Linearization and quadratization techniques for multilinear 0-1 optimization problems

Elisabeth Rodríguez-Heck and Yves Crama

QuantOM, HEC Management School, University of Liège
Partially supported by Belspo - IAP Project COMEX
IFORS, Québec City, July 17, 2017

Multilinear 0-1 optimization

Multilinear 0-1 optimization

$$
\begin{array}{ll}
\min & \sum_{e \in E} a_{e} \prod_{i \in e} x_{i}+\sum_{i \in V} c_{i} x_{i} \\
\text { s. t. } x_{i} \in\{0,1\} & i \in V
\end{array}
$$

- $V=\{1, \ldots, n\}, E=$ set of subsets e of V with $|e| \geq 2$ and $a_{e} \neq 0$,
- V and E define a hypergraph H.

Example:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1} x_{2} x_{3}+8 x_{1} x_{2}-6 x_{2} x_{3}+x_{1}-2 x_{2}+x_{3}
$$

Applications: Computer Vision

Image restoration problems modelled as energy minimization

$$
E(I)=\sum_{p \in \mathcal{P}} D_{p}\left(I_{p}\right)+\sum_{S \subseteq \mathcal{P},|S| \geq 2} \sum_{p_{1}, \ldots, p_{s} \in S} V_{p_{1}, \ldots, p_{s}}\left(I_{p_{1}}, \ldots, I_{p_{s}}\right),
$$

where $I_{p} \in\{0,1\} \quad \forall p \in \mathcal{P}$.

Applications

- Constraint Satisfaction Problem
- Data mining, classification, learning theory...
- Joint supply chain design and inventory management
- Production management

General idea

Standard Linearization (SL)

$$
\min \sum_{e \in E} a_{e} \prod_{i \in e} x_{i}+\sum_{i \in V} c_{i} x_{i}
$$

Standard Linearization (Fortet (1959), Glover and Woolsey (1973))

$$
\begin{array}{lr}
y_{e}=\prod_{i \in e} x_{i} & \\
-y_{e}+x_{i} \geq 0 & \forall i \in e, \forall e \in E \\
y_{e}-\sum_{i \in e} x_{i} \geq 1-|e| & \forall e \in E
\end{array}
$$

SL main drawback and contributions

SL drawback: The continuous relaxation given by the SL is very weak!
Contributions:

- Characterization of cases for which SL provides a perfect formulation (Buchheim, Crama, Rodríguez-Heck (2017), discovered independently by Del Pia, Khajavirad (2017)).
- Definition of a class of valid inequalities strengthening the SL formulation, working especially well for simplified computer vision instances (Crama, Rodríguez-Heck (2017)).

General idea

Quadratizations definition

Definition: Quadratization

Given a multilinear polynomial $f(x)$ on $\{0,1\}^{n}$, we say that $g(x, y)$ is a quadratization of f if $g(x, y)$ is a quadratic polynomial depending on x and on m auxiliary variables y_{1}, \ldots, y_{m}, such that

$$
f(x)=\min \left\{g(x, y): y \in\{0,1\}^{m}\right\} \quad \forall x \in\{0,1\}^{n}
$$

Then,
$\min \left\{f(x): x \in\{0,1\}^{n}\right\}=\min \left\{g(x, y): x \in\{0,1\}^{n}, y \in\{0,1\}^{m}\right\}$.

Which quadratizations are "good"?

- Small number of auxiliary variables.
- Good optimization properties: submodularity (intuitive measure: small number of positive quadratic terms).

Termwise quadratizations

Multilinear expression of a pseudo-Boolean function:
$f(x)=-35 x_{1} x_{2} x_{3} x_{4} x_{5}+50 x_{1} x_{2} x_{3} x_{4}-10 x_{1} x_{2} x_{4} x_{5}+5 x_{2} x_{3} x_{4}+5 x_{4} x_{5}-20 x_{1}$
Idea: quadratize monomial by monomial, using different sets of auxiliary variables for each monomial.

- Negative case well solved (one auxiliary variable, submodular quadratization).
- Positive monomials much more difficult: just improved the best bound for number of variables!

Negative monomial

Kolmogorov and Zabih (2004), Freedman and Drineas (2005).

$$
-\prod_{i=1}^{n} x_{i}=\min _{y \in\{0,1\}}-y\left(\sum_{i=1}^{n} x_{i}-(n-1)\right) .
$$

Why is this a quadratization? $f(x)=-x_{1} x_{2} x_{3} x_{4}$

- If $x_{i}=1$ for all i, then $\min _{y \in\{0,1\}}-y$, reached for $y=1$, value -1 .
- If there is an i with $x_{i}=0$, then y has a nonnegative coefficient, minimum reached for $y=0$.

