
A Journey
Through

.
A DYNAMIC AND FAST LANGUAGE

THIBAUT CUVELIER

17 MAY, 2017

1

What is ?
• A programming language

• For scientific computing first: running times are important!
• But still dynamic, “modern”… and extensible!

• Often compared to MATLAB, with a similar syntax…
◦ … but much faster!
◦ … without the need for compilation!

◦ … with a large community!
◦ … and free (MIT-licensed)!

2

How fast is ?

3

Data:
http://julialang.org/benchmarks/

Comparison of run time between several languages and C

How to install ?
• Website: http://julialang.org/

• IDEs?
◦ Juno: Atom with Julia extensions
◦ Install Atom: https://atom.io/
◦ Install Juno: in Atom, File > Settings > Install, search for uber-juno

◦ JuliaDT: Eclipse with Julia extensions

◦ Also: JuliaPro, a Julia distribution “with batteries included”
◦ https://juliacomputing.com/products/juliapro.html

• Notebook environment?
◦ IJulia (think IPython)

4

http://julialang.org/
http://junolab.org/
https://atom.io/
https://github.com/JuliaComputing/JuliaDT
https://juliacomputing.com/products/juliapro.html

Notebook environment
• The default console is not the sexiest interface
◦ The community provides better ones!

• Purely online, free: JuliaBox
◦ https://juliabox.com/

• Offline, based on Jupyter (still in the browser): IJulia
◦ Install with:

julia> Pkg.add(”IJulia”)
◦ Run with:

julia> using IJulia; notebook()

5

https://juliabox.com/

Contents of this presentation
• Basic syntax

• Core concepts

• Julia community
◦ Plotting
◦ Image processing
◦ Mathematical optimisation
◦ Data science

• Parallel computing
◦ Message passing (MPI-like)
◦ Multithreading (OpenMP-like)
◦ GPUs

• Concluding words

6

Basic syntax

7

A small taste of Julia
Solves 0 = a x² + b x + c for x

function quad(a::Float64, b::Float64, c::Float64)

discriminant = b^2 - 4a * c

r1 = (- b + sqrt(discriminant)) / 2a

r2 = (- b - sqrt(discriminant)) / 2a

r1, r2

end

8

Core concepts

9

What makes Julia dynamic?
• Dynamic type system with type inference
◦ Multiple dispatch (see later)
◦ But static typing is preferable for performance

• Macros to generate code on the fly
◦ See later

• Garbage collection
◦ Automatic memory management
◦ No destructors, memory freeing

• Shell (REPL)

10

Function overloading
• A function may have multiple implementations,

depending on its arguments
◦ One version specialised for integers
◦ One version specialised for floats
◦ Etc.

• In Julia parlance:
◦ A function is just a name (for example, +)
◦ A method is a “behaviour” for the function

that may depend on the types of its arguments
◦ +(::Int, ::Int)
◦ +(::Float32, ::Float64)
◦ +(::Number, ::Number)
◦ +(x, y)

11

Function overloading:
multiple dispatch

• All parameters are used to determine the method to call
◦ C++’s virtual methods, Java methods, etc.: dynamic dispatch on the first

argument, static for the others
◦ Julia: dynamic dispatch on all arguments

• Example:
◦ Class Matrix, specialisation Diagonal, with a function add()
◦ m.add(m2): standard implementation
◦ m.add(d): only modify the diagonal of m
◦ What if the type of the argument is dynamic? Which method is called?

12

Function overloading:
multiple dispatch

• What does Julia do?

• The user defines methods:
◦ add(::Matrix, ::Matrix)
◦ add(::Matrix, ::Diagonal)
◦ add(::Diagonal, ::Matrix)

• When the function is called:
◦ All types are dynamically used to choose the right method
◦ Even if the type of the matrix is not known at compile time

13

Fast Julia code?
• First: Julia compiles the code before running it (JIT)

• To fully exploit multiple dispatch, write type-stable code
◦ Multiple dispatch is slow when performed at run time
◦ A variable should keep its type throughout a function

• If the type of a variable is 100% known,
then the method to call is too
◦ All code goes through JIT before execution

14

Object-oriented code?
• Usual syntax makes little sense for mathematical

operations
◦ +(::Int, ::Float64): belongs to Int or Float64?

