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Abstract—This paper deals with the derivation of a simplified
model of a distribution network hosting dispersed photovoltaic
units. The model is aimed at short-term dynamic simulations
of a transmission grid in response to large disturbances. In a
first step, a generic dynamic model of a photovoltaic unit is
proposed, focusing on its interactions with the grid, in particular
the controls triggered by voltage disturbances. The model takes
into account various present and near-future grid codes. In a
second step, a dynamic equivalent is derived accounting for the
distribution network, the dispersed photovoltaic units, as well
as static and dynamic (motor) loads. This equivalent is of the
“grey-box” type and its parameters are tuned in the least-square
sense to match the dynamic response of the original, unreduced
system. Simulation results are reported on a detailed 913-bus
distribution system subject to faults at transmission level.

Index Terms—active distribution networks, photovoltaic units,
motor loads, short-term dynamics, dynamic equivalents

I. INTRODUCTION

Power systems are getting increasingly complex because
of the fast growing share in the electricity production mix
of distributed generation. The latter is mainly connected to
distribution grids, and distribution systems will become more
and more “active”.

The dynamics of the future power systems will thus arise
from many distributed components. Hence, it becomes urgent
to account for the contributions of such Active Distribution
Networks (ADNs) in power system dynamic studies.

One approach could be the simulation of the combined
transmission and distribution systems. In spite of advances in
computational power and large-scale simulation algorithms,
including parallel processing techniques [1], handling the en-
tire, detailed model with hundreds of thousands of differential
and algebraic equations is extremely challenging.

Another obstacle could be the confidentiality of data. While
the Distribution System Operator (DSO) of a Medium-Voltage
(MV) and Low-Voltage (LV) grid is usually entitled to collect
data about the connected equipment, sharing this information
with the Transmission System Operator (TSO) may raise legal
issues.

Finally, collecting all the parameters and matching the
operating point of concern may represent a prohibitive data
processing problem for the TSO.

Clearly it makes sense for the DSOs to process the data
of their own systems and transmit to the TSO reduced,
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“anonymized” models of significantly lower complexity than
the original, unreduced model that they have assembled. Those
equivalents are intended to be attached to the model of the
transmission system for use by the TSO in dynamic security
assessment studies.

This paper focuses on the specific but common case of
a distribution grid hosting many PhotoVoltaic (PV) units, at
both the MV and LV levels. Nevertheless, the methodology
is expected to apply to other power-electronics interfaced
generators.

The dynamic model and its equivalent are derived under
the following assumptions: (i) the three-phase distribution grid
is assumed to be balanced; (ii) the model is intended for
dynamic simulations under the phasor approximation [2], and
(iii) emphasis is put on responses to transmission voltage
magnitude disturbances.

The rest of the paper is organized as follows. The generic
PV unit model adopted in this work is described in Section II.
In Section III the test system is presented. Illustrative examples
of the model performance are given in Section IV. The deriva-
tion of the ADN equivalent is presented in Section V, and the
corresponding simulation results are reported in Section VI.
Concluding remarks are offered in Section VII.

II. GENERIC MODEL OF A PV UNIT AND ITS CONTROLS

The generic model of a PV unit (an upgraded version of the
one in [3]) is shown in block-diagram form in Fig. 1.

The model focuses on the interactions of the PV unit
with the grid, rather than on a detailed representation of its
components. Furthermore, the embedded controls meet the
requirements of recent and near-future grid codes for PV units
such as those described in Refs. [4], [5], [6] and [7]. The model
is parametrized to easily accommodate a specific grid code [8].

In Figure 1, v, and v, are the projections on orthogonal
reference axes (z,y) of the phasor of the terminal voltage. i,
and i, are the corresponding projections of the phasor of the
current injected into the network.

The main parts of the model are described in the rest of
this section. Most of them rely on the measured voltage V,,
which differs from the terminal voltage:

Vi = \/v2 402

by a simple lag block with time constant 77,,.
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Fig. 1. PV unit generic model (not shown: active power modulation in response to frequency deviation and reactive power absorption in response to overvoltage)

A. Phase Locked Loop controller

The Phase Locked Loop (PLL) controller model is shown
at the top of Fig. 1. It ensures that the phasor of the current
injected by the PV unit has the proper magnitude and phase
angle with respect to the terminal voltage phasor.

