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Introduction

• Computational homogenization (so-called FE2) for micro-structured materials

– Representative volume elements (RVE) are extracted from material microstructure

– Two boundary value problems (BVP) are concurrently solved 

• Macroscale BVP

• Microscale BVP defined on RVE with an appropriate boundary condition

– Separation of  length scales 

BVP

Macroscale

Material 

response

Extraction of a RVE
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Introduction

• FE2 for microstructured materials with strain 

localization at the microscale

– Homogenized stress/strain behavior involves 

softening part

– Scale separation assumption can not be satisfied

– Homogenized properties are not objective with 

respect to micro-sample sizes 

Stress

Strain
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Introduction

• FE2 for microstructured materials with strain 

localization at the microscale

– Homogenized stress/strain behavior involves 

softening part

– Scale separation assumption can not be satisfied

– Homogenized properties are not objective with 

respect to micro-sample sizes 

Solution: FE2 with enhanced discontinuity 

– Macroscale cohesive crack is inserted after onset 

of microscopic strain localization

Stress

Strain

(Nguyen V.-P. et al. CMAME 2010, Coenen E. et al. JMPS 2012)
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Computational strategy

• FE2 with enhanced  discontinuity based on a hybrid Discontinuous-Galerkin/ 

Extrinsic cohesive zone model (DG/CZM) formulation

– Prior to the microscopic strain localization: 

• FE2 based on DG formulation 

– After the onset of microscopic strain localization: 

• FE2 based on DG/CZM formulation

• Cohesive crack is inserted after onset of microscopic localization

(Nguyen V.-D. et al. CMAME 2013)

Homogenized cohesive lawHomogenized bulk law

Strain

Stress

Cohesive jump

Cohesive 

traction

Bulk element
Interface element

At the macroscale



June 2017 6

Content

• Multiscale statement

• DG formulation

• Hybrid DG/CZM formulation

• Numerical examples



June 2017 7

Multiscale problem

• Macroscopic boundary value problem

– Bulk part

– Discontinuity 
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Multiscale problem

• Microscopic boundary value problem

– Implicit gradient enhanced nonlocal model

– Microscopic constitutive laws are known
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Discontinuous Galerkin formulation

• Weak form  of the macroscopic BVP is obtained by applying integration by 

parts on each element
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(Noels L. & Radovitzky R. IJNME 2006)
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Discontinuous Galerkin formulation
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Discontinuous Galerkin formulation

• Displacement continuity is weakly enforced by DG interface terms
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Discontinuous Galerkin formulation

• Displacement continuity is weakly enforced by DG interface terms

Stability term

Compatibility term
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Discontinuous Galerkin formulation

• Displacement continuity is weakly enforced by DG interface terms

• Material constitutive relations must be provided

Stability term

Compatibility term

from microscopic analyses
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Discontinuous Galerkin formulation

• Material constitutive relations are obtained from microscopic analyses

– At integration points of both bulk and interface elements

– First-order FE2 scheme

Microscopic BVP
• Microscopic boundary condition: 

linear displacement, periodic, etc.

Macroscopic BVP

solve

Strain averaging principle

Hill-Mandel principle
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Local failure at the macroscopic scale

• Microscopic localization

– Loss of ellipticity of the homogenized tangent operator
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Local failure at the macroscopic scale

• Microscopic localization

– Loss of ellipticity of the homogenized tangent operator

• Macroscale cohesive cracks need to be followed after the onset of microscopic 

strain localization

Discontinuous 

Galerkin formulation 

(DG)

Hybrid discontinuous 

Galerkin formulation / 

cohesive zone model 

(Hybrid DG/CZM)
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Hybrid DG/CZM

• Discontinuity                  is developed due to the microscopic localization 

– Cohesive cracks are meshed with interface elements

DG Hybrid DG/CZM
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Hybrid DG/CZM

• Discontinuity                  is developed due to the microscopic localization 

– Cohesive cracks are meshed with interface elements

• Cohesive constitutive relations on      must be provided

from microscopic analyses

DG Hybrid DG/CZM
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Hybrid DG/CZM

• Homogenized cohesive law

– Deformation of microscopic BVP is driven by an interface deformation gradient  
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Hybrid DG/CZM

• Homogenized cohesive law

– Deformation of microscopic BVP is driven by an interface deformation gradient  

– Cohesive traction is obtained from the first-order FE2 scheme

Macroscopic BVP

solve

Strain averaging principle

Hill-Mandel principle
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Hybrid DG/CZM

• Homogenized cohesive law

– Deformation of microscopic BVP is driven by an interface deformation gradient  

– Active damage zone

• Does not magnify with the microscopic volume element size

• Has a constant width related to the nonlocal length scale

– Cohesive jump is homogenized from the microscopic localization strain inside the 

active damage zone 

(Nguyen V.-P. et al. CMAME 2010)
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Hybrid DG/CZM

• Homogenized cohesive law

– Deformation of microscopic BVP is driven by an interface deformation gradient  

– Strain averaging principle

Macro-crack
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Numerical examples

• Uniaxial test

– Non-local elastoplastic-damage material law

Prescribed displacement
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Numerical examples

• Uniaxial test

– Non-local elastoplastic-damage material law

Full Multiscale 1 Multiscale 2
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Numerical examples

• Uniaxial test

– Non-local elastoplastic-damage material law

Full Multiscale 1 Multiscale 2
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Numerical examples

• Notched sample

– Non-local elastoplastic-damage material law

Prescribed vertical displacement

12 mm 0.5 mm
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Numerical examples

• Notched sample

– Non-local elastoplastic-damage material law
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Conclusions

• This proposed FE2 scheme is based on the DG/CZM framework

– Extrinsic cohesive  zone model

– Cohesive normal is known

• Both bulk and interface constitutive relations are obtained from microscopic 

analyses at finite strains 

• The triaxiality effect during the failure process is automatically accounted for 

since both the macroscopic deformation gradient and macroscopic  

displacement jump are used to formulation the microscopic BVP
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Thank you for your attention ! 


