set to 2 e/kWh (corresponding to a value of loss load).
The revenues (resp. cost) generated by the hydrogen production rH2
is proportional to the total amount of energy transformed (resp. con-
sumed) in the form of hydrogen, where the revenue (resp. cost) per
Wh of hydrogen produced (resp. used) is set to 0.1 e/kWh. This
setting can be related in practice to a microgrid having access to a
hydrogen pipeline or having access to the possibility of selling (resp.
buying) filled hydrogen cylinders. Note that explicitly giving a rev-
enue (resp. cost) at each time step for the hydrogen production (resp.
consumption) allows providing direct feedback to the agent about the
interest of long-term storage which is a form of reward shaping; see,
e.g., [Ng et al., 1999].

Finally, we consider a fixed sizing of the microgrid (that corre-
sponds to the robust sizing provided in Chapter 5). The size of the
battery is xB = 15kWh, the instantaneous power of the hydrogen
storage is xH2 = 1.1kW and the peak power generation of the PV
installation is xPV = 12kWp.
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6.3 applying deep reinforcement learning for manag-
ing microgrids

Operating the microgrid is formalized as a partially observable
Markov decision process, where the microgrid is considered as an
agent that interacts with its environment. The dynamics is given by
the following equation:

Ht+1 = f(Ht,at,wt), (6.2)

where for all t, Ht ∈ H is a history of observations up to time t,
the action at is an element of the action space A and the random
disturbance wt is an element of the disturbance space W generated
by a probability distribution wt ∼ P(.|Ht).

We define the γ-discounted optimal Q-value function as:

Q∗(φ(H),a) = max
π

E

wt,wt+1, . . .

[ ∞∑
k=0

γkrt+k|φ(Ht) = φ(H),at = a,π

]

and we propose to approximate Q∗ using a DQN algorithm as
presented in Section 2.3.4.

6.3.1 Splitting the times series to avoid overfitting

We consider a case where the agent is provided with two years of
actual past realizations of the consumption (ct) and the production
(ψt). These past realizations are split into a training environment
(y = 1) and a validation environment (y = 2). The training environ-
ment is used to train the policy, while the validation environment has
two purposes:

• During training, it is used at each epoch 1 to estimate how
well the policy performs on the undiscounted objective My,
and it selects the best (approximated) Q-network denoted Q̃∗

before overfitting (by selecting a discount factor lower than
the maximum and by using early stopping). It also has the
advantage of picking up the Q-network at an epoch less affected
by instabilities.

• It has been used for selecting via an informal search (i) the
mapping φ, (ii) the structure of the neural network and (iii) the
values of all other hyperparameters.

The selected trained Q-network is then used in a test environment
(y = 3) to provide an independent estimation of how well the
resulting policy performs.

1 An epoch is defined as the the set of all iterations required to go through the whole
year of the exogenous time series ct and ψt (8760 steps). Each iteration is made up
of a transition of one time-step in the environment as well as a gradient step of all
parameters θ of the Q-network.



6.3 applying deep reinforcement learning for managing microgrids 103

6.3.2 Mapping φ

Three different cases are considered:

1. A base case with minimal information available to the agent:
the mapping φ(H) is made up of

φ(Ht) =
[
[ct−hc , . . . , ct−1], [ψt−hp , . . . ,ψt−1], sBt

]
,

where hc = 12h and hp = 12h are the lengths of the time series
considered for the consumption and production, respectively,
and sBt is, as in the previous chapter, the level of energy in the
battery.

2. A case where additional information on the season is provided:

φ(Ht) =
[
[ct−hc , . . . , ct−1], [ψt−hp , . . . ,ψt−1], sBt , ζs

]
,

where ζs is the smallest number of days to the summer solstice
(21
st of June).

3. A case where accurate production forecasting is available:

φ(Ht) =
[
[ct−hc , . . . , ct−1], [ψt−hp , . . . ,ψt−1], sBt , ζs, ρ24, ρ48

]
,

where ρ24 (resp. ρ48) is the solar production for the next 24

hours (resp. 48 hours).

6.3.3 Neural network architecture

We propose a neural network architecture where the inputs are
provided by φ(Ht) (normalized into [0,1]), and where the outputs
represent the Q-values for each discretized action.

The neural network processes the time series thanks to a set of
convolutions with 16 filters of 2 × 1 with stride 1, followed by a
convolution with 16 filters of 2× 2 with stride 1. The combination of
the output of the convolutions and the non-time series inputs is then
followed by two fully-connected layers with 50 and 20 neurons. The
activation function used is the Rectified Linear Unit (ReLU) except
for the output layer where no activation function is used. A sketch of
the structure of the neural network is provided in Figure 6.3.

6.3.4 Training

By starting with a random Q-network with output values close to
zero, two different processes happen at each iteration:
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Input #1

Input #2

Input #3

...

Fully-connected
layersConvolutions Outputs

Figure 6.3: Sketch of the structure of the neural network architecture. The
neural network processes the time series using a set of convolu-
tional layers. The output of the convolutions and the other inputs
are followed by fully-connected layers and the ouput layer. Archi-
tectures based on LSTMs instead of convolutions obtain similar
results, and the reader is welcome to experiment with the source
code provided in Appendix 6.5.

• An action is selected by following an ε-greedy policy s.t. the
policy π(s) = maxa∈AQ(φ(H),a; θk) is selected with a proba-
bility 1−ε, and a random action (with uniform probability over
actions) is selected with probability ε (we use decreasing value
of ε over time). The replay memory is filled with the selected
action, as well as the subsequent reward and observation.

• The update given in Eq. 2.11 is performed.

During the validation and test phases, the policy

π(s) = max
a∈A

Q(φ(H),a; θk)

is applied (with ε = 0).
As discussed in Chapter 4, we use an increasing discount factor

along with a decreasing learning rate through the learning epochs in
order to enhance learning performance. The hyperparameters used
and the source code are provided in Appendix 6.5.

