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ABSTRACT

Strong gravitational lensing is regarded as the most precise technique to measure the mass in the inner region of galaxies or galaxy
clusters. In particular, the mass within one Einstein radius can be determined with an accuracy of the order of a few percent or better,
depending on the image configuration. For other radii, however, degeneracies exist between galaxy density profiles, precluding an
accurate determination of the enclosed mass. The source position transformation (SPT), which includes the well-known mass-sheet
transformation (MST) as a special case, describes this degeneracy of the lensing observables in a more general way. In this paper we
explore properties of an SPT, removing the MST to leading order, that is we consider degeneracies which have not been described
before. The deflection field α̂(θ) resulting from an SPT is not curl-free in general, and thus not a deflection that can be obtained from
a lensing mass distribution. Starting from a variational principle, we construct lensing potentials that give rise to a deflection field α̃,
which differs from α̂ by less than an observationally motivated upper limit. The corresponding mass distributions from these “valid”
SPTs are studied: their radial profiles are modified relative to the original mass distribution in a significant and non-trivial way, and
originally axi-symmetric mass distributions can obtain a finite ellipticity. These results indicate a significant effect of the SPT on
quantitative analyses of lens systems. We show that the mass inside the Einstein radius of the original mass distribution is conserved
by the SPT; hence, as is the case for the MST, the SPT does not affect the mass determination at the Einstein radius. Furthermore,
we analyse a degeneracy between two lens models, empirically found previously, and show that this degeneracy can be interpreted as
being due to an SPT. Thus, degeneracies between lensing mass distributions are not just a theoretical possibility, but do arise in actual
lens modeling.
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1. Introduction

Strong gravitational lensing provides a highly valuable tool to
obtain mass properties of galaxies and galaxy clusters (see, e.g.,
Bartelmann 2010; Kochanek 2006, and references therein). In
particular, multiple image systems yield strong constraints on the
mass distribution. The mass enclosed within the Einstein radius
presents the most robust galaxy mass estimate currently avail-
able. Furthermore, the shape of the mass distribution (e.g., ellip-
ticity, orientation) is well defined.

However, mass estimates for radii smaller or larger than the
Einstein radius are less accurate. If only a finite set of individual
lensed compact images is observed, too few observational con-
straints are available and certainly no unique radial mass pro-
file can be found. The situation changes somewhat if extended
source components are lensed where the constraints on the mass
distribution are much more stringent. Nonetheless, even if we
could find a mass model which reproduces all constraints per-
fectly, such a mass model would not be unique either. The reason
for this degeneracy is known since 1985 (Falco et al. 1985) and
is called the mass-sheet transformation (MST). If a given surface
mass density κ(θ) reproduces all observational constraints, then
the whole family of mass models,

κλ(θ) = λκ(θ) + (1 − λ), (1)

will do the same. In particular, the MST leaves all observables
invariant except the time delay1. The transformation (1) modifies
the slope of the density profile with a constant factor λ. This
affects mass measurements outside the Einstein radius θE and
determination of the Hubble constant H0 directly.

Schneider & Sluse (2013, hereafter SS13) presented two
mass profiles (namely, a Hernquist profile plus a modified
Navarro, Frank and White profile, as well as a power-law mass
profile) which showed almost the same imaging properties, al-
though they are not exactly related through an MST. Follow-
ing this unexpected result it became apparent that an even more
general invariance transformation than the MST exists. The so-
called source-position transformation (SPT) was finally intro-
duced in Schneider & Sluse (2014, hereafter SS14).

For isolated individual images many ambiguities for the lens
equation exist. Local transformations of the lensing mass distri-
bution, which still reproduce the positional constraints from the
lensed images, lead to an infinite number of mass models (see
e.g., Saha & Williams 1997; Diego et al. 2005; Coe et al. 2008;
Liesenborgs & De Rijcke 2012). The MST as given in Eq. (1) is
a global transformation and equivalent to an isotropic uniform
stretching of the source plane by a constant factor λ. The SPT
is based on a more general (global) transformation of the source

1 Although time delay ratios stay constant.
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plane coordinates. Such transformations β̂(β), where β̂ denotes
the transformed source position, give rise to a new deflection law
α̂(θ) = θ − β̂(θ −α(θ)). The new deflection law α̂ will in general
not be a gradient field and thus cannot be obtained from the de-
flection caused by a lens. However, if the curl component of α̂ is
sufficiently small, then one may find a lensing mass distribution
which yields a deflection law which is very close to α̂, so close
that it cannot be observationally distinguished from α̂. In this pa-
per we will explore this possibility, which of course depends on
the SPT β̂(β). In particular, if this deformation is “too strong”,
then the resulting α̂ cannot be approximated with the deflection
due to a lens – this will restrict the freedom in choosing transfor-
mations β̂(β).

The outline of the paper is as follows. In Sect. 2 we will reca-
pitulate the principle of the SPT. We characterize the deviation of
the deflection law from a gradient field quantitatively in Sect. 3
by finding a gravitational potential ψ̃ such that α̃ = ∇ψ̃ is as
close as possible to the SPT-transformed deflection law α̂. To do
so, we will start from a variational principle and show that the
modified deflection potential ψ̃ has to fulfill Neumann bound-
ary conditions. Those can be solved using a Green’s function,
and the solution will be given explicitly for a circular region.
Furthermore, a numerical approach will be presented to find de-
generate deflection laws and their corresponding mass profiles.
By considering a specific deformation function β̂(β) and assum-
ing a positional accuracy on lensed image positions typical of
the Hubble Space Telescope (HST), we will present in Sect. 4
the implications of the “allowed” SPTs on current mass profile
determinations, regarding the radial mass profile and the angular
structure of the lens. Different diagnostics for the change of the
mass profile by an SPT, and how it can be distinguished from an
MST, will be explored in Sect. 5 in terms of the aperture mass.
Finally, we will discuss our findings in Sect. 6.

2. The principle of the source position
transformation

In the following we will describe the principle of the SPT and its
properties. For a more detailed account the reader is referred to
SS14. We use standard gravitational lensing notation throughout
this paper (see, e.g., Schneider 2006).

In general, a surface mass density distribution κ(θ) gives rise
to a deflection law α(θ), where θ is the angular position in the
lens plane, i.e., the observer’s sky. The mass distribution or con-
vergence κ is defined as the ratio of projected surface mass den-
sity to the critical surface mass density, where the latter depends
only on the angular diameter distances of lens and source. If
that mass distribution is sufficiently concentrated (i.e., typically
κ(θ) >∼ 1 for some region in the lens plane) a source may have
multiple images, depending on its position relative to the deflec-
tor on the sky. Then, the source located at the (unobservable)
position β will have its images at locations described by the so-
lutions θi = β+α(θi) of the lens equation. Since multiple images
are from the same source, we can deduce the constraints on the
deflection law α(θ) as

θi − α(θi) = θ j − α(θ j), (2)

or likewise for an alternative deflection law α̂(θ) as

θi − α̂(θi) = θ j − α̂(θ j), (3)

for all i < j, such that α(θ) as well as α̂(θ) yield exactly the
same sets of multiple images. If such equivalent deflection laws

Fig. 1. Illustration of the source position transformation. A source at β
causes multiple images θ in the lens plane under the deflection law α.
The same multiple images are obtained from a source at β̂(β), provided
the deflection law is changed to α̂, according to Eq. (4).

exist, they will correspond to source positions β = θ − α(θ) or
β̂ = θ − α̂(θ), respectively (see Fig. 1).

We can now consider a one-to-one mapping β̂(β) that con-
nects the original source coordinates to the new ones. This al-
lows us to define the transformed deflection law as

α̂(θ) = α(θ) + β − β̂(β) = θ − β̂(θ − α(θ)), (4)

where in the last step we inserted the original lens equation
β = θ − α(θ).