With reference to Fig. 2, the PLL controller aims at aligning

its d axis with the measured voltage phasor V;,,. 6 is the angle
between respectively the d axis and the reference x. In steady
state, the integrator forces v, = 0; then, 6 coincides with the
“true” voltage phase angle 6, and vy is equal to the voltage
magnitude.

The desired active and reactive currents, respectively ¢ p and



Fig. 2. Phasor diagram illustrating the PLL principle

V(pu)
1
V'T | _

th -

Vmin -

Fig. 3. Parametrized LVRT curve (fault occurring at ¢t = 0)

1Q, are obtained from the controls detailed next. In steady
state, when 6 coincides with the phase angle of the voltage
phasor, ip (resp. i) is the active (resp. reactive) current truly
injected into the grid.

The speed of response of the PLL can be adjusted through
the gain kpy .

If the terminal voltage is severely depressed and V,,, drops
below the threshold Vprr, the PLL is temporarily “frozen”
to avoid instability [9]. This is obtained by switching Fpy
from one to zero (see Fig. 1).

B. Low Voltage Ride-Through (LVRT)

An important feature of PV units is their LVRT capability,
requiring them to remain connected to the grid during a fault
as long as the voltage is above a reference curve, as shown
in Fig. 3. This curve can be adjusted by modifying the six
parameters 11, Tine, 1o, Vinin, Vine and V.

The unit disconnection is modeled by the variable F),;
switching from one to zero.

C. Active current injection

The solar irradiation is assumed constant over the simulation
interval (of a few seconds), leading to a constant power P,;.

Dividing the latter by the voltage V,,, and limiting the result
to Ipmas discussed in the sequel yields the active current
command % pepq.

The inverter response to the ¢p.,,q command is represented
by a simple lag block with time constant T, and an internal
rate limiter.
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Fig. 4. Parametrized reactive current injection

D. Reactive current injection

Units may be requested to inject reactive current into the
grid in order to support the terminal voltage. As shown in
Fig. 4, the injected reactive current varies with the measured
voltage according to:

krcr(Vsy = Vin) +m Inom (1)
kRCA(VSQ - Vm) -—n Inom (2)
else: igsup = 0. 3)

if V,,, < Vg : iqup =
if V,,, > Vgo : iqup

where I,,,,, is the inverter nominal current. The parameters
m, krcr, Vsi, n, krca and Vgo allow changing the charac-
teristics of voltage support, or even disabling this service (for
instance, for units connected to an LV grid).

Note that, according to Eq. (2), in case of overvoltage, a
reactive current is drawn from the grid (i.e. the unit absorbs
reactive power) to alleviate the terminal voltage rise. This
mode of operation is not shown in Fig. 1 to preserve legibility.

The component Ig,.; (see Fig.1) is added to the reactive
current setting to comply with some grid codes requiring a
nonzero reactive power in steady state.

Again, the inverter response to the igcmq command is
represented by a lag block with time constant T§,.

E. Active - reactive priority

For efficient voltage support, units are assumed to give
priority to reactive current injection during a fault. This may
require reducing the active current in order to avoid exceeding
the inverter current limit /,,,,. The maximum active and
reactive currents are thus given by:

Ipmaz = PflagInom + (]- - Pflag) \/m 4
Igmaz = Priag\/ iom = ipema + (L = Priag) Inom (5)

In normal operating conditions, i.e. when Vg1 < V,,, < Vga,
priority is given to active current and the variable Pjyjqq
is at one. In that case, the maximum value of the active
current (Ip,pq.) 1S set to I,,,, and the maximum value of
the reactive current (IQmaqs) depends on the active current
command ¢pcpq. When the voltage falls below Vg, priority
is given to reactive current, Pyiq4 switches to zero, Igmaz 18
set t0 Ipom and Ipy,q, depends on igemd.



