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determine the effects of o on the flow features
and the aerodynamic loads

assess the capability of urans and DDEs to provide an
accurate estimation of the flow and the aerodynamic loads
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e pMmD® = decomposition in single frequency spatial modes

K
N DMD , DMD DMD . N T
VY (x,t) = Z qr DMD oo (APMPt)  with VY =[G ¢ ca Cm]
— —_—
amplitude spatial time
mode evolution
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a“Dynamic mode decomposition of numerical and experimental data” by Schmid (2010)
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e pMmD® = decomposition in single frequency spatial modes

K
VI (x,8) = ), g™ d" exp (\Pt) with VY = [Coercacm]”
— —_—
amplitude spatial time

mode evolution
e DMD is used to reconstruct an approximation of the results

Wo Y el e (3())

kthselected mode

e selected modes correspond to the mean of V{V and the mode associated
to the shedding frequency

(.

a
“Dynamic mode decomposition of numerical and experimental data” by Schmid (2010)
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Results: variation of C, for o = 2°
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Conclusion

e C/, C4, Cm close to literature

discrepancies in ¢, probably due to Re effects

EXP
[ ]

e flow dynamics extracted using pmp

e large discrepancies between 5" and ¢,
= could be explained by the high sensitivity of the flow
Cd4, Cm and St are correctly estimated by crp

CFD

e urANs performs better than ppes to capture mean flow and
flow dynamics

¢ only ppEs is able to estimate the stall angle
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rectangular tube Flow studied through exp

cxdx[|=8x2x10lcm L

dynamic pressure measurements
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e hollow rectangular tube

e 36 pressure taps
(15 along ¢ and 3 along d)

e Ree [7.8 x 10%,1.9 x 104]
= C, fora e [-7°,8°]

= ¢, ¢4, Cm computed from C,
St through Fourier analysis of ¢
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A s
Flow studied through crp
19.5¢ __30.5¢ =
2D urANs using k — w ssT model
50c for different o
1 ;
3D bpoes using sa model
50c¢ for different o
¥ \
e Yo Ye
o e unstructured and structured e along z: 1c and Az = </es
4
& e dimensions similar to BARC® e Ay = Az in focus region®
I\ J| & (extends 0.5¢ downstream)
(— \( N a
2 e 75000 cells e 8200000 cells
<
g o 1 shedding cycle e 80 shedding cycles
—\ J —J\
d

“BARC: An overview after the first four years of activity” by Bruno, Salvetti, and Ricciardelli (2014)
e“Young-Person' s Guide to Detached-Eddy Simulation Grids” by Spalart and Streett (2001)



Results: C,

1 =

urans: (0°

|
S
e}
ol
T

|
S
~ ¢
o

T

ppes: 0°

== %

0 b =R
SS=— —

=
%ﬁg

—_—
==
——
&Eﬁw

P%
——]
——

5

0 02 05 075 1 125

T



p

C

Results

?§
\l
A\

1.25

1

025 05 0.75

O

<t
w
w
o
o

0




	Motivation and objectives
	Methodology
	Results
	Conclusion
	Additional material