Hence, any bijective (i.e., one-to-one) function β̂(β) leads
to an SPT which leaves the condition (2) invariant. More-
over, as can be deduced from the Jacobian Â = ∂β̂/∂θ =

(∂β̂/∂β)(∂β/∂θ) of the modified lens equation, the relative mag-
nification matrices and the relative image shapes between im-
age pairs of the same source β̂ remain unchanged. However, the
Jacobian Â will not be symmetric in general, and therefore α̂
cannot be written as the gradient of a deflection potential ψ̂ (i.e.,
α̂ is not a curl-free field). This implies that no corresponding
mass distribution κ̂ exists that yields a deflection angle α̂, in gen-
eral. However, it was shown in SS14 that the asymmetric part
of the Jacobian can be small in realistic cases; this will be ex-
plored more quantitatively in Sect. 3. In the special case that the
lens is axisymmetric and the transformation β̂(β) corresponds to
a radial stretching of the form

β̂ = f (|β|)β, (5)

the SPT is an exact invariance transformation: in this case, the
Jacobian Â is symmetric, and for every transformation (5) and
its corresponding deflection law α̂ there exists a corresponding
axi-symmetric mass distribution κ̂.

Provided the curl component of α̂ is small, then we expect
that there exists a mass distribution κ̃ whose corresponding de-
flection law α̃ will be very similar to α̂, in the sense that their
difference is smaller than the astrometric accuracy of current ob-
servations. In this case, the SPT will be, for all practical pur-
poses, a global invariance transformation for lenses.
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3. The transformed mass distribution

3.1. The general method

Since the deflection law α̂ (4) is not a gradient field, it does not
correspond to a deflection field caused by a gravitational lens.
However, if the curl component of α̂ is sufficiently small, one
may be able to find a deflection potential ψ̃ and a correspond-
ing deflection law α̃ = ∇ψ̃ such that the difference between α̂
and α̃ is small, for example smaller than the astrometric accu-
racy of current observations. Since only the region of the lens
plane where multiple images occur is constrained by lensing ob-
servations, the difference α̂− α̃ needs to be small only in a finite
region, which we denote asU.

We thus consider the “action”

S =

∫
U

d2θ
∣∣∣∇ψ̃ − α̂∣∣∣2 , (6)

for which we want to find a minimum.
Using this particular variational principle is just one possi-

bilty of finding α̃. One could also apply the Helmholtz theorem
and decompose α̂ into its irrotational (curl-free) and solenoidal
(divergence-free) part. This would lead to similar but not identi-
cal results for α̃, thus not changing the main conclusions of this
paper2. Another possible ansatz would be to find a gradient de-
flection angle such that its maximum deviation from α̂ would be
minimized; however, the solution of this problem seems to be
much more difficult to find than our variational principle.

Equation (6) can be minimized by considering small varia-
tions of ψ̃ → ψ̃ + δψ̃, and finding the conditions for which the
action is stationary for all variations δψ̃. Up to linear terms in δψ̃,
we find

S + δS =

∫
U

d2θ
∣∣∣∇ψ̃ + ∇(δψ̃) − α̂

∣∣∣2
= S + 2

∫
U

d2θ ∇(δψ̃)
(
∇ψ̃ − α̂

)
= S + 2

∫
∂U

ds δψ̃
(
∇ψ̃ − α̂

)
· n

−2
∫
U

d2θ δψ̃
(
∇2ψ̃ − ∇ · α̂

)
, (7)

where we made use of Gauß divergence theorem. The bound-
ary curve of U is denoted as ∂U, ds is the line element of the
boundary curve, and n(s) the outward directed normal vector.
Requiring δS = 0 leads to the Neumann problem

∇2ψ̃ = ∇ · α̂ =: 2κ̂; and ∇ψ̃ · n = α̂ · n, (8)

where the first equation is required for all points θ ∈ U, and the
second one for all points on the boundary ∂U. The solution ψ̃
of Eq. (8) is specified only up to an additive constant, since a
constant in the deflection potential does not affect the deflection
angle.

In order to solve the system (8), we can either use numerical
standard methods for such boundary problems, or we can obtain
the solution by means of a Green’s function. Both methods will
be explored in this section.

3.2. Solving the Neumann problem numerically

We defined the convergence of the transformed deflection law to
be κ̂ = ∇ · α̂/2. The curl component of α̂ is reasonably small if

2 E.g., the last term in Eq. (21) would be missing.

the closest curl-free approximation to α̂ (which is α̃) is smaller
than a chosen astrometric accuracy εacc

| α̂(θ) − α̃(θ) | = |∆α(θ)| < εacc (9)

for all θ ∈ U. To solve the system (8) numerically, we set
up a successive overrelaxation method (SOR; Press et al. 1996,
their Sect. 19.5) on a square grid to calculate ψ̃. An SOR is a
converging iterative process based on the extrapolation of the
Gauß-Seidel method, and it is a standard method to solve bound-
ary value problems (see, e.g., Seitz & Schneider 2001). Using a
second-order accurate finite differencing scheme, the deflection
law α̃ is then derived from the deflection potential ψ̃.

The lens is located at the center of the grid, chosen to be also
the origin of the coordinate system. The grid has a length of 4 θE
to cover the relevant area in which multiple images occur, i.e., it
covers the region within 2θE from the lens center.

The SOR involves the calculation of a weighted average be-
tween the previous iterate ψ̃(m−1)

i,k and the computed Gauß-Seidel
iterate Ψ̃

(m)
i,k successively for each component

ψ̃(m)
i,k = ω Ψ̃

(m)
i,k + (1 − ω) ψ̃(m−1)

i,k , (10)

where ψ̃(m)
i,k is the value of ψ̃ for the grid point (i, k) in iteration m,

and ω is the extrapolation parameter. The parameter ω is chosen
such that it accelerates the rate of convergence of the iterative
variable to the solution; in this work

ω =
2

1 + π/(N − 1)
, (11)

is applied, where N ×N is the total number of grid points. Ini-
tially, all ψ̃i,k are set to zero. In each iteration m, the Gauß-Seidel
iterate Ψ̃

(m)
i,k is calculated as follows (a fourth-order accurate finite

differencing is used)

Ψ̃
(m+1)
i,k = −

1
60

(
ψ̃(m)

i+2,k + ψ̃(m)
i−2,k + ψ̃(m)

i,k+2 + ψ̃(m)
i,k−2

)
+

16
60

(
ψ̃(m)

i+1,k + ψ̃(m)
i−1,k + ψ̃(m)

i,k+1 + ψ̃(m)
i,k−1

)
−

12
60

h2 [
∇ · α̂

]
i,k, (12)

where h is the spacing of grid points. The divergence of α̂ is
calculated with fourth-order accurate finite differencing method
for each grid point, and for points on the boundary of the grid
and the neighboring row and column, a second-order accurate
finite differencing scheme is employed. Convergence is reached
when two requirements are met: (i) at least 40N iterations have
been made; and (ii) the maximum difference (ψ̃(m)

i,k − ψ̃
(m−1)
i,k )max

between two iterations increases. Typically, slightly more than
40N are needed to reach convergence. If the process con-
verges, the values of ψ̃ at the four corners are calculated by
extrapolation.