• Hence: syntax very similar to that of C
◦ f(o, args) instead of o.f(args)

• However, Julia has:
◦ A type hierarchy, including abstract types
◦ Constructors

15

Real macros
• C-like macros are limited
◦ Only text replacement

• Julia macros: can rewrite code!
◦ Function that takes code in argument and outputs code

• Basic example:
julia> @show sqrt(complex(-1.))
sqrt(complex(-1.0)) = 0.0 + 1.0im
0.0 + 1.0im

16

Real macros
• Building block for DSLs, e.g. for differential equations:

g = @ode_def LorenzExample begin
dx = σ*(y-x)
dy = x*(ρ-z) - y
dz = x*y - β*z

end σ=>10.0 ρ=>28.0 β=(8/3)
u0 = [1.0;0.0;0.0]
tspan = (0.0,1.0)
prob = ODEProblem(g,u0,tspan)
sol = solve(prob)

17

Community and
packages

18

A vibrant community
• Julia has a large community

with many extension packages available:
◦ For plotting: Plots.jl, Gadfly, Winston, etc.
◦ For graphs: Graphs.jl, LightGraph.jl, Graft.jl, etc.
◦ For statistics: DataFrames.jl, Distributions.jl, TimeSeries.jl, etc.
◦ For machine learning: JuliaML, ScikitLearn.jl, etc.
◦ For Web development: Mux.jl, Escher.jl, WebSockets.jl, etc.
◦ For mathematical optimisation: JuMP.jl, Convex.jl, Optim.jl, etc.

• A list of all registered packages: http://pkg.julialang.org/

19

http://pkg.julialang.org/

Package manager
• How to install a package?

julia> Pkg.add(”PackageName”)
◦ No .jl in the name!

• Import a package (from within the shell or a script):
julia> import PackageName

• How to remove a package?
julia> Pkg.rm(”PackageName”)

• All packages are hosted on GitHub
◦ Usually grouped by interest: JuliaStats, JuliaML, JuliaWeb, JuliaOpt,

JuliaPlots, JuliaQuant, JuliaParallel, JuliaMaths…
◦ See a list at http://julialang.org/community/

20

http://julialang.org/community/

Plots

21

Creating plots: Plots.jl
• Plots.jl: an interface to multiple plotting engines (e.g. GR or

matplotlib)

• Install the interface and one plotting engine (GR is fast):
julia> Pkg.add(”Plots”)
julia> Pkg.add(”GR”)
julia> using Plots

• Documentation: https://juliaplots.github.io/

22

https://juliaplots.github.io/

Basic plots

• Basic plot:
julia> plot(1:5, sin(1:5))

• Plotting a mathematical function:
julia> plot(sin, 1:.1:5)

23

More plots

• Scatter plot:
julia> scatter(rand(1000))

• Histogram:
julia> histogram(rand(1000),

nbins=20)

24

Image processing

25

Basic processing: Images.jl
and family

• Part of the JuliaImages organisation

• MATLAB-like interface, with many features:
◦ Filtering: ImageFiltering
◦ Feature extraction: ImageFeatures
◦ Not full yet

• A repository of test images: TestImages

• Standalone visualisation (outside IJulia): ImageView

26

https://github.com/JuliaImages/

Show and process an image
using Images, TestImages, ImageView,
ImageFiltering

img = testimage("mandrill")

imshow(img)

imgg = imfilter(img, Kernel.gaussian(3))

imshow(imgg)

27

Mathematical
optimisation
AND MACROS!

31

max 𝑥𝑥 + 𝑦𝑦
s. t.2𝑥𝑥 + 𝑦𝑦 ≤ 8

0 ≤ 𝑥𝑥 ≤ +∞
1 ≤ 𝑦𝑦 ≤ 20

m = Model()

@variable(m, x >= 0)

@variable(m, 1 <= y <= 20)

@objective(m, Max, x + y)

@constraint(m, 2 * x + y <= 8)

solve(m)

Mathematical optimisation: JuMP

• JuMP provides an easy way to translate optimisation
programs into code

• First: install it along with a solver
julia> Pkg.add(”JuMP”)
julia> Pkg.add(”Cbc”)
julia> using JuMP

32

Data science

34

Data frames: DataFrames.jl
• R has the data frame type: an array with named columns

df = DataFrame(N=1:3, colour=[“b”, “w”, “b”])

• Easy to retrieve information in each dimension:

df[:colour]

df[1, :]

• The package has good support in the ecosystem
◦ Easy plot with Plots.jl: just install StatPlots.jl, it just works
◦ Understood by machine learning packages, etc.

