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Introduction

« Computational homogenization (so-called FE?) for micro-structured materials
— Representative volume elements (RVE) are extracted from material microstructure

— Two boundary value problems (BVP) are concurrently solved
* Macroscale BVP
* Microscale BVP defined on RVE with an appropriate boundary condition

— Separation of length scales Lmacro > LRVE = Lmicro

@ Extraction of a RVE
Macroscale

Material
response

A

BVP
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Introduction

e FEZ2 for microstructured materials with strain
localization at the microscale

: . o | Stress
— Homogenized stress/strain behavior involves . f
. 0SS O
softening part uniqueness
— Scale separation assumption can not be satisfied
Strain
) ) S _ locaNzed
— Homogenized properties are not objective with
respect to micro-sample sizes micre“samp
Homogenous ..
solution e Increases
Strain
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Introduction

e FEZ2 for microstructured materials with strain
localization at the microscale

| Stress
— Homogenized stress/strain behavior involves . f
. 0SS O
softening part uniqueness
— Scale separation assumption can not be satisfied
Strain
) ) S _ locaNzed
— Homogenized properties are not objective with
respect to micro-sample sizes micre“samp
Homogenous iZe increases
solution
- Solution: FE? with enhanced discontinuity Strain

— Macroscale cohesive crack is inserted after onset
of microscopic strain localization

(Nguyen V.-P. et al. CMAME 2010, Coenen E. et al. IMPS 2012)
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Computational strategy

« FE? with enhanced discontinuity based on a hybrid Discontinuous-Galerkin/
Extrinsic cohesive zone model (DG/CZM) formulation
— Prior to the microscopic strain localization:
« FE?based on DG formulation (Nguyen V.-D. et al. CMAME 2013)

— After the onset of microscopic strain localization:
« FE?based on DG/CZM formulation
» Cohesive crack is inserted after onset of microscopic localization

— i E., 2 "F_‘
::’ {ﬁiﬁ Bulk element : ﬁ %

R Lo Interface element P
7 TR YA S
'I\:;'E'En -:,f'-'; MIFE Tt e S

Stress Cohesive
1 traction, \
Strain Cohesive jump
At the macroscale
Homogenized bulk law Homogenized cohesive law
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Multiscale problem

VO
® . .

Bulk microstructure “y, 0 Interface microstructure
/s

Op By with localization band

Macroscopic boundary value problem
— Bulk part
Py - Vo+B=0o0n By
uy = ul; on dp By
_ m0
Py Nag =Ty on On Bo Jump operator [eo] =

o' o
— Discontinuity 1
2

Mean operator (o) = = (e + o7)

D
on I'g T pr: cohesive traction

[Pu] Ny =0
(Pp) Ny =Ty
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Multiscale problem

VO
® . .

Bulk microstructure “y, 0 Interface microstructure
/s

Op By with localization band

Microscopic boundary value problem
— Implicit gradient enhanced nonlocal model

P, -Vo=0
{ 0 on V)

P —cAp =y
¢ : square of nonlocal length scale
— Microscopic constitutive laws are known

P, =(1—-D)P,
D — D((’B, FmaQ)
pm — ]-E)m (Fm;Q)

Q : internal variable

June 2017 8



Discontinuous Galerkin formulation

« Weak form of the macroscopic BVP is obtained by applying integration by
parts on each element £

Z[ (Par - Vo + Bg) - dupdV =0

s

Q508

Jump operator [e] =
Mean operator (e)

(Noels L. & Radovitzky R. IINME 2006)
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Discontinuous Galerkin formulation

« Weak form of the macroscopic BVP is obtained by applying integration by
parts on each element £

Z[ (Par - Vo + Bg) - dupdV =0 E

dnBg
On Qo \ Z/ —Pyr: (Supr @ Vo) dV +
vooas |\ <
_ 10) 511MPMNMdA—|—
dpBo X x+ ; 0825
N* ef
H Qe ‘o Z/ Bg - duy dV =0
e e 0
2° 5,08\
Jump operator o] = et — e~
Mean operator (o) =1 (et +e7)
Ny = N,
0By =) 09

(Noels L. & Radovitzky R. IINME 2006)
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Discontinuous Galerkin formulation

« Weak form of the macroscopic BVP is obtained by applying integration by
parts on each element £

Z[ (Par - Vo + Bg) - dupdV =0 E

dnBo
On Qo \ Z/ —Pyr: (Supr @ Vo) dV +
N~ QS’ \ e 75
_ 10) 511MPMNMdA—|—
dpBo X x+ ; 0825
N* ef
H Qe ‘o Z/ Bg - duy dV =0
e e 0
2° 5,08\ §
Jump operator [o] = o — e~ / Py (Juy @ Vo) dV +
Mean operator (o) =1 (et +e7) Bo
81 Bo
91 By =U898 / BO—(SuMdV+/ T, - dups dV
e Bo dn Bo

