A Journey

Through
julia

THIBAUT CUVELIER

17 MAY, 2017 @lEEE

_ ® oo
What is _|uI|a?
* A programming language

* For scientific computing first: running times are important!
* But still dynamic, “modern”... and extensible!

* Often compared to MATLAB, with a similar syntax...
... but much faster!
... without the need for compilation!
... with a large community!
... and free (MIT-licensed)!

Actually, Julia solves the two-language problem: no need for one nice language (such
as Python or R) and one fast language (like C or Fortran). The whole code can be
written in the same language.

Compilation: unlike C or C++ or Fortran... or MATLAB’s MEX.

. © Io.o
How fast is Julid?
Comparison of run time between several languages and C

Times slower than C

10¢ .
.
1000
. -
- .
« Fibonacci
100 . ® + Parse integer
i o - Quick sort
H 2 « Mandelbrot
. . . .
0 D + Compute 1 with sum
M > s . i : 1 = Random matrix statistics
i H " s e g 7 + Random matrix multiply
1 « 3 8 » p: s v o Vs
. .

C Fortran Julia Python R MAT Oct Ma Java Go LuallT Java
GCC GCC 040 343 322 LAB ave the Script 15 23.11.8.0.45

511 511 with 20150 400 ma V8
NumPy tica 3.28 Data:
192 10.2.071.19 http:/fjulialang.org/benchmarks/

Can reach performance of C or Fortran code!
Performance relative to C.

OK, that is becoming old (Julia 0.6 is being released).

How to install julié?

* Website: http://julialang.org/

* IDEs?
Juno: Atom with Julia extensions

Install Atom: https://atom.io/

Install Juno: in Atom, File > Settings > Install, search for uber-juno
JuliaDT: Eclipse with Julia extensions

Also: JuliaPro, a Julia distribution “with batteries included”

https://juliacomputing.com/products/juliapro.html

* Notebook environment?
lulia (think IPython)

Notebook environment

* The default consoleis not the sexiest interface
The community provides better ones!

* Purely online, free: JuliaBox
https://juliabox.com/

* Offline, based on Jupyter (still in the browser): lJulia
Install with:
julia> Pkg.add(*”IJulia™)
Run with:
julia> using IJulia; notebook()

Contents of this presentation

* Basic syntax
* Core concepts

* Julia community
Plotting
Image processing
Mathematical optimisation
Data science

* Parallel computing
Message passing (MPI-like)
Multithreading (OpenMP-like)
GPUs

* Concluding words

Basic syntax

Julia’s syntax is quite intuitive: very similar to that of MATLAB.

For those who come from other languages: mostly, blocks start with a keyword and
end with end.

If you need a syntax help: http://cheatsheets.quantecon.org/

A small taste of Julia

Solves 8 = a x2 + b x + ¢ for x

function quad(ajiiiloated. bINFIOAEEd. RFIGEEE)
discriminant = b*2 - - ¥ 6
rl = (- b + sgrt(discriminant)) / -
r2 = (- b - sqrt(discriminant)) / B8

end

Particular parts of the syntax:

- Typing not necessary for variables or arguments, but still very useful!
- Can do products by a constant without operator: code more readable
- Automatically returns the last expression

- Can return more than one value for a function

Core concepts

The most important points when trying to better exploit the language.
How can Julia be fast?

What makes Julia dynamic?

* Dynamic type system with type inference
Multiple dispatch (see later)
But static typing is preferable for performance

* Macros to generate code on the fly
See later

* Garbage collection
Automatic memory management
No destructors, memory freeing

* Shell (REPL)

10

Function overloading

* A function may have multiple implementations,
depending on its arguments
One version specialised for integers
One version specialised for floats
Etc.

* In Julia parlance:
A function is just a name (for example, +)

A method is a “behaviour” for the function
that may depend on the types of its arguments
+(::Int, ::Int)
+(::Float32, ::Floated)
+(::Number, ::Number)
+(x, ¥)

Integers, floating-point numbers, generic numbers (any kind of number), and... no
type (if no other method applies).

Function overloading:
multiple dispatch

* All parameters are used to determine the method to call

C++'s virtual methods, Java methods, etc.: dynamic dispatch on the first
argument, static for the others

Julia: dynamic dispatch on all arguments

* Example:
Class Matrix, specialisation Diagonal, with a function add()
m.add(m2):standard implementation
m.add(d):only modify the diagonal of m
What if the type of the argumentis dynamic? Which method is called?

Virtual methods: dynamic dispatch is made on the object, not the other arguments
(i.e. the type of *this).

Example: the standard implementation will be used, unfortunately (due to static
dispatch).

Function overloading:
multiple dispatch

* What does Julia do?