35

Data selection: Query.jl
• SQL is a nice language to query information from a data base:

select, filter, join, etc.
• C# has a similar tool integrated into the language (LINQ)
• Julia too, with a syntax inspired by LINQ: Query.jl
• On data frames:

@from i in df begin
@where i.N >= 2
@select {i.colour}
@collect DataFrame

end

36

Machine learning
• Many tools to perform machine learning

• A few to cite:
◦ JuliaML: generic machine learning project, highly configurable
◦ GLM: generalised linear models
◦ Mocha: deep learning (similar to Caffe in C++)
◦ ScikitLearn: uniform interface for machine learning

37

https://github.com/JuliaML/
https://github.com/JuliaStats/GLM.jl
https://github.com/pluskid/Mocha.jl
https://github.com/cstjean/ScikitLearn.jl

Parallel
programming
MULTITHREADING

MESSAGE PASSING

ACCELERATORS

38

Message passing
• Multiple machines (or processes) communicate over the

network
◦ For scientific computing: like MPI
◦ For big data: like Hadoop (close to message passing)

• The Julia way?
◦ Similar to MPI… but useable
◦ Only one side manages the communication

39

Message passing
• Two primitives:
◦ r = @spawn: start to compute something
◦ fetch(r): retrieve the results of the computation

◦ Start Julia with julia -p 2 for two processes on the current machine

• Example: generate a random matrix on another machine (#2),
retrieve it on the main node

r = @spawn 2 rand(2, 2)

fetch(r)

40

Multithreading
• New (and experimental) with Julia 0.5: multithreading

• Current API (not set in stone):
◦ @Threads.threads before a loop
◦ As simple as MATLAB’s parfor or OpenMP!

• Add the environment variable JULIA_NUM_THREADS
before starting Julia

42

Multithreading
array = zeros(20)

@Threads.threads for i in 1:20

array[i] = Threads.threadid()

end

43

GPU computing: ArrayFire.jl
• GPGPU is a hot topic currently, especially for deep learning
◦ Use GPUs to perform computations
◦ Many cores available (1,000s for high-end ones)
◦ Very different architecture

• ArrayFire provides an interface for GPUs and other accelerators:
◦ Easy way to move data
◦ Premade kernels for common operations
◦ Intelligent JIT rewrites operations to use as few kernels as possible
◦ For example, linear algebra: A b + c in one kernel

• Note: CUDA offloading will probably be included in Julia
https://github.com/JuliaLang/julia/issues/19302
Similar to OpenMP offloading

44

https://github.com/JuliaLang/julia/issues/19302

GPU computing
• Installation:
◦ First install the ArrayFire library:

http://arrayfire.com/download/

◦ Then install the Julia wrapper:
Pkg.add(“ArrayFire”)

◦ Load it:
using ArrayFire

45

http://arrayfire.com/download/

GPU computing
• Ensure the OpenCL backend is used (or CUDA, or CPU):

setBackend(AF_BACKEND_OPENCL)

• Send an array on the GPU:
a_cpu = rand(Float32, 10, 10);
a_gpu = AFArray(a_cpu);
b_gpu = AFArray(rand(Float32, 10, 10));

• Then work on it as any Julia array:
c_gpu = a_gpu + b_gpu;

• Finally, retrieve the results:
c_cpu = Array(c_gpu);

46

Concluding
remarks

47

And so… shall I use Julia?
• First drawback of Julia: no completely stable version yet
◦ Syntax can still change (but not a lot)
◦ Also for packages: nothing is really 100% stable

• Quite young: appeared in 2012
◦ 0.5 in September 2016 (original plans: June 2016)
◦ 0.6 in January 2017 (original plans: September 2016), 1.0 just after

• … but likely to survive!
◦ Enterprise backing the project: JuliaComputing
◦ 7 books about Julia (5 in 2016)

• Not ready for production… yet

48

	A Journey Through�.
	What is ?
	How fast is ?
	How to install ?
	Notebook environment
	Contents of this presentation
	Basic syntax
	A small taste of Julia
	Core concepts
	What makes Julia dynamic?
	Function overloading
	Function overloading: �multiple dispatch
	Function overloading: �multiple dispatch
	Fast Julia code?
	Object-oriented code?
	Real macros
	Real macros
	Community and packages
	A vibrant community
	Package manager
	Plots
	Creating plots: Plots.jl
	Basic plots
	More plots
	Image processing
	Basic processing: Images.jl �and family
	Show and process an image
	Mathematical optimisation
	Mathematical optimisation: JuMP
	Data science
	Data frames: DataFrames.jl
	Data selection: Query.jl
	Machine learning
	Parallel programming
	Message passing
	Message passing
	Multithreading
	Multithreading
	GPU computing: ArrayFire.jl
	GPU computing
	GPU computing
	Concluding remarks
	And so… shall I use Julia?

