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Abstract

Revealed preference theory is a domain within economics that studies ratio-
nalizability of behavior by (certain types of) utility functions. Given observed
behavior in the form of choice data, testing whether certain conditions are
satisfied gives rise to a variety of computational problems that can be an-
alyzed using operations research techniques. In this survey, we provide an
overview of these problems, their theoretical complexity, and available algo-
rithms for tackling them. We focus on consumer choice settings, in particular
individual choice, collective choice and stochastic choice settings.

Keywords: preference learning, revealed preference, rationality axioms,
utility theory, computational complexity

1. Introduction

1.1. Motivation

Our world is full of choices. Before we step outside the door in the morn-
ing, we have already chosen what to eat for breakfast and which clothes to
wear. For the morning commute, we decide how to travel, by what route,
and whether we’ll pick up coffee along the way. Dozens of small choices are
made before it is even time for lunch, and then there are the less frequent,
but more important decisions like buying a car, moving to a new home, or
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setting up retirement savings. Neoclassical economists hypothesize that such
consumption choices are made so as to maximize utility. Given this hypoth-
esis, it follows that each choice tells us something about the decision maker.
In other words, choices reveal preferences, and thereby provide information
about an underlying utility function. As we observe the choices of a decision
maker over time, we can piece together more and more information. Given
this information about choices made, a number of questions naturally arise:

i) Does there exist a utility function which is consistent with the observed
choices?

ii) When a consistent utility function exists, does there exist one in a pre-
specified class?

iii) When no consistent utility function exists, how close are the observed
choices to being consistent?

These questions belong to the domain of revealed preference theory, pio-
neered by Samuelson (1938, 1948). In this theory, it is usual to formulate a
minimum set of prior assumptions, also known as axioms, which are based
on a theory of choice behavior. Thus, revealed preference characterizations
are defined as conditions on the observed choices of decision makers. This
approach allows for direct tests of the decision models, without running the
risk that excessively strong functional (mis)specifications lead to rejections
of the model.

Testing the axioms of revealed preference theory is a topic at the interface
of economics and operations research. We focus on the algorithmic aspects
of solving the corresponding optimization/decision problems, and we high-
light some of the issues of interest from the operations research viewpoint. In
particular, we examine algorithms that can be used to test whether observed
consumer choices satisfy certain revealed preference conditions. We also look
at the tractability, that is, the computational complexity of algorithms for
answering these questions. Following the classical framework of computa-
tional complexity (see, for instance, Garey and Johnson (1979) or Cormen
et al. (2001)), we focus on worst-case time-bounds of algorithms. We are
especially interested in whether a particular question is easy (that is, solv-
able in polynomial time) or difficult (np-hard), and what the best-known
method is for answering the question.
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Let us first motivate this computational point of view. In a very general
way, it is clear that computational issues have become increasingly important
in all aspects of science, and economics is no exception. This is reflected, in
particular, in the economic literature on revealed preference, where computa-
tional challenges are frequently and explicitly mentioned. We illustrate this
claim with three quotes from recent papers.

Echenique et al. (2011) write:

“Given [that calculating money pump costs can be a huge compu-
tational task], we check only for violations of garp that involve
cycles of limited length: lengths 2, 3, and 4.”

Choi et al. (2014) write (in the online appendix):

“Since the algorithm is computationally very intensive, for a small
number of subjects we report upper bounds on the consistent set.”

Kitamura and Stoye (2014) write:

“It is computationally prohibitive to test stochastic rationality
on 25 periods at once. We work with all possible sets of eight
consecutive periods, a problem size that can be very comfortably
computed.”

These quotes signify the need for fast algorithms that can test rationality
of choices made by an individual (or a group of individuals), or at least to
better understand the tractability of these underlying questions.

Another trend that emphasizes the relevance of efficient computations
in the domain of revealed preference is the ever-increasing size of datasets.
As in many other fields of social and exact sciences, and as underlined by
the pervasiveness of buzzwords such as “big data” and “data science”, more
and more information is available about actual choices of decision makers.
As a striking example, it is now commonplace for brands or large retailers
to track the purchases of individual consumers or households. This activity
yields numerous datasets with sizes far beyond those provided by laboratory
experiments. This only reinforces the need for efficient methods, in order
to be able to tackle and to draw meaningful conclusions from huge datasets.
For example, Cherchye et al. (2017a) use revealed preference models to study
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food choices. The sample they analyze contains records of all grocery pur-
chases of 3,645 individuals over a period of 24 months. It is extracted from
the Kantar Worldpanel, which records the purchases of 25,000 households.
Long-running longitudinal studies actually provide large datasets of house-
hold consumption and other economic indicators. Cherchye et al. (2017b)
identify intrahousehold decision structures using such large datasets.

In view of these considerations, there is a quickly growing body of work on
computation and economics. As mentioned above, our objective is to give an
overview of algorithmic problems arising in revealed preference theory. Due
to the wide range of choice situations to which revealed preference has been
applied, providing a comprehensive overview is not a realistic goal. In this
paper, we focus on algorithmic results concerning tests of rational behavior
in consumer choice settings. For different discussions of the topic, we refer
the reader to the recent monograph on the theory of revealed preference by
Chambers and Echenique (2016), and to a survey by Crawford and De Rock
(2014) on empirical revealed preference; an earlier overview can be found in
Houtman (1995). Finally, we should note that certain aspects of revealed
preference theory, as a way of explaining choice behavior, have also been
criticized; see, e.g., the works of Hausman (2000) and Wong (2006).

1.2. Preference modeling and utility theory

Before we close this introductory section, we find it useful to formulate a
few comments on the relations between the stream of literature that we cover
in this paper, and the literature on preference modeling and utility-based
decision making, as they have classically been handled in operations research
(OR) and, more recently, in artificial intelligence (AI). Our goal is obviously
not to survey these huge and active fields of research. Rather, we simply
intend to clarify some of the similarities and differences that exist between
the “economic” setting of revealed preference theory, and an “operations
research” or “artificial intelligence” perspective which may be more familiar
to readers of this journal.

Many of the results surveyed in this paper express conditions for the exis-
tence of a utility function which represents the preferences revealed through
the choices made by consumers. Most of these results have been published by
economists. On the other hand, in operations research and in decision theory,
there is a long tradition of building utility functions (sometimes called “value
functions” in the deterministic setting) based on information provided by one
or several decision makers. Classical references are, for instance, Fishburn
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(1970), Keeney and Raiffa (1976). Typically, in such settings, the prefer-
ences of the decision maker are expressed by a limited number of pairwise
comparisons of alternatives, or by rankings of the alternatives on several cri-
teria. The objective is then to build a utility function which is coherent with
the expressed preferences, and which can be used, for instance, in order to
evaluate each and every alternative on a numerical or ordinal scale, or to
evaluate alternatives that have not yet been seen. The utility functions un-
der consideration may be as simple as a (weighted) sum of criteria, or may be
selected within a parameterized class of functions whose parameters are to be
determined. This type of approach has been extensively investigated, in par-
ticular, by researchers interested in multiple criteria problems with discrete
alternatives (MCDA) (see, e.g., Greco et al. (2016), and in particular Bouys-
sou and Pirlot (2016); Dyer (2016); Moretti et al. (2016); Siskos et al. (2016)
for recent surveys of closely related topics; see also Corrente et al. (2016) for
extensions), or in conjoint analysis (see, e.g., Giesen et al. (2010); Gustafsson
et al. (2007); Rao (2014)). More recently, similar questions have also been
investigated in preference learning, a subfield of artificial intelligence (see,
e.g., Corrente et al. (2013); Fürnkranz and Hüllermeier (2010)).

Not surprisingly, all of these fields share a common theoretical basis, as
well as many methodological concepts: preference relations, transitivity, pair-
wise comparisons, to name but a few. Nevertheless, they also all have their
own specific purposes, assumptions, and applications, which lead to a variety
of research questions and results. The objective of this survey is not to carry
out a systematic comparison of these various settings. However, in order to
avoid any confusion in the mind of the reader, we find it useful to briefly out-
line some of the most striking differences between revealed preference theory
and other utility-based frameworks.

