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Abstract

In this chapter we review Schwarz domain decomposition methods for scalar and
vector Helmholtz equations, with a focus on the choice of the associated transmission
conditions between the subdomains. The methods are analyzed in both acoustic and
electromagnetic settings, and generic weak formulations directly amenable to finite
element discretization are presented. An open source solver along with ready-to-use
examples is freely available online for further testing.

1 Introduction

Solving high-frequency time-harmonic wave problems is a very challenging problem, en-
countered in many physical applications, from acoustic noise propagation to seismology
and geophysical exploration to electromagnetic radiation. Among the various approaches
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for numerical simulation, the Finite Element Method (FEM) with an Absorbing Bound-
ary Condition (ABC) or a Perfectly Matched Layer (PML) is well suited for tackling
complex geometrical configurations and heterogeneous media. The brute-force applica-
tion of the FEM in the high-frequency regime however requires the solution of extremely
large, complex-valued and possibly indefinite linear systems [39]. Direct sparse solvers
do not scale well for such large-size problems, and Krylov subspace iterative solvers ex-
hibit slow convergence or diverge, while efficiently preconditioning proves difficult [24].
Domain decomposition methods provide an alternative, iterating between subproblems
of smaller sizes, amenable to sparse direct solvers [49].

In [36], Lions introduced a converging Schwarz domain decomposition method without
overlap for the Laplace equation by using Fourier-Robin boundary conditions on the
interfaces instead of the standard Dirichlet or Neumann continuity conditions. For scalar
or vector Helmholtz equations, these methods need to be adapted to lead to converging
iterative algorithms. The first developments in this direction were introduced by Després
[13, 14], who used simple impedance boundary conditions on the interfaces. A great
variety of more general impedance conditions has been proposed since these early works,
leading to so-called optimized Schwarz domain decomposition methods for time-harmonic
wave problems [1, 9, 10, 11, 14, 15, 16, 19, 20, 25, 27, 43, 44, 45]. These methods can
be used with or without overlap between the subdomains, and their convergence rate
strongly depends on the transmission condition. Optimal convergence is obtained by
using as transmission condition on each interface the non-local Dirichlet-to-Neumann
(DtN) map [42] related to the complementary of the subdomain of interest [40, 41]. For
acoustic waves, this DtN map links the normal derivative and the trace of the acoustic
pressure on the interface. For electromagnetic waves, it links the magnetic and the
electric surface currents (and is referred to in this case as the Magnetic-to-Electric, or
MtE, map) [19]. However, using the DtN leads to a very expensive numerical procedure
in practice, as this operator is non-local. Practical algorithms are thus based on local
approximations of these operators, both for the acoustic case [13, 9, 10, 11, 27] and the
electromagnetic one [1, 14, 15, 16, 20, 21, 43, 44, 45]. Recently, PMLs have also been
used for this same purpose [23, 47, 51, 52].

In this chapter we provide a concise review of the most common transmission op-
erators for optimized Schwarz methods applied to time-harmonic acoustic and electro-
magnetic wave problems, with the corresponding mathematical background. We analyze
the behavior of these transmission operators on a model problem and derive generic weak
formulations in view of their implementation in finite element codes. All the formulations
are readily available for testing on several acoustic and electromagnetic cases using the
open source GetDDM environment (http://onelab.info/wiki/GetDDM) [33, 48], based
on the finite element solver GetDP (http://getdp.info) [17, 18, 28] and the mesh gen-
erator Gmsh (http://gmsh.info) [31, 32].

2 Scalar Helmholtz Equation: Acoustic Waves

Let Ω− be an open subset of Rd (d = 1, 2, 3) with boundary Γ := ∂Ω−. The exterior
domain of propagation is the complementary connected set defined by Ω+ = Rd \ Ω−.
When considering a time-harmonic incident wave uinc, the obstacle Ω− creates a complex-
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valued scattered field u which is solution of the following problem
(∆ + k2)u = 0 in Ω+,

u = −uinc on Γ,
u outgoing,

(1)

fixing the time dependence under the form e−iωt. The Laplacian operator is ∆ =
∑d

i=1 ∂
2
xi

and the real-valued strictly positive wavenumber is given by k = ω/c (where c = c(x)
is the local speed of sound in the propagation medium). We denote by a · b the inner
product between two complex-valued vectors a and b in C3. We designate by z the
complex conjugate of z ∈ C and the associated norm is ||a|| :=

√
a · a. In this chapter,

we fix a Dirichlet boundary condition on Γ corresponding to the sound-soft obstacle case.
Nevertheless, any other condition can be studied like e.g. for a Neumann, Fourier or even
for a penetrable obstacle. The outgoing condition at infinity, better known as Sommerfeld
radiation condition (ı being the square root of −1), is added

lim
‖x‖→∞

‖x‖ d−1
2

(
∇u · x

‖x‖ − ıku
)

= 0.

This allows to prove that the solution to (1) is unique. In addition, this translates the
property that the scattered field u is directed from Ω− to infinity.