We consider that the typical accuracy on the image position
of observed lens systems is of the order 5 mas, implying that
εacc in Eq. (9) should be of the same order (this choice will be
discussed in Sect. 4). Thus, the numerical error of our method
has to be well below 1 mas ≈ 10−3 θE for typical galaxy scale
lenses which is quite stringent. Increasing the grid size yields a
strong increase in computational time, which scales roughly as
N3. Therefore, we added an extrapolation method to the stan-
dard SOR to increase accuracy with a more reasonable increase
in computational time. The principle of our extrapolation scheme
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Fig. 2. Illustration of the extrapolation method used in the SOR method
(Sect. 3.2) to calculate α̃ is shown: Based on the calculation of α̃ on two
grids with indices (i, k) and (I,K), we can retrieve α̃true with a minimum
accuracy ∆α using the scheme described in the figure.

is displayed in Fig. 2 and is based on the observation that the er-
ror |∆α| of the computed value α̃(h) scales as h2 ∝ N−2. This
can be seen in the top panel of Fig. 3 where we applied our nu-
merical scheme to the case of a non-singular isothermal sphere,
i.e., where the true solution is known analytically. In this case,
the deflection law α̂ is a pure gradient field, and thus α = α̂ = α̃.
Using this scaling behavior we can extrapolate to the true deflec-
tion α̃true, which would be obtained in the limit h→ 0, for every
grid point

α̃i,k(h) = α̃true
i,k + Enum

i,k (h)2, (13)

where Enum is the numerical error3. However, the asymptotic de-
flection α̃true and the value of the numerical error Enum are un-
known in general. We can determine the two unknowns by calcu-
lating α̃ for two different values of h, i.e., for differentN . Hence,
we calculate α̃ on two grids, of N1 = 2N and N2 = N points.
The coordinates of the first and second grid are denoted respec-
tively with indices (I,K) and (i, k) and we have to match every
grid point (i, k) with its corresponding position (I,K). Then we
can obtain the true value α̃true

α̃true
i,k =

4α̃I,K

(
h
2

)
− α̃i,k(h)

3
, (14)

as indicated in Fig. 2.
Incorporating this extrapolation method in the code de-

creases the numerical error for the grid point numbers that are

3 We note that this extrapolation has to be carried out with the deflec-
tion angle, not with the potential, since the latter is determined only up
to an additive constant – which may depend on the iteration step m and
the number of grid points.
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Fig. 3. Maximum difference of |α̂− α̃| = |∆α| for a non-singular isother-
mal sphere with core radius θc = 0.1 θE as a function of the number
of grid points number N used in the numerical solution. Blue dots are
the numerical results, whereas the curves present power-law fits to these
points with h being the spacing of grid points. In the top panel, the re-
sults are shown for the “standard” method, where the numerical error
scales as N−2. Incorporating the extrapolation scheme, the numerical
error decreases much faster with the number of grid point, as can be seen
in the lower panel (note the different scale for the y-axis in the upper
and lower panel). For the typical values used in the papers (N ∼ 400), a
gain in accuracy by three orders of magnitude is obtained with extrapo-
lation with only a modest increase of computational cost (∼25%). Since
extrapolation includes calculating α̃ twice with grid points 2N and N,
values are only shown up to N2 = 500 which correspond to N1 = 1000
in the graph above.

used (N ∼ 400) roughly by a factor of 103, as can be seen in
the lower panel of Fig. 3, which also shows that the numerical
error with this extrapolation scheme decreases much faster with
N than without. The largest numerical deviation (∆α)max can be
found near the center of the grid. This is as expected, since the
deviation from α̃true depends on higher-order derivatives, which
for the chosen lens model are largest near the center. However,
multiple images near the center of the lens are usually highly
demagnified and rarely observable for galaxies as lenses (see,
e.g., Hezaveh et al. 2015; Winn et al. 2004) and are therefore not
relevant.

We have also tested the accuracy of the numerical implemen-
tation. One method is to check whether ∇·α̂(θ) = ∇·α̃(θ) is valid
for the whole grid for any deformation function β̂(β). In all our
calculations, deviations |κ̂ − κ̃| are always smaller than 10−4 if
the corner regions, i.e., θ ≥ 2 θE, are excluded from our analysis.
Thus, we only consider the behavior of the mass profile in the
circular region |θ|/θE < 2, where numerical errors in |α̂ − α̃| do
not exceed 10−6 θE.
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3.3. Solution by means of a Green’s function

A different approach is to find a solution of Eq. (8) by means
of a Green’s function. For that, we make use of Green’s second
theorem, considering a function h(θ),∫
U

d2θ
[
ψ̃∇2h − h∇2ψ̃

]
=

∫
∂U

ds
[
ψ̃∇h · n− h∇ψ̃ · n

]
. (15)

We choose the function h(θ) ≡ H(ϑ; θ) depending on the vec-
tor ϑ such that it obeys the following equations:

∇2
θH(ϑ; θ) = δ(θ − ϑ) −

1
A

for θ ∈ U,

∇θH(ϑ; θ) · n = 0 for θ ∈ ∂U, (16)

where A is the area ofU, and ϑ is a point withinU. The term 1/A
in Eq. (16) is needed to satisfy Green’s divergence theorem ap-
plied to the vector field ∇h, which requires∫
U

d2θ ∇2h =

∫
∂U

ds ∇h · n; (17)

the conditions (16) set both side of this equation to zero. With
(16), Eq. (15) simplifies to

ψ̃(ϑ) =
〈
ψ̃
〉

+

∫
U

d2θ H(ϑ; θ)∇2ψ̃ −

∫
∂U

ds H(ϑ; θ)∇ψ̃ · n

=
〈
ψ̃
〉

+ 2
∫
U

d2θ H(ϑ; θ) κ̂(θ) −
∫
∂U

ds H(ϑ; θ) α̂ · n, (18)

where
〈
ψ̃
〉

is the average of ψ̃ on U, and we used Eq. (8) in the
last step. We note that the integral

f (θ) =

∫
U

d2ϑ H(ϑ; θ) (19)

is a constant, since ∇2 f (θ) = 0 and n · ∇ f = 0 on the boundary
of U. Therefore, if we integrate Eq. (18) over U, the two inte-
grals on the r.h.s. compensate each other, due to the divergence
theorem, so that this solution is consistent.

Whereas for a general region U it will be difficult to obtain
a solution of Eq. (16) for H(ϑ; θ), such a solution is analytically
known ifU is a circle of radius R. In this case,

H(ϑ; θ) =
1

4π

ln |ϑ − θ|2R2 + ln
(
1 −

2ϑ · θ
R2 +

|ϑ|2|θ|2

R4

)
−
|ϑ|2 + |θ|2

4πR2 , (20)

which has the properties that

∇2
ϑH(ϑ; θ) = δ(ϑ − θ) −

1
πR2 = ∇2

θH(ϑ; θ) for ϑ, θ ∈ U ,

∇θH(ϑ; θ) · n(θ) = 0 for θ ∈ ∂U.

Hence, Eq. (20) indeed satisfies the conditions (16).
With this explicit solution, we can now calculate the deflec-

tion angle corresponding to the potential ψ̃, α̃ = ∇ψ̃, by obtain-
ing the gradient of H,

∇ϑH(ϑ; θ) =
1

2π

(
ϑ − θ

|ϑ − θ|2
−
ϑ

R2 +
|θ|2ϑ − R2θ(

R4 − 2R2ϑ · θ + |ϑ|2|θ|2
) ) ·

(21)

Then,

α̃(ϑ) = 2
∫
U

d2θ ∇ϑH(ϑ; θ) κ̂(θ) −
∫
∂U

ds ∇ϑH(ϑ; θ) α̂ · n, (22)

where we have to deal with a pole in the first term of Eq. (21).
Using a conformal mapping as described in Appendix A, we can
handle this pole numerically. In the third term the pole lies out-
side the circle and since ϑ ∈ U there is no pole. However, if θ
is on the circle (as occurs in the line integral in Eq. (22)), the
third term can become quite large; hence, for points ϑ near the
boundary, special care is needed to obtain an accurate solution.

This Green’s function approach has several advantages over
using a SOR for a grid. First, the region on which the Neumann
problem is defined can be chosen as a circle, instead of a rect-
angle for the SOR method. Second, the solution by means of
the Green’s function yields higher accuracy. The reason for this
is that the limited accuracy in finite differencing does not oc-
cur here. Third, if one is interested in the deflection only at a
few points, this can be calculated much faster than with the SOR
which necessarily calculated the solution over the whole region.

