

REMERCIEMENTS

TABLE OF CONTENT

CVI A PETER A	
CHAPTER I	
CONTEXT OF THE RESEARCH	
I.1 PROBLEMATIC	3
I.2 HYDROGEN	8
I.2.1 AN APPLICATION OF HYDROGEN: FCEVS	9
I.2.2 DISTRIBUTION OF HYDROGEN	11
I.2.3 PRODUCTION OF HYDROGEN	11
I.3 PHOTOELECTROLYSIS OF WATER	13
I.3.1 PHOTOELECTROCHEMICAL CELL	14
I.3.2 WORKING PRINCIPLE	16
I.3.3 REQUIREMENTS FOR PHOTOELECTRODES	18
I.4 HEMATITE	19
I.5 OBJECTIVES OF THE THESIS	25
I.6 STRUCTURE OF THE MANUSCRIPT	26
I.7 REFERENCES	27
CHAPTER H	
CHAPTER II	
ELABORATION OF A DOPED MESOPOROUS HE	MATITE FILM
II.1 TEMPLATING	35
II.2 MESOPOROUS FILM PREPARATION	36
II.2.1 EXPERIMENTAL PART	36
II.2.1.1 Precursors solution	36
II.2.1.2 DEPOSITION BY SPIN COATING	37
II.2.1.3 POST-DEPOSITION HEAT TREATMENTS	37
II.2.1.4 CHARACTERIZATION TECHNIQUES	38
II.2.2 FORMATION OF MICELLES IN THE PRECURSOR	S SOLUTION
	39
II.2.3 HYBRID FILM PREPARATION	40
II.2.4 FROM THE HYBRID FILM TO THE DOPED MESO	POROUS FILM
	42
II.2.4.1 STABILIZATION AND CALCINATION	42
II 2 4 2 DOPANT ACTIVATION	45

II.3 DENSE FILMS II.4 CONCLUSIONS II.5 REFERENCES	48 49 50
CHAPTER III: EFFECT OF THE MICROSTRUCTURE ON THE PHOTOELECTROCHEMICAL PERFORMANCES	
III.1 EXPERIMENTAL SECTION	57
III.2 COMPARISON OF THE DIFFERENT MICROSTRUCTURES	59
III.2.1 SURFACE AND ROUGHNESS	61
III.2.2 GRAIN AND CRYSTAL GROWTH	64
III.3 PHOTOELECTROCHEMICAL PERFORMANCES	69
III.3.1 MEASUREMENT SETUP	69
III.3.2 WATER SPLITTING EFFICIENCIES	72
III.3.3 PERFORMANCES EVALUATION	73
III.3.3.1 FILM THICKNESS	75
III.3.3.2 DIFFERENCES BETWEEN BACK AND FRONT ILLUMINATION	76
III.3.3.3 Performances at 800°C	81
III.3.3.4 Comparison of two heat treatments for the activation σ	OF
THE DOPANT	83
III.4 CONCLUSIONS	89
III.5 REFERENCES	90
CHAPTER IV DOPING TO IMPROVE THE ELECTRONIC CONDUCTIVITY	·
IV.1 PROPERTIES OF THE DOPANT	95
IV.2 EIS MEASUREMENTS: A WAY TO EXPLAIN THE ROLE OF TI	ΗE
DOPANT	97
IV.2.1 IMPEDANCE SPECTROSCOPY	97
IV.2.2 IMPEDANCE VS. ADMITTANCE DATA REPRESENTATION	100
IV.2.3 ELABORATION OF THE EQUIVALENT CIRCUIT	103
IV.2.3.1 ADMITTANCE DATA ANALYSIS	105
IV.2.3.2 IMPEDANCE DATA ANALYSIS	111
IV.2.4 ANALYSIS OF DENSE FILMS CONTAINING DIFFERENT	
CONTENTS OF TITANIUM	115
IV.2.5 ANALYSIS OF DENSE FILMS CALCINED AT DIFFERENT	110
TEMPERATURES	118

LIST OF PUBLICATIONS	
VI.3 REFERENCES	160
VI.2 PERSPECTIVES	158
VI.1 CONCLUSIONS	155
CONCLUSIONS AND PERSPECTIVES	
CHAPTER VI:	
V.4 REFERENCES	150
V.3 CONCLUSIONS AND PROSPECTS	149
V.2.2 SPIN COATED FILMS VS. USP DEPOSITED FILMS	147
V.2.1 PROOF OF CONCEPT	144
V.2 ULTRASONIC SPRAY PYROLYSIS	143
V.1.2 ANALYSIS OF TRANSIENT CURRENT	140
WITHOUT H ₂ O ₂	138
V.1.1 COMPARISON OF PHOTOCURRENT OBTAINED WITH AND	
WITHOUT KINETICS ISSUES	137
V.1 EVALUATION OF HEMATITE FILMS PERFORMANCES	
AND INDUSTRIALIZATION	
FOR PERFORMANCES IMPROVEMENT	
NEW APPROACHES	
CHAPTER V:	
IV.5 REFERENCES	131
IV.4 CONCLUSION AND PERSPECTIVES	130
EFFICIENCY OF HEMATITE FILMS	127
IV.3 EFFECT OF THE DOPANT ON THE ELECTROCHEMICAL	
	124
AND THE HEAT TREATMENT ON THE ELECTRICAL PROPERTIES	
IV.2.6 INFLUENCE OF THE NANOSTRUCTURATION OF THE FILM	1