6.3.5 Results and discussions

The typical behavior of the selected policy in the case with minimal
information is illustrated in Figure 6.4 on the test data. Since the
microgrid has no information about the future, it has to make a
tradeoff between two objectives:

• it has to maintain a sufficient reserve in the short-term storage
device to be able to face the consumption without suffering
(much) loss load, and

• it also has to avoid wasting energy (when the short-term
storage is full) by storing energy in the long-term storage device
whenever possible.
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We now investigate the effect of providing additional information
to the agent. The typical behavior of the policy in the case where
accurate production forecasting is illustrated in Figure 6.5 on the test
data. As compared to the previous case, it can be seen that it is able to
manage the level of energy in the battery storage even more efficiently.
When the production will be low for the next days, the microgrid
aims to keep a larger quantity of energy in the battery, while when the
production for the next days will be important, it tends to require a
lower level of energy to be stored in the battery early in the morning.

We report in Figure 6.6a the operational revenue on the test data
M
π
Q̃∗
y for the three cases discussed in Section 6.3.2 as a function

of a unique percentage of the initial sizings xB, xH2 , xPV . For each
configuration, we run the process five times with different seeds.
We first observe that the dispersion in the revenues is higher for
small microgrids. This is due to the fact that the operation is more
challenging in such cases and that small differences in the decision
process have a larger impact. Second, it can be observed that any
useful information added as input to the agent helps improve the
policy, such as accurate information about the production profile.
Similarly, additional data on the consumption profile would help
further improve the policy π

Q̃∗ . This data could, for instance, give
information about the current day of the week in order to model the
case where a residential customer would consume, on average, more
energy during particular days (e.g., during the week-end).

The LEC obtained as a function of a unique percentage of the
initial sizings xB, xH2 , xPV is also reported in Figure 6.6b. The LEC is
calculated with the assumption that the operational revenue obtained
for the test data is the same over the lifetime of the microgrid.
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Figure 6.4: Illustration of the policy with minimal information available to
the agent (test data).
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(b) Typical policy during winter

Figure 6.5: Illustration of the policy with accurate production forecast
available to the agent (test data).
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Figure 6.6: Operational revenue and LEC (test data) function of the siz-
ings of the microgrid. The optimal deterministic operation is ob-
tained by solving the problem with the assumption of perfect
knowledge of the whole future, using the method described in
Chapter 5. The Naive policy operation is obtained by optimizing
the thresholds at which the hydrogen storage is charged or dis-
charged based on the level of energy in the battery (through grid
search on rollouts in the validation environment).
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How could the results be improved further?
With more computation time, many approaches similar to supervised
learning could be used. Here are a few ideas:

• using k-fold cross validation,

• using data augmentation by generating trajectories similar to
the consumption and production profiles,

• investigating different neural network structures such as com-
bining LSTM’s and convolutions, or

• performing Bayesian optimization (or a systematic grid search)
on different hyperparameters.

6.4 conclusion

This chapter has introduced a deep RL architecture for addressing
the problem of operating an electricity microgrid. The only required
assumptions, rather realistic, are that (i) the dynamics of the different
constituting elements of the microgrid are known and that (ii)
past time series providing the weather-dependent PV production
and the consumption within the microgrid are available. In that
context, the environment considered in this paper face a specific
structure with a dynamics that is partly deterministic and partly
depending on the exogenous stochastic time-series; the proposed
approach is thus original since the training and validation phases
make use of this particular structure to build a policy (via a Q-
network). Experimental results illustrate the fact that the neural
network representation of the value function efficiently generalizes
the policy to situations corresponding to unseen configurations of
solar irradiance and electricity consumption. These results have also
shown that the additional cost as compared to the optimal (which
is obtained under the fully deterministic setting described in the
previous chapter) could be kept relatively small thanks to the deep
RL techniques described in this chapter.

Future works could include the extension of the microgrid simula-
tor, in particular by increasing the diversity of electricity production
and storage technologies. It would also be of interest to investigate
the case where several microgrids interact with each other and with
the main utility grid.
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6.5 appendix

PV production and consumption profiles as well as source code
are available at https://github.com/VinF/deer. Documentation is
available at http://deer.readthedocs.io/.

The different hyperparameters used are provided in Table 6.1.

Parameter

Update rule RMSprop (ρRMS = 0.9) [Tieleman, 2012]

Initial learning rate α0=0.0002

Learning rate update rule αl+1 = 0.99αl
RMS decay 0.9

Initial discount factor γ0=0.9

Discount factor update rule γl+1 = min(0.98, 1− 0.99(1− γl))

Parameter of the ε-greedy ε = max(0.3, 1− k
500.000)

Replay memory size 1000000

Batch size 32

Freeze interval 1000 iterations

Initialization of the NN layers Glorot uniform [Glorot and Bengio, 2010]

Table 6.1: Main parameters of the DQN algorithm. The integer k refers to
the iteration number from the beginning of the training and the
integer l refers to the epoch number.

https://github.com/VinF/deer
http://deer.readthedocs.io/
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7C O N C L U D I N G R E M A R K S

In this conclusion, we first summarize the contributions of this thesis,
we then follow by the future work that these contributions highlight
and we end up with a short discussion on some of the opportunities
and risks of the future use of artificial intelligence.

7.1 contributions

Deep RL requires caution and understanding of its inner mechanisms
in order to apply it successfully in different settings. In this thesis, we
have contributed to the understanding of those mechanisms, and we
have studied an application in the field of smartgrids. We hereafter
summarize the main contributions of this thesis.