F. Overvoltage protection

When V,,, exceeds a high voltage threshold, the unit is
assumed to trip without delay to avoid damaging insulation
materials and electronic components.

The unit disconnection is modeled by the variable F,
switching from one to zero.

G. Other controls

The model also includes control blocks responding to fre-
quency deviations but they are not shown here for clarity, since
frequency disturbances are not investigated in this paper.

III. TEST SYSTEM

A. Distribution grid

The 75-bus 11-kV distribution grid previously considered
in [3], [10] has been used in this study. Its one-line diagram
is shown in Fig. 5. Among the 75 MV buses, it is assumed
that 38 feed LV distribution grids to which small residential
PV units are connected, as detailed in Section III-B. At the
remaining 37 buses, an industrial load and a large PV unit are
connected, as detailed in Section III-C.

The total load is 21.9 MW/ 5.4 Mvar for a total PV
generation of 11.1 MW, leading to a 11.4 MW/ 7.0 Mvar
injection by the HV/MV transformer.
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Fig. 5. One-line diagram of the 75-bus 11-kV distribution system

B. LV distribution feeders hosting small PV units

A generic, double LV distribution feeder is connected to
some of the MV buses through an MV/LV distribution trans-
former, as shown in Fig. 6. The residential loads connected
to the LV nodes are represented by an exponential model for
the static part, in parallel with a small induction motor for
the dynamic part. The motor parameters are taken from [11].
Moreover, a small residential PV unit of a few kW is connected
in parallel with each LV load. Those units do not support
grid voltages; instead, they trip whenever the terminal voltage
magnitude falls below the LVRT curve shown in Fig. 7.a.
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Fig. 6. LV distribution feeders hosting small residential PV units
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Fig. 7. LVRT characteristics of: (a) small residential PV units, and (b) large
industrial PV units (fault occurring at ¢ = 0)

In terms of installed capacity, all residential PV units
together account for 2 MW.

C. Industrial loads with large PV units

Larger, industrial loads and larger PV units are connected to
the other buses of the MV grid, as shown in Fig. 8. The loads
also include a static part with exponential model and an equiv-
alent induction motor, whose parameters are representative of
large industrial motors [11]. Those industrial PV units have
capacities around a few hundred kW. Hence, they are assumed
to have LVRT capability and support the network voltages by
injecting reactive current. The corresponding characteristics
are shown in Figs. 7.b and 9, respectively.

The durations in this LVRT characteristic are strongly
dependent on the protection philosophy of the transmission
network. Moreover, the lowest voltage V,,,;, = 0.2 pu depends
on the residual voltage magnitudes experienced by the MV
grid when faults occur in the transmission system.

In terms of installed capacity, all industrial PV units account
for 15 MW.
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Fig. 9. Reactive current injection by large PV units (corresponds to the low
voltage part of Fig. 4)

D. Randomization of data

To account for the diversity of loads and PV units in a
real-life system, some parameters have been randomly varied
around typical values from one bus to another. This is the case
for the PV unit installed capacities, the nominal power and the
electrical parameters of all induction motors.

E. Overall model complexity

Time simulations have been performed with RAMSES, a
software for phasor-mode time simulation developed at the
Univ. of Liege [12].

The complete system model includes 913 (MV and LV)
buses, 797 static loads, 797 induction motors, 37 large PV
units, and 760 small PV units.

Each motor is represented with a single-cage model involv-
ing 10 differential-algebraic equations. Each PV unit model
(see Fig. 1) involves 93 differential-algebraic equations. For
simplicity all PLL controllers were tuned identically.

IV. ILLUSTRATIVE EXAMPLES OF MODEL PERFORMANCE

A single operating point of the test system has been consid-
ered. Since the simulations last for a few seconds, the active
power available on PV units and the load demand are assumed
to remain constant.

A. Behaviour of an individual PV unit

A short-circuit taking place at ¢ = 0.1 s and lasting for
100 ms has been applied at some electrical distance of a large
industrial PV installation.

