

Forseeing New Control Challenges in Electricity Prosumer Communities

Frédéric Olivier, University of Liège, Belgium Daniele Marulli, Politecnico di Torino, Italy Damien Ernst, University of Liège, Belgium Raphaël Fonteneau, University of Liège, Belgium

Introduction

- Electricity Prosumer Community
 - Distributed generation
 - Storage
 - Information technologies
- Objectives
 - Propose a rigorous mathematical framework for studying energy prosumer communities
 - Present a new class of interesting control problems and challenges, to increase the hosting capacity of LV networks.

<mark>symposium</mark> aug 27th – sep 1ª, 2017 espinho, portugal

Outline

- The Electricity Prosumer Community
- Formalisation
- Control challenges
- Centralized vs distributed schemes

The electricity prosumer community

Definition

Electricity distribution system containing loads and distributed energy resources (such as distributed generators, storage devices, or controllable loads), that can be operated in a controlled, coordinated way

The electricity prosumer community

- Similar to microgrids
- Cannot operate in island mode
- Comprises consumers cooperating for the satisfaction of their energy needs using local production sources

The electricity prosumer community

Drivers

- With a shared infrastructure between the members
- Without a shared infrastructure
 - Network operation
 - Energy market

Communities extend the perimeter of selfconsumption from one prosumer to several to pool production and flexibility means

Formalisation - The prosumer

Formalisation – The community

- Power exchanges between prosumers
- Losses equal to the difference between the houses and the root of the community

<mark>symposium</mark> aug 27th – sep 1ªt, 2017 espinho, portugal

Formalisation

- Cost and revenues for each prosumer
 - Price between each member of the community
 - Price for electricity from the distribution network
- Community behaviour
 - Discrete time setting
 - For each time step, the variables change as a function of the previous states and exogeneous variables, with some uncertainty

Control challenges

- Decision making problems
- Maximising the distributed production
 - And increase the network's hosting capacity
 - And limit losses
- Optimising overall costs and revenues
 - Minimise the total electricity bill of the community

<mark>symposium</mark> aug 27th – sep 1ªt, 2017 espinho, portugal

Centralised vs distributed

Requirements

Inverters that are controllable in active and reactive power

- Controllable loads can be considered
 - Voltage et power measurements
- Model of the network
- Extensive communication
 - Centralised
 computer/controller

- No model
- No or little communication

<mark>symposium</mark> aug 27th − sep 1ªt, 2017 espinho, portugal

Distributed schemes

- Generating a data set using multiperiod OPF
 - Different load patterns, PV production profiles, prices
- Learning regressors using Extremely Randomized Trees
- Constraining the prediction
- Simulating the behaviour of the agents

Community electricity bill compared to a distributed rule of thumb	
Centralised (FBS-OPF)	19,6%
Distributed (Rule of thumb)	100%
Distributed (Extra trees)	47,3%

symposium aug 27th – sep 1ªt, 2017 aspinho, portugal

Conclusion

- In the paper:
 - Mathematical framework for modelling Electricity Prosumer Communities and energy exchanges between prosumers
 - Introduction of a distributed approach using machine learning
- Future work:
 - Using reinforcement learning for agent selfimprovement

<mark>symposium</mark> aug 27th – sep 1ªt, 2017 espinho, portugal