In chapter 2, we have provided a review of the domain of
reinforcement learning with a focus on the recent developments
in the field of deep RL. We have emphasized that deep learning
has brought its generalization capabilities to the RL setting and,
therefore, has provided a solution to the curse of dimensionality
when working with time series, images, etc. We have discussed the
different approaches (model-based, model-free) to the problem of
deep RL and have discussed their respective strengths depending on
the problem, as well as the possibility of combining them. We have
also discussed the current main challenges in RL, including how it
can be used in real-world problems. We have also introduced the
open-source library "DeeR" that has been initiated in the context of
this thesis.

In chapter 3, we have brought contributions to the partially
observable context (POMDP setting) where only limited data is
available (batch RL). This batch setting is central in RL since even
when additional data can be gathered (online setting), obtaining
a performant policy from given data is part of the solution to
an efficient exploration/exploitation tradeoff. In the batch POMDP
setting, we have formalized a decomposition of the sub-optimality of
deep RL in two terms: (i) an asymptotic bias that is independent of
the quantity of data obtained and (ii) a term of overfitting that is a
consequence of the fact that only limited data is available. In that
context, we have provided theoretical and empirical contributions
concerning the state representation in the context of finding a tradeoff
capable of minimizing the overall sub-optimality; namely, we have
emphasized that a guaranteed good state representation requires to
efficiently discriminate the underlying state of the POMDP (to avoid
a risk of a large asymptotic bias) while at the same time it should
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avoid unnecessary complexity (to avoid a risk of a large overfitting).
We have also investigated the effect of the function approximator and
of the discount factor in light of this bias-overfitting tradeoff.

In chapter 4, we have focused on the case of the discount factor
in a value iteration algorithm. Its study is interesting in that setting
not only because of its effect on the bias-overfitting error but also
because it plays a key role in the instabilities (and overestimations)
of the value iteration algorithm. We have provided empirical results
showing the interest of using an increasing discount factor to reduce
errors and instabilities during the deep Q-learning iterations, while
still targeting a low asymptotic bias. In addition, the effect of the
learning rate and the possibility to fall in a local optimum have been
illustrated.

In the last part of this thesis, we have discussed an application in
the domain of smartgrids.

In chapter 5, we have formalized the problem of a microgrid
featuring PV, long-term (hydrogen) and short-term (batteries) storage
devices. Under hypotheses on the different components and under
the hypothesis that the consumption and production scenarios were
known, we have shown that linear optimization techniques can be
used to solve the problem of both the optimal operation and the
optimal sizing of the microgrid. In that context, we have shown that
there was a potential important benefit in combining batteries and
hydrogen-based storage as compared to only batteries, in particular
when (i) the PV production between summer and winter was very
different (e.g., a factor 5:1 in Belgium) and (ii) the cost for interruption
(value of loss load) in the supply was high.

In chapter 6, we have used the microgrid model developed in
chapter 5, but we have considered a realistic setting by relaxing
the assumption that the future consumption and production were
known when computing the operation. We have shown how deep RL
techniques can be used to obtain a performant real-time operation in
a stochastic and partially observable environment, and we were able
to provide the sub-optimality in terms of costs (operation cost and
LEC) due to the uncertainties related to future electricity production
and consumption within the microgrid. In this chapter, we have
applied many methodological elements studied in the first part of
this thesis (introduction of a validation phase to obtain the best bias-
overfitting tradeoff, increasing discount factor, etc.). In terms of future
applications, this chapter has shown the potential of using deep RL
in the domain of smartgrids. The work done in that chapter is also of
practical interest outside the smartgrids domain. Indeed, it has been
shown how to deal with sequential decision-making processes where
part of the dynamics is well-known but where the dynamics depends
on exogenous time series where only limited past realizations are
available (e.g., trading market, weather-dependent decision-making
tasks).
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7.2 future work

Sequential decision-making remains an open field of research for
which many theoretical, methodological and experimental challenges
are still left unanswered. Within that domain, deep RL is a fast-
growing approach that has already unlocked the possibility to
tackle difficult problems. There is every reason to think that this
development will continue in the coming years with more efficient
algorithms and many new applications.

In terms of algorithmic work, one of the central questions that has
been at the core of this thesis was how to deal with limited data.
To this purpose, the new developments in the field of deep RL will
surely develop the current trends of taking explicit algorithms and
making them differentiable so that they can be embedded in a specific
form of neural network and can be trained end-to-end. We therefore
expect to see richer and smarter structures of deep RL algorithms that
will be able to tackle an even wider range of applications than they
currently do today. We also expect to see deep RL algorithms going
in the direction of life-long learning where previous knowledge (in
the form of pre-trained networks) can be embedded so as to increase
performance and training time.

In terms of applications, many new areas will be impacted by the
possibilities brought by deep RL. It is always difficult to predict the
timelines for the different developments, but we believe that the cur-
rent interest in deep RL is only the beginning of foreseeable profound
transformations in information and communication technologies. In
the context of smartgrids alone, the number of potential applications
of deep RL are tremendous and goes beyond microgrids described
in this thesis. An overview of many potential applications is given in
[Glavic et al., 2017]:

• They are linked to different types of elements within the power
system: subsystems controls, market-based high-level decision,
planification of investments, etc.

• They serve different purposes: usual operation, restorative
operations, emergency behaviors, etc.

• The time-scale of the decision problems ranges from fractions
of seconds to years.

7.3 societal impact of artificial intelligence

Current developments in artificial intelligence (both for deep RL
or in general for machine learning) come in the sequel of many
tools brought by ICT technologies. As with all new technologies,
this comes with different potential opportunities and threats for our
society.
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On the positive side, artificial intelligence promises great value
to people and society. They have the potential to enhance the
quality of life by automating tedious and exhausting tasks. They
may improve education by providing adaptive content and keeping
students engaged [Mandel et al., 2014]. They will surely improve
public health with, for instance, intelligent clinical decision-making
[Fonteneau et al., 2008]. They will also prevent millions of needless
deaths with, among other things, self-driving cars [Bojarski et al.,
2016]. They also have the possibility to help reducing greenhouse gas
emissions, by e.g., optimizing traffic [Li et al., 2016]. And the list could
go on.

