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Abstract 

Land-use change models are used to explore the dynamics and drivers of land-use/land-
cover change and to inform policies affecting such change. A broad array of applications 
and modeling methods are available and each type has certain advantages and 
disadvantages depending on the objective of the research. This work presents an approach 
combining cellular automata (CA) model and supported vector machine (SVM) and binary 
logistic regression model (Logit) for simulating urban expansion in Wallonia (Belgium). 
This article emphasizes the interest in comparing combining CA with conventional Logit 
versus combining CA with SVM method as a base of CA model transition rule.  

Relative operating characteristic (ROC) and spatial matrices are used to validate the model. 
Model validation shows that the allocation performance of CA-SVM outperformed CA-
Logit approach. 

 

1. Introduction 

Among the numerical models which are employed to investigate urbanization process and 
its implications, many rely on CA approach [1–3]. CA is a dynamic discrete space and time 
bottom-up modelling approach. CA is widely used in land-use change modelling due to its 
simplicity, transparency and powerful capacities for dynamic spatial simulation [4]. 
Nevertheless, CA does not explicitly deal with causal factors of phenomena being 
modelled. Fortunately, huge research efforts have been made in order to improve CA 
structure. Such efforts include, but not limited to, integrating Logit [5, 6], integrating 
particle swarm optimization rules [2], and integrating SVM with CA [7]. The Logit allows 
better understanding of the factors that control urbanization process but it assumes that the 
occurrence probability is linearly and additively related to the causal factors on a logistic 
scale [8]. If the assumption cannot be satisfied, the performance may significantly degrade. 
The SVM is a data mining technique that can model a nonlinearity [9]. A number of 
scholars reported that the SVM is an effective method to model land-use changes, owing 
to their ability to model non-linear relationships and good generalization performance [7].  

This study employs two different methods, the Logit and the SVM, to define the transition 
rule of the CA model for predicting urban expansion. Beside transition rules, a classical 
Moore neighborhood with a window of 5×5 is used to define the neighborhood effects. The 
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model is applied to Wallonia (Belgium) to simulate urban expansion between 2000 and 
2010 using Belgian cadastral data. 

 

2. Methodology 

2.1. Study area  

The study area is Wallonia (south Belgium) that accounts for 55% of the territory of 
Belgium with a total area of 16,844 km². It comprises five provinces: Hainaut, Liège, 
Luxembourg, Namur, and Walloon Brabant. The main urban areas are Charleroi, Liège, 
Mons and Namur. They are all characterized by a historical city-center, around which the 
urban development expanded. The total population in 2010 was 3,498,384 inhabitants that 
makes up a third of Belgium population (Fig. 1). 

 

Figure 1. Study area. 

 

2.2. Modelling approach 

Belgian cadastral data of 2000 and 2010 are used as land-use maps for the model. The data 
is first rasterized at 2x2m resolution and then it was aggregated to 100x100m. The urban 
expansion model represented in this study contains two types of land-use classes: urban 
and non-urban land uses. 

Changing from non-urban to urban land use is actively allocated using transition rules. For 
each time step, representing one year, urban developments are allocated to those locations 
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that have the highest potential for urbanization. Potentials are computed for each non-urban 
cell and based on transition rules: 

urb fP P N                          (1) 

where Purb is the transition probability of a non-urban cell in a certain year to convert its 
land-use to urban land, Pf is the probability based on the urbanization controlling factors 
and N is the neighborhood effect calculated by the CA transition rules.  

Pf  is calculated based on two different ways: (1) the Logit and (2) the SVM.  Six 
explanatory variables are selected in this study (elevation, slope, proximity to highways, 
main roads, secondary roads and local roads). N represents the number of urban cells 
amongst the Moore 5×5 neighborhood.  

 

3. Results and discussions  

The CA-SVM based and CA-Logit based models are assessed and compared by their 
performances in predicting urban expansion using relative operating characteristic (ROC) 
curve analysis and landscape matrices [10,	11]. One matrix measuring complexity (area-
weighted mean shape index –AWMSI-) and one matrix measuring dispersion (patch 
cohesion index –PCI-) were selected to evaluate the landscape patterns. For the SVM and 
the Logit calibration, 4000 cells were selected randomly with a minimum distance of 500 
m between each cell within the sample. All existing urban cells in 2000 are excluded from 
the samples. For validation procedures, different 4000 cells were randomly selected as 
well. Table 1 lists all results.  

 

Table 1. Results of the accuracy assessment. 

 ROC Spatial matrices 

 AWMSI PCI 

Obs. LU2010* - 8.62 96.24 

CA-SVM 0.723 7.06 95.74 

CA-Logit 0.688 7.00 95.70 

*Observed land use in 2010 

 

The main focus of this paper is on the resulting probability based on the urbanization 
controlling factors where every cell exhibits a score between 0 (lowest score) and 100 
indicating its probability of being urbanized. The ROC was used for measuring the 
goodness-of-fit of probability maps. The ROC of the SVM model clearly outperformed 
Logit. Qualitative analysis of the probability maps can provide some explanation for the 
varying performances of the two models. Fig. 2 represents the probability maps based on 
the SVM and Logit. The major difference between the two maps is that transition areas 
between high and low probability. The Logit map renders these areas as gradual transitions 
whereas the SVM map renders these areas as sharp edges. 
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The results presented in Table 1 also show that the CA-SVM outperformed the CA-Logit 
in terms of landscape structural conformity. The	HUEM	generates	urban	patches	close	
to	the	actual	urban	patches	between	in	terms	of	complexity	(AWMSI)	and	dispersion	
rate.		

 

 

Figure 2. Probability maps and histograms of the SVM (top) and the Logit (bottom). 

 

4. Conclusion  

Urban expansion has attracted a lot of attention. This attention led to the development of a 
wide range of approaches and applications. In this study, we integrated a CA based model 
with two different methods, Logit and SVM, to set the transition rules. We have examined 
two main aspects of the accuracy of the model: (i) the goodness-of-fit of probability maps 
and (ii) landscape structural conformity in terms of complexity and dispersion. The results 
show that the overall accuracy rate of the SVM is better than the Logit. Coupling CA urban 
expansion models with SVM or Logit enables the simultaneous dynamic simulation of 
urbanization process along with the analyses of a number of controlling factors that 
determine local urbanization suitability. Our next challenge is to integrate various urban 
states (low-dense, medium-dense, high-dense) and additional factors (e.g., employment 
rate, population density, policies) into the model.  
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