• The approaches proposed in OR and in AI are mostly prescriptive or
operational in nature. Their main objective is to help an individual,
or a group of individuals, to express and to structure their preferences,
so as to allow them to make informed decisions. This is the case in
MCDA, in conjoint analysis, and in preference learning. In contrast,
the revealed preference literature is mostly normative (to the extent
that it posits axioms of rational choice behavior) and descriptive (to
the extent that it attempts to test whether actual consumer choices
are consistent with the stated axioms), but it is not meant to support
any decision making process. This is definitely a major distinguishing
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feature of revealed preference theory.

• As a corollary of the previous item, an objective frequently pursued in
OR and in AI is to explicitly build (“assess”, “elicit”) a utility func-
tion which is compatible with the data; this is the case in multiattribute
utility theory or in conjoint analysis, most noticeably. (Of course, some
classical approaches to multicriteria decision making do not explicitly
attempt to build the utility function of the decision maker; this is
the case, for instance, of the interactive methods developed by Zionts
and Wallenius (1976), Zionts and Wallenius (1983), and of outranking
methods such as described by Roy (1991).) On the other hand, in the
economic literature, a main objective is to check the coherence of con-
sumer choices with rationality axioms proposed in the theory. Hence,
building a compatible utility function (sometimes called the “recovery”
issue in economics) is usually not viewed as the primary outcome of the
process. It should be noted, however, that the existence proofs provided
for instance by Afriat (1967a) or Varian (1982) (see Section 3 hereun-
der) are constructive and provide an analytical expression of the utility
function, when it exists. Predicting, or bounding the demand bundles
associated with future prices is also a topic in interest in economics;
see, e.g., Blundell (2005), Varian (1982).

• In utility theory and in MCDA, the alternatives are often considered
as “abstract”, “unspecified” entities: most papers in this stream start
with the assumption that the decision maker is facing “a set A of al-
ternatives”, or potential actions, but the nature of these alternatives
is not directly relevant for the development of the theoretical frame-
work (although, of course, the alternatives must be fully determined
in any specific application of the theory); see Dyer (2016); Fishburn
(1970); Keeney and Raiffa (1976). In conjoint analysis or in preference
learning, the alternatives are represented as multidimensional vectors
associated with product attributes or other measurable features. In re-
vealed preference theory, on the other hand, the observations consist of
bundles of goods and their associated prices : this assumption is crucial
for the definition of the preference relation, as we explain next.

• In OR or AI, preferences among alternatives can be formulated in a
variety of ways (e.g., through pairwise comparisons of alternatives),
but are solely based on declarations of the decision maker. In revealed

6



preference settings, on the contrary, the preferences between bundles
are explicitly derived by the analyst from pairwise comparisons of the
prices of the bundles purchased by the decision maker. As a conse-
quence, goods and their prices play a central role and provide another
distinguishing feature of the theory. In particular, many of the theo-
rems regarding the existence of utility functions can be stated in terms
of prices and quantities of goods.

• In MCDA, in conjoint analysis, or in preference learning, the proce-
dure used to elicit the utility function often rests on the formulation
of questions that can be submitted to the decision maker, possibly in
an interactive, dynamic process; so, the design of the most appropriate
experiments is an important issue to be tackled by the analyst, as it
influences the relevance of the collected data and the efficiency of the
elicitation process (see, e.g., Gustafsson et al. (2007), Rao (2014), Ri-
abacke et al. (2012) for a discussion of such design issues). In revealed
preference settings, the analyst usually faces the results of uncontrolled
experiments, in the form of a database of observations which have been
typically collected for other purposes (although the issue of experimen-
tal design is also discussed, for instance, in Blundell (2005)).

• As a consequence of the previous point, the datasets considered in
the OR literature on preference modeling are often quite small, and
computational complexity, or even algorithmic considerations have not
been a main focus of attention in this area. (This is true, at least,
for multiple criteria problems with discrete alternatives, as opposed to
multiple criteria optimization problems which may feature an infinite
set of feasible alternatives, such as a polyhedron described by linear
inequalities, and which call for more efficient algorithmic approaches;
see, e.g., Wallenius et al. (2008) for a discussion of the growing impor-
tance of algorithmic issues in multicriteria decision making.) On the
other hand, the databases to be handled in revealed preference studies
are potentially huge, so that complexity issues naturally arise and have
been considered, more or less explicitly, by various researchers. They
provide the main theme to be covered in this paper.

As previously mentioned, in spite of the inherent differences outlined
above, and in spite of the fact that the streams of research on utility-based
decision making and on revealed preference have evolved in almost total
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separation, there remain some obvious commonalities between these topics.
The objective of our survey, however, is not to establish a comparative study,
but rather to provide the reader with an overview of fundamental results and
of recent developments in the field of algorithmic revealed preference theory.
We hope that this may lay the ground for future cross-fertilization between
operations research and revealed preference theory.

1.3. Outline of the survey

We begin this survey by introducing key concepts in revealed preference
theory, such as utility functions and preference relations, in Section 2. Next,
in Section 3, we state the fundamental theorems that characterize rationaliz-
ability in revealed preference theory. We explicitly connect rationalizability
with properties of certain graphs, and we state the worst-case complexity of
algorithms that establish whether a given dataset satisfies a particular “ax-
iom” of revealed preference. In Section 4 we look at various kinds of utility
functions that have been considered in the literature, and we provide cor-
responding rationalizability theorems. Section 5 deals with goodness-of-fit
and power measures, which respectively quantify the severity of violations
and give a measure of how stringent the tests are. In Section 6 we explore
collective settings, where the observed choices are the result of joint decisions
by several individuals. Finally, in Section 7, we look at stochastic preference
settings where the decision maker still attempts to maximize her utility, but
her preferences are not necessarily constant over time. Instead, the decision
maker has a number of different utility functions, and the function that she
maximizes at any given time is probabilistically determined. We conclude in
Section 8.

2. Preliminaries

In this section we lay the groundwork for the remainder of this paper:
Section 2.1 introduces utility functions and their properties, Section 2.2 states
the different axioms of revealed preference, and Section 2.3 shows how graphs
can be built from a given set of observations.

2.1. Basic properties of utility functions

Let us first introduce the basic ideas of revealed preference, by considering
purchasing decisions and utility maximization. Specifically, consider a world
withm different goods. The decision maker selects a bundle of goods, denoted
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by the (m × 1) vector q ∈ Rm
+ . Throughout this paper, except where noted

otherwise, we assume this choice is constrained by a linear budget constraint.
The (1 × m) vector p ∈ Rm

++ denotes the prices of the goods, and b the
available budget. Under the classical hypothesis of utility maximization, the
choice of the decision maker is guided by a utility function u(q) : Rm

+ → R+.
Thus, the decision maker selects (consciously or not) an optimal bundle q by
solving the following problem, for any given price vector p and budget b.

Maximize u(q) (1)

subject to pq ≤ b. (2)

Following standard economic theory, we assume the utility function to be
concave, continuous and strictly monotone, a set of properties we capture in
the following definition:

Definition 1. Well-behaved Utility Function
A utility function u(q) : Rm

+ → R+ is well-behaved if and only if u is concave,
continuous, and strictly monotone.

Notice that in this survey, we restrict ourselves exclusively to the deter-
ministic setting where the utility function does not depend on unobservable,
random elements beyond the bundle q.

Another relevant property of a utility function is the potential uniqueness
of its optima. This is formulated as follows.

Definition 2. Single-valued Utility Function
A utility function u(q) : Rm

+ → R+ is single-valued if and only if, for each
p, b, the problem {Maximize u(q) subject to pq ≤ b} has a unique optimal
solution q.

Of course, there are many other properties that one may want to require
from a utility function; we come back to this issue in Section 4.

2.2. Preference relations and axioms of revealed preference

In the remainder of the paper, we assume that data is collected by observ-
ing, at n different points in time, the prices and quantities of all goods that
are bought. This yields a dataset S = {(pi, qi)| i ∈ N}, where pi ∈ Rm

++ is
the vector of prices at time i, qi ∈ Rm

+ is the bundle purchased at time i,
and N = {1, 2, . . . , n}. We use the word observation to denote a pair
(pi, qi), i ∈ N .
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Samuelson (1938) introduced the definition of the direct revealed prefer-
ence relation over the set of bundles.