But as with all powerful tools, they also bring societal, political and
ethical challenges, raising the question of how they can be used for
the benefit of all. We want to stress in this conclusion some of the
potential issues that need to be dealt with, as we believe that these
topics will require the active participation of the artificial intelligence
community (with e.g., the "partnership on artificial intelligence"
initiative).

We need to be careful that artificial intelligence is safe, reliable
and predictable. As a simple example, to capture what we want an
agent to do, we frequently end up, in practice, designing the reward
function more or less arbitrarily. Often this works well, but sometimes
it produces unexpected and potentially catastrophic behaviors. For
instance, to remove a certain invasive species from an environment,
one may design an agent that obtains a reward every time it removes
one of these organisms. However, it is likely that to obtain the
maximum cumulative rewards, the agent will learn to let that invasive
species develop and only then would eliminate many of the invasive
organisms, which is of course not the intended behavior.

The ethical use of artificial intelligence is also a concern. One of
the reasons is that it will undoubtedly have an influence on people’s
everyday lives. As it is the case with most technologies, regulation
should, at some point, ensure a positive impact of its usage.

Another issue is that artificial intelligence advances will probably
have a strong influence on the economy and the job market. While
these advances often come with the promise of bringing positive
effects to our society, they also disrupt the job market and displace or
modify some types of jobs. In fact, this type of concerns is not new
and dates back, at least, to the industrial revolution (around early
19th century). Past experience can surely alleviate a few fears, such
as the fear that jobs will simply disappear without new job creations.
However, the artificial intelligence revolution may well have very
specific consequences. A key challenge for the future is to make sure
that the benefits of the developments in artificial intelligence and the
wealth it generates do not deepen the inequalities in our society but
instead are fairly shared.

We are still at the very first steps of artificial intelligence and the
future is hard to predict. However, it is key that the potential issues
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related to the development of artificial intelligence are progressively
taken into consideration in public policies. If that is the case, we
believe that artificial intelligence will have a positive impact on our
society.





Part III

A P P E N D I X





AU S I N G A P P R O X I M AT E D Y N A M I C P R O G R A M M I N G
F O R E S T I M AT I N G T H E R E V E N U E S O F A
H Y D R O G E N - B A S E D H I G H - C A PA C I T Y S T O R A G E
D E V I C E

This annex proposes a methodology to estimate the maximum rev-
enue that can be generated by a company that operates a high-
capacity storage device to buy or sell electricity on the day-ahead elec-
tricity market. The methodology exploits the Dynamic Programming
(DP) principle and is specified for hydrogen-based storage devices
that use electrolysis to produce hydrogen and fuel cells to generate
electricity from hydrogen. Experimental results are generated using
historical data of energy prices on the Belgian market. They show
how the storage capacity and other parameters of the storage device
influence the optimal revenue. The main conclusion drawn from the
experiments is that it may be advisable to invest in large storage tanks
to exploit the inter-seasonal price fluctuations of electricity.

a.1 introduction

Developing sustainable energy systems is one of the most critical
issues that today’s society must address. Due to the fluctuating
nature of the Renewable Energy Sources (RES) generation, fossil-
fuel-based generation capacity is currently still needed to provide
flexibility and to adequately cover peak demand. This issue can be
partially addressed or mitigated in several ways CREG [2012]: (i)
by diversifying the types of renewable energy sources to reduce the
correlation between the amount of energy supplied by these sources,
which lowers the risk of shortage of supply, (ii) by developing
electricity storage capacity, (iii) by increasing the flexibility of the
demand, to smooth out peak demand or (iv) by developing the
electrical network since the variance in the energy supplied by
renewable sources tends to decrease with the size of the zone on
which they are collected Archer and Jacobson [2007]. This has been
the main motivation for developing the European network in recent
years. Note that authors have also reported that the variance in
the energy supplied by renewables could be further decreased by
building a global electrical grid that connects continents together
Chatzivasileiadis et al. [2013], Chatzivasileiadis et al. [2014].

During recent years, storage has gradually become more and more
profitable thanks to technological progress. Consequently, economic
actors on the energy market are currently planning to invest addi-
tional funds in storage devices. Among the different storage tech-
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nologies, pumped-storage hydroelectricity and batteries are currently
among the most mature. Other technologies exist such as for exam-
ple super capacities, energy conversion to natural gas, compressed
air energy storage, flywheels, superconducting magnetic energy stor-
age and storage of electricity in the form of hydrogen. This latter
one seems to be particularly promising due to its capability to store
large quantities of energy at a relatively low cost, and is therefore
well suited for long-term storage Armaroli and Balzani [2011]. Addi-
tionally, the round trip efficiency of hydrogen-based storage devices
is rather good. For example, the energy efficiency of an electrolyzer is
around 80% and the one of a fuel cell is generally between 40% and
60%, which results in an overall round-trip efficiency of 35% up to
50%, with the potential to get an efficiency higher than 70% in hybrid
fuel cell/turbine systems and more than 80% in Combined Heat and
Power (CHP) systems.

However, before investing in such a hydrogen-based storage tech-
nology, a careful analysis of the return on investment needs to be
carried out. Such an analysis implies, among others, to be able to es-
timate the revenues that can be generated by such a storage device
on the power exchange markets, which is the focus of this annex. We
will consider the case of a company that operates the hydrogen-based
high-capacity storage device and makes money by buying or selling
electricity on the day-ahead market. In such a context, the company
has to decide on the day-ahead which amount of electricity to store
or to generate for every market period. The main complexity of this
decision problem originates from the fact that a decision to store or
generate electricity at one specific market period may not only sig-
nificantly impact the revenues that could be generated at other mar-
ket periods of the day, but also the revenues that could be generated
months ahead. As a result, long optimization horizons have to be con-
sidered for computing operation strategies for high-capacity storage
devices.