Positive monomial: Literature

Ishikawa (2011)

$$
\prod_{i=1}^{n} x_{i}=\min _{y_{1}, \ldots y_{k} \in\{0,1\}} \sum_{i=1}^{k} y_{i}\left(c_{i, n}\left(-S_{1}+2 i\right)-1\right)+a S_{2},
$$

S_{1}, S_{2} : elementary linear and quadratic symmetric polynomials in n variables,
$\mathbf{k}=\left\lfloor\frac{\mathbf{n} \mathbf{- 1}}{\mathbf{2}}\right\rfloor$ and $c_{i, n}=\left\{\begin{array}{l}1, \text { if } n \text { is odd and } i=k, \\ 2, \text { otherwise } .\end{array}\right.$

- Number of variables: best published bound for positive monomials.
- Submodularity: $\binom{n}{2}$ positive quadratic terms, but very good computational results.

1st improvement: $\left\lceil\frac{n}{4}\right\rceil$ variables

Theorem 1 (E. Boros, Y. Crama, E. R-H)
For all integers n, m, if $n \geq 2, \frac{n}{4} \leq m \leq \frac{n}{2}$, and $N=n-2 m$ then

$$
g(x, y)=\frac{1}{2}\left(X-N y_{1}-2 Y\right)\left(X-N y_{1}-2 Y-1\right)
$$

is a quadratization of the positive monomial $P_{n}=\prod_{i=1}^{n} x_{i}$ using m auxiliary variables, where $X=\sum_{i=1}^{n} x_{i}$ and $Y=\sum_{j=2}^{m} y_{j}$.

2nd improvement: $\lceil\log (n)\rceil-1$ variables

Theorem 2 (E. Boros, Y. Crama, E. R-H)
Let $n \leq 2^{k+1}, K=2^{k+1}-n$ and $X=\sum_{i=1}^{n} x_{i}$. Then,

$$
g(x, y)=\frac{1}{2}\left(K+X-\sum_{i=1}^{k} 2^{i} y_{i}\right)\left(K+X-\sum_{i=1}^{k} 2^{i} y_{i}-1\right)
$$

is a quadratization of the positive monomial $f(x)=P_{n}(x)=\prod_{i=1}^{n} x_{i}$ using k auxiliary variables.

Proof idea:

- $g(x, y) \geq 0$ (half-product of consecutive integers).
- If $X \leq n-1: K+X$ even: make 1 st factor zero, $K+X$ odd: make 2 nd factor zero.
- If $X=n$: 1 st factor is at least 2,2 nd factor is at least 1 .

Positive monomial: new quadratizations

Smallest number of variables known until now:

- $\lceil\log (n)\rceil-1$ variables

Two other quadratizations, more variables but maybe better optimization properties (?)

- $\lceil\log (n-1)\rceil$ variables.
- $\left\lceil\frac{n}{4}\right\rceil$ variables.
\rightarrow Quadratizations being tested by a group at Cornell University.

Current work: computational

Instance sets:

- random polynomials,
- computer vision inspired polynomials,
- supply chain \& inventory management.

Methods to compare:

- Standard linearization
- Termwise quadratizations

Pos. Mon. $\left(P_{n}\right)$	Neg. Mon. $\left(N_{n}\right)$
Ishikawa	1 -var. quadrat.
$\left\lceil\frac{n}{4}\right\rceil$	1 -var. quadrat.
$\lceil\log (n-1)\rceil$	1 -var. quadrat.
$\lceil\log (n)\rceil-1$	1 -var. quadrat.

Current work: theoretical

Open questions:
Conjecture 1
We need at least $m=\lceil\log (n)\rceil-1$ variables to quadratize the positive monomial.

Conjecture 2

There is a trade-off between having small number of variables and good optimization properties, more precisely, the "most submodular" quadratizations of the positive monomial have $n-1$ positive quadratic terms and use $m=n-2$ variables.

Some references I

Q Y. Crama and E. Rodríguez Heck. A class of new valid inequalities for multilinear 0-1 optimization problems. Discrete Optimization. Published online, 2017.

R R. Fortet. L'algèbre de Boole et ses applications en recherche opérationnelle. Cahiers du Centre d'Études de recherche opérationnelle, 4:5-36, 1959.
F. Glover and E. Woolsey. Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Operations Research, 21(1):156-161, 1973.

S C. Buchheim, Y. Crama and E. Rodríguez Heck. Berge-acyclic multilinear 0-1 optimization problems. Under review, 2017.

Q M. Padberg. The boolean quadric polytope: some characteristics, facets and relatives. Mathematical Programming, 45(1-3):139-172, 1989.

Q Y. Crama. Concave extensions for nonlinear 0-1 maximization problems. Mathematical Programming 61(1), 53-60 (1993)

Some references II

A. Del Pia, A. Khajavirad. The multilinear polytope for γ-acyclic hypergraphs. Manuscript, 2016.

Q V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2):147-159, 2004.
D. Freedman and P. Drineas. Energy minimization via graph cuts: settling what is possible. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 939-946, June 2005.
H. Ishikawa. Transformation of general binary mrf minimization to the first-order case. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(6):1234-1249, June 2011.

Q M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of nonlinear binary optimization problems. Mathematical Programming, 162, 115-144, 2017.