3.4. Interpretation

The expression (18) for the deflection potential, or the expres-
sion (22) for the deflection angle, contains quite a number of
terms. In order to obtain a better understanding of the various
terms, we consider again the case where the deflection angle α̂
is a pure gradient field, in which case α̃ = α̂ ≡ α. Then the
deflection angle at a point ϑ ∈ U can be decomposed into a de-
flection αin which is caused by matter inside U, and one due to
matter outsideU, denoted by αout. Thus we expect that

α(ϑ) = αin(ϑ)+αout(ϑ) =
1
π

∫
U

d2θ κ(θ)
ϑ − θ

|ϑ − θ|2
+αout(ϑ). (23)

Comparing the last Eqs. (23) to (22), we find that

α(ϑ) = αin(ϑ) + A(ϑ) − Bin(ϑ) − Bout(ϑ), (24)

where

A(ϑ) =

∫
U

d2θ κ(θ)
(
2∇ϑH(ϑ; θ) −

1
π

ϑ − θ

|ϑ − θ|2

)
,

Bin,out(ϑ) =

∫
∂U

ds ∇ϑH(ϑ; θ) αin,out · n, (25)

where we split the deflection angle on the boundary into terms
due to matter inside and outsideU. Both of the terms A and Bin
are due to matter insideU, whose deflection is covered entirely
by the first term αin, so that we expect that

A(ϑ) = Bin(ϑ). (26)

In Appendix B we show explicitly that this relation holds for the
case of a circular region for which H is given by Eq. (21). Hence,
Eq. (24) then provides a clean separation of the deflection angle
coming from the inner mass distribution (αin) and that coming
from matter outside U, given by Bout. This relation may be of
practical relevance for the numerical calculation of the lensing
properties from a complicated mass distribution, for which the
lensing quantities are only needed inside a limited region. In-
stead of calculating, for every point insideU, a two-dimensional
integral of the surface mass density κ over the whole lens plane,
one can proceed as follows: first, one can reduce the integra-
tion range over the regionU to get the contribution αin. Second,
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one can calculate the contribution αout for points on the bound-
ary by integrating over the outer region of the lens in terms of a
two-dimensional integral. Third, the contribution αout for points
inside the region U can then be obtained by a one-dimensional
integration over the boundary curve.

In general, if α is given on the boundary, it contains contri-
butions from both the inner and the outer part. In other words,
the split of B into Bin and Bout is not provided in that case. The
term A then compensates for the contribution Bin of B.

4. Illustrative example – a quadrupole lens
and an isotropic SPT

Our goal is to find criteria allowing us to assess whether an SPT-
transformed deflection law is valid (i.e. deviates from a gradi-
ent field by less than εacc), using the methods explained in the
previous section. Thus, we set an upper limit on how much the
transformed deflection law α̂ is allowed to differ from its clos-
est curl-free approximation α̃ before leading to a non-negligible
shift of the lensed images. Since observed lens systems are usu-
ally fit by simple mass models with only a small number of
free parameters, we do not expect the fit to be perfect. We al-
ways have to deal with observational uncertainties as well as
the presence of substructure (Xu et al. 2010; Bradač et al. 2004;
Kochanek & Dalal 2004; Mao & Schneider 1998) and line-of-
sight inhomogeneities (Xu et al. 2012; Metcalf 2005). There-
fore, we cannot reproduce observed positions better than a few
milliarcseconds with a smooth mass model. Hence, as long as
|∆α(θ)| is less than the smallest angular scale on which model-
ing with a smooth mass model is still meaningful, differences are
of no practical relevance (SS14).

We need to choose a lens model to explore how seriously
the SPT may affect lens modeling. First, we consider a situation
similar to SS14, namely a quadrupole lens with external shear γp

α = κ̄(|θ|) θ −
(
γp 0
0 −γp

)
θ (27)

which is deformed by an SPT corresponding to a radial stretch-
ing, as in Eq. (5). Specifically, we choose

β̂(β) =

1 +
f2

2θ2
E

β2
β. (28)

This deformation function is the lowest-order expansion of more
general stretching functions, and its leading-order term is chosen
such as to not yield an MST, to cleanly separate the effect of the
MST from that of the more general SPT in this study. Further-
more, we choose as specific lens model a non-singular isother-
mal sphere (NIS), described by the mean convergence profile

κ̄ = θE
1√

θ2
c + θ2

, (29)

where θc is the core radius. For the rest of this paper, we fix the
core to be θc = 0.1θE.

To get a quantitative estimate on how large deviations of α̃
from α̂ are tolerable before the lensing properties of the SPT de-
viate markedly from the original lens model, we take the Hubble
Space Telescope (HST) as example. We estimate that the highest
astrometric accuracy that can be achieved corresponds to about a
tenth of a pixel in the ACS camera, or ∆θ ≈ 5 mas ≈ 5×10−3 θE,
where the last expression accounts for the fact that the typi-
cal Einstein radii of galaxy-scale lenses are of order one arc-
second. Thus, if the solution α̃ satisfies the condition (9) with
εacc = 5 × 10−3 θE over the region |θ| ≤ 2 θE, we call the corre-
sponding SPT allowed or valid.

|Δα max / θE
0.001 0.002 0.003 0.004 0.005

Fig. 4. Values of |∆α|max are plotted against the parameters f2 from (28)
and external shear strength γp. The colored region indicates allowed
pairs of parameters that fulfill the |∆α| < 5 × 10−3 θE-criterion. For ob-
taining this figure, we used the SOR method.

4.1. Impact on the deflection law

The model we consider has two free parameters, the distortion
parameter f2 in the SPT (28), and the strength γp of the external
shear. We start with exploring this parameter space to find the
combination that yield allowed transformations, using the meth-
ods described in the previous section. In Fig. 4, we display the
maximum deviation |∆α|max as a function of these two parame-
ters. It shows a wide range of allowed parameter combinations,
where the allowed range of f2 decreases with increasing exter-
nal shear. The white regions in Fig. 4 denotes parameter combi-
nations where |∆α|max > 0.005 θE, and which are therefore not
allowed according to our accuracy criterion.

In SS14, we speculated that the curl of α̂ may yield a good
indication for the deviation of the SPT-transformed deflection
field from a gradient field. In this case, the curl κ̂I = ∇ × α̂/2,
which describes the asymmetric part of the Jacobian, could be
used as a proxy for |∆α|. For a quadrupole lens of the form (27)
and the deformation law (28), the curl κ̂I is given in Eq. (42)
of SS14,

κ̂I ≈ −
γp

2
f2

(
θ

θE

)2

(30)

×
[
γp

2 − (1 − κ̄)(2γm + 1 − κ̄) + 2γmγp cos(2ϕ)
]

sin 2ϕ,

where θ, ϕ describe polar coordinates in the lens plane and
γm(|θ|) = κ(|θ|) − κ̄(|θ|) is the shear caused by the NIS lens.

Figure 5 shows the maximum of κ̂I as a function of exter-
nal shear γp and deformation “strength” f2, which indeed is very
similar to Fig. 4. The actual difference between those two ap-
proaches is seen in Fig. 6. An approximately linear correlation
with an expected but modest scatter can be seen. In fact, from
that figure we obtain for our specific model that

0.16 |κ̂I|max <∼
|∆α|max

θE
<∼ 0.3 |κ̂I|max. (31)
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|κι max

0 0.005 0.010 0.015 0.020 0.025 0.030

Fig. 5. Values of |κ̂I|max are plotted against the parameters f2 from (28)
and external shear strength γp. The colored region indicates allowed
pairs of parameter that were chosen such that they roughly correspond
to |∆α| < 5 × 10−3 θE.
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Fig. 6. For every allowed combination f2 and γp the values of |∆α|max
(Fig. 4) are plotted against |κ̂I|max (Fig. 5). A clear correlation between
these two quantities can be seen.