Figure 10 shows the time evolution of the active and reactive
currents injected into the grid. The unit operates initially at
unity power factor. In accordance with the reactive current
priority, the PV unit injects reactive current during the fault in
order to support the terminal voltage, while the active current
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Fig. 10. Active and reactive current injected by the PV unit before, during,
and after a short circuit
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Fig. 11. Terminal voltage of the PV unit in the scenario of Fig. 10, with and
without reactive current injection and LVRT capability

is strongly reduced in order to not exceed the maximum
current of the inverter.

Figure 11 shows the time evolution of the terminal voltage.
The response shown with dashed line has been obtained
assuming that the unit has LVRT capability and participates to
voltage support through reactive current injection. For compar-
ison purposes, the response shown with solid line corresponds
to the case when the PV unit does not inject reactive current,
but trips when the voltage falls below 0.8 pu. As expected,
the combined LVRT capability and reactive current injection
boosts the voltage recovery significantly. The corresponding
effect on the speed of a large industrial motor is shown in
Fig. 12. The grid support by the PV unit allows a faster speed
recovery (at the cost, however, of some oscillations).

B. System-wide behaviour

The following simulation results show the evolution of
voltages in response to various voltage dips applied on the
primary side of the HV/MV transformer.

Voltage dips are characterized by their depth, which de-
pends on the fault location in the transmission network, and
their duration, which relates to protection performances. The
following scenarios (inspired of protection design used by one
TSO) have been considered:

1) a fault on the transmission grid causing a drop of 0.8 pu,
cleared by primary protections after 100 ms;
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Fig. 12. Speed response of a large motor in the scenario of Fig. 10, with and
without reactive current injection and LVRT capability

2) a fault on the transmission grid causing a drop of 0.8 pu,
cleared by back-up protections after 250 ms;

3) a fault closer to the HV/MV transformer resulting in a
drop of 0.95 pu, also cleared after 250 ms. This pes-
simistic scenario has been chosen in order to challenge
the PV unit grid requirements.

The terminal voltages of a sample of large PV units are
shown in Figs. 13, 14 and 15, respectively, corresponding to
the three scenarios. In all three cases, the very first voltage
drop is significantly smaller than the initiating HV voltage
drop, thanks to reactive current injection. However, in Sce-
narios 2 and 3, with the fault lasting 250 ms, the voltages
eventually drop more significantly than in Scenario 1, with a
100 ms fault duration. This is caused by motor deceleration
lasting longer, resulting in high currents and large reactive
powers drawn from the grid.

It can also be seen that the LVRT and reactive current
injection requirements have been properly specified to avoid
unit disconnection in Scenarios 1 and 2. On the other hand, in
Scenario 3, almost all PV units terminal voltages drop below
the LVRT limit. However, this takes place at the very end
of the fault-on period. Under the effect of the measurement
time constant 7}, some units do not detect the LVRT curve
crossing, and remain connected. Out of the 37 large PV
units, 11 trip, which represents 25 % of the corresponding
active power generation. Furthermore, voltage recovery after
fault clearing is significantly slower in Scenario 3 than in
Scenario 2.

V. DERIVING THE ADN EQUIVALENT
A. Brief literature review

Recent works resort to various techniques in order to derive
ADN models. A detailed classification of methods is offered
in [13] and [14], for instance. Two main groups of methods
are distinguished.

The “conventional” approaches address more specifically
the identification of a reduced-order model. They include
basically the coherency and the modal analysis methods.
The former are based on the identification and aggregation
of coherent synchronous generators. Hence, they can hardly
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be applied to components interfaced to the grid with power
electronics. The latter methods are based on state space models
linearized around an equilibrium point. For instance, in Ref.
[15] the Hankel Norm Approximation has been used for
the model reduction of a power system with photovoltaic
generation. The results indicate that this method can signif-
icantly reduce the model order and simulation times while
retaining a good accuracy. However, this is only valid for small
deviations from a given operating point. Those approaches are
not likely to capture the nonlinear and discontinuous behaviour
of distributed generation in response to large disturbances in
the transmission system, such as switching from active to
reactive current priority, tripping of some units, etc.