(Noels L. & Radovitzky R. IINME 2006)
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Discontinuous Galerkin formulation

« Displacement continuity is weakly enforced by DG interface terms

f Py : (Guy © Vo) dV +

By

/ [oup]l - (Par) - NasdA =
IrBo

/B0—5uMdV+/ TV, - duy dV
By On Bo
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Discontinuous Galerkin formulation

« Displacement continuity is weakly enforced by DG interface terms

f Py (dupy ® Vi) dV + B : stability parameter
Bo hs : characteristic mesh size

/ [6uns] - (Pas) - NasdA = LY, : tangent operator at zero deformation
81 Bo

/ BO-5uMdV+/ T, - Sups dV
By I~ Bo / Py (0upy ® Vo) dV +
Bo

/ [[Uﬂ,j]] . <L%f : (5111\/[ & V0)> - Ny dA +
drBo

B
Stability term fa . [un] @ Ny <h—L?Mf : [0upns] @ NasdA =

Bo-éuMdV+/ TV, - duy dV

dn Bo

Compatibility term

Bqg
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Discontinuous Galerkin formulation

« Displacement continuity is weakly enforced by DG interface terms

f Py (dupy ® Vi) dV + B : stability parameter
Bo hs : characteristic mesh size

/ [6uns] - (Pas) - NasdA = LY, : tangent operator at zero deformation
81 Bo

/ BO-5uMdV+/ T, - Sups dV
By I~ Bo / Py (0upy ® Vo) dV +
Bo

/ [[Uﬂ,j]] . <L%f : (5111\/[ & V0)> - Ny dA +
drBo

B
Stability term fa . [un] @ Ny <h—L%4 : [0upns] @ NasdA =

/Bo-éuMdV+/ TV, - duy dV
Bo

dn Bo

Compatibility term

« Material constitutive relations must be provided

Py =Py (Fa;Qum)  >from microscopic analyses
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Discontinuous Galerkin formulation

« Material constitutive relations are obtained from microscopic analyses
— At integration points of both bulk and interface elements
— First-order FE? scheme

Hill-Mandel principle Macroscopic BVP

1

PM&FM:VO/ PmZ5Fde
Vo

Strain averaging principle

1
Vo FM:—/ F,, dV
L 8PM % Vo
M= 9F

. . solve . ‘
® 9

Microscopic BVP
« Microscopic boundary condition:
linear displacement, periodic, etc.
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Local failure at the macroscopic scale

Microscopic localization
— Loss of ellipticity of the homogenized tangent operator

&
mineig(NM -QLM-NM) <0 ~

»>
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Local failure at the macroscopic scale

* Microscopic localization

— Loss of ellipticity of the homogenized tangent operator

min eig (NM 2Ly NM) <0

<
~

»
r

* Macroscale cohesive cracks need to be followed after the onset of microscopic

strain localization

Discontinuous
Galerkin formulation
(DG)

=)

Hybrid discontinuous

Galerkin formulation /

cohesive zone model
(Hybrid DG/CZM)
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Hybrid DG/CZM

 Discontinuity 1"}/ c 9;B, is developed due to the microscopic localization
— Cohesive cracks are meshed with interface elements

DG Hybrid DG/CZM

/ P (511M®V0) dV +
Bo 511M®V0) dV‘F

/(9130 [dupnr]) - (Par) - Ny dA + < QAZ\ / Stn] - (Par) - Noy dA +

81 Bo\ '
/ [[UM]] . <L5{/f : (6UA[®V0)> Ny dA +
91 Bo / [ua] - (LY, : (Bunr @ Vo)) - NagdA +
fﬂ;*f?o‘ L

fp

a1 By 8 f | [[IIM]]@NMI <hL?M> [[511MH®NMdA‘|'
591‘E30\ rpb S

— l//1 :Eg[]' (sl]]pf Ci‘/r + J/r ﬁI?SLf '(Slljhf (i‘/' i
Bo On Bo . 4
/ [oun] - TardA =
JTDP

/BO-5uMdV+/ T, - dups dV
f?o EaPJ-EEO
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Hybrid DG/CZM

 Discontinuity 1"}/ c 9;B, is developed due to the microscopic localization
— Cohesive cracks are meshed with interface elements

