
Platform for programmable
heterogeneous virtual

middleboxes

The team

Laurent Mathy (Supervisor)
Cyril Soldani (Language / code analysis / private NFV)
Emmanouil Psanis (Synchronization)
Me, Tom Barbette (System / Packet Processing)

Programmable

Stir network innovation

Deploy middleboxes in the Cloud

We develop a platform for
programmable heterogeneous virtual

middleboxes

Platform

It needs to be

flexible (for various current and future middleboxes)
secure (isolation between tenants w.r.t data and
resources)
fast (low latency, high throughput)
easy to use

We develop a platform for
programmable heterogeneous virtual

middleboxes

Heterogeneous

GPU

NetFPGA

Tilera

CPU

We develop a platform for
programmable heterogeneous virtual

middleboxes

Consolidate middleboxes
- Full-VM not the right abstraction for performance
- Fine grained (eg. Tailtrie : multiple FIB on GPU with

partial similar data)
Migrate them between the underlying hardware

- Virtualize data structures for heterogeneous
hardware (Tile, NetFPGA, GPU, x86)

Virtual

We develop a platform for
programmable heterogeneous virtual

middleboxes

What
will

 be
the

 platform
?

?

Why not?

 General purpose
 Have all the needed softwares
 Provide isolation through process mechanism
 Paper about running things on GPU, FPGA, ...

Kernel Network Stack is Slow

“Too much” general purpose
Lot of systems calls to receive and send

packets
User-space <-> Kernel Space copy

First work

Lot of I/O frameworks available

Netmap improved
DPDK

Netmap
PF RING

PacketShader I/O
Linux Kernel

PCAP (12 cores)

PCAP

0 200 400 600 800 1000
0

10

20

30

40

Packet size (bytes)

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Those frameworks deliver
 RAW packets

quickly to user-space

but we need to do something with them …

Click modular router

Flexible, easy-to-use, component-based configuration
Existing reusable elements for common networking

functions
Available in user-space with some of the above

frameworks
Possibility of hardware offloading of some functions

FastClick - DPDK
FastClick - Netmap

DoubleClick
Original Netmap

Click Kernel (12 cores)

PCAP (12 cores)
Linux Socket (12 cores)

Click Kernel (4 cores)

0 200 400 600 800 1000
0

10

20

30

40

Packet size (bytes)

T
h
ro

u
g

h
p

u
t

(G
b

p
s)

Second work

Enhance click

Multiple I/O Framework integrations, but perfectible
Globally enhance Click with multiqueue support, batching,

zero-copy, better multithreading...

Forwarding test
case

FastClick
ANCS'15

• Review the need for high speed I/O frameworks more
suited than kernel API and compared them

• Using proposed ideas and new ideas of our own, we
showed
that FastClick was fit for purpose as a high speed userspace
packet processor and opens the door for implementation of
middleboxes and NFV

• FastClick is available at
http://fastclick.run.montefiore.ulg.ac.be/

Routing test case

FastClick - DPDK
FastClick - Netmap

DoubleClick

Original Netmap
Click Kernel (12 cores)

Linux
Click Kernel (4 cores)

0 200 400 600 800 1000
0

10

20

30

40

Packet size (bytes)

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Current work

Add flow support to FastClick

Middlebox functionalities needs it :

Attack spitted across multiple fragmented packets
HTTP Reconstruction for ad-removal
defacing detection
Proxy-caching
DPI
…

Flows

Classification of packet into micro-flows
Eg. :

- TCP micro-flows
- IP Pair
- Packets from one AS to another AS
- ?

Wait for more packets mechanism
Flow-local storage

The Click way

FromDevice(eth0) Classifier

ARP ARP elements

IP ClassifierClassifier

DPI Element

IP

TCP
dport = 80

NAT Element

- Multiple classifiers
- Multiple flow table (each element has a hash table to access a per-flow space)

Also “the industry” way : multiple VM, reclassifying each time

UDP

One big classifier

FlowDispatcher

ARP ARP elements

IP ClassifierFlowDispatcher

DPI Element

IP

NAT Element
FlowClassifier

class DPIData {
StateMachine s;
Packet*
awaiting_packets;
}

class NAT Data {
U32 old_ip;
U32 new_ip;
u16 old_dport;
u16 new_dport;
}

Int output_nr;

Int output_nr;

Flow rule data Flow Local Storage

Flow Control
Block

Space computed at configuration time

FromDevice(eth0)

TCP
dport = 80

UDP

Flow detection
One big classifier

0 1

0 1

Wait for more packets mechanism

“Run to completion|buffer” execution model
Try to process one packet through all elements in the

pipeline.
Either :
 - Execution finish in an output element
 - Element asks for more packets, keeping that one in a

buffer (per sub-flow, per element)
Process next packet

→ Avoid the cost of a context switch we would have with a
socket

- Flow system (nearly finished)
- Quick packet classification
 - Fast rule specialization
 - Multi-dimensional
 - Partially offloadable

After that :
Make click elements compatible with some

hardware devices (GPU, NetFPGA, …)
Handle the migration of those elements
→ Optimisation problem, data consistency, ...

Current work

Questions, (possibly) answers
and discussion

?

A programmable middlebox platform that can run on top of
“what's available”, with fine grained virtualization and

efficient consolidation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