The valuation of energy storage technologies on power markets
has already received considerable attention in the scientific literature
Eyer and Corey [2010]; Carmona and Ludkovski [2010]; Löhndorf and
Minner [2010]; Mokrian and Stephen [2006]; Fleten and Kristoffersen
[2007]; Salas and Powell [2013]. For example, reference Fleten and
Kristoffersen [2007] proposes an approach based on mixed-integer
programming for optimizing bidding strategies for hydropower. This
approach can handle uncertainty in market prices and water inflows.
However, the computational complexity of this technique grows very
rapidly with the state/action space, which makes this approach
unsuitable for estimating the revenues that can be generated by a
storage capacity over an extended period of time. Another example
is reference Salas and Powell [2013] where a methodology based on
Approximate Dynamic Programming (ADP) is proposed for jointly
optimizing in the day-ahead the trading of renewable energy and of
the storage management strategies.
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Before explaining the details of this approach, we will describe in
Section A.2 the bid process for a typical day-ahead electricity market
such as the Belgian electricity market and lay out in Section A.3 a
mathematical model for energy storage utilizing hydrogen. A first
formulation of our problem as a dynamic programming problem
will be stated in Section A.4 where we assume that only the market
prices of the next market day are known. Section A.5 specifies this
formulation to the case where the market prices are assumed to be
known over the whole optimization horizon and provides a fully
specified algorithm that exploits this new formulation for computing
the maximum operational revenue. The computational complexity
of this algorithm is linear with respect to the cardinality of the
discretized state space, the cardinality of the discretized action space,
and the optimization horizon. Section A.6 provides experimental
results computed from historical data gathered over the Belgian
electricity market. Finally, Section A.8 concludes the annex.

a.2 optimization on the day-ahead energy market

Let us consider a power exchange market for the day-ahead trading
of electricity, providing the market with a transparent reference price.
Producers and retailers submit each day offers to the market operator
for the day-ahead. An offer is defined by a volume and a limit price,
and can span several market periods. The market clearing price is
computed by the market operator at the intersection of the supply
and the demand curves. The prices for electricity on the Belgian day-
ahead market are determined via a blind auction with the possibility
to define linked Block Orders that allow the execution of profile
blocks to be subjected to the execution of other blocks. This possibility
allows for the design of complex linked structures (i.e. families) that
take into account the different possible price outcomes of the market
clearing price. Figure A.1 shows the distribution of prices over the
year 2013.

In this annex, we consider that the storage capacity is an agent
which interacts with the electricity exchange market under the
following assumptions:

• the evolution of the price of electricity does not depend on
the behavior of this agent. This hypothesis is equivalent to
assuming that the bids for supply or demand from the actor
do not change the market clearing price significantly1.

• the evolution of the prices is known when determining the
agent behavior.

1 That effect is measured by the market resilience which is the price sensitivity due to
an increase in offer or demand on the market. It is of the order of 5.10−3e/MWh on
the Belgian power exchange market Belpex [2014].



124 using adp for estimating the revenues of hydrogen storage

Figure A.1: Histogram of the price of electricity for the year 2013.

a.3 problem formalization

Let us introduce a discrete-time system whose state variable is fully
described by the amount of energy in the storage device. The state
space S contains all possible states si,j ∈ S, where the indices (i, j)
refer to hour j during day i (in MWh). Let A be the set of possible
actions and ai,j ∈ A the action taken at time (i, j). At every time
step, an action ai,j = [aGRi,j ,aRGi,j ] ∈ A is applied on the system, where
aGRi,j is the amount of energy transferred into the storage (R) from the
grid (G), and aRGi,j is the amount of energy taken out of the storage
(R) to the grid (G). The actions aGRi,j and aRGi,j are non-negative. The
considered dynamics is defined over nD days and nH market periods
(nH = 24). We denote by I and J the sets of time indices:

I = {0, ...,nD − 1},

J = {0, ...,nH − 1}.

The system dynamics is given by the following equation:

∀i ∈ I,∀j ∈ J, si,j+1 = f(si,j, ai,j) (A.1)

where we use the convention si,nH = si+1,0 for any i ∈ I. The
notation ti,j is introduced as the time index corresponding to time
(i, j) ∈ I× J. This transition function can be rewritten as follows:

si,j = si,0 +

ti,j−1∑
t=ti,0

(aGRt − aRGt ), ∀(i, j) ∈ I× J. (A.2)

At any time (i, j) ∈ I×J, the following constraints have to be satisfied:

si,0 +

ti,j−1∑
t=ti,0

(aGRt − aRGt ) 6 Rc (A.3)
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si,0 +

ti,j−1∑
t=ti,0

(aGRt − aRGt ) > 0 (A.4)

where Rc is the energy capacity of the device.
The bidding process occurs only once for each day i ∈ I, which

means that all actions taken on day i + 1 are computed on day
i. We denote by si ∈ S the vector of states defined as si =

[si,0, si,1, ..., si,nH−1]. We denote by Ai ∈ A the matrix of actions
defined as follows: Ai =

[
aGRi ; aRGi

]
with

aGRi = [aGRi,0 ,aGRi,1 , ...,aGRi,n−1]

and
aRGi = [aRGi,0 ,aRGi,1 , ...,aRGi,n−1].

The dynamics corresponding to the bidding process logic is then

si+1,0 = F(si,0,Ai), ∀i ∈ I, ∀Ai ∈ Ai (A.5)

where the feasible action space Ai is the set of matrices of actions Ai
which satisfy the constraints at time i ∈ I defined by Equations (A.3)
and (A.4).