DG Hybrid DG/CZM

/ P (511M®V0) dV +
Bo 511M®V0) dV‘F

/(9130 [dupnr]) - (Par) - Ny dA + < QAZ\ / Stn] - (Par) - Noy dA +

drBo\I'}/
/ [uM]] < ((511]\[ oz V0)> : l\TMr dA +
Or By / HuM]] : <LJ\I : (511]\,{ X V0)> : NM' dA +
fﬂ;*f?o‘ [‘I

fp

a1 By / . [[I,IM]] & NM : <hL(J)VI> : [[511MH ®NM dA—|-
591‘E30\ rpb S

hs

— l//1 :E3(]- (sl]]pf Ci‘/r 4— J/r ﬁI?SLf '(Slljhf (i‘/' i
EBD é)}u‘fgo -
/ [ounr] - Tar dA =
JTDP

/B0-5uMdV—|—/ T, - dups dV
f?o Eaﬂf-fgﬂ

- Cohesive constitutive relations on '’ must be provided

Ty =Ty (Far, [um];Qnm)  >from microscopic analyses
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Hybrid DG/CZM

« Homogenized cohesive law
— Deformation of microscopic BVP is driven by an interface deformation gradient

Fo Fy at onset of failure
M Furr (Far,[up]) after onset of failure

June 2017 20



1
TM:(—/ Pde>-NM
Vo Jv

Hybrid DG/CZM

Homogenized cohesive law
— Deformation of microscopic BVP is driven by an interface deformation gradient

Fo Fy at onset of failure
M Furr (Far,[up]) after onset of failure

— Cohesive traction is obtained from the first-order FE2 scheme

Hill-Mandel principle Macroscopic BVP
Py :0Fy = i/ P, :oF,, dV
Vo

3

Strain averaging principle

1
F —f F,, dV
Vo

8TM an B VO
KM: .

OF n  OF

0Ty  O0Fpm
DM: :

0Fm  0unl O solve ® o
< O
@) O
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Hybrid DG/CZM

Homogenized cohesive law
— Deformation of microscopic BVP is driven by an interface deformation gradient

Fo Fy at onset of failure
M Furr (Far,[up]) after onset of failure

— Active damage zone (Nguyen V.-P. et al. CMAME 2010)

« Does not magnify with the microscopic volume element size
« Has a constant width related to the nonlocal length scale

Vii={XeW|[D>0} V=WV SF ;" = 5D / OF, dV

— Cohesive jump is homogenized from the microscopic localization strain inside the
active damage zone

N ps

1

[pr: average band width
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Hybrid DG/CZM

« Homogenized cohesive law
— Deformation of microscopic BVP is driven by an interface deformation gradient

Fo Fy at onset of failure
M Furr (Far,[up]) after onset of failure

— Strain averaging principle

1
§Fy = — | 6F,dV
M Vo I
= (1-B)SFE + BSFD, (1-B)dFy; =0Fy
NM NM

M

‘/OD

B = 7

Macro-crack
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Numerical examples

Uniaxial test
— Non-local elastoplastic-damage material law

Prescribed displacement

T T 1

OO<: OO OO :>00

S
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Numerical examples

Uniaxial test
— Non-local elastoplastic-damage material law

Full

Multiscale 1

K

o

Multiscale 2
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Numerical examples

Uniaxial test

— Non-local elastoplastic-damage material law

Full

—Full
----- Multiscale 1

§ Sl D - Multiscale 2
Ne)

S 10

3]

@

(D)

x o

-10 ; ;
0 0.02 0.04

Prescribed diplacement

Macroscopic response

N
o
Py ——

Multiscale 1

—Micro 1
----- Micro 2

0 0.05
Foxl

Homogenized stress-strain
response

0.1

4
TN
Multiscale 2
60-
\ —Micro 1
.5 o 0~ 7 Micro 2
3
©
© 20}
>
[72]
2
o Or
@)
29 0.02 0.04 0.06

Displacement jump

Homogenized cohesive
response
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Numerical examples

Notched sample
— Non-local elastoplastic-damage material law

Prescribed vertical displacement

A A A A A

12 Imm <

()T

0.5

mm
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Numerical examples

Notched sample
— Non-local elastoplastic-damage material law

NN

o

o
1

——Macro-mesh 1
,,,,,,,,,,, Macro-mesh 2

Reaction force (N)
N
o
S

% 002 004 006 008 01
. _ L Prescribed displacement (mm)
displacement displacement - step 300 in [0,300]
0 0.05 0.1 0 0.0501 01
| - [ . |
Macro-mesh 1 Macro-mesh 2
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Conclusions

This proposed FE? scheme is based on the DG/CZM framework
— Extrinsic cohesive zone model
— Cohesive normal is known

Both bulk and interface constitutive relations are obtained from microscopic
analyses at finite strains

The triaxiality effect during the failure process is automatically accounted for
since both the macroscopic deformation gradient and macroscopic
displacement jump are used to formulation the microscopic BVP
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Thank you for your attention !
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