In “measurement-based” and ‘“‘simulation-based” methods,
the distribution system response is either measured or sim-
ulated and curve fitting techniques are used to determine the
model parameters. The methods of this family appear attractive
since they can deal with non-synchronous generators and large
disturbances.

Among them, the “grey-box” approach, as defined and
recommended in [16], is appealing from an engineering
viewpoint. The model has a known structure but unknown
parameters, to be identified from simulations or measurements.
In contrast, a “white-box” model would involve a detailed
model of all components. (This corresponds to the unreduced,
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reference model presented in § II.) On the opposite, in
a “black-box” approach, the structure of the model is not
known a priori. The model can be determined using recurrent
Artificial Neural Network, for example [17]. Though, large
data sets are required to be informative enough [14]. A major
advantage of grey-box models is the ability to embed physical
knowledge about the system in the structure of the equivalent.
As an example, a “grey-box” generic model of ADN is
presented and validated in [18] and [19]. Nevertheless, the
original ADN model appears to be relatively small and it is
not clear whether the equivalent is able to account for the
discrete events triggered by inverter controls in response to
large disturbances.

B. Structure of the equivalent

In the spirit of a grey-box approach, the equivalent con-
sidered in this work consists of “lumping” various PV units
into a single equivalent, represented by the generic model of
Section II. Furthermore the PV units are clustered according
to the grid requirements they follow. Namely, one equivalent
PV generator accounts for the small residential PV units not
providing grid support and another one for the large, grid-
supporting PV units.

Similarly, all loads are lumped into an equivalent including,
for the dynamic part, a 3rd-order induction motor model and,

for the static part, an exponential model:

V.o Vs
P=Py3)" and Q=Qu(y;) (©)

The resulting structure of the equivalent is shown in Fig. 16.
To account for voltage drops inside the distribution network,
the lumped load and the lumped PV units are in series with
equivalent impedances. Separate branches have been consid-
ered to avoid the load and the PV units to be all at the same
voltage. The six parameters R, X, Rpv, Xpv, Rroaqd and
X Loaq have to be identified. Note that the model is intended
to be connected on the MV side of the HV/MV transformer,
which serves as natural interface with the transmission system
(where faults are going to be considered).

C. Fartial tripping of equivalent PV unit

As illustrated by the simulation results in Section IV, the
equivalent PV units must account for the tripping of some
of the individual units they replace. This is a challenging
modelling issue because individual units are now lumped into
a single equivalent, with a single terminal voltage V,,. The
problem has been tackled by providing the equivalent PV unit
with a “partial tripping” feature as explained next.

Let us define ¢y as the time during which the terminal
voltage V,,, stays below the V. threshold defined in Fig. 3.
Partial tripping is reflected by multiplying the unit output
current by:

F=fifafs

where f1, f2 and f5 relate to the three time intervals considered
hereafter (symbols are defined in Fig. 3).

1) Ist case: ty < Ty: fi varies with V, as shown in
Fig. 17.a, where 0 < ¢,d < 1. It is assumed that a fraction
1 — ¢ of the units trips as soon as V,, drops below Vi,
while the remaining units are progressively disconnected as
V., further drops, as shown by the inclined part of the curve.

with 0 < fi, fo, f3 <1
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Fig. 17. Partial tripping: determination of the factors f1, fo and f3



2) 2nd case: T\ < ty < Ty In this case, tripping will
take place if V,,, < Vjn:. The factor fo varies with V,,
as shown in Fig. 17.b, similar to Fig. 17.a, but with V;,;
substituted to V.., and (e, f) to (¢, d).

3) 3rd case: T;,; < ty: In post-fault conditions, trip-
ping may take place due to slow voltage recovery. This is
reflected by f; which decreases linearly with t; — Tj,; as
shown in Fig. 17.c, involving the additional parameter u, with
Tint/TQ <u<l.

f1, fo and f3 remain constant after the voltage V;, has
recovered above V.., considering that the PV units are not
reconnected.

The above model involves five parameters (c, d, e, f and u)
to be identified.

Since the simpler LVRT characteristic of Fig. 7.a is used
for small PV units, a simplified partial tripping is considered
in the corresponding equivalent. It only involves the multiplier
f1 with the two associated parameters ¢ and d.