Definition 3. Direct Revealed Preference Relation
For any pair of observations i, j ∈ N , if piqi ≥ piqj, we say that qi is directly
revealed preferred over qj, and we write qiR0 qj.

The interpretation of Definition 3 is quite intuitive: indeed, note that piqi
and piqj respectively express the total price of bundle qi and bundle qj at
time i, that is, when the prices pi apply. If the inequality piqi ≥ piqj holds,
we thus observe that bundle qi was purchased at time i in spite of the fact
that qi was at least as expensive as qj at time i. The natural conclusion is
that the decision maker prefers bundle qi over qj (otherwise, she would have
bought qj), and this is the meaning of the relation R0.

Assume now that we wish to test the hypothesis of utility maximization.
In the empirical setting, the budget available to the decision maker at time
i ∈ N is generally unobservable, but it is natural to assume that it is equal
to piqi. (As a matter of fact, if the decision maker maximizes her utility and
if the utility function is monotonic, then the bundle picked at each period
must exhaust the available budget, which is therefore equal to piqi at time i.)

We now wish to test whether the given dataset is consistent with the
theory of utility maximization. For the data to be consistent with that
theory, there must exist a utility function such that all purchasing decisions
maximize utility under the budget constraints. We say that a utility function
satisfying this requirement rationalizes the data, and we call it a rationalizing
utility function.

Definition 4. Rationalizability
A dataset S = {(pi, qi)| i ∈ N} is rationalizable by a well-behaved (single-
valued) utility function if and only if there exists a well-behaved (single-
valued) utility function u such that for every observation i ∈ N ,

u(qi) ≥ u(qj) for all j ∈ N with piqi ≥ piqj.

This rationalizability concept is key in revealed preference theory, and
goes back to the work of Antonelli (1886). In words, Definition 4 expresses
that, at each time i ∈ N , the choice of the decision maker was rational in
the sense that she picked the bundle which maximizes her utility among all
(observed) bundles qj, j ∈ N , whose total price piqj (at time i) was within the
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budget piqi. Restricting the attention to the finite set of bundles {qj| j ∈ N}
that actually have been observed in the dataset, rather than considering the
infinite universe Rm

+ of all bundles that could potentially be bought by the
decision maker, will allow us to test Definition 4 in an empirical setting, as
we will find out in the next sections.

In terms of the direct revealed preference relation, the utility function
u(q) rationalizes the data if and only if u(qi) ≥ u(qj) for all i, j ∈ N such
that qiR0 qj: in the terminology of Fishburn (1970), this means that u(q)
is order-preserving for R0; see also Bouyssou and Pirlot (2016)). Therefore,
it is natural to investigate conditions on R0 which ensure that a data set is
rationalizable. This observation led Samuelson (1938) to formulate the Weak
Axiom of Revealed Preference.

Definition 5. Weak Axiom of Revealed Preference (warp)
A dataset S satisfies warp if and only if, for each pair of distinct bundles
qi, qj, i, j ∈ N with qiR0 qj, it is not the case that qj R0 qi.

warp is the first rationalizability condition proposed in the literature.
It requires the revealed preference relation to be asymmetric. The intuition
behind it is simple: if the decision maker shows through her decision that she
prefers bundle qi over qj at time i, then she cannot at another time show that
she prefers qj over qi (assuming she behaves as a utility maximizer). In other
words, warp is a necessary condition for rationalizability by a single-valued
utility function (see Section 3). On the other hand, we notice that warp
does not require the direct revealed preference relation to be transitive, so
that warp is not sufficient for rationalizability.

The work of Samuelson was further developed by Houthakker (1950), who
noted that by using transitivity, the direct revealed preference relation could
be extended to an indirect relation.

Definition 6. Revealed Preference Relation
For any sequence of observations i1, i2, . . . , ik ∈ N , if qi1 R0 qi2 R0 . . . R0 qik ,
we say that qi1 is revealed preferred over qik , and we write qi1 Rqik .

Using these revealed preference relations, Houthakker formulated the
Strong Axiom of Revealed Preference.

Definition 7. Strong Axiom of Revealed Preference (sarp)
A dataset S satisfies sarp if and only if for each pair of distinct bundles
qi, qj, i, j ∈ N with qiRqj, it is not the case that qj R0 qi.
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In order to allow for indifference between bundles, Varian (1982) intro-
duced the strict direct revealed preference relation, and using this relation,
defined the generalized axiom of revealed preference, garp.

Definition 8. Strict Direct Revealed Preference Relation
For any pair of observations i, j ∈ N , if piqi > piqj, we say that qi is strictly
revealed preferred over qj, and we write qi P0 qj.

Definition 9. Generalized Axiom of Revealed Preference (garp)
A dataset S satisfies garp if and only if for each pair of distinct bundles,
qi, qj, i, j ∈ N , such that qiRqj, it is not the case that qj P0 qi.

Example 1. Consider the following small dataset consisting of four obser-
vations.

p1 = (2, 2, 2) q1 = (2, 2, 2)

p2 = (1, 2, 4) q2 = (4, 0, 2)

p3 = (2, 1, 3) q3 = (4, 4, 0)

p4 = (4, 2, 1) q4 = (0, 1, 4)

Table 1 contains the values piqj for i, j = 1, . . . , 4.

q1 q2 q3 q4
p1 12 12 16 10
p2 13 12 12 18
p3 12 14 12 13
p4 14 18 24 8

Table 1: piqj for i, j = 1, . . . , 4

Clearly, there are direct revealed preference relations q1R0 q2, q2R0 q3,
q3R0 q1 and a strict direct revealed preference relation q1 P0 q4. This dataset
satisfies both warp and garp, but not sarp since q1Rq3 and q3R0 q1.

Figure 1 illustrates the relations between the different core axioms of
revealed preference theory (warp, sarp, and garp). Indeed, any dataset
satisfying sarp satisfies both warp and garp, and there exist datasets not
satisfying sarp that satisfy both warp and garp (see Example 1).
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WARP GARPSARP

Figure 1: Relations of the axioms of revealed preference

2.3. Graphs representing a dataset

We now describe how to build a directed graph that can be used to
represent a dataset; this construction originates from Koo (1971). As we wil
see in Section 3, such graphs are very useful tools in deciding rationalizability.
Given a datset S = {(pi, qi)| i ∈ N}, we build a directed weighted graph
GS = (VS, AS) as follows. For each observation i ∈ N , there is a node in VS,
i.e., VS := N . Further, there is an arc from node i to node j in AS exactly
when piqi ≥ piqj and qi 6= qj (or equivalently, when qiR0 qj and qi 6= qj).
Observe that in GS there is no arc between distinct observations that feature
an identical bundle. Finally, the length of an arc (i, j) ∈ AS equals pi(qj−qi).
Notice that this length is always nonpositive.

Example 1 Continued. The revealed preference graph corresponding to the
dataset is given in Figure 2. Notice that the direct, but not strict, revealed
preference relations correspond to an arc of length 0, while the strict revealed
preference relations correspond to arcs of strictly negative length.

1 2

3 4

0

-2
0

0

Figure 2: A revealed preference graph

An alternative version of this construction was proposed by Talla Nobibon
et al. (2016). These authors defined a directed graph GR0 which is simply
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the graph of the direct preference relation R0: the node set of GR0 is again
N , and there is an arc from node i to node j if and only if qiR0 qj (including
when qi = qj). For the dataset in Example 1, GR0 = GS since no bundle
appears twice.

3. Fundamental Results

In this section, we connect the fundamentals given in Section 2, and we
formulate the theorems that characterize rationalizability. Clearly, a main
goal within revealed preference theory is to test whether there exists a (par-
ticular) utility function rationalizing a given dataset S.

3.1. Testing garp

Necessary and sufficient conditions for rationalizability of a given dataset
by a well-behaved utility function are given in Theorem 1.