For other models, the relation between |∆α|max and |κ̂I|max will be
different; nevertheless, we see that the curl of α̂ indeed provides
a useful indication for the validity of an SPT, since calculating κ̂I
is much easier then obtaining the numerical solution for α̃.

Figure 7 illustrates how a specific deflection law in a re-
gion |θ| ≤ 2 θE is affected by an SPT. It shows |∆α(θ)| for a
quadrupole lens with external shear γp = 0.1 and deformation
strength f2 = 0.55, which is the highest allowed for this value
of the external shear strength and thus is expected to show the
largest deviations κ̂ compared to the original mass profile. The
figure shows that the largest deviations occur at an angle of 45◦
with respect to the external shear. This pattern, which is shown
for one specific pair of f2 and γp, is qualitatively the same for all
f2-γp-combinations.

Δα / θE
0 0.001 0.002 0.003 0.004 0.005

Fig. 7. Map of |∆α(θ)| is shown for f2 = 0.55 and γp = 0.1. The strong
changes in the corners, i.e. θ > 2 θE, are biased by large numerical un-
certainty and should be neglected.

4.2. Implications for the convergence

We show in Fig. 8 the comparison between original (κ) and
SPT-transformed mass distribution (κ̂) for three different allowed
pairs of parameters, f2 = 0.55 and γp = 0.1 (the same combina-
tion of parameters as in Fig. 7), f2 = −0.55 and γp = 0.1, and
f2 = 1.2 and γp = 0.05. The lower panel of Fig. 8 shows the
change of the radial profile as κ̂/κoriginal.

The divergence of α̂ (i.e. ∇ · α̂ = 2κ̂), was calculated analyt-
ically in SS14 (see their Eq. (41)) and can be used to compare
our numerical results to the analytic solution. Specialized to our
case, it reads

κ̂ = κNIS +
f2
2

(
θ

θE

)2

×

(
γm

[
2γ2

p + 3
(
1 − κ̄

)2
]
− 2

(
1 − κ̄

)[(
1 − κ̄

)2
+2γ2

p

]
(32)

+
[
5γp

(
1 − κ̄

)2
−6γpγm

(
1 − κ̄

)
+γ3

p

]
cos 2ϕ + γ2

pγm cos 4ϕ
)
.

where again θ, ϕ describe polar coordinates in the lens plane. The
change ∆κ = κ̂ − κNIS is proportional to the stretching parame-
ter f2, so that ∆κ(− f2) = −∆κ( f2). This behavior can be seen
in Fig. 8. Indeed, we checked that all numerically obtained de-
flection angles α̃ are such that their corresponding surface mass
densities agree with the analytical prediction (32). For example,
the numerical result for the parameter combination γp = 0.1 and
f2 = 0.55 deviates by less than 3 × 10−3 from the analytical
solution.

As seen from Eq. (32), the resulting mass distribution κ̂ is
no longer axi-symmetric, but that isodensity contours are nearly
elliptical (i.e., a factor proportional to cos(2φ)) with a small box-
iness (i.e., a factor proportional to cos(4φ)). Hence, we define the
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f2= 0.55 γp=0.10

f2=-0.55 γp=0.10

f2= 0.00 γp=0.00

0.1 0.2 0.5 1
0.1

0.5

1

5

10

θ1 θ2 / θE

κ

f2= 1.20 γp=0.05

f2= 0.55 γp=0.10

f2=-0.55 γp=0.10

0.1 0.2 0.5 1
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

θ1 θ2 / θE

κ
/
κ
or
ig
in
al

Fig. 8. Upper panel shows the mass profile of the original NIS lens
(solid curve), and that of three SPT-transformed lenses, with parame-
ters f2 and γp indicated by the labels. For all of these three models,
∆αmax ≈ εacc = 5 × 10−3 θE. Since the transformed mass distributions
have a finite ellipticity, the density is plotted as a function of the geo-
metric mean of the major and minor semi-axis of the best-fitting ellipse
to an isodensity contour, except for the case with negative f2, for which
the outer isodensity contours are not closing around the lens center; in
this special case, the x-axis corresponds to the θ1-axis. The convergence
changes up to 28% for radii smaller than 1 θE, radii larger than that show
a significantly smaller convergence for a positive f2. Negative f2 show
an essentially mirrored behavior compared to positive f2. This leads to
convergence κ̂ that may not decrease monotonically. The lower panel
shows the ratio between transformed and original mass profile.

distance from the center generally as the geometric mean
√
θ1θ2

using the 1- and 2-axis of the elliptical isodensity contours. How-
ever, for sufficiently negative f2, the outer isodensity contours
are no longer concentric, i.e., they are not closed curves around
the center of the lens. In addition, for large negative values of f2,
the radial profile can become non-monotonic. We consider such
a behavior as non-physical, i.e., such resulting models will be
irrelevant in practice.

The ellipticity of the transformed mass profiles is non-
negligible as shown in Fig. 9 where ε, defined as the axis ratio
1- over 2-axis, is plotted as a function of radius. Integrating the
analytic representation (32) of κ̂ up to 1 θE it can be shown that
the mass enclosed within the Einstein radius of the original lens
is conserved, independent of the chosen mass profile κ(θ) (see
Appendix C).

f2= 1.20 γp=0.05

f2= 0.55 γp=0.10

0.0 0.5 1.0 1.5 2.0

0.95

1.00

1.05

1.10

1.15

1.20

θ1 θ2 / θE

ϵ

Fig. 9. Radial dependence of the axis ratio ε. In the unperturbed case
the isodensity contours are circular, i.e., ε(

√
θ1θ2) = 1. The SPTed mass

distribution shows for radii
√
θ1θ2 < 1 θE deviations of up to 5% from

circularity, whereas for larger radii the deviations can be up to 20%.
The convergence map for f2 = −0.55 and γp = 0.1 does not show
concentric isodensity contours for radii larger than 1.3 θE and therefore
no ellipticity as a function radius can be determined.

5. Characterization of the modified mass
distribution

The SPT leads to a modified deflection angle of the lens which
yields exactly the same astrometric and photometric observa-
tional properties as the original mass distribution. For those mod-
ified profiles α̂ for which a deflection potential ψ̃ can be found
such that the differences between the corresponding ∆α is suf-
ficiently small, the modified surface mass density κ̂ provides a
viable alternative to the original mass model κ of the lens. In
this section we want to consider a diagnostic for the change of
the mass profile, both regarding the radial slope and the angular
structure of the lens. Since the strong lensing properties of the
lens can only be probed in the inner part of the mass distribu-
tion, we will apply these diagnostics only to those regions where
multiple images can occur, i.e., |θ| <∼ 2θE.

5.1. Radial mass profile

The SPT changes the radial mass profile of the lens. We consider
situations in which the original lens is described by a “simple”
mass distribution, i.e., an NIS. Combined with a “mild” SPT the
resulting κ̂ remains simple, e.g., still shows closed, concentric
isodensity contours.

The mass-sheet transformation is a special case of the SPT,
and it is well known that the MST changes the radial profile of
the lens. In order to highlight the new feature of the SPT not
contained in the MST, we aim at a measure for the radial pro-
file which is invariant under the MST. The MST transforms all
derivatives of κ by a constant factor λ, hence it leaves the ratio
of derivatives unchanged. Consequently, one possible diagnos-
tic for the effect of the SPT is the radial profile of such ratios,
e.g., 〈κ〉′′/〈κ〉′.