D. Identifying the parameters of the equivalent

The equivalent ADN involves a total of 39 parameters, as
detailed in Table I.

All these parameters are grouped in a @ vector which is
adjusted to minimize in the least-square sense the difference
between the response of the unreduced and the equivalent
systems, respectively. The response is measured in terms
of active and reactive powers flowing out of the HV/MV
transformer.

The parameters are obtained by applying m distinct training
input signals to the models. For the j-th signal (5 = 1,...,m),
we denote by:

Pe(evja k)

Qe(0, 4, k)
Pd(j7 k)

Qd(j7 k)

where k refers to the discrete times used by the time-
simulation solver. The same time instants are considered for
both the unreduced and the equivalent system; if needed,
interpolation is used to make the time instants coincide. The
number of discrete times is denoted by n.

The least-square parameter estimation minimizes:

the discrete-time evolution of the active power
flowing into the equivalent system;
the corresponding evolution of reactive power;
the discrete-time evolution of the active power
flowing into the unreduced system;
the corresponding evolution of reactive power,

€(0) =ep(0) +weg(O) 7
where:
ep(8) = DTN (PO K) — PR (®)
j=1 k=1
) = 33100, - QUi D ©
j=1 k=1
under the constraints:
oL <o <. (10

The factor w allows adjusting the weight given to the active
power response compared to the reactive one, while the a;’s
allow assigning weights to the various system responses.
0% and @Y are vectors of lower and upper bounds on 6,
respectively.

E. Optimization method

P.(0,j,k) and Q.(0,j,k) being obtained from time simu-
lation, it is hopeless to derive an analytical expression of the
first-order, and even less the second-order, derivatives of £(8)
with respect to 6. Hence, standard constrained least-square
methods can hardly be used unless the above derivatives are
estimated numerically.

At this stage, a meta-heuristic global optimization method
has been preferred. Meta-heuristic methods provide adaptive
rules that tailor the search to the particular landscape of
the objective function without specific parameter tuning [20].
More precisely, an Evolutionary Algorithm (EA) has been
used to solve the above optimization problem. EA algorithms
resort to stochastic rules that allow handling complex high-
dimensional problems. To this purpose, at each generation
of the EA, a whole population of points is improved rather
than a single solution. The Differential Evolution (DE) variant
presented in [21] has been implemented in MATLAB using
the open-source code from [22]. This choice was motivated
by the comparison of algorithms reported in [23], based
on various benchmark problems, from which DE seems to
generally outperform other EA as well as particle swarm
algorithms. More precisely, the local-to-best strategy has been
chosen since it attempts a balance between robustness and
fast convergence [22]. Furthermore, at each new generation,
the mutation factor F' of the algorithm (see [21]) is randomly
selected in the range [0.5,1.0]. It has been found that this
technique may improve convergence significantly.

VI. SIMULATION RESULTS OF THE ADN EQUIVALENT
A. Training signals

For training purposes, predefined voltage disturbances are
applied directly on the HV side of the distribution transformer,
as shown in Fig. 18. These signals are characterized by a volt-
age drop AV and a sag duration AT'. As already mentioned,
the depth and duration of the voltage disturbances depend on
the fault location and protection performances, respectively.
In this respect, it has been assumed that faults affecting the
transmission grid are cleared after either 0.10 or 0.25 s (typical
response times of primary and back-up protections), while the
voltage drop has been varied from 0.5 to 0.8 pu.

B. Preliminary sensitivity analysis

In a first step, @ has been estimated using a single training
signal, characterized by AV = 0.6 pu and AT = 0.10 s, and
a sensitivity analysis has been performed, by varying each
parameter individually around that first solution, in order to
identify those with little influence.