Theorem 1. (garp)
The following statements are equivalent.

1. The dataset S = {(pi, qi)| i ∈ N} is rationalizable by a well-behaved
utility function u(q).

2. There exist strictly positive numbers Ui, λi for i ∈ N satisfying the
system of linear inequalities

Ui ≤ Uj + λjpj(qi − qj) ∀i, j ∈ N. (3)

3. S satisfies garp.

4. Each arc contained in a cycle of the graph GS has length 0.

The inequalities comprising system (3) are called the Afriat Inequalities.
It is not difficult to see that system (3) can be reformulated as a linear
program. Indeed, notice that multiplying a given feasible solution (Ui, λi :
i ∈ N) by any positive constant gives again a feasible solution; thus, one can
require each of the variables to be at least equal to 1, and not just strictly
positive. The equivalence of statements 1 and 2 in Theorem 1 was established
by Afriat (1967a), and their equivalence with statement 3 is due to Varian
(1982). Statement 4 is easily derived from the definition of garp. Thus,
Afriat (1967a) provided a linear program, formed by the Afriat Inequalities,
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that characterizes rationalizability by a well-behaved utility function. This
allows us to conclude that garp can be tested in polynomial time (although
no polynomial time algorithms for solving linear programming problems were
known at the time when Afriat published his work).

Rationalizability tests for consistency of datasets with garp have gone
through a number of stages. Diewert (1973) states another linear program-
ming formulation. Varian’s formulation of garp (Varian, 1982) provides
another algorithm for testing rationalizability. This formulation shows that
rationalizability can be tested by computing the transitive closure of the di-
rect revealed preference relation. This transitive closure yields all revealed
preference relations, direct and indirect. Given the transitive closure, garp
can be tested by checking, for each pair of bundles qi, qj, i, j ∈ N , whether
both qiRqj and qj P0 qi simultaneously hold. The bottleneck in this proce-
dure is the computation of the transitive closure. Varian suggests to use War-
shall’s algorithm (Warshall, 1962), which has a worst-case time complexity of
O(n3); he also notes the existence of faster algorithms based on matrix mul-
tiplication, which at the time achieved O(n2.74) complexity (Munro, 1971).
By now, these algorithms have improved, the best known algorithms for gen-
eral matrices having O(n2.373) time complexity (Coppersmith and Winograd,
1990; Williams, 2012; Le Gall, 2014).

Recently, Talla Nobibon et al. (2015) described an algorithm with a worst-
case bound of O(n2) for garp, based on the computation of strongly con-
nected components of the graph GS. An alternative, simple statement of
the O(n2) test is derived in Talla Nobibon et al. (2016) from the observation
that a dataset S satisfies garp if and only if piqi = piqj for each arc (i, j)
contained in a strongly connected component of GR0 (see Condition 4 of The-
orem 1). Shiozawa (2016) describes yet another way to test garp in O(n2)
time, using shortest path algorithms. Talla Nobibon et al. (2015) prove a
lower bound on testing garp, showing that no algorithm can exist with time
complexity smaller than O(n log n).

3.2. Testing sarp

Analogously to Theorem 1, we now give a theorem that provides necessary
and sufficient conditions relating to sarp.

Theorem 2. (sarp)
The following statements are equivalent.
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1. The dataset S = {(pi, qi)| i ∈ N} is rationalizable by a well-behaved,
single-valued utility function u(q).

2. There exist strictly positive numbers Ui, λi for i ∈ N satisfying the
system of linear inequalities

Ui < Uj + λjpj(qi − qj) ∀i, j ∈ N. (4)

3. S satisfies sarp.

4. The graph GS is acyclic.

Houthakker (1950), extending the work of Samuelson, introduced the for-
mulation of sarp and proved the equivalence of statements 1 and 3. State-
ment 2 is an extension of Theorem 1.

Again, observe that the system (4) can be cast into a linear optimization
format. Using a matrix representation of the direct revealed preference rela-
tions, Koo (1963) describes a sufficient condition for consistency with sarp.
Dobell (1965) is the first to describe conditions which are both necessary
and sufficient. Dobell’s test is based on the matrix representation of direct
revealed preference relations. He proposes checking whether every square
submatrix of the direct revealed preference matrix contains at least one row
and one column consisting completely of elements equal to 0. Since there
is an exponential number of such submatrices, this test runs in exponential
time. Koo (1971) later publishes another paper where he observes that test-
ing sarp amounts to checking whether GS is acyclic: this can be done in
O(n2) time, and is to-date the most efficient available method for testing
consistency with sarp. An alternative version of this test is provided by
Talla Nobibon et al. (2016). These authors observe that S satisfies sarp if
and only if, within each strongly connected component of GR0 , all bundles
are identical. This condition can again be checked in O(n2) time by rely-
ing on Tarjan’s algorithm to compute all strong components of GR0 (Tarjan,
1972).

3.3. Testing warp

For the sake of completeness, let us now state an easy result which is in
fact nothing but a restatement of the definition of warp.

Theorem 3. (warp)
The following statements are equivalent.
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1. The dataset S = {(pi, qi)| i ∈ N} satisfies WARP.

2. The graph GS does not contain any cycle consisting of two arcs.

As mentioned before, satisfying WARP is only a necessary condition for
rationalizability by a single-valued utility function. However, in the special
case where the dataset involves only two goods (i.e., m = 2), warp is both
a necessary and sufficient condition for rationalizability by a single-valued
utility function (Samuelson, 1948; Little, 1949).

Testing warp can be done in O(n2) time, since it is sufficient to test each
pair of observations for a violation. More explicitly, after having computed
the quantities piqi and piqj for all distinct i, j ∈ N , warp can be rejected if
and only if there exists a pair of distinct i, j ∈ N such that piqi ≥ piqj and
pjqj ≥ pjqi.

Finally, let us point out that the graph characterization of garp, sarp
and warp allows us to easily conclude (using Figure 2) that the dataset given
in Example 1 satisfies warp (as there are no 2-cycles in GS), satisfies garp
(as the cycle 1-2-3 has length 0), and does not satisfy sarp (as GS is not
acyclic).

Rationalizability questions are not limited to general utility functions. In
the next sections, we are interested in the question whether datasets can be
rationalized by utility functions of a specific form (Section 4), by collective
choice processes (Section 6), or by stochastic choice processes (Section 7).

4. Other Classes of Utility Functions and their Rationalizability

Besides the basic tests discussed in the previous paragraphs, conditions
and tests have been derived for testing rationalizability by various specific
forms of utility functions. In this section we consider two additional classes
of utility functions: utility functions that are separable (Section 4.1), and
utility functions that are homothetic (Section 4.2). In addition, we assume
from now on that the utility functions are non-satiated. This is a concept
used to model the property that for every bundle q there is another bundle q′

in the neighborhood of q that is preferred over q. Formally (Jehle and Reny,
2011):

Definition 10. Non-satiated Utility Functions
A utility function u(·) is non-satiated if, for each q ∈ Rm and for each ε > 0,
there exists q′ ∈ Rm with ||q′ − q|| ≤ ε such that u(q′) > u(q).
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The property of non-satiatedness expresses that, in the absence of a bud-
get constraint, no particular bundle is preferred to all other bundles. It also
imposes some form of continuity to the preferences over bundles.

4.1. Separable utility functions

Separability of a utility function refers to the property that different goods
in a bundle may have no joint effect on the utility of the bundle; then, goods
can be regarded as independent of each other. More generally, it is often
assumed that there exists a partition of the goods into R subsets such that
goods from different sets do not interact. Hence, separability of a utility
function is defined with respect to a given partition of the goods. More
concretely, given a partition of the goods into R disjoint sets, we denote by
mj the number of goods in set j, 1 ≤ j ≤ R. Any bundle of goods can
then be written as q = (q1, . . . , qR), with qj ∈ Rmj

+ denoting the vector of
quantities for the goods in set j, 1 ≤ j ≤ R.

There are two versions of separability: strong and weak. We first provide
the definition of a strongly separable (also known as additive) utility function.