In particular, if the original mass profile is a power law,
〈κ〉 (θ) ∝ θ−s, then we have θ 〈κ〉′′/〈κ〉′ = −(s + 1); hence, any
deviation from this constant value indicates the effect of the SPT
on the modified mass profile κ̂. However, if there is no analytical
expression of κ and κ̂, the ratio of derivatives is very sensitive
to numerical noise, and therefore of little practical interest. We
therefore consider hereafter alternative tests.
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Fig. 10. Top: quantity Rκ(θ) (Eq. (33)) calculated for an NIS with exter-
nal shear γp (cf. Sect. 4; solid black) and for various SPT-transformed
models with SPT of the form 1 + f2/2 (β/θE)2 (Eq. (28)). The range
of positive values of f2 allowed by |∆αmax| < 5 × 10−3 θE (Fig. 4) is
explored for two different choices of the shear: γp = 0.05 (blue) and
γp = 0.1 (red). While Rκ is conserved under an MST, it is not under
an SPT, with deviation that can reach tens of percents. Bottom: for each
curve of the top panel, we show the difference between Rκ of the original
NIS model and of the SPT transformed model.

Noting that the MST yields a multiplication of 1− κ(θ) by λ,
the ratio

Rκ(θ) =
1 − 〈κ〉 (θ)
〈κ〉′ (θ)

, (33)

is well defined for monotonically decreasing mass profiles and
invariant under the MST. Figure 10 shows Rκ for the NIS and
various SPT transformed models. The variations of Rκ are par-
ticularly significant above one Einstein radius, in regions where
the SPT-transformed profiles deviate also more strongly from the
original profile. Despite the fact that κ̂ deviates from κorginal by
more than 20% within θE when f2 = 1.2 (Fig. 8), the most ex-
treme changes of Rκ(θ) reach no more than ∼10% within one
Einstein radius. As expected, Rκ deviates more strongly from
the original profile when | f2| is large. Negative values of f2
(not shown) are qualitatively similar (but mirrored w.r.t. RNIS

κ ) to
the situation encountered for positive f2. However, at radii θ ∼
1.2 θE, κ̂ stops being monotonically decreasing, and Rκ diverges.

Another possibility to characterize the radial profile change
is through the aperture mass (see Schneider 1996). Consider
a function U(θ; θ0) = θ−2

0 u(θ/θ0) such that u(x) is non-zero
only for x ≤ 1; hence, θ0 characterizes the range of support
of U(θ; θ0). Furthermore, we require that the filter function U
has a vanishing two-dimensional integral over its support, which
means that∫ 1

0
dx x u(x) = 0.

Then we define the aperture mass as

Map(θ0) =

∫
d2θ κ(θ) U(|θ|; θ0) = 2π

∫
dθ θ 〈κ〉 (θ) U(θ; θ0).

(34)

The mass-sheet transformation (1) leads to multiplication of Map
by a factor λ, whereas the additive term in Eq. (1) drops out, due

to the compensated nature of the filter function U. Thus, if we
consider the ratio of the aperture mass for two different scale
lengths θ0, the factor λ drops out, and this ratio Map(θ1)/Map(θ2)
is invariant under the MST.

Consider again a power-law density profile, 〈κ〉 (θ) = (1 −
s/2)(θ/θE)−s, with 0 < s < 2, where θE is the Einstein radius in
case of axi-symmetry. Then,

Map = (2 − s)π
(
θ0

θE

)−s ∫ 1

0
dx x1−s u(x),

and Map(θ1)/Map(θ2) = (θ1/θ2)−s. We thus define the effective
slope

seff :=
ln

[
Map(θ1)/Map(θ2)

]
ln(θ2/θ1)

, (35)

so that for a mass profile of the form 〈κ〉 (θ) = a + bθ−s, seff = s.
One can think of a number of appropriate weight func-

tions u(x) and aperture scales θi to characterize the modified
mass profile. The simplest form would be the sum of two delta
functions, u(x) = δ(x − x0) − x0δ(x − 1), with x0 < 1, for which
Map(θ0) = 2πx0 [〈κ〉 (x0θ0) − 〈κ〉 (θ0)]. Furthermore, choosing
θ2 = θ1/x0, the ratio of aperture masses becomes

Map(θ1)
Map(θ1/x0)

=
〈κ〉 (x0θ1) − 〈κ〉 (θ1)
〈κ〉 (θ1) − 〈κ〉 (θ1/x0)

· (36)

In the case of (1 − x0) � 1, the expression (35) becomes

seff = −1 −
θ1 〈κ〉

′′ (θ1)
〈κ〉′ (θ1)

+ O([1 − x0]2). (37)

Hence, we see that in this case seff depends just on the ratio of
second to first derivative, and reduces to s for a power-law mass
profile with slope s.

More practical choices of u would be such that the profile is
probed over an annulus around the Einstein radius θE. For exam-
ple, one could use the compensated filter function

u(x) =

{ 1
x (x − x0)(2x − x0 − 1)(x − 1) for x0 ≤ x ≤ 1
0 else.

(38)

Figure 11 shows Map as a function of θ0, fixing x0 = 1/2 in
Eq. (38). As expected, for two profiles transformed into each
other via an MST, the ratio of aperture masses is independent
of θ0 and equals λ. Conversely, Map(θ0) of the SPT-transformed
profiles intersects the aperture mass “function” of the original
profile (i.e. NIS), and the ratio between the two curves changes
with θ0. The radius at which the curves intersects is almost in-
dependent of the value of f2. This can easily be deduced from
the apparent self-similarity of the SPT-transformed mass density
profiles (Fig. 8) for various values of f2.

Figure 11 motivates a choice of radii corresponding to ex-
trema of Map(θ0) to calculate aperture mass ratios, such as
θ1 = 2 θE and θ2 = θE. Then, Map(θ1) will probe the annulus
θE < θ < 2 θE, while for θ2 ∼ θE the annulus 0.5 θE ≤ θ ≤ θE
would be probed. Figure 12 shows normalized aperture mass
ratios Map(θ1)/Map(θ2) for the various SPT-transformed profiles
studied in the previous section. We see that larger aperture mass
ratios are found for larger values of f2. In addition, the ratio de-
pends only weakly of the shear amplitude γp, which means that
the radial deformation of the mass profile produced by the SPT
is mostly governed by the amplitude of f2.
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Fig. 11. Top: Map(θ0) (Eq. (34)) as a function of the “aperture” θ0. The
filter function u(x) defined by Eq. (38), using x0 = 0.5, has been used
such that for Map(θ0), the annulus [θ0/(2θE), θ0/θE] is probed. The black
curve shows Map for the NIS profile and the blue curves for the SPT-
transformed profiles with γp = 0.05 and various values of f2. The green
curve shows Map(θ0) for an MST transformed version of the NIS profile.
Bottom: ratio between Map derived for the various transformed profiles
and for the original NIS profile.
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Fig. 12. Ratios of aperture mass between θ1 = 2 θE and θ2 = θE for SPT-
transformed profiles with various values of f2. The ratios of aperture
masses are normalized by the corresponding aperture ratios estimated
for the original NIS profile (horizontal bar). The blue diamonds are for
a shear γp = 0.05, and the red squares when γp = 0.1.

5.2. A specific lens model

Here, we apply the previous tests to three mass density profiles
studied in SS13 and SS14, and used in those papers to illustrate
degeneracies produced by the MST and the SPT. The reference
model is a composite model constituted of the sum of a (spheri-
cally symmetric) Hernquist component to describe the baryonic
component, and a (spherical) generalized Navarro-Frank-White
(gNFW) density profile to describe the dark matter component of
the galaxy. In addition, an external shear of amplitude γp = 0.1
is considered. Complex sets of lensed images from an ensem-
ble of sources were generated with that model, and found to
be all equally well reproduced by two (single) power-law pro-
files: a global power law, with an almost isothermal density slope
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Fig. 13. Difference between Rκ calculated for three different pairs of
profiles: In blue, an NIS and an SPT-transformed model with f2 = 0.11
and γp = 0.1; in magenta, a composite Hernquist+gNFW model and
a power-law model (M1); in red, Hernquist+gNFW model and a cored
power-law model (M2). The shape of ∆Rκ for the models presented in
SS13 and SS14 are qualitatively similar to that observed for the fiducial
SPT model presented in Sect. 4.

