Alabama, PCCC4, 5th-8th September 2017

Kinetics of oxidative and SOx-induced degradation of monoethanolamine under accelerated laboratory conditions

Hana Benkoussas, Grégoire Léonard, Rabah Kerbachi hana.benkoussas@student.ulg.ac.be
Products, Environment, and Processes (PEPs)
Department of Chemical Engineering
University of Liège
www.chimapp.ulg.ac.be

Outline

- 1. Introduction
- 2. Dissolved O₂ concentration
- Mass transfer
- 4. Oxidative degradation : with and without presence of sulfur dioxide
- 5. Conclusion and perspectives

1. Introduction

Post-combustion capture with amine solvent is a mature technology,

But...

- Large energy penalty
 - Potential amine degradation
 - Emission of degradation products
 - Corrosion

Current solvent of choice: monoethanolamine

- High capacity for CO₂ absorption
- Fast reaction kinetics
- High removal efficiencies

1. Introduction

Accelerated laboratory conditions

pressure and temperature more severe than those of the pilot plant

Mass transfer¹? k_La ?

1. Introduction

Degradation products obtained at lab scale vs. industrial scale

✓ RepresentativityOk

- 1. How does mass transfer affect oxidative degradation?
- 2. How sulfur dioxide affects amine degradation?

Operating mode:

The gas flow is sparged into 400 gr of MEA 30 wt% until reaching a constant concentration in dissolved O₂

Experimental conditions:

- 29,7°C < T < 49,2°C
- 160 Nml/min gas flow
- Atmospheric pressure
- \blacksquare 1008,9 < PO₂ < 50445 Pa
- [800-1000] rpm

Galvanic probe (Accuracy +/- 1%)

Influence of the partial pressure on dissolved O₂ / 800 rpm

✓ Henry's Law (T:cst, equilibrium): the amount of dissolved gas is proportional to its partial pressure in the gas phase.

Influence of the partial pressure on dissolved O₂ / 1000 rpm

o Influence of the temperature on dissolved O_2 $PO_2 \sim 20178$ Pa

- At equilibrium: dissolved O_2 concentration =f(temperature and pressure)

3. Mass transfer

$$\frac{dC_A}{dt} = K_L a \left(C_A^{\star} - C_A \right)$$

K_La depends on several factors such as²:

- temperature, pressure,
- composition of the gas and liquid, viscosity
- liquid circulations and gas recirculations
- position of the probe in the reactor and assumptions on hydrodynamic conditions

3. Mass transfer

Determination of the k_L a with consideration of the probe response time τ_p

$$\frac{C^{\star} - C_P}{C^{\star} - C_0} = \frac{1}{1 - \tau_P K_L a} \left(e^{-K_L a \cdot t} - \tau_P K_L a \cdot e^{\frac{-t}{\tau_P}} \right)$$

C* [ppm]: is the dissolved oxygen concentration at saturation

 C_p [ppm]: is the concentration measured by the probe

 C_0 [ppm]: is the concentration at t_0

3. Mass transfer

Influence of the temperature and the agitation rate

Without presence of sulfur dioxide

Lab conditions:

- Without presence of sulfur dioxide
- 300 g of 30 wt% MEA
- 120°C, 4 barg, 800 rpm
- 2 days
- Enhanced gas-liquid contact
- Continuous gas flow: 160 Nml/min
- $5\% O_2 / 95\% N_2$

- With presence of sulfur dioxide
- 100 ppm of aqueous H₂SO₃ was chosen and added directly to 30 wt% MEA solution

Without presence of sulfur dioxide

Comparison of GC-FID spectra between samples degraded at lab scale (BC DTR) and at industrial scale

- Without presence of sulfur dioxide
- kinetic model of solvent degradation

Arrhenius kinetics (mol/l.s):

Parameters are identified by minimizing the difference between calculated and observed degradation rates.

800 rpm
$$-r_{MEA} = 3.9 \times 10^5 e^{-48.116/RT} [O_2]^1$$

1000 rpm
$$-r_{MEA} = 5.3 \times 10^5 e^{-48.116/RT} [O_2]^1$$

- Without presence of sulfur dioxide
 - Kinetic model of solvent degradation

- Larger agitation rate → higher overall mass transfer coefficient.
- As a consequence, more oxygen is transferred to the gas/liquid interface
 acceleration of the degradation

With presence of sulfur dioxide

- > SO₂(g) was reported to accelerate MEA degradation with O₂ present^{3,4}
- ➤ MEA oxidative degradation is significantly reduced with SO₂ 5

5. Conclusion and perspectives

- Measurements of dissolved O₂ concentrations in 30 wt% MEA
- The K_La of the experimental Degradation Test Rig is determined at 800 and 1000 rpm, 0,0057 and 0,007 s⁻¹ respectively
- It appears to be smaller than typical k_La for structured packing used in industrial conditions (0.01 < K_La < 0.04⁵)
- The acceleration of the oxidative degradation rate was mainly due to the higher temperature and PO₂, but we also notice that the coefficient of mass transfer has an impact on oxidative degradation rate.
- Solvent degradation is experimentally studied and a kinetic model is proposed
- The effect of the presence of sulfur dioxide is studied experimentally

5. Conclusion and perspectives

 Kinetic model that considers both the chemical and the physical kinetics separately instead of usual apparent kinetics will be proposed

$$\frac{dC_A}{dt} = \underbrace{\nu_A \ r_A}_{AL} + \underbrace{a \ N_{AL}}_{AL}$$

$$\underline{r} = A. e^{-\frac{E_a}{8.314 \ T}} . [O_2]^n$$

$$\underline{a \ N_{AL}}_{AL} = K_L a \ (C_A^{\star} - C_A)$$

F(Temperature and agitation rate)

 kinetic model of the oxidative degradation in presence of sulfur dioxide will be proposed

Thank you for your attention!