Definition 11. Strongly Separable Utility Functions
A utility function u(q) is strongly separable with respect to a given partition of
the set of goods {1, 2, . . . ,m} if and only if there exist well-behaved functions
fj(q

j) : Rmj

+ → R+ for each j ∈ {1, . . . , R} such that

u(q) = f1(q
1) + f2(q

2) + . . .+ fR(qR).

The case where we partition the set of goods into two subsets, i.e., the
case R = 2, allows the following theorem due to Varian (1983).

Theorem 4. The following statements are equivalent.

1. There exists a strongly separable, well-behaved, non-satiated utility func-
tion u(f(q1), q2) rationalizing the dataset S = {(pi, qi)| i ∈ N}.

2. There exist strictly positive numbers Ui, Vi, λi with i ∈ N satisfying the
system of linear inequalities

Ui ≤ Uj + λjp
1
j(q

1
i − q1j ) ∀i, j ∈ N, (5)

Vi ≤ Vj + λjp
2
j(q

2
i − q2j ) ∀i, j ∈ N. (6)
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Varian (1983) also gives a linear programming formulation for arbitraryR,
allowing for a polynomial-time test of rationalizability by a strongly separable
utility function.

A weaker version of separability occurs when the utilities of the different
sub-bundles are not necessarily summed to obtain the total utility; weak
separability rather assumes that there exists a function, denoted u′, that
takes as input the utilities of the individual groups of goods, and translates
these into a total utility.

Definition 12. Weakly Separable Utility Functions
A utility function u(q) is weakly separable with respect to q1, . . . , qR−1 if and
only if there exist functions fj(q

j) : Rmj

+ → R+ for each j ∈ {1, . . . , R − 1}
and a function u′(x1, . . . , xR−1, q

R) such that

u(q) = u′(f1(q
1), . . . , fR−1(q

R−1), qR).

Following his paper on general utility functions, Afriat also wrote an un-
published work on separable utility functions (Afriat, 1967b). Varian (1983)
built further on this, giving a non-linear system of inequalities, reproduced
below in Theorem 5, for which the existence of a solution is a necessary and
sufficient condition for rationalizability by a well-behaved, weakly separable
utility function with R = 2 sets of goods.

Theorem 5. The following statements are equivalent.

1. There exists a weakly separable, well-behaved, non-satiated utility func-
tion u(f(q1), q2) rationalizing the dataset S = {(pi, qi)| i ∈ N}.

2. There exist strictly positive numbers Ui, Vi, λi, µi for i ∈ N satisfying
the system of non-linear inequalities

Ui ≤ Uj + λjp
2
j(q

2
i − q2j ) + (λj/µj)(Vi − Vj) ∀i, j ∈ N, (7)

Vi ≤ Vj + µjp
1
j(q

1
i − q1j ) ∀i, j ∈ N. (8)

Diewert and Parkan (1985) extend this result to multiple separable sub-
sets. Cherchye et al. (2015) prove that testing rationalizability by a weakly
separable utility function is np-hard even for R = 2. They also provide
an integer programming formulation which is equivalent to (7)-(8). Several
heuristic approaches have been formulated for testing weak separability. Var-
ian attempts to overcome the computational difficulties by finding a solution
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to the linear part of the system of inequalities and then fixing variables based
on this solution, which linearizes the remainder of the inequalities. This im-
plementation can be too restrictive, as the variables are usually fixed with
values making the system infeasible, even if a solution exists, as shown by
Barnett and Choi (1989). Fleissig and Whitney (2003) take a similar ap-
proach, but improve on it by fixing variables with values that are more likely
to allow solutions to the rest of the system of equalities. Exact tests of
(adaptations of) Varian’s inequalities are described in Swofford and Whitney
(1994) and Fleissig and Whitney (2008). Both use non-linear programming
packages to find solutions and are limited in the size of datasets they can han-
dle. Computational results in Cherchye et al. (2015) suggest that the integer
programming approach is feasible for moderately sized datasets. Hjertstrand
et al. (2016) use this approach in an application testing separability of con-
sumption, leisure and money. When dropping the concavity assumption, the
rationalizability problem remains np-hard, even if the dataset is limited to
9 goods (Echenique, 2014). Quah (2014) provides an algorithm for testing
separable utility functions without the concavity assumption. Swofford and
Whitney (1994) modify (7)-(8) to account for consumers needing time to
adjust their spending.

4.2. Homothetic utility functions

Another class of utility functions of interest are the homothetic utility
functions. Their definition is based on the concept of a homogenous function.

Definition 13. Homogenous Functions
A function f(·) is homogenous when f(λq) = λf(q), for each q ∈ Rm and
for each λ ∈ R.

Definition 14. Homothetic Utility Functions
A utility function u(·) is homothetic when there exist a homogenous func-
tion f and a monotonic function ` such that u(q) = `(f(q)) for each q ∈ Rm.

In effect, if u is homothetic and if u(qi) ≥ u(qj) for two bundles qi, qj, then
for any constant α > 0, u(αqi) ≥ u(αqj). Theorem 6 gives necessary and
sufficient conditions for rationalizability of a dataset by a homothetic utility
function. Notice that for tests of homothetic utility functions described in
the theorem, we assume the price vectors are normalized so that piqi = 1
for all i ∈ N . One of these conditions is based on the following graph H =
(VS, AS) (whose construction is in the spirit of the construction described in
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Section 2.3). For each observation i ∈ N , there is a node in VS, i.e., VS := N .
Further, for each ordered pair of observations (i, j), there is an arc of length
log(piqj) between the corresponding nodes. Figure 3 shows a graph to test
homotheticity for the dataset given in Example 1.
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Figure 3: A revealed preference graph for testing homotheticity

Theorem 6. The following statements are equivalent.

1. There exists a non-satiated homothetic utility function u(·) rationalizing
the dataset S = {(pi, qi)| piqi = 1, ∀i ∈ N}.

2. There exist strictly positive numbers Ui for i ∈ N satisfying the inequal-
ities

Ui ≤ Ujpjqi ∀i, j ∈ N. (9)

3. For all distinct choices of observations (i1, i2, . . . , ik), we have

(pi1qi2)(pi2qi3) . . . (pikqi1) ≥ 1. (10)

4. The graph HS does not contain a cycle of negative length.
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The equivalence of statements 1, 2 and 3 was proven by Afriat (1972,
1981). Based on statement 4, Varian (1983) proposes a combinatorial test
which can be implemented in O(n3) time.

Varian (1983) also provides a test for homothetic, separable utility func-
tions, which is again a difficult-to-solve system of non-linear inequalities.
Finally, utility maximization in case of rationing (i.e., when there are addi-
tional linear constraints on the bundles which can be bought, on top of the
budget constraint) is also handled by Varian. He provides a linear system
of inequalities whose feasibility is a necessary and sufficient condition for
rationalizability.

In summary, various forms of utility functions are usually associated with
a system of inequalities, for which the existence of a solution is a neces-
sary and sufficient condition for rationalizability by such a utility function.
The difficulty of these rationalizability tests crucially depends on whether
the systems are linear or non-linear. General, single-valued and strongly
separable utility functions are easy to rationalize, as their associated sys-
tems of inequalities are linear. The same holds true for utility maximization
by a general utility function under rationing constraints. For general and
single-valued utility functions, more straightforward tests have been devel-
oped. A polynomial test also exists for rationalizability by a homothetic
utility function. On the other hand, for those utility functions associated
with non-linear systems of inequalities, that is, weakly separable and homo-
thetic separable functions, no efficient tests are known. For weakly separable
utility, formal np-hardness results exist. For homothetic separable func-
tions, the complexity question remains open. Varian (1982; 1983) provides a
way to construct consistent utility functions for all of these settings. Table 2
summarizes these results.