* The user defines methods:
add(::Matrix, ::Matrix)
add(::Matrix, ::Diagonal)
add(::Diagonal, ::Matrix)

* When the function is called:
All types are dynamically used to choose the right method
Even if the type of the matrix is not known at compile time

Julia is as specific as possible: it uses the most precise method for the arguments at
hand.
Here, for a diagonal matrix, no way to use the first method. But if a sparse matrix is

defined and comes with no such + function, then Julia will have to rely on the first
method.

Fast Julia code?

* First: Julia compiles the code before running it (JIT)

* To fully exploit multiple dispatch, write type-stable code
Multiple dispatch is slow when performed at run time
A variable should keep its type throughout a function

* If the type of a variable is 100% known,
then the method to call is too
All code goes through JIT before execution

If a variable can change type in a function, then Julia must use multiple dispatch at
each operation.

JIT can choose the right method to call, instead of relying on multiple dispatch at run
time. Hence: multiple dispatch performed at JIT time.

14

Object-oriented code?

* Usual syntax makes little sense for mathematical
operations
+(::Int, ::Float64):belongsto Intor Floate4?

* Hence: syntax very similar to that of C
f(o, args)insteadofo.f(args)

* However, Julia has:
A type hierarchy, including abstract types
Constructors

15

Real macros

* C-like macros are limited
Only text replacement

* Julia macros: can rewrite code!
Function that takes code in argument and outputs code

* Basic example:

julia> @show sqrt(complex(-1.))
sqrt(complex(-1.0)) = 0.8 + 1.0im
9.0 + 1.0im

16

Real macros

* Building block for DSLs, e.g. for differential equations:
b = @ode_def LorenzExample begin

dx = o*(y-x)
dy = x*(p-z) -y
dz = x*y - B*z

end 0=>10.8 p=>28.0 B=(8/3)
udé = [1.0;0.0;0.0]

tspan = (0.0,1.0)

prob = ODEProblem(g,u®@,tspan)
sol = solve(prob)

Details for the packages needed for this:
http://docs.juliadiffeq.org/stable/tutorials/ode_example.html#Defining-Systems-of-
Equations-Using-ParameterizedFunctions.jl-1

17

Community and
packages

Julia has a truckload of packages, and that is a great selling point for the language: its
community.

A vibrant community

* Julia has a large community
with many extension packages available:

For plotting: Plots.jl, Gadfly, Winston, etc.
For graphs: Graphs.jl, LightGraph.jl, Graft.jl, etc.
For statistics: DataFrames.jl, Distributions.jl, TimeSeries.jl, etc.
For machine learning: JuliaML, ScikitLearn.jl, etc.
For Web development: Mux.jl, Escher.jl, WebSockets.jl, etc.
For mathematical optimisation: JuMP.jl, Convex.jl, Optim.jl, etc.

* A list of all registered packages: http://pkg.julialang.org/

Package directory: list many existing packages (not all, often due to development in
progress).
Directly used for the package manager.

19

Package manager

* How to install a package?
|julia> Pkg.add(”PackageName™)
No .jl in the name!

* Import a package (from within the shell or a script):
julia> import PackageName|

* How to remove a package?
[julia> Pkg.rm(”PackageName™)|

* All packages are hosted on GitHub

Usually grouped by interest: JuliaStats, JuliaML, JuliaWeb, JuliaOpt,
JuliaPlots, JuliaQuant, JuliaParallel, JuliaMaths...

See a list at http://julialang.org/community/

Other interest groups:

Quantitative Economics: http://quant-econ.net/jl/getting_started.html
JuliaGPU, Biolulia, JuliaAstro, etc.

20

Plots

For scientific applications, plots are a must-have to graphically represent data, an
algorithm’s behaviour, etc.

Julia has quite a few native rendering engines, but also packages that allow using
existing plotting engines (such as Matplotlib or GR).

It also has one common interface for those many plotting engine, which is the topic

now.

Creating plots: Plots.jl

* Plots.jl: an interface to multiple plotting engines (e.g. GR or
matplotlib)

* Install the interface and one plotting engine (GR is fast):
julia> Pkg.add(”Plots™)
julia> Pkg.add(”GR”)
julia> using Plots

* Documentation: https://juliaplots.github.io/

Quit PowerPoint, move on to ljulia, show how the plots integrate into the interface.

22

Basic plots

* Plotting a mathematical function:

WG

* Basic plot:
julia> plot(1:5, sin(l:S))] Ijulia> plot(sin, 1:.1:5)[
[—n]

23

More plots

« Scatter plot:
|ju1ia> scatter(rand(leae))l

- 0O X

G e,

* Histogram:

julia> histogram(rand(1eee),
nbins=20)

- 0 X

24

Image processing

Albeit made for scientific computations, Julia is also open to the Web.
Lightweight Web frameworks, Web servers... and frameworks to build Web Uls.