We define a reward function ρ(si,0,Ai, pi) for day i which mea-
sures the revenues generated by taking a sequence of actions Ai when
starting from the state si,0, function of the vector of prices of electric-
ity pi for day i. The value of the reward function is given by the total
amount of money paid or collected when transferring energy to and
from the grid. For every day i, the reward function is defined by

ρ(si,0,Ai, pi) =
ti,0+n−1∑
t=ti,0

r(at,pt)

where r(at,pt) is given by

r(at,pt) =
(
aRGt ηd −

aGRt
ηc

)
pt

with ηd and ηc being the discharge and charge efficiencies, respec-
tively.

In the context of the day-ahead energy market developed in Section
A.2, the prices of electricity are known one day before, i.e. the prices
of electricity on day i ∈ I are known when choosing the sequence
of actions Ai ∈ Ai. An admissible policy π(i, si,0) : I× S → A is a
function that maps states into actions such that, for any state si,0, the
action π(i, si,0) satisfies the constraints (A.3) and (A.4) (which defines
the set of feasible actions Ai ⊂ A). We denote by Π such a set:

Π = {π : I× S→ A : ∀si,0 ∈ S,∀i ∈ I,π(i, si,0) ∈ Ai}
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Arguably, the decision of a policy π to be made during the bidding
process is whether to buy or sell energy to maximize the revenues on
the long term. An optimal value function V∗i+1(si+1,0) is introduced
as the maximum expected revenue that can be obtained from time
(i+ 1, 0) = (i,nH) over the remaining time-steps:

∀si+1,0 ∈ S,V∗i+1(si+1,0) = max
(Ai+1,...,AnD−1)∈Ai+1×...×AnD−1

E
pi+1,...,pnD−1

[
nD−1∑
k=i+1

ρ(sk,0,Ak, pk)

]

From these value functions, an optimal policy π∗ ∈ Π can be
defined as follows:

∀i ∈ I, ∀si,0 ∈ S,

π∗(i, si,0) ∈ arg max
Ai∈Ai

(
ρ(si,0,Ai, pi) + V∗i+1(si+1,0)

)
(A.6)

a.4 a dynamic programming approach to compute the

optimal revenue of storage

In this annex, we make the (strong) assumption that the evolution
of the prices is perfectly known. This has the two following conse-
quences on the resolution of the above-described problem: (i) the
problem becomes deterministic and (ii) the day-ahead structure of
the problem disappears.

Let Q0, Q1, . . ., Q24∗nD−1 be the sequence of functions defined as
follows:

∀(s,a) ∈ S×A, t = 0 . . . nD ∗ 24− 1,
Qt(s,a) = r(s,a,pt) + max

feasiblea ′∈A
Qt+1(f(s,a),a ′) (A.7)

with

QnD∗24(s,a) = 0, ∀(s,a) ∈ S×A.

It is straightforward to see that when the prices are known we have:

V∗i (s) = max
a∈Ai

Qi∗24(s,a)

From the sequence of functions Qt, it is possible to estimate in
a straightforward way the maximum revenue that can be generated
by our storage capacity. We suggest to approximate the computation
of this sequence of functions by discretizing the state and the action
space Busoniu et al. [2010]; Ernst [2003]. More specifically, the state
space is discretized into a set {σ(i), i = 1 . . . nS}, and the action space
is discretized into a set {α(i), i = 1 . . . nA}. We also choose a projection
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function Γ : S → {σ(1), . . . ,σ(nS)} which projects any element of the
state space S into a unique element of the discretized space. In such a
context, the problem is reduced to a dynamic programming problem
with a finite horizon of nD ∗ 24 time-steps that can be solved with
a backward value iteration algorithm Powell [2009]. The resulting
algorithm is sketched in Procedure 1. It has a complexity proportional
to the product of the size of the state space, the action space and
the optimization horizon. A(σ) denotes the set of feasible discretized
actions for a given discretized state σ so that the maximization over
possible actions α(i) takes into account the constraints stated in
Equations (A.3) and (A.4).

From the sequence of Q̂t functions outputted by Procedure 1, one
can extract a bidding policy. Note that the near-optimal revenue that
is obtained from an initial state s0 can be calculated as follows:

arg max
α ′∈A(Γ(s0))

Q̂0(Γ(s0),α ′)

Another way to calculate this revenue is to simulate the system
with the policy extracted from these Q̂t functions. As way of example,
Procedure 2 provides a way for computing the sequence of actions
outputted by this policy when the initial state of the system is s0.

Procedure 1 Q-iteration in the discretized state-action space

Input: pt, ∀t = 0, ...,nD ∗ 24− 1;

for t = nD ∗ 24− 1 to 0 do {Backward loop over all time periods}
for σ = σ(1) . . . σ(nS) do {Loop over discretized states}

for α = α(1) . . . α(nA) do {Loop over actions}
Q̂t(σ,α) = r(σ,α,pt) + max

α ′∈A(σ ′)
Q̂t+1(σ

′,α ′) where σ ′ =

Γ(f(σ,α))
end for

end for
end for
return Q̂t,∀t ∈ 0, . . . ,nD ∗ 24− 1

a.5 mathematical model for energy storage under the

form of hydrogen

Each storage capacity is defined by its maximum capacity, its maxi-
mum power consumption and restitution to the network as well as
the efficiencies for those three steps. A hydrogen-based high-capacity
storage device is composed from three main parts: (i) an electrolyzer
that transforms water into hydrogen using electricity (ii) a tank where
the hydrogen is stored (iii) a fuel cell where the hydrogen is trans-
formed into electricity. Figure A.2 gives a schematic representation of
such a device, whose main 3 elements are detailed hereafter.
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Procedure 2 Computation of the sequence of actions generated by the
bidding policy

Input: Q̂t,∀t ∈ 0, 1, . . . ,nD ∗ 24− 1; s0

σ0 = Γ(s0)

for t = 0 to nD ∗ 24− 1 do {Loop over all time periods}
α∗t = arg max

α ′∈A(σt)

Q̂t(σ
′,α ′)

σt+1 = f(σt,α∗t)
end for
return α∗t , ∀t ∈ 0, . . . ,nD ∗ 24− 1

Figure A.2: Sketch of the hydrogen based high-capacity storage.

a.5.1 Electrolysis

Currently the dominant technology for direct production of hydrogen
(95%) is steam reforming from fossil fuels. However sustainable
techniques also exist, such as electrolysis of water using electricity
from one of the many renewable sources. It also has the advantage of
producing high-purity hydrogen (>99.999%).