γ′ = 1.98 (hereafter model M1), and a local power-law pro-
file with a core radius θc = 0.1′′ and a slope γ′ = 2.2 (here-
after model M2). We have applied the tests introduced in the
previous subsection to these profiles to identify the nature of
the degeneracy between the models. Figure 13 shows the dif-
ference Rκ between the original profile and transformed ones,
i.e., ∆Rκ = Rκ(original) − Rκ(transformed). For comparison, we
also show ∆Rκ obtained for an SPT with f2 = 0.11. This figure
suggests that indeed, this degeneracy is similar to an SPT.

The other diagnostic we present consists in calculating the
aperture mass Map of the profiles. Figure 14 shows Map as a
function of θ0. In addition to the aperture mass calculated for the
individual profiles, we also show the aperture mass correspond-
ing to two different MST-transformed mass density profiles. As
explained in SS13, model M1 is close to an MST transformed
version of the composite model4 with λ = 0.84. On the other
hand, Fig. 4 of SS14 shows that the MST contribution to M2
corresponds to λ = 0.932. Figure 14 is qualitatively similar to
Fig. 11 but there is an offset of Map for M1 and M2 compared
to the composite model. The reason is probably that the M1 and
M2 profiles are transformed versions of the composite model via
both an MST and an SPT. The MST contribution with λ = 0.84
is larger for M1 than for M2, for which λ ∼ 0.93.

6. Discussion – Implications of the SPT for strong
lensing

In this paper we have studied several aspects of the SPT, an in-
variance transformation of the deflection angle that leaves all
multiple images properties of gravitational lenses invariant. The
central question, of whether there exists a gravitational lensing
potential which gives rise to a deflection angle sufficiently close
to the SPT-transformed one (which in general is not curl free) has
been explored for a particular class of lens models, namely an
NIS with external shear and an SPT given as a radial stretching

4 In SS13, we reported λ = βfid/βPL = 1.19, which is the inverse of λ
used here that is such that κPL = λ κfid + (1 − λ).
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Fig. 14. Top: Map(θ0) (Eq. (34)) as a function of θ0, for the composite
Hernquist+gNFW model (black), for the power law model M1 (blue),
and the cored power-law M2 (red). Dashed red (blue) profile shows
Map(θ0) for an MST transformed version of the composite model with
λ = 0.93 (resp. 0.84). Bottom: ratio of Map(θ0) between the “trans-
formed” models and the composite. The dashed curves correspond to
MST-transformed versions of the composite model, and represent the
contribution of the MST to M1 and M2. The solid red and blue curves
suggest that the remaining of the degeneracy can be associated with an
SPT.

of the source plane. The radial stretching deformation was cho-
sen such that the classical MST did not contribute in altering the
original deflection since we are only interested in higher-order
effects that go beyond the well known MST. This example has
shown that, for a large range of parameters pairs (external shear
and distortion parameter of the radial stretching) there indeed ex-
ist lensing potentials whose associated deflection is sufficiently
close to the one obtained from the SPT that these two cannot
be distinguish observationally. We conducted this study by for-
mulating an action as the integral over the squared difference of
these two deflection angles, yield a Neumann problem. We gave
a detailed description of how this problem can be solved; these
methods are expected to be useful for future theoretical studies
and applications of the SPT.

We have considered only one criterion for the validity of
an SPT, namely that the corresponding gradient deflection field
does not deviate from the SPT-transformed deflection by more
than 5 × 10−3θE. Changing this observationally motivated limit
to a different value will modify the space of allowed parameter
combinations. For the example considered here, we expect that
the allowed range of the stretching parameter f2 for a given exter-
nal shear will be proportional to the allowed maximum deviation
of these two deflection angles.

We point out that our method of obtaining a gradient deflec-
tion law in form of the variational principle (6) does not nec-
essarily yield an “optimal” modified deflection. As briefly dis-
cussed in Sect. 3.1, one could imagine alternative constraints for
finding a gradiant deflection “close to α̂”. In particular, finding
a gradient field whose maximum deviation from α̂ is minimized
over the region of relevance would be a promising ansatz which,
however, is analytically challenging, if at all doable. Neverthe-
less, the solution obtained in this paper yields valuable insight in
the freedom of lens model choices offered by the SPT.

The properties of the mass distribution resulting from an SPT
were also studied in detail. In contrast to the MST, which is a
special case of an SPT, the more general SPT gives rise to non-
monotonic changes in the radial mass profile, and to the gener-
ation of a finite ellipticity even if the original mass distribution
was axi-symmetric. Hence, the SPT offers a much larger range
of mass profile modifications which leave all strong lensing ob-
servables invariant, than does the MST. This more complex class
of invariance transformation is of particular interest because it
may be of great relevance when trying to fit real lens system
(which are expected to have a rather complex mass profile; see,
e.g., Xu et al. (2016) with simple lens models. The fact that sim-
ple mass models yield satisfactory fits even in cases with a rich
observed image structure may be a consequence of some SPT
which transforms the deflection of the true mass distribution into
that of a simple mass model. Ignoring the potential complexity
of the real mass distribution, and thus the possibility that the
SPT may be acting, may lead to biases in estimates of physical
parameters of the lens system.

We have defined several diagnostic quantities which can dis-
tinguish a general SPT from a pure MST. Applying these di-
agnostics to the special case of nearly degenerate lens models
studies in two earlier papers, we conclude that this degeneracy
can to a large degree be accounted by an MST, but that a non-
negligible contribution comes from a more general SPT. Hence,
an SPT has been found “empirically”, even before the concept
of the SPT was developed. In that sense, the SPT is not just a
“theoretical possibility” for obtaining different but observation-
ally equivalent mass models, but describes degeneracies which
actually occur in real lens modeling.
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Appendix A: Practical integration of Eq. (22)
in a circular region

Calculating the deflection angle ∇ψ̃ in Eq. (18) by integrating
the product ∇ϑH κ̂ over the circle poses a challenge, due to the
pole of the first term in Eq. (21). To integrate over this pole, polar
coordinates centered on the pole position ϑ need to be chosen.
This can be done by a translation of the integration variable to
x = θ − ϑ, and integrating in the polar coordinates of x. How-
ever, the integration range of the polar angle will depend on |x|,
according to the geometrical overlap of circles centered on the
origin and those centered on θ.

A better method is obtained by a conformal mapping of the
form

x =
θ − ϑ

R − ϑ∗θ/R
, (A.1)

where we now use complex notation, i.e., x, ϑ and θ are complex
numbers with components ϑ = ϑ1 + iϑ2 etc. and an asterisk
denotes complex conjugation. This conformal mapping maps the
circle |θ| < R onto the unit circle |x| < 1, and the singularity point
θ = ϑ is mapped onto the origin x = 0. For example, setting
θ = Reiϕ, we get

x =
Reiϕ − ϑ

R − ϑ∗eiϕ = eiϕ R − ϑe−iϕ(
R − ϑe−iϕ)∗ ,

from which it is immediately seen that |x| = 1. The inverse of the
transformation (A.1) is readily obtained,

θ =
Rx + ϑ

1 + ϑ∗x/R
, (A.2)

from which one can easily check that the unit circle |x| = 1 is
mapped onto the circle |θ| = R. In components, Eq. (A.2) reads

θ1 =
Rx1 + ϑ1(1 + |x|2) + [x1(ϑ2

1 − ϑ
2
2) + 2ϑ1ϑ2x2]/R

1 + 2ϑ · x/R + |ϑ|2|x|2/R2 ,

θ2 =
Rx2 + ϑ2(1 + |x|2) + [2ϑ1ϑ2x1 − x2(ϑ2

1 − ϑ
2
2)]/R

1 + 2ϑ · x/R + |ϑ|2|x|2/R2 · (A.3)

The Jacobi determinant of the transformation x → θ, needed for
the integration, is∣∣∣∣∣∂θ∂x

∣∣∣∣∣ =
R2(R2 − |ϑ|2)2

(R2 + 2Rϑ · x + |ϑ|2|x|2)2 , (A.4)

which is non-zero for all x inside the unit circle and |ϑ| < R. As
a sanity check, we calculate the area of the circle in the trans-
formed coordinates,

R2π =

∫
U

d2θ =

∫
C

d2x
∣∣∣∣∣∂θ∂x

∣∣∣∣∣ (A.5)

= R2(R2 − |ϑ|2)2
∫ 1

0
dx x

∫ 2π

0

dϕ
(R2 + 2Rϑ · x + |ϑ|2|x|2)2 ·

The inner integral yields 2π(R2 + |x|2|ϑ|2)/(R2 − |x|2|ϑ|2)3, the
outer integral then gives π/(R2 − |ϑ|2)2, and we re-obtain the
area πR2.