Type of utility function Type of test Time complexity
General Graph test O(n2)
Single-valued Graph test O(n2)
Strongly separable System of linear ineq. polynomial
Weakly separable System of non-linear ineq. np-hard
Homothetic Graph test O(n3)
Homothetic and separable System of non-linear ineq. open

Table 2: Complexity results for testing rationalizability by utility functions of specific
forms.
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To complete our overview on rationalizability by general utility functions,
we mention some recent work on indivisible goods and non-linear budget sets.
More precisely, these are settings where the optimization problem (1)-(2) is
further constrained by the conditions that (i) some components of q are in-
tegral, and (ii) the budget constraint is non-linear (e.g., in the presence of
quantity discounts), and/or there are multiple budget constraints. Forges
and Minelli (2009) give a revealed preference characterization for non-linear
budgets, for which garp is a sufficient and necessary condition for ratio-
nalizability by an increasing and continuous utility function. Cherchye et al.
(2014) give conditions for rationalizability by an increasing, concave and con-
tinuous utility function for the setting with non-linear budgets. They note
that, together with the results by Forges and Minelli, this allows for tests of
the concavity of utility functions which are not possible in the setting with
linear budgets. Computationally there is no obvious easy way to test the
conditions laid out by Cherchye et al. in general. However, they show that
if the budgets can be represented by a finite union of polyhedral convex sets,
a system of linear inequalities provides conditions for rationalizability. Fu-
jishige and Yang (2012) and Polisson and Quah (2013) extend the revealed
preference results to the case with indivisible goods. They find that garp is a
necessary and sufficient test for rationalizability, given a suitable adaptation
of the revealed preference relations for their setting. Cosaert and Demuynck
(2015) look at choice sets which are non-linear and have a finite number of
choice alternatives. They provide revealed preference characterizations for
weakly monotone, strongly monotone, weakly monotone and concave, and
strongly monotone and concave utility functions, all of which are easy to
test, either by some variant of garp or a system of linear inequalities.

5. Goodness-of-Fit and Power Measures

An often cited limitation of rationalizability tests is that they are binary
tests: either the dataset is rationalizable or it is not. Thus, when violations
of rationalizability conditions are found, there is no indication of their sever-
ity. Likewise, when the rationalizability conditions are satisfied, this could
be because the choices faced by the decision maker make it unlikely that
violations would occur. To refine this yes/no verdict inherent to rational-
izability, so-called goodness-of-fit measures and power measures have been
proposed in the literature. Goodness-of-fit measures (Section 5.1) quantify
the severity of violations, while power measures (Section 5.2) indicate how
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far the choices are from violating rationalizability conditions.

5.1. Goodness-of-fit measures

A first class of goodness-of-fit measures is based on the systems of inequal-
ities which are used to establish rationalizability of many different forms of
utility functions (see Section 3). Slack variables are added to these systems,
so as to relax the constraints on the data. An optimization problem can
then be defined, for which the objective function is the minimization of some
appropriate function of the slack variables, such as their sum, under the
constraint that the system of equalities is satisfied. The goodness-of-fit mea-
sure is then equal to the value of the optimal solution of this optimization
problem. Such an approach was first described by Diewert (1973) and has
since been used in a number of different papers for various forms of utility
functions (see Diewert and Parkan (1985), Fleissig and Whitney (2005, 2008)
for weak separability, Fleissig and Whitney (2007) for additive separability).
Computing the goodness-of-fit measure is easy if the system of inequalities
is linear, which is the case for general utility functions and additive sep-
arable utility functions. In the case of non-linear systems of inequalities,
minimizing the sum of the slack variables is at least as hard as finding a so-
lution to the system without slack variables. Since this is already np-hard
for weakly separable utility functions, the hardness result remains valid for
these goodness-of-fit measures.

A second class of goodness-of-fit measures is due to Afriat (1973), and
is based on strengthening the revealed preference relations. In this case,
revealed preference relations are assumed to hold if the difference in price
between the chosen bundle and another affordable bundle is big enough.
This is done by introducing efficiency indices 0 ≤ ei ≤ 1 for each observation
i ∈ N , and defining the revealed preference relation R0(e1, . . . , en) as follows:

for all i, j ∈ N , if eipiqi ≥ piqj, then qiR0(e1, . . . , en) qj. (11)

Obviously, when ei = 1, conditions (11) are the same revealed preference
relations as in Definition 3; when ei < 1, condition (11) can be interpreted
as defining a revealed preference relation between two bundles for which
the price difference exceeds a certain fraction of the budget. As a result,
there will be fewer revealed preference relations, and axioms such as warp,
sarp and garp will be easier to satisfy. A goodness-of-fit measure is then
the maximum value of the sum of the ei values, under the constraint that
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a given axiom of revealed preference is satisfied by R0(e1, . . . , en). Three
different goodness-of-fit indices based on this idea have been respectively
described by Afriat (1973), Varian (1990) and Houtman and Maks (1985).
Of these three, Afriat’s index is the simplest, as it constrains the ei values
to be equal for every observation (e1 = e2 = . . . = en). Afriat’s index can be
computed in polynomial time (see Smeulders et al. (2014)), although for a
long time the only published algorithm was an approximation algorithm due
to Varian (1990). Varian’s index, in contrast, allows the ei values to differ
between observations. This makes computation less straightforward and the
computation of this index was thus perceived to be hard (as confirmed by
Smeulders et al. (2014) who showed that computing Varian’s index is np-
hard). This led to work on heuristic algorithms for computing Varian’s index
by Varian (1990), Tsur (1989), and more recently by Alcantud et al. (2010).
Finally, Houtman and Maks (1985) proposed to constrain the ei values to
be either 0 or 1. In effect, maximizing the sum of the ei’s then amounts
to removing the minimum number of observations so that the remaining
dataset is rationalizable. Houtman and Maks established a link between the
feedback vertex set problem (known to be np-hard) and their index, thus
informally showing its difficulty; see Hjertstrand and Heufer (2015) for two
methods computing the Houtman-Maks index. The complexity of computing
all three of the above indices is addressed by Smeulders et al. (2014), who
provide polynomial time algorithms for Afriat’s index for various axioms of
revealed preference, and establish NP-hardness of Varian’s index, and of the
Houtman-Maks index. Even stronger, it is shown that no constant-factor
approximation algorithms running in polynomial time exist for these indices
unless p = np. Boodaghians and Vetta (2015) strengthen these hardness
results, by showing that computing the Houtman-Maks index is already np-
hard for datasets with only 3 goods.

A third approach to the definition of goodness-of-fit measures was intro-
duced by Varian (1985). When a dataset fails to satisfy the rationalizability
conditions, the goal is here to find a dataset which does satisfy the conditions
and is only minimally different from the observed dataset. The problem of
finding these minimally different rationalizable datasets can be formulated
as a non-linear optimization problem, which, in general, is hard to solve. To
avoid solving large scale non-linear problems, De Peretti (2005) approaches
this problem with an iterative procedure. Working on garp, his algorithm
tackles violations one at a time, also perturbing only one observation at a
time. If a preference cycle exists between two bundles of goods qi and qj,
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i, j ∈ N , he computes the minimal perturbation necessary to remove the vi-
olation both for the case in which qiR0 qj (in which case qi is perturbed) and
for the case in which qj R0 qi (in which case qj is perturbed). The smallest
of the two perturbations is then used to update the dataset, and the new
dataset is checked again for garp violations. While this algorithm does not
guarantee an optimal solution, it allows handling large datasets, especially if
the number of violations is small.

A number of recent papers introduce new goodness-of-fit measures, thus
showing continued interest in this topic. Echenique et al. (2011) define the
mean and median money pump indices. In their paper, the severity of viola-
tions of rationality is measured by the amount of money which an arbitrageur
could extract from the decision maker by exploiting her irrational choices.
This is reflected by a money pump index for every violation of rationality.
Echenique et al. propose to calculate the money pump index of the mean
and median violation as measures of the irrationality of the decision maker.
Computing these measures is np-hard, as shown in Smeulders et al. (2013).
In the latter paper, it is also shown that computing the money pump in-
dex for the most and least severe violations can be done in polynomial time.
Furthermore, Apesteguia and Ballester (2015) introduce the minimal swaps
index. Informally, the swaps index of a given preference ordering over the al-
ternatives is calculated by counting how many better alternatives (according
to the preference order) were not chosen over all choice situations. The min-
imal swaps index is then the swaps index of the preference order for which
this index is minimal. Apesteguia and Ballester show that computing the
minimal swaps index is equivalent to the np-hard linear ordering problem.
Finally, Dean and Martin (2016) define the minimum cost index. This index
is the minimum cost of removing revealed preference relations, such that the
remaining relations induce no violations. The cost of removing violations is
weighted by the price difference of the considered bundles. Dean and Mar-
tin show that computing this index is np-hard by a reduction from the set
covering problem.