The technical performance of this process has a strong dependency
on the rate at which the electrolysis is forced. The charge energy
efficiency as a function of the cell voltage is given by:

ηc =
1.48

CellVoltage

The minimum voltage necessary for electrolysis is 1.23 V. Hence-
forth, the process can theoretically reach efficiencies above 100% but
the rate at which the reaction happens is then very low Dopp [2007].
The part of the voltage that exceeds 1.23 V is called overpotential or
overvoltage, and leads to losses in the electrochemical process while
allowing a higher rate in the reaction. Current density as a function
of voltage is approximated at standard temperature for Flat-Plate Bi-
functional Cells by

I = s× (CellVoltage − 1.48),
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where s is a constant dependent on the setup used for the electrolysis.
The evolution of the efficiency with the voltage and with the power
generated can be seen on Fig. A.3a and A.3b, respectively.

(a) Efficiency as a function of Voltage (b) Efficiency as a function of Power

Figure A.3: Evolution of the efficiency of the electrolysis process as a func-
tion of the rate at which the electrolysis is forced. Parameters
used can be found in Table A.1.

a.5.2 Fuel cell

A fuel cell is a device that converts the chemical energy from a fuel, in
this case hydrogen, into electricity through a chemical reaction with
oxygen or another oxidizing agent. Unlike heat engine, the efficiency
of a fuel cell is not limited by the Carnot cycle and has a theoretical
discharge efficiency ηd = 83% in the case of hydrogen. This efficiency
is however lowered when the amount of power generated by the
fuel cell increases as illustrated on Fig. A.4. In standard operating
conditions, the function ηd(Wfc) can be approximated as a linear
equation:

ηd = ηdmax − sfcWfc

where sfc is a constant dependent on the setup used for the fuel cell
and Wfc is the power density of the fuel cell.

a.5.3 The storage device

One significant constraint that influences the choice of the storage
device technology is often the energy density imposed by the
application. In the case where hydrogen is to be used as a fuel stored
on board of a vehicle, pure hydrogen gas must be pressurized or
liquefied. The drawback is that it necessitates the use of external
energy to power the compression. This constraint does not hold for
grid energy storage, especially in the case where hydrogen can be
stored in natural reservoirs such as in underground caverns, salt
domes or depleted oil/gas fields.
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Figure A.4: Characteristics of a PEM fuel cell Kartha and Grimes [2008]. (a)
The voltage as a function of the current density, commonly re-
ferred to as the performance curve. The efficiency is propor-
tional to the voltage; it is indicated on the secondary vertical
axis. (b) The power density as a function of the current density.
(c) The efficiency as a function of the power density. The dot-
ted line corresponds to the regime above maximum power. (d)
The efficiency of a complete fuel cell system in a vehicle, as a
function of power load, shown both for a PEM and an ICE. The
vertical dotted lines indicate average loads in a car (left) and a
bus or truck (right). The curves in (d) do not refer to the same
fuel cell as in (a) to (c).

In the following, the storage device will be characterized by the
energy capacity of the device Rc (in MWh). It will be assumed that
any leak in the storage device can be neglected.

a.6 experimental results

In the first part of this section, the algorithm described in Procedure 1

will be used to figure the maximum revenues that could be generated
over the period ranging from 2007 to 2013 by a high-capacity storage
device whose parameters are defined in Table A.1. The historical data
of electricity prices provided by Belpex over the last few years will be
used as input Belpex [2014]. In the second part, the influence of the
discretization of the algorithm will be studied. Finally, the impact of
the storage capacity on the overall gain will be analyzed.
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a.6.1 Base case

To compute the revenues of the storage capacity defined by Table
1, we have first discretized the state-action space to be able to use
Procedure 1. We choose for the state space a discretized step δs = 0.5
MWh. The discretization step for the action space is taken equal
to δu = 0.5 MWh. That leads to a discretized state space equal
to : {0, 0.5, 1, . . . ,Rc} and a discretized action space equal to the finite
set :{−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}.

Electrolysis selectrolysis 1MA/V

Fuel cell ηdmax 60%

sfc 0.4 MW−1

Wfc,max 5 MW

Wfc,min 0.8 MW

Storage device Rc 1000 MWh

s(0,0) 0 MWh

Table A.1: Data used for the electrolysis sets and fuel cells in the base case.

By using the bidding actions computed using procedures 1 and
2, we have determined the evolution of the cumulative revenues
as a function of time. The results are plotted on Fig. A.5. As we
can see, the cumulative revenues are not always growing. Indeed,
they are decreasing during periods of time when the tank is filled
with hydrogen. We note that at the end of the period 2007-2013, a
cumulative revenue of 233,000e is obtained.

Figure A.5: Cumulative revenues
∑
t r(at,pt) as a function of time. Day 0

refers to the first of January 2007.

The evolution of the level of energy stored inside the storage tank st
is shown on Fig. A.6a. It can be seen that hydrogen tends to be stored
during summer and transformed back into electricity during winter.
This is explained by the fact that most years, prices are higher in
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winter and lower in summer (see Fig. A.7). Besides, daily fluctuations
can also be seen on Fig A.6b. Energy is accumulated during the night
and transferred back to the grid during the day.

(a) Evolution throughout the years 2007 to
2013. Day 0 refers to the first January
2007.

(b) Zoom over two days

Figure A.6: Evolution of the energy reservoir level (st) as a function of time
for the base case.