In complex notation, the singular term in Eq. (21) reads

1
(ϑ − θ)∗

=
x + |x|2ϑ/R

R|x|2
(
|ϑ|2/R2 − 1

) ,

yielding∣∣∣∣∣∂θ∂x

∣∣∣∣∣ ϑ − θ

|ϑ − θ|2
=

R2(|ϑ|2 − R2)(
R2 + 2Rϑ · x + |ϑ|2|x|2

)2

(
R

|x|2
x + ϑ

)
. (A.6)

We can check the consistency of this expression by calculating
the deflection angle of a uniform disk with surface mass den-
sity κ0, which reads

α(ϑ) =
κ0

π

∫
U

d2θ
ϑ − θ

|ϑ − θ|2
=
κ0

π

∫
C

d2x
∣∣∣∣∣∂θ∂x

∣∣∣∣∣ ϑ − θ

|ϑ − θ|2

=
R2

(
|ϑ|2 − R2

)
κ0

π

∫ 1

0
dx x

×

∫ 2π

0

dϕ(
R2 + 2Rϑ · x + |ϑ|2x2)2

( R
x2 x + ϑ

)
(A.7)

=
R2

(
|ϑ|2 − R2

)
κ0

π

∫ 1

0
dx x

 −2π(
R2 − |ϑ|2x2)2

ϑ
=

R2
(
|ϑ|2 − R2

)
κ0

π

(
π

R2 (
|ϑ|2 − R2) )ϑ = κ0 ϑ,

as expected.

Appendix B: Proof of the relation (26) for a circular
region

In this section we use again the complex notation for two-
dimensional vectors, in terms of which the vector field (21) reads

∇ϑH(ϑ; θ)→
1

2π

(
1

ϑ∗ − θ∗
−

θ

(R2 − ϑ∗θ)
−
ϑ

R2

)
· (B.1)

Therefore, we obtain for the fields A and Bin the complex
expressions

A(ϑ) = −
1
π

∫
U

d2θ κ(θ)
(

θ

(R2 − ϑ∗θ)
+
ϑ

R2

)
,

Bin(ϑ) =
1

2π

∫
∂U

ds
(

1
ϑ∗ − θ∗

−
θ

(R2 − ϑ∗θ)
−
ϑ

R2

)
ain, (B.2)

where ain = αin · n, defined on the boundary of U. We first
calculate this product, noting that for a boundary point R eiϕ of
the circle, n = eiϕ. Specializing the complex expression for αin as
given in Eq. (23) to a point on the boundary, ϑ = Rn, we obtain

ain(Rn) = αin · n =
αin/n + α∗inn

2

=
1

2π

∫
U

d2θ κ(θ)
(

1
R − nθ∗

+
n

Rn − θ

)
· (B.3)

We now insert this expression into Eq. (B.2). The integral over
the boundary is written as ds = R dϕ = −i R dn/n, and the inte-
gral over n extends over the unit circle. With θ = Rn, we then
find

Bin(ϑ) =
R
2π

∫
U

d2θ κ(θ)
−i
2π

∮
dn
n

(
1

R − nθ∗
+

n
Rn − θ

)
×

(
n

nϑ∗ − R
−

n
R − nϑ∗

−
ϑ

R2

)
· (B.4)

The inner integrand is an analytic function of n inside the unit
circle, except at the poles at n = 0 and at n = θ/R (ϑ and θ
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are both inside the circle). Applying the theorem of residue, the
integral can thus be evaluated. The first pole yields a contribu-
tion −ϑ/R3, whereas the second pole results in the expression

θ

(θϑ∗ − R2)R
−

θ

(R2 − θϑ∗)R
−
ϑ

R3 ·

Adding up these two contributions then yields

Bin(ϑ) =
1
π

∫
U

d2θ κ(θ)
(
−

θ

(R2 − ϑ∗θ)
−
ϑ

R2

)
, (B.5)

which we see agrees with the expression for A in Eq. (B.2). Thus
we have shown explicitly that for the kernel function (20), the
relation (26) holds.

Appendix C: Conservation of mass inside
the Einstein radius under SPT

Starting from (32) we can infer the mass inside the Einstein ra-
dius by performing an integration up to θE. First, we consider
the case of an axisymmetric lens model, i.e., γp = 0. Thus, the
integral we have to solve is

M̂γp=0(≤ θE) = 2
∫ θE

0
dθ θ κ̂(θ)

= M(≤ θE) + f2

∫ θE

0
dθ θ3(1 − κ̄)2[3(κ − κ̄) − 2(1 − κ̄)]. (C.1)

To show that mass is conserved in case of an SPT, the integral in
Eq. (C.1) has to vanish for arbitray mass profiles κ(θ). We note
that κ̄ is given by

κ̄(θ) =
2
θ2

∫ θ

0
dθ′ θ′ κ(θ′), (C.2)

from which follows

κ̄′ =
2
θ

(κ − κ̄), (C.3)

of which we will make use in the next step. We perform an inte-
gration by parts for the last term in Eq. (C.1),

2
∫ θE

0
dθ θ3(1 − κ̄)3 =

[
2
θ4

4
(1 − κ̄)3

]θE

0
+ 2

∫ θE

0
dθ

θ4

4
3(1 − κ̄)2κ̄′

= 3
∫ θE

0
dθ θ3 (1 − κ̄)2(κ − κ̄), (C.4)

where we used κ̄(θE) = 1. This result matches exactly the first
term in the integral of Eq. (C.1). Hence, in the case γp = 0 the
mass inside the Einstein ring is conserved under an SPT.

Next, we consider the case for γp , 0. To integrate κ̂
over the Einstein radius we make use of the result above, i.e.,
M̂γp=0(≤ θE) = M(≤ θE). Since the two latter parts of Eq. (32)
are proportional to cos(2φ) or cos(4φ), respectively, they do not
contribute to an integral over a circular area. Hence, we calculate

M̂(≤ θE) = 2
∫ θE

0
dθ θκ̂(θ)

= M(≤ θE) + f2γp
2
∫ θE

0
dθ θ3[2(κ − κ̄) − 4(1 − κ̄)].

(C.5)

Again, we consider first the last term in the integral of Eq. (C.5),
and we make use of Eq. (C.3) and κ̄(θE) = 1. Then, we obtain

4
∫ θE

0
dθ θ3(1 − κ̄) =

[
4
θ4

4
(1 − κ̄)

]θE

0
+ 4

∫ θE

0
dθ

θ4

4
κ̄′

= 2
∫ θE

0
dθ θ3 (κ − κ̄). (C.6)

This matches the first term in the integral exactly and there-
fore, the integral vanishes. Thus, also in the case of an external
shear γp the mass enclosed in the Einstein ring is conserved, i.e.,
M̂(≤ θE) = M(≤ θE), independent of the choice of mass model κ.
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