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Multilinear 0�1 optimization

Multilinear 0�1 optimization

min
∑
e∈E

ae
∏
i∈e

xi +
∑
i∈V

cixi

s. t. xi ∈ {0, 1} i ∈ V

• V = {1, . . . , n}, E = set of subsets e of V with |e| ≥ 2 and ae 6= 0,

• V and E de�ne a hypergraph H.

Example:

f (x1, x2, x3) = 9x1x2x3 + 8x1x2 − 6x2x3 + x1 − 2x2 + x3
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Applications: Computer Vision

Image restoration problems modelled as energy minimization

E (l) =
∑
p∈P

Dp(lp) +
∑

S⊆P,|S |≥2

∑
p1,...,ps∈S

Vp1,...,ps (lp1 , . . . , lps ),

where lp ∈ {0, 1} ∀p ∈ P.

(Image from "Corel database" with additive Gaussian noise.)
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Applications

• Constraint Satisfaction Problem

• Data mining, classi�cation, learning theory...

• Joint supply chain design and inventory management

• Production management

• ...
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General idea

Higher-degree 0�1 problem

Equivalent linear 0�1 problem Equivalent quadratic 0�1 problem

IP resolution techniques QP resolution techniques
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Standard Linearization (SL)

min
∑
e∈E

ae
∏
i∈e

xi +
∑
i∈V

cixi

Standard Linearization (Fortet (1959), Glover and Woolsey (1973))

ye =
∏
i∈e

xi

− ye + xi ≥ 0 ∀i ∈ e, ∀e ∈ E (1)

ye −
∑
i∈e

xi ≥ 1− |e| ∀e ∈ E (2)
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SL main drawback and contributions

SL drawback: The continuous relaxation given by the SL is very weak!

Contributions:

• Characterization of cases for which SL provides a perfect formulation

(Buchheim, Crama, Rodríguez-Heck (2017), discovered independently

by Del Pia, Khajavirad (2017)).

• De�nition of a class of valid inequalities strengthening the SL

formulation, working especially well for simpli�ed computer vision

instances (Crama, Rodríguez-Heck (2017)).
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General idea

Higher-degree 0�1 problem

Equivalent linear 0�1 problem Equivalent quadratic 0�1 problem

IP resolution techniques QP resolution techniques
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Quadratizations de�nition

De�nition: Quadratization
Given a multilinear polynomial f (x) on {0, 1}n, we say that g(x , y) is a
quadratization of f if g(x , y) is a quadratic polynomial depending on

x and on m auxiliary variables y1, . . . , ym, such that

f (x) = min{g(x , y) : y ∈ {0, 1}m} ∀x ∈ {0, 1}n.

Then,

min{f (x) : x ∈ {0, 1}n} = min{g(x , y) : x ∈ {0, 1}n, y ∈ {0, 1}m}.

Which quadratizations are �good�?

• Small number of auxiliary variables.
• Good optimization properties: submodularity (intuitive measure: small

number of positive quadratic terms).
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Termwise quadratizations

Multilinear expression of a pseudo-Boolean function:

f (x) = −35x1x2x3x4x5+50x1x2x3x4−10x1x2x4x5+5x2x3x4+5x4x5−20x1

Idea: quadratize monomial by monomial, using di�erent sets of auxiliary

variables for each monomial.

• Negative case well solved (one auxiliary variable, submodular

quadratization).

• Positive monomials much more di�cult: just improved the best bound

for number of variables!
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Negative monomial

Kolmogorov and Zabih (2004), Freedman and Drineas (2005).

−
n∏

i=1

xi = min
y∈{0,1}

−y

(
n∑

i=1

xi − (n − 1)

)
.

Why is this a quadratization? f (x) = −x1x2x3x4
• If xi = 1 for all i , then miny∈{0,1}−y , reached for y = 1, value −1.
• If there is an i with xi = 0, then y has a nonnegative coe�cient,

minimum reached for y = 0.
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Positive monomial: Literature

Ishikawa (2011)

n∏
i=1

xi = min
y1,...yk∈{0,1}

k∑
i=1

yi (ci ,n(−S1 + 2i)− 1) + aS2,

S1,S2: elementary linear and quadratic symmetric polynomials in n
variables,

k = bn−1
2
c and ci ,n =

{
1, if n is odd and i = k ,

2, otherwise.