5.2. Power measures

Power measures were first introduced by Bronars (1987), with the fol-
lowing motivation. Consider a test that allows us to determine whether the
observations in a dataset are coherent with the choices of a utility-maximizing
decision maker. If the outcome of the test is positive for most datasets, in-
cluding those where choices were not made so as to maximize a utility func-
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tion, then obviously the test is not good at discriminating between utility
maximizing behavior and alternative behaviors. Power measures are numer-
ical values indicating to what extent a test is able to discriminate between
samples coming from a rational or from an irrational decision maker.

Bronars (1987) proposes to use random choices as an alternative model
of behavior. The likelihood of this alternative model satisfying the rational-
izability conditions (that is, passing the test) is determined by Monte Carlo
simulation. The higher this likelihood, the lower the power of the test. An-
dreoni and Miller (2002) use a similar approach: they generate synthetic
datasets by bootstrapping from observed choices, and use these alternative
datasets to establish the power of their test.

Bronars’s Monte Carlo approach has also been applied to goodness-of-
fit measures. The value of a goodness-of-fit measure is hard to interpret
without context. There is no natural level which, if crossed, indicates a large
deviation from rational behavior. Furthermore, the values of goodness-of-fit
indices which point to large deviations may vary from dataset to dataset, as
the choices faced by a decision maker may or may not allow large violations
of rationalizability. One way to establish what values are significant, is to
generate random datasets by a Monte Carlo approach and to calculate their
goodness-of-fit measures. This yields a distribution of the values of goodness-
of-fit measures for datasets of random choices. It can then be checked whether
the goodness-of-fit measures computed for the actual decision makers are
significantly different. Examples of this approach are found in Choi et al.
(2007) and Heufer (2012). As this framework requires a large number of
computations of the goodness-of-fit measures, there is a strong incentive to
use efficient algorithms and to favor measures which are easy to calculate.

Beatty and Crawford (2011) propose to evaluate the power of a test by
calculating the proportion of possible choices which would pass the test.
Andreoni et al. (2013) give an overview of power measures and introduce a
number of new power measures themselves. The measures they introduce
are adaptations of goodness-of-fit measures. For example, they introduce a
jittering index, which is the minimum perturbation of the data such that
the rationalizability conditions are no longer satisfied, in line with the work
of Varian (1985). They also introduce an Afriat Power Index, which is the
converse of Afriat’s goodness-of-fit measure; that is, instead of considering the
maximum value of e ≤ 1 in (11) such that the dataset satisfies the considered
axiom of revealed preference, they propose to determine the minimum value
of e ≥ 1 such that the dataset does not satisfy the conditions.
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6. Collective Choices

In the preceding sections, datasets are analyzed as if a single person buys
or chooses goods, so as to maximize her own utility function. However, in
many cases purchasing decisions are observed at the household level that
consists of multiple decision makers. The choices that result from collective
decision making may appear irrational, even if all individual decision makers
have rational preferences. For example, Arrow’s impossibility theorem (Ar-
row, 1950) shows that for non-dictatorial, unanimous preference aggregation
functions, independence of irrelevant alternatives cannot be guaranteed. As
a result, the group can exhibit choice reversals if more choice alternatives are
added. Moreover, a group can use different choice mechanisms at different
times, giving more or less power to different group members, also leading to
choices that appear irrational. Analyzing datasets resulting from collective
choices thus calls for collective models, which account for individually ratio-
nal household members, and in addition, some decision process for splitting
up the budget. Example 2 shows how the joint purchases of two rational
decision makers can appear irrational when they are analyzed as if there was
a unique decision maker.

Example 2. Consider the following dataset with 2 periods and 3 goods.

p1 = (3, 2, 1) q1 = (5, 4, 7) (12)

p2 = (2, 3, 1) q2 = (3, 5, 9) (13)

Then, bundle 1 would be strictly revealed preferred over bundle 2, since p1q1 =
30 > 28 = p1q2. Likewise, bundle 2 would be strictly revealed preferred over
bundle 1, since p2q2 = 30 > 29 = p2q1. The dataset thus does not satisfy
garp. However, consider the following datasets.

p1 = (3, 2, 1) q11 = (5, 0, 0)

p2 = (2, 3, 1) q12 = (3, 0, 0)

and

p1 = (3, 2, 1) q21 = (0, 4, 7)

p2 = (2, 3, 1) q22 = (0, 5, 9)
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It is clear that both of these satisfy garp, since for the first dataset q11 > q12,
and for the second dataset q22 > q21. Furthermore, notice that q1 = q11 + q21
and q2 = q12 + q22. The dataset (12)-(13) thus represents the joint purchases
of two rational decision makers.

The initial contributions in revealed preference theory dealing with collec-
tive choice are published by Chiappori (1988), for the so-called labor supply
setting. This setting corresponds to a situation in which there are two goods,
namely leisure time and aggregated consumption, which are observed for each
member in the household. Also, we assume that the household consists of
two decision makers. The behavior of this household is then rationalizable if
the consumption can be split up so that the resulting individual datasets of
leisure and consumption are rationalizable for all individual household mem-
bers. Chiappori provides conditions for rationalizability, both for the cases
with and without externalities of private consumption. To model the labor
supply setting in the collective choice model, we use a dataset of the form
S = {(w1

i , w
2
i , L

1
i , L

2
i , Ci)| i ∈ N}, with w1

i and w2
i corresponding to the wages

of household members 1 and 2, with L1
i and L2

i corresponding to their respec-
tive leisure time, and with Ci denoting the level of (collective) consumption
in the household (i ∈ N). Notice that, since wages can be seen as the price
of leisure time, and there is a unit price for aggregated consumption, we can
write pi = (w1

i ,1) and qi = (L1
i , fCi) (for some fraction 0 ≤ f ≤ 1). Hence,

the dataset S can still be seen as a set of observations consisting of price
vectors and bundles.

Theorem 7. (Chiappori’s Theorem for collective rationalization by egoistical
agents)
The following statements are equivalent.

1. There exists a pair of concave, monotonic, continuous non-satiated
utility functions which provide a collective rationalization by egoistical
agents.

2. There exist numbers Zi with 0 ≤ Zi ≤ Ci such that the following (equiv-
alent) conditions are satisfied.

(a) The datasets {(w1
i ,1), (L1

i , Zi)| i ∈ N} and {(w2
i ,1), (L2

i , Ci −
Zi)| i ∈ N} both satisfy sarp.
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(b) There exist strictly positive numbers U1
i , U

2
i , λi, µi for i ∈ N sat-

isfying the non-linear inequalities

U1
i ≤ U1

j + λjw
1
j (L

1
i − L1

j) + λj(Zi − Zj) ∀i, j ∈ N,
U2
i ≤ U2

j + µjw
2
j (L

2
i − L2

j) + µj(Ci − Zi − Cj − Zj) ∀i, j ∈ N,

with equality holding in the first (respectively, the second) inequal-
ity only if L1

i = L1
j and Zi = Zj (respectively, L2

i = L2
j and

Zi = Zj).