For instance, for a 100 % variation of each parameter, it was
found that only two of them were impacting the error €(6) by



TABLE I
PARAMETERS OF THE ADN EQUIVALENT

Type

Nb. of parameters

Generic PV model accounting for small PV units

Nominal current 1,6y,
Time constants T, and Ty
Parameters ¢ and d of the partial tripping model
Series resistance Ry, and reactance Xy

[N NI

Generic PV model accounting for large PV units

Nominal current Iy 0m
Voltages Vinin, Vint and V;. of the LVRT curve
Parameters m, krcy and Vgp of reactive current injection
Time constants T, and Ty
Parameters ¢, d, e, f and w of the partial tripping model
Series resistance Rpy and reactance X py

BN W W —

Equivalent load

Exponents o and 3 of static load component
Static and dynamic parameters of motor component of load
Series resistance Ry qq and reactance X7 44

BN oo N

Share of the initial active and reactive powers by the various components

Fraction of total active power produced by equivalent representing large PV units
Fraction of total active power produced by equivalent representing small PV units
Part of the total active power consumed by static load component
Part of the total reactive power consumed by static load component

——

Predifined training
Voltage v signals

Source

Voltage
Source

ADN
equivalent

Unreduced

system

Fig. 18. Training phase using predefined voltage signals

less than 1 %. (One was relative to the motor mechanical
torque, and the other was the u parameter in Fig. 17.c.) This
very low number suggests that the initial set of parameters had
been properly selected. Those two parameters were set to an
average value and removed from 6.

C. Training phase

The eight training signals (m = 8) detailed in Table II have
been used altogether to estimate 6. All responses have been
given the same weight, ie. w =1and a; = 1,5 =1,...,8.
A sample of results is given in Figs. 19 - 24, showing the
active and reactive power responses of both the detailed and
the reduced systems, for the training signals No. 3, 4 and 6.
These are the powers entering the HV/MV transformer, on its
HV side.

TABLE I
TRAINING SIGNAL CHARACTERISTICS

[No | AV (pu) | AT (ms) |

1 0.5 0.10
2 0.5 250
3 0.6 100
4 0.6 250
5 0.7 100
6 0.7 250
7 0.8 100
8 0.8 250

It is observed that the final active power is slightly larger
than the initial one indicating that some PV units, typically
the residential ones, have tripped.

The estimated parameters yield, in all cases, a response of
the equivalent very close to that of the unreduced system,
showing that the ADN equivalent reliably reproduces the
behaviour of the latter, seen from the transmission system.
In particular the final values are almost identical, indicating
that the fraction of units tripped has been estimated correctly.

D. Validation phase

For validation purposes, the identified ADN equivalent has
been tested against a voltage dip with AV = 0.55 pu and
AT = 250 ms not considered in the training phase, followed
by oscillations that could be representative of rotor angle
swings in the transmission system. The voltage applied at the
HV side of the HV/MV transformer is shown in Fig. 25.

Figures 26 and 27 show the active and reactive power
responses of both the unreduced and the reduced system. For
the reactive power flow the accuracy is as good as it was with
the training signals (see Figs. 22-24). For the active power
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Fig. 19. Training signal No. 3: Comparison of active power responses of the
original and the equivalent models
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Fig. 20. Training signal No. 4: Comparison of active power responses of the
original and the equivalent models
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Fig. 21. Training signal No. 6: Comparison of active power responses of the
original and the equivalent models

flow, there is still room for improvement. Indeed, while the
largest excursions, immediately after the fault occurrence and
immediately after its clearing, are correctly reproduced, the
subsequent oscillations are too damped. The exponent a of
the static load component has been found to have a significant
impact: increasing « results in a better (i.e. lower) damping but
also less accurate variations immediately after fault occurrence
and clearing.

This also suggests that training signals involving oscillations
should be considered in the future.
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Reactive Power (Mvar)
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Fig. 22. Training signal No. 3: Comparison of reactive power responses of
the original and the equivalent models
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Fig. 23. Training signal No. 4: Comparison of reactive power responses of
the original and the equivalent models
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Fig. 24. Training signal No. 6: Comparison of reactive power responses of
the original and the equivalent models

E. Computational efficiency

As expected, the ADN equivalent yields a high computa-
tional efficiency. For instance, simulating the case of Fig. 26
takes around 0.3 s with the equivalent, and 17.1 s with the
unreduced system (results on a laptop with an Intel(R) 17-6820
HQ quad-core processor @2.70 GHz, and 16 GB of RAM).
Parallel processing with four threads [12] was activated when
simulating the unreduced system.