• Number of variables: best published bound for positive monomials.

• Submodularity:
(n
2

)
positive quadratic terms, but very good

computational results.
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1st improvement: dn
4
e variables

Theorem 1 (E. Boros, Y. Crama, E. R-H)

For all integers n,m, if n ≥ 2, n
4 ≤ m ≤ n

2 , and N = n − 2m then

g(x , y) =
1

2
(X − Ny1 − 2Y ) (X − Ny1 − 2Y − 1)

is a quadratization of the positive monomial Pn =
∏n

i=1 xi using m
auxiliary variables, where X =

∑n
i=1 xi and Y =

∑m
j=2 yj .
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2nd improvement: dlog(n)e − 1 variables

Theorem 2 (E. Boros, Y. Crama, E. R-H)

Let n ≤ 2k+1, K = 2k+1 − n and X =
∑n

i=1 xi . Then,

g(x , y) =
1

2
(K + X −

k∑
i=1

2iyi )(K + X −
k∑

i=1

2iyi − 1)

is a quadratization of the positive monomial f (x) = Pn(x) =
∏n

i=1 xi
using k auxiliary variables.

Proof idea:

• g(x , y) ≥ 0 (half-product of consecutive integers).

• If X ≤ n−1: K +X even: make 1st factor zero, K +X odd: make 2nd factor zero.

• If X = n: 1st factor is at least 2, 2nd factor is at least 1.
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Positive monomial: new quadratizations

Smallest number of variables known until now:

• dlog(n)e − 1 variables

Two other quadratizations, more variables but maybe better optimization

properties (?)

• dlog(n − 1)e variables.
• dn4e variables.

→ Quadratizations being tested by a group at Cornell University.
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Current work: computational

Instance sets:

• random polynomials,

• computer vision inspired polynomials,

• supply chain & inventory management.

Methods to compare:

• Standard linearization

• Termwise quadratizations

Pos. Mon. (Pn) Neg. Mon. (Nn)

Ishikawa 1-var. quadrat.

dn4e 1-var. quadrat.

dlog(n − 1)e 1-var. quadrat.

dlog(n)e − 1 1-var. quadrat.
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Current work: theoretical

Open questions:

Conjecture 1

We need at least m = dlog(n)e − 1 variables to quadratize the positive

monomial.

Conjecture 2

There is a trade-o� between having small number of variables and good

optimization properties, more precisely, the �most submodular�

quadratizations of the positive monomial have n − 1 positive quadratic

terms and use m = n − 2 variables.

16 / 16



Problem de�nition Linearizations Quadratizations Current work and perspectives

Some references I

Y. Crama and E. Rodríguez Heck. A class of new valid inequalities for multilinear
0�1 optimization problems. Discrete Optimization. Published online, 2017.

R. Fortet. L'algèbre de Boole et ses applications en recherche opérationnelle.
Cahiers du Centre d'Études de recherche opérationnelle, 4:5�36, 1959.

F. Glover and E. Woolsey. Further reduction of zero-one polynomial programming
problems to zero-one linear programming problems. Operations Research,
21(1):156�161, 1973.

C. Buchheim, Y. Crama and E. Rodríguez Heck. Berge-acyclic multilinear 0�1
optimization problems. Under review, 2017.

M. Padberg. The boolean quadric polytope: some characteristics, facets and
relatives. Mathematical Programming, 45(1�3):139�172, 1989.

Y. Crama. Concave extensions for nonlinear 0�1 maximization problems.
Mathematical Programming 61(1), 53�60 (1993)



Problem de�nition Linearizations Quadratizations Current work and perspectives

Some references II

A. Del Pia, A. Khajavirad. The multilinear polytope for γ-acyclic hypergraphs.
Manuscript, 2016.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on,
26(2):147�159, 2004.

D. Freedman and P. Drineas. Energy minimization via graph cuts: settling what is
possible. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 2, pages 939�946, June 2005.

H. Ishikawa. Transformation of general binary mrf minimization to the �rst-order
case. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
33(6):1234�1249, June 2011.

M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of
nonlinear binary optimization problems. Mathematical Programming, 162, 115-144,
2017.


	Problem definition
	Linearizations
	Quadratizations
	Current work and perspectives