Theorem 7 states Chiappori’s result for collective rationalization by ego-
istical agents. (The agents are egoistical in the sense that they each spend
their own personal wages, so that the observed consumption is just the sum
of the individual ones.) No straightforward method is included in the paper
to test the first condition; the second condition requires solving a system of
non-linear inequalities. Similar conditions hold for the case with external-
ities. Snyder (2000) provides a reformulation of Chiappori’s conditions for
two periods and uses it in empirical tests. Thanks to the limit on the number
of periods, this test is very easy: it requires solving four small linear systems
of inequalities. Cherchye et al. (2011) depart from the labor supply setting
by formulating a collective model with an arbitrary number of goods. In
their model, each specific good is known to be either publicly or privately
consumed. Given this information, rationalizability is tested by checking
whether there exists a split of prices (for public goods) or quantities (for
private goods), such that the dataset of personalized prices and quantities
for each household member satisfies garp. Cherchye et al. (2011) provide an
integer programming formulation to test their model. Talla Nobibon et al.
(2016) provide a large number of practical and theoretical computational re-
sults for this problem. First, they prove it is np-hard. Furthermore, they
describe a more compact integer programming formulation, and provide a
simulated annealing based metaheuristic. They compare the computational
results with these different integer programming formulations and heuris-
tics; they observe that the heuristic approach is capable of tackling larger
datasets and seldom fails to find a feasible split when one exists. Smeulders
et al. (2015) give further hardness results for a collective version of warp:
they find that the problem remains np-hard when testing for transitivity is
dropped. All hardness results for these problems assume that the number of
goods is not fixed a priori. It remains an open question whether the prob-
lems become easy for a small, fixed number of goods. In particular, the labor
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supply setting only requires one good to be partitioned over members of the
household.

The work by Chiappori is generalized by Cherchye et al. (2007). Leaving
the labor supply setting, they provide conditions for an arbitrary number
of goods and without any prior allocation of goods, as was the case with
leisure time in Chiappori’s work. Cherchye et al. (2007) derive separate
necessary and sufficient conditions for collective rationalizability by concave
utility functions. In a later paper, Cherchye et al. (2010) show that the nec-
essary condition given in their earlier work is both necessary and sufficient,
when dropping the assumption of concave utility functions. However, testing
this condition is np-hard, as shown by Talla Nobibon and Spieksma (2010).
Due to the hardness of rationalizability in collective settings, a number of
papers have appeared on how to test this problem. An integer programming
formulation is given by Cherchye et al. (2008) and an enumerative approach
is provided by Cherchye et al. (2009). Talla Nobibon et al. (2011) take a
different approach and propose a heuristic algorithm. The goal of this algo-
rithm is to quickly test whether the rationalizability conditions are satisfied.
If this heuristic cannot prove that the conditions are satisfied, then an exact
test is used. Using this heuristic pre-test, many computationally demand-
ing exact tests can be avoided. Deb (2010) strengthens the hardness results
by proving that a special case of this problem, the situation dependent dic-
tatorship setting, is also np-hard. In this setting, the household decision
process is such that each purchasing decision is made by a single household
member, called the dictator. At different points in time, different household
members can assume the role of the dictator; the goal is thus to partition
the observations into datasets, so that each dataset is consistent with (uni-
tary) garp. Crawford and Pendakur (2013) also consider this problem in
the context of preference heterogeneity, and provide algorithms for comput-
ing upper and lower bounds on the number of ‘dictators’. Cosaert (2017)
links this to the problem of computing the chromatic number of a graph.
Furthermore, Cosaert formulates an integer program to partition the obser-
vations into sets, so that the observed characteristics within each set are as
homogenous as possible. Smeulders et al. (2015) give further hardness results
for a collective version of warp: they find that dropping transitivity makes
the test easy for households of two members, but the problem remains open
for three or more members.
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7. Revealed Stochastic Preference

In the previous sections, we have looked at methods that decide whether
a set of observations can be rationalized by one or more decision makers, us-
ing different forms of utility functions, or different ways in which the choice
process can be split over several decision makers. However, we assumed
that utility functions and preferences are fully deterministic. As a result, if
a choice situation repeats itself, we expect that the decision maker always
chooses the same alternative. However, it is commonly observed in experi-
ments on choice behavior that if a person is given the same choice situation
multiple times, her decision may change. One possible way of explaining this
behavior is by stochastic preferences, as pioneered by Block and Marschak
(1960). Theories of stochastic preferences posit that, while at any point in
time a decision maker has a preference ordering over all alternatives, these
preferences are not constant over time and may fluctuate randomly. An ob-
served behavior is rationalizable by stochastic preferences if and only if there
exists a set of utility functions and a probability distribution over these util-
ity functions, such that the frequency with which an alternative is chosen in
any given choice situation is equal to the probability that this alternative has
the highest utility in that situation. We note that many results on stochastic
preferences are established for the case of finite choice sets, as opposed to the
consumption setting, where there exists an infinite number of bundles that
can be bought for a given expenditure level and prices. For an overview, we
refer to McFadden (2005).

A very general result was established by McFadden and Richter (1990),
namely, the axiom of revealed stochastic preference (arsp), which states a
necessary and sufficient condition for rationalizability of choice probabilities
by stochastic preferences. The generality of this axiom allows it to be used
for any form of choice situation, and all classes of decision rules. Besides the
axiom, McFadden and Richter also provided a system of linear inequalities
whose feasibility is a necessary and sufficient condition for rationalizability.
Neither of these characterizations can be easily operationalized, since arsp
places a condition on every possible subset of observations, so that the re-
sulting number of conditions is exponential in the number of observations.
Furthermore, each condition requires finding a decision rule among all al-
lowed decision rules which maximizes some function, and this can in itself
be an np-hard problem (for example when the class of decision rules being
tested are based on linear preference orders, this means solving an np-hard
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linear ordering problem; Karp (1972)). The linear system of inequalities, on
the other hand, contains one variable for every possible decision rule within
a class of decision rules, a number which is often exponential in the number
of choice alternatives.

For the setting of consumer purchases (and thus infinite choice sets),
Bandyopadhyay et al. (1999) formulate the weak axiom of stochastic revealed
preference (warsp). This axiom provides a necessary condition for rational-
izability by stochastic preferences. Analogously to warp, warsp compares
pairs of choice situations. Since the condition placed on these pairs is easy to
test, warsp allows for a polynomial time test. Heufer (2011) and Kawaguchi
(2016) build further on this work. Heufer provides a sufficient condition for
rationalizability in terms of stochastic preferences. Kawaguchi (2016) pro-
poses the strong axiom of revealed stochastic preference (sarsp), a necessary
condition for rationalizability by stochastic preferences. Both of these condi-
tions seem difficult to test, requiring in the case of Heufer a feasible solution
to a linear program with an exponential number of constraints and variables.
Kawaguchi’s sarsp likewise requires checking an exponential number of in-
equalities. Despite these challenges, Kitamura and Stoye (2014) develop a
test which can be used to test rationalizability by stochastic preferences on
consumption data, though for relatively small datasets. A key element in
their approach is discretizing the dataset, so as to return to a setting with a
finite number of choice options.

8. Conclusion

In this final section, let us summarize our discussion, and outline perspec-
tives regarding possible future developments in the field. It is indisputable
that revealed preference theory has established itself as an important tool in
economics. On the other hand, testing revealed preference axioms on large
datasets gives rise to numerous algorithmic challenges that should appeal
to the operations researcher community. While a thorough understanding
of individual rational choice, as it relates to revealed preference, has been
achieved, we see (at least) three research directions emerging:

1. Economists are increasingly extending the revealed preference setting
to more complex theories of choice behavior, such as collective decision
making, or non-deterministic choices. The testing problems emerging
in these cases are likewise more complex. Much work, both theoretical
and algorithmically remains to be done in this area.
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2. Many complexity hardness results have been established under the as-
sumption that the number of goods can be arbitrarily large, as op-
posed to assuming that this number is limited and fixed (e.g., m = 2
or m = 3). We have mentioned in this survey a few results that hold
when the number of goods is fixed, but many questions remain open
in this direction. Beyond its theoretical interest, this setting has prac-
tical relevance, since in many empirical studies the number of goods is
quite small, or goods are aggregated into a limited number of classes.
Tests that are difficult in general may turn out to be polynomially
computable in these cases.

3. The relevance of efficient revealed preference tests for large datasets
(see Section 1.1) continues to increase due to the ever growing size of
available datasets. Better algorithms, both heuristic and exact, are
required in order to be able to cope with this phenomenon. Thus, we
need to further increase our understanding of the achievable running
times for different versions of the rationalizability question.

Answering these questions will not only reveal the inherent difficulty of
testing rationalizability of a given dataset by a utility function from a par-
ticular class, it will also shed light on the incentives and properties of human
behavior.
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