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Permanent micromagnet structures prepared using thermomagnetic patterning (TMP) present an interesting and so far unexplored option for controlled
vortex pinning in a superconductor. We have investigated the vortex matter in superconductor/TMP micromagnet heterostructures (Nb/NdFeB) using
quantitative Magneto-Optical Imaging (MOI). Comprehensive protocols have been developed for calibrating and converting Faraday rotation data
acquired by MOI to magnetic field maps. These protocols reveal the comparatively weaker magnetic response of the superconductor from the
background of larger fields associated with the magnetic layer in its vicinity. Further, TMP micromagnet structures have been imprinted in a Permalloy
(Py) layer to obtain flexible magnetic landscapes for flux guidance in a Nb layer below it.

Permanent magnets to manipulate vortex matterj] TMP: A new approach Sample and experiment
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