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Conclusions 

§  Applying machine-learning methods to voxel-based morphometry (VBM) 
data can predict the age by brain imaging [1].  

§  Data dimensionality reduction is a critical aspect of such brain-based 
prediction to counter the curse of dimensionality associated with voxel-
wise analysis. 

§  While previous age-predictions have employed PCA based compression, 
non-negative matrix factorization (NNMF) has recently been suggested as a 
biologically more plausible factorization of high-dimensional VBM data [2].  

§  NNMF provides non-negative, orthonormal and sparse factorization, 
yielding more interpretable representations than PCA [3]. 

§  In this study, we examine the application of NNMF to VBM data for brain age 
prediction with investigation of the following issues:  

o  Does NNMF allow us to predict the biological age at a performance level 
comparable to previous reports [1]? 

o  Are the factorizations transferrable between two different datasets, which 
differ in demographic characteristics and scanner protocols? 

o  Is it possible to adjust the model bias inherent to many brain-based 
predictions?  

o  Do the brain features contributing to the age prediction provide a meaningful 
spatial pattern? 

§  Samples: Two independent cohort’s datasets:  

o  uniform protocol in 693 healthy older subjects aged 55-76 
(1000BRAINS [4]) 

o  heterogeneous multi-site data for 1084 healthy subjects aged 19-81 
(MIXED)   

§  Grey matter volume (GMV) computation: VBM8 preprocessing [5] ; 
DARTEL normalization [6], only non-linear modulation, 8mm FWHM 
smoothing 

§  GMV Factorization: NNMF factorizes high dimensional voxel-wise data of the 
entire group into sparse components and subject-specific loading 
coefficients. And then factorizations for both groups were derived at 
different levels of granularity.  

§  Regression model: age prediction was performed by fitting LASSO regression 
models, 

o  on the coefficient matrix obtained from the respective NNMF  

o  on the coefficient matrix obtained by projecting a cohort’s data on the 
respective other cohort’s components 

§  Evaluation of model generalization: 10-fold cross-validation replicated 25 
times.  

§  An additional linear adjustment was performed by fitting a regression-line 
between the real and predicted training set and then by using the parameters 
(such as slope and the intercept) to adjust the expected slope of the test set to 
45 degrees.    

§  NNMF compression of VBM data over the lifespan allows predicting previously 
unseen subjects’ age with a precision that is comparable to earlier reports using 
PCA for data compression [2], while offering the potential for neurobiological 
interpretation.  

§  Accuracy seems to be independent of whether the components were derived 
from the same dataset or from an independent dataset with different age 
distribution and scanner protocols.   
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§  Accuracies tend to continuously increase with higher granularity, but reach a plateau 
around 400 components when using the factorization of the same data, whereas, for 
projection of the data, more components are required. 

§  Adjusting the inherent bias of sparse regression models yields unbiased out-of-
sample predictions but comes at the expense of slightly higher mean errors. 

§  Most importantly, our framework combines prediction accuracy with interpretability 
quality regarding the patterns underlying the prediction 
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