25

Basic processing: Images.jl
and family

* Part of the Julialmages organisation

* MATLAB-like interface, with many features:
Filtering: ImageFiltering
Feature extraction: ImageFeatures
Not full yet

* A repository of testimages: Testimages

* Standalone visualisation (outside lJulia): ImageView

26

Show and process an image
using Images, TestImages, ImageView,
ImageFiltering

img = testimage("mandrill")

imshow(img)

imgg = imfilter(img, Kernel.gaussian(3))

N g | [——

imshow(imgg)

27

Web applications

Albeit made for scientific computations, Julia is also open to the Web.
Lightweight Web frameworks, Web servers... and frameworks to build Web Uls.

28

Web applications: Escher.jl

* Escheris a Web application framework
No need to use of HTML or anything: pure Julia
Based on the concept of tiles

* Predefined tiles:
Text (including Markdown and LaTeX)
Plots
Layouts (including tabs and pages)

* Main use case: provide a Web Ul for a scientific application
* Similar to R’s Shiny

* Documentation: http://escher-jl.org/

29

Install and run Escher’s server

* Escher comes with an integrated Web server

* Install Escher:
|ju1ia> Pkg.add(”Escher”)l

* Run the Web server:

julia> using Escher
julia> include(Pkg.dir("Escher", "src", "cli", "serve.jl"))

julia> cd(Pkg.dir("Escher", "examples"))
julia> escher_serve()

Here: started from within the examples

Example: http://127.0.0.1:5555/user-guide

* Note: for Julia 0.5, you must check out the last version:
Ijulia> Pkg.checkout(”Escher”)|

30

Mathematical
optimisation

AND MACROS!

Quite large community in optimisation. Multiple modelling layers, some optimisation
solvers written in Julia (Optim.jl, Pajarito.jl), links to most existing solvers.

31

Mathematical optimisation: JuMP

* JUMP provides an easy way to translate optimisation
programs into code

* First: install it along with a solver
julia> Pkg.add(”JuMP”)
julia> Pkg.add(”Cbc”)
julia> using JuMP

m = Model()
@variable(m, x >= @)
2?2?1{)&8 @variable(m, 1 <= y <= 20)
?é}g;‘;’ @objective(m, Max, x + y)
@constraint(m, 2 * x + y <= 8)
solve(m)
- |

Transition:

Quite specific topic, yes. But example of one selling point of Julia: macros. Look at the
@ signs in the code!

Without these macros, the code makes little sense (x >= 0 when x has not yet been
defined!?). However, with the macros, Julia does not directly evaluate the code:
rather, JuUMP rewrites it.

32

Behind the nice syntax: macros

* Macros are a very powerful mechanism
Much more powerful than in C or C++!

* Macros are function
Argument: Julia code
Return: Julia code

* They are the main mechanism behind JuMP’s syntax
Easyto define DSLs in Julia!

Example:
https://github.com/luliaOpt/JuMP.jl/blob/master/src/macros.jl#L743

* How about speed?
JUMP is as fast as a dedicated compiler (like AMPL)
JUMP is much faster than Pyomo (similar syntax, but no macros)

Can a generic mechanism be close to a specific compiler? AMPL: dedicated
programming language for optimisation, with specifically optimised compiler; it ought
to be very fast.

Python has no macros, so Pyomo can only rely on function calls. And this is very slow.

33

Data science

Julia is also made for data treatment and machine learning, with packages inspired by
R and Python.

Data frames: DataFrames.jl

* R has the data frame type: an array with named columns

|df = DataFrame(N=1:3, colour=[“b”, “w”, "b”]ﬂ
* Easy to retrieve information in each dimension:
df[:colour]
df[1, :]

* The package has good support in the ecosystem
> Easy plot with Plots.jl: just install StatPlots.jl, it just works
Understood by machine learning packages, etc.

35

Data selection: Query.jl|

* SQL is a nice language to query information from a data base:
select, filter, join, etc.

* C# has a similar tool integrated into the language (LINQ)

* Julia too, with a syntax inspired by LINQ: Query.jl

* On data frames:

@from i in df begin
@where i.N >= 2
@select {i.colour}
@collect DataFrame

end

An other example of DSL embedded within Julia, which makes queries really simple.