The main drawback of using evolutionary algorithms is the
significant computing time needed to perform the least-square
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Fig. 25. Voltage signal used for validation of the equivalent
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Fig. 26. Comparison of active power responses to an oscillatory signal (not
used in training) given by the original and the equivalent models
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Fig. 27. Comparison of reactive power responses to an oscillatory signal (not
used in training) given by the original and the equivalent models

minimization. Indeed, during the algorithm, new populations
are generated a very large number of times and each new
generation requires computing the dynamic response of the
reduced system, for which the speed is independent from the
optimization algorithm and cannot be shortened. However,
there is still hope to improve the rate of convergence by prop-
erly tuning the parameters of the DE algorithm. Alternative
optimization techniques, such as derivative-free optimization,
are also contemplated.

Ry Xy

A
Ryv Xy %
—

O i

Fig. 28. Alternative structure of equivalent

VII. SUMMARY AND PERSPECTIVES

The on-going research reported in this paper aims at de-
riving dynamic equivalents of distribution networks hosting
significant amounts of dispersed generation. Those reduced-
order models are for use at transmission level in dynamic
simulations involving large disturbances. The emphasis is on
PV units, although the methodology is general, and the model
suits to other inverter-based generation.

First, a generic model of PV unit has been presented. It
focuses on how the unit interacts with the grid, and assumes
its compliance with recent grid codes. To this purpose, discrete
events are taken into account such as the switching between
active and reactive priority, or the tripping in low voltage
conditions.

Next, a “grey-box” equivalent has been presented in which
the PV units are lumped into two equivalent units according to
the grid requirement they follow: one for the small residential
installations, the other for the large industrial units. Each
equivalent unit is represented by the above mentioned generic
model. Similarly, all individual loads are lumped into a single
equivalent, combining a dynamic motor and a static exponen-
tial model. The resulting two units and load are connected
each through a separate impedance to account for voltage
drops inside the distribution network. The equivalent involves
as many as 39 parameters, adjusted to match the unreduced
system response in the least-square sense.

The following extensions are among those envisaged in the
near future.

o While the equivalent PV units are already differentiated
by voltage levels and grid requirements, it is relevant
to similarly distinguish loads according to the voltage
level at which they are connected. Then, placing the
two equivalent impedances in series would lead to the
structure shown in Fig. 28.

o The models can be extended to include different types of
inverter-based generators with various implementations of
controls and grid requirements.

o The least-square estimation of parameters minimizes the
Euclidean distance between the reference and the adjusted
evolutions. Alternative accuracy measure could be con-
sidered, based for instance on the metrics detailed in [24]
and [25].



o The parameters 6 have been estimated for one particular

operating point of the unreduced system. The model
validity after changes of generations and/or loads has to
be assessed. In particular, it has to be checked whether
simply updating the powers of the equivalent PV units
and load, without re-estimating the parameters 6 does
not impact accuracy.

Generally speaking, there exists some uncertainty on the
behaviour of distributed generation and even more of
loads. One way to deal with this issue is to perform
Monte Carlo simulations involving random variations of
the parameters of the detailed, unreduced test system.
Thus, for a given disturbance and a given operating point,
a set of dynamic responses would be generated. The
identification would be performed with respect to one
representative response from this set, and the required
accuracy would be selected based on the dispersion of
the responses.

The Monte Carlo simulations could also include random
measurement noise affecting V,,,. This, together with
random variations of T}, (see Fig. 1) would somehow
“de-synchronize” the events taking place in PV units.

A wider range of training signals has to be consid-
ered, involving for instance frequency deviations, voltage
phase angle jumps, etc. The main motivation is to avoid
“overfitting” the response to particular signals, and make
the equivalent suitable for a wider range of transients
in the transmission system, although most likely at the
cost of a lower accuracy. The treatment of frequency
deviations, for instance, will require to increase the set
of parameters. Hopefully by adding training signals new
subsets of parameters have their estimate improved.
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