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Multilinear 0—1 optimization

Multilinear 0—1 optimization

min Z 3e HX,- + Z CiXi

ecE ice iev
s. t. x; € {0,1} ieV

o V={1,...,n}, E = set of subsets e of V with |e| > 2 and a. # 0,
e V and E define a hypergraph H.

Example:

f'f(Xl7 X2,X3) = Ox1x0x3 + 8x1X0 — 6x0x3 + X1 — 2X0 + X3
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Applications: Computer Vision

Image restoration problems modelled as energy minimization

E(/) = Z Dp(/p) + Z Z VP1,~~~,P5(/P17 ) /Ps)’

pEP SCP,|S|>2 p1,...,ps€ES

where I, € {0,1} Vp e P.

(Image from "Corel database" with additive Gaussian noise.)
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Applications

Constraint Satisfaction Problem
Data mining, classification, learning theory...
Joint supply chain design and inventory management

Production management
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General idea

(Higher—degree 0-1 problem}

O

[Equivalent linear 0-1 problem] [Equivalent quadratic 0-1 problem\

h h

IP resolution techniques} QP resolution techniques}
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Standard Linearization (SL)

nﬁnj{jaell)q4—j£:cpq

ecE ice iev

Standard Linearization (Fortet (1959), Glover and Woolsey (1973))

Ye = HXI

ice

— Yet+ x>0 VieceVecE (1)
Ye— Y xi>1—|el VecE (2)

ice
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SL main drawback and contributions

‘SL drawback: The continuous relaxation given by the SL is very weak!

Contributions:

o Characterization of cases for which SL provides a perfect formulation
(Buchheim, Crama, Rodriguez-Heck (2017), discovered independently
by Del Pia, Khajavirad (2017)).

e Definition of a class of valid inequalities strengthening the SL
formulation, working especially well for simplified computer vision
instances (Crama, Rodriguez-Heck (2017)).
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General idea

(Higher—degree 0-1 problem}

O

[Equivalent linear 0-1 probIemJ [Equivalent quadratic 0-1 problem

h h

IP resolution techniques} QP resolution techniques}
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Quadratizations definition

Definition: Quadratization

Given a multilinear polynomial f(x) on {0,1}", we say that g(x,y) is a
quadratization of f if g(x, y) is a quadratic polynomial depending on
x and on m auxiliary variables yi, ..., ym, such that

f(x) = min{g(x,y) : y € {0,1}"} Vx e {0,1}".

Then,
min{f(x) : x € {0,1}"} = min{g(x,y) : x € {0,1}",y € {0,1}™}.

Which quadratizations are “good™?
e Small number of auxiliary variables.

e Good optimization properties: submodularity (intuitive measure: small

number of positive quadratic terms).
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Termwise quadratizations

Multilinear expression of a pseudo-Boolean function:

f(x) = —35x1x2x3X4x5 + 50x1 X2 X3 X4 — 10x1 X2 X8 X5 + 5x2X3 %4 + 5xax5 — 20x7

Idea: quadratize monomial by monomial, using different sets of auxiliary
variables for each monomial.

e Negative case well solved (one auxiliary variable, submodular
quadratization).

e Positive monomials much more difficult: just improved the best bound
for number of variables!



Negative monomial

Kolmogorov and Zabih (2004), Freedman and Drineas (2005).

_ l:!)q ::_yé?gh}‘gi <:E::)q (n—1) )

Why is this a quadratization? f(x) = —x1x2x3xa
e If x; =1 for all /, then min,c(q 1y —y, reached for y =1, value —1.

o If there is an i with x; = 0, then y has a nonnegative coefficient,
minimum reached for y = 0.
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Positive monomial: Literature

Ishikawa (2011)

k

n
X; = min (cin(=S1 +2i) — 1) + aS,,
,-1:[1 I }’17-..y/<€{0,1}§y’( in( )—1)

51, 5,: elementary linear and quadratic symmetric polynomials in n
variables,

k:L“z;lJ and C’_n:{l,ifnisoddandi:k,

2, otherwise.

e Number of variables: best published bound for positive monomials.

e Submodularity: (g) positive quadratic terms, but very good
computational results.
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Ist improvement: [7] variables

Theorem 1 (E. Boros, Y. Crama, E. R-H)

For all integers n,m, if n > 2, % <m< g and N = n — 2m then

1
glxy) =5 (X = Nyr —2Y) (X = Ny —2Y — 1)

is a quadratization of the positive monomial P, = []/_; x; using m
auxiliary variables, where X =31 ; x; and Y = >, y;.
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2nd improvement: [log(n)] — 1 variables

Theorem 2 (E. Boros, Y. Crama, E. R-H)
Let n < 2kt1 K =2kt1 _ pand X = %1 xi. Then,

k k
1 i i
glx,y) = 5 (K+X —Z2Yi)(K+X —22 yi—1)
i=1 i=1
is a quadratization of the positive monomial f(x) = Pp(x) =[]/, xi
using k auxiliary variables.

Proof idea:
® g(x,y) > 0 (half-product of consecutive integers).
e [f X < n—1: K+ X even: make 1st factor zero, K + X odd: make 2nd factor zero.
e If X = n: 1st factor is at least 2, 2nd factor is at least 1.
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Positive monomial: new quadratizations

Smallest number of variables known until now:

e [log(n)] — 1 variables

Two other quadratizations, more variables but maybe better optimization
properties (7)

e [log(n—1)] variables.

e [7] variables.

— Quadratizations being tested by a group at Cornell University.



Current work: computational

Instance sets:

e random polynomials,

e computer vision inspired polynomials,

e supply chain & inventory management.

Methods to compare:
e Standard linearization

e Termwise quadratizations

Pos. Mon. (Pp)

Neg. Mon. (N,)

Ishikawa
(7]
[log(n —1)]
[log(n)] — 1

1-var. quadrat.
1-var. quadrat.
1-var. quadrat.
1-var. quadrat.
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Current work: theoretical

Open questions:

Conjecture 1

We need at least m = [log(n)] — 1 variables to quadratize the positive
monomial.

Conjecture 2

There is a trade-off between having small number of variables and good
optimization properties, more precisely, the “most submodular”
quadratizations of the positive monomial have n — 1 positive quadratic
terms and use m = n — 2 variables.
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