36

Machine learning

* Many tools to perform machine learning

- A few to cite:
JuliaML: generic machine learning project, highly configurable
GLM: generalised linear models
Mocha: deep learning (similar to Caffe in C++)
ScikitLearn: uniform interface for machine learning

JuliaML: set of comprehensive packages containing many loss and penalty functions,
data transformations, plotting, etc.
ScikitLearn: port of the Python library

37

Parallel
programming

MULTITHREADING
MESSAGE PASSING
ACCELERATORS

For scientific computations... and big data (to name a few), parallel is needed: must

solve very large problems, deal with enormous quantities of data.
Multiple paradigms so far: multithreading (cores of a machine), message passing
(multiple machines), accelerators (GPUs). All three are currently supported within

Julia.

Message passing

* Multiple machines (or processes) communicate over the
network
For scientific computing: like MPI
For big data: like Hadoop (close to message passing)

* The Julia way?
Similar to MPL... but useable
Only one side manages the communication

39

Message passing

* Two primitives:
r = @spawn:start to compute something
fetch(r):retrieve the results of the computation

Start Julia with julia -p 2 for two processes on the current machine

* Example: generate a random matrix on another machine (#2),
retrieve it on the main node

r = @spawn 2 rand(2, 2)
fetch(r)

Note: can also be used with clusters, of course. Example of Slurm script:

#!/bin/bash

H#SBATCH --job-name="juliaTest"

H#SBATCH --output="juliaTest.%;j.%N.out"

#SBATCH --partition=compute

#SBATCH --nodes=8

#SBATCH --export=ALL

H#SBATCH --ntasks-per-node=24

#SBATCH -t 01:00:00

export SLURM_NODEFILE="generate_pbs_nodefile
.Jjulia --machinefile SSLURM_NODEFILE test.jl

40

Message passing: reductions

* Hadoop uses the map-reduce paradigm

* Julia has it too!

* Example: flip a coin multiple times and count heads

nheads = @parallel (+) for i in 1:5@@
Int(rand(Bool))

end

41

Multithreading

* New (and experimental) with Julia 0.5: multithreading

* Current APl (not set in stone):
@Threads.threads before a loop
As simple as MATLAB's parfor or OpenMP!

* Add the environment variable JULIA_NUM_THREADS
before starting Julia

Should be finalised with Julia 1.0.

42

Multithreading

array = zeros(20)
Threads.threads for i in 1:20
array[i] = Threads.threadid()
nd

Still experimental API, though.

43

GPU computing: ArrayFire.jl

* GPGPU is a hot topic currently, especially for deep learning
Use GPUs to perform computations
Many cores available (1,000s for high-end ones)
Very different architecture

* ArrayFire provides an interface for GPUs and other accelerators:
Easy way to move data
Premade kernels for common operations
Intelligent JIT rewrites operations to use as few kernels as possible

For example, linear algebra: A b+ cin one kernel

* Note: CUDA offloading will probably be included in Julia
https://github.com/JuliaLang/julia/issues/19302
Similar to OpenMP offloading

High-end CPUs: up to 22 cores, with a price similar to a high-end GPU (for example,
http://wccftech.com/intel-xeon-e5-2699a-v4-skylake-ep-2017-launch/).
Architecture differences: GPU cores are grouped in streaming
multiprocessors/compute units. All cores within this group perform the same
instruction on different data.

Operations rewriting? A*x+b: not performed as c=A*b then d=c+b, but directly as
A*b+c (using the corresponding kernel).

44

GPU computing

* Installation:

First install the ArrayFire library:
http://arrayfire.com/download/

Then install the Julia wrapper:
Pkg.add(“ArrayFire”) |

Load it:
using ArrayFire]

45

GPU computing

* Ensure the OpenCL backend is used (or CUDA, or CPU):
[setBackend(AF_BACKEND_OPENCL)|

* Send an array on the GPU:

a_cpu = rand(Float32, 10, 190);
a_gpu = AFArray(a_cpu);
b_gpu = AFArray(rand(Float32, 10, 190));

* Then work on it as any Julia array:
lc_gpu = a_gpu + b_gpu;]
* Finally, retrieve the results:
[c_cpu = Array(c_gpu);]

46

Concluding
remarks

Here: mainly libraries around Julia (except for parallel programming). The goal is to
keep the core language sleek, and to rely on packages for functionalities.

Ask the audience: What do you think of Julia?

47

And so... shall | use Julia?

* First drawback of Julia: no completely stable version yet
Syntax can still change (but not a lot)
Also for packages: nothing is really 100% stable

* Quite young: appeared in 2012
0.5 in September 2016 (original plans: June 2016)
0.6 in January 2017 (original plans: September 2016), 1.0 just after

* ... but likely to survive!
Enterprise backing the project: JuliaComputing
7 books about Julia (5 in 2016)

* Not ready for production... yet

Julia 0.6 feature freeze: end of 2016. Unlikely to be on time.

48