(a) Average over all years (b) Average over individual years

Figure A.7: Evolution of the average prices for the years 2007 to 2013 as a
function of the period of the year.

On Fig. A.8, we have plotted the evolution of the price as a function
of the period of the day. We can observe that with the years, the
difference between on-peak and off-peak prices tends to decrease.
More specifically, the peak prices occurring traditionally during the
day tend to get much closer to the average price value. This can be
explained by the significant investments that have been made after
2008 in photovoltaic panels. Let us now go back to Fig. A.5 where we
have plotted the evolution of the cumulative revenues over time. As
one can observe, the rate of growth in cumulative revenues is higher
for the first two years than for the rest of the period. This observation
is a direct consequence from this flattening of the price evolution over
the day.
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(a) Average over all years (b) Average over individual years

Figure A.8: Evolution of the price as a function of the hour of the day for
the years 2007 to 2013.

Finally, we end this subsection by Fig. A.9, which nicely illustrates
on a single graphic the relation that exists behind the evolution of the
prices and the sequence of actions taken.

Figure A.9: Illustration of the sequence of actions and of electricity prices
with time. A dot is associated to every market period and its
color refers to the action taken. Its position gives the market
price at this time.

a.6.2 Influence of the capacity of the storage tank on the maximum revenue

In this section, we study the revenues obtained as a function of
the size of the reservoir. We have modeled the storage reservoir
as varying between a few MWh up to a reservoir which is large
enough for never being fully filled by the agent. The results are
plotted on Fig. A.10. We remind the reader that in the previous
subsection, a maximum capacity of 1000 MWh was used for the
storage device. As we can see, the revenues are a growing function of
the storage capacity. However, the incremental revenue obtained from
the exploitation is lowered as the storage capacity increases. Whatever
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the size of the reservoir, it is not possible to generate a revenue which
is larger than 272 000 e.

Figure A.10: Evolution of the expected revenues as a function of storage
capacity for the years 2007 to 2013.

a.6.3 Influence of the discretization on the maximum revenue

In this section, we study the influence of the discretization steps δs
and δu on the results obtained. To do so, we have run Procedure
1, followed by Procedure 2, for several values of δs and δu. Figure
A.11 plots the results obtained. Several interesting observations can
be made. First, for a given value of δs (δu), the return of the bidding
policy does not vary anymore when δu (δs) becomes lower than δs
(δu). Second, if δu > δs (δs > δu), better results can be obtained by
moving δu closer to δs (δs closer to δu). Finally, in the case where
the discretization steps are equal, the smaller they are, the better the
quality of the policy. Note however, that below a certain value of
the discretization steps, the quality of the policy remains roughly the
same.

a.7 revenues estimation under multiple price evolu-
tions

The experimental design exposed in the previous sections assumes
that the future price evolution is known in advance. Additionally,
it also relies on a discretization of the state-action space. A more
realistic assumption would be to assume a set of possible price
evolutions {(pk,t)t}

K
k=1 where K ∈ N0 and consider the empirical

return of a given sequence of actions over such a set of realizations as
an approximation of the expected value of this sequence of actions.
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Figure A.11: Revenues generated by the bidding policies as a function of
the action space discretization step (δu) and the state space
discretization step (δs).

If we make the hypothesis that the efficiencies of the fuel cell and
the electrolyzer are constant, the reward function and the system
dynamics are both linear mappings of states, actions and prices.
The empirical return over K price outcomes is then also a linear
mapping of the control variables. Finding a sequence of actions(
A∗0, . . . ,A∗nD−1

)
leading to the maximization of the empirical return

can be achieved by solving the following linear program:(
A∗0, . . . ,A∗nD−1

)
∈

arg max
Ai∈Ai,i=0...nD−1

1

K

K∑
k=1

nD−1∑
i=0

ρ(si,0,Ai, pk,t),

where pk,t denotes the vector of prices for the i−th day. Note that
the previous linear program allows to solve the problem exposed in
the previous section in the case K = 1 for continuous state-action
spaces. The dynamic programming approach has the advantage (i) to
ensure a linear complexity with the time horizon and (ii) to remain
applicable in the case of non-linear and even non-convex system
dynamics and reward function.

a.8 conclusion

In this annex, a methodology has been proposed for estimating the
revenues that can be generated by a high-capacity hydrogen-based
storage device on the energy markets. It was then used to estimate
the revenues that could be generated on Belpex - the Belgian power
exchange market.

The results show that for fixed size electrolyzers and fuel cells,
significantly higher revenues can be achieved by having large storage
capacities, such as for example hydrogen tanks that would take tens
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of days to fill or to empty. This is explained by the fact that with
huge tanks, the storage device can be operated so as to exploit the
inter-seasonal price fluctuations. The results also show that over the
last years, the revenues that could have been generated by storage
devices have decreased.

The research reported in this annex could be extended along
several directions. First, our algorithm for estimating the future
revenues assumes that the market price is not influenced by the
storage device itself and, more importantly, that the future price
evolution is known (or, at least, an ensemble of possible price
evolutions are known). It would be worth extending the methodology
proposed in this annex to a more general case. Note that this would
imply working in a probabilistic setting where we would compute an
expected future revenue or a distribution over future revenues.

Second, the only mechanism considered here for valorizing storage
has been to buy or sell energy on the electricity market. But
other mechanisms also exist, such as for example selling services
to the balancing/reserves markets Eurelectric [2012] or those that
would relate to absorbing the excess of energy produced locally by
renewable sources of energy so as to relieve congestions Gemine et al.
[2013]. In this respect, it would be worth computing the revenues that
can be generated by storage devices when all these mechanisms are
taken into account.

Finally, it would be interesting to study how prediction models of
the future revenues could be utilized to give clear indications about
the storage technology in which to invest and about where to install
storage devices.
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