To numerically compute the solution to problem (1) by using e.g. the finite element
method, Ω+ has to be truncated. This can be realized for example by introducing a
Perfectly Matched Layer (PML) [7, 12] or a fictitious boundary Γ∞ with an Absorbing
Boundary Condition (ABC) [6, 22] (see e.g. [4] for a review). If we consider an ABC on a
fictitious boundary, we have to compute a field û approximating u on the finite domain Ω
with boundary Γ∞

⋃
Γ. After merging the notations û and u for simplicity, the problem

to be solved is 
(∆ + k2)u = 0 in Ω,

u = −uinc on Γ,
∂nu+ Bu = 0 on Γ∞,

(2)

where the unit normal vector n is directed outside Ω (and thus inside Ω− on Γ). The
simplest local ABC, i.e., the Sommerfeld radiation condition at finite distance (zeroth-
order condition), is obtained by setting

Bu = −ıku. (3)

The extension to more accurate ABCs or PMLs is standard [34].

2.1 Domain Decomposition and Transmission Operators

Let us consider now that Ω is decomposed into Ndom disjoint subdomains Ωi (the sub-
structures) without overlap. For every i = 0, . . . , Ndom − 1, we set Γi = Γ

⋂
∂Ωi,

Γ∞i = Γ∞
⋂
∂Ωi, and, for j = 0, . . . , Ndom − 1, j 6= i, we introduce the transmission

boundary Σij = Σji = ∂Ωi

⋂
∂Ωj. To simplify, let D := {0, . . . , Ndom − 1} be the set of

indices of the subdomains, and for i ∈ D, let Di := {j ∈ D such that j 6= i and Σij 6= ∅}
be the set of indices of the subdomains sharing at least a point with Ωi (such a domain
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is said to be connected to Ωi). Finally, for all i ∈ D, the unit normal ni is directed into
the exterior of Ωi and thus inside the obstacle Ω− (if Γi 6= ∅).

Then the additive Schwarz domain decomposition method follows the steps at iteration
n+ 1

1. For all i ∈ D, compute un+1
i solution to the boundary-value problem

(∆ + k2)un+1
i = 0 in Ωi,
un+1
i = −uinc on Γi,

∂niu
n+1
i + Bun+1

i = 0 on Γ∞i ,
∂niu

n+1
i + Sun+1

i = gnij on Σij, ∀j ∈ Di.

(4)

2. For all i ∈ D and j ∈ Di, update the interface unknowns with respect to the relation

gn+1
ji = −∂niun+1

i + Sun+1
i = −gnij + 2Sun+1

i , on Σij. (5)

The operator S is a transmission operator that will be described later. A more compact
writing of the (n+ 1)th iteration is

1. For all i ∈ D, compute the volume solution un+1
i of problem (4), which is written

here as un+1
i = Vi(u

inc, gn), where gn = (gnji)i∈D,j∈Di is the vector that collects all
the contributions related to the interface unknowns.

2. For all i ∈ D and j ∈ Di, update the surface fields gn+1
ji following relation (5). This

is written as gn+1
ji = Tji(g

n
ij, u

n+1
i ) in the sequel of the chapter.

In the boundary-value problem (4), only the case of Dirichlet sources is considered;
however, any kinds such as volume sources could be handled similarly in the algorithm.
These sources are called physical sources in contrast with the artificial sources gnij related
to the transmission boundaries.

The algorithm described by (4) and (5) can be understood as a Jacobi iteration for a
linear operator equation. For every n ∈ N, the field un+1

i can be decomposed by linearity
as un+1

i = vn+1
i + ũn+1

i , with

vn+1
i = Vi(u

inc, 0) and ũn+1
i = Vi(0, g

n). (6)

The function vn+1
i does not depend on the iteration n and can be written as vi := vni , ∀n ∈

N,∀i ∈ D. Therefore, Equation (5) can be written

gn+1
ji = Tji(g

n
ij, u

n+1
i ) = Tji(g

n
ij, ũ

n+1
i ) + 2Svi, on Σij. (7)

Let us define the vector b = (bji)i∈D,j∈Di , with bji = 2(Svi)|Σij , and A : gn 7→ Agn as the
operator such that

∀i ∈ D
{
ũn+1
i = Vi(0, g

n),
(Agn)ji = Tji(g

n
ij, ũ

n+1
i ), ∀j ∈ Di.

(8)

One iteration of the domain decomposition method writes

gn+1 = Agn + b. (9)
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This can be interpreted as an iteration of the Jacobi method for solving the system

(I − A)g = b, (10)

where the identity operator is I. An interesting consequence of (10) is that any iterative
linear solver can be used for solving the equation. For example, Krylov subspace methods
can be applied such as GMRES [46]. When a Krylov subspace solver is used, the resulting
method is called a substructured preconditioner [26].

An important remark is that the iteration unknowns in (9), (10) are the surface
quantities g and not the volume unknowns u. To get the volume quantities from the
surface unknowns, ui = Vi(uinc, g) needs to be solved on every subdomain Ωi. Algorithm 1
summarizes the Schwarz method with Krylov solver.

Algorithm 1 Schwarz algorithm with Krylov solver.

1. Compute the right-hand side b{
∀i ∈ D, vi = Vi(uinc, 0),
∀i ∈ D, ∀j ∈ Di, bji = Tji(0, vi).

2. Solve the following system (I − A)g = b iteratively by using a Krylov subspace
solver, where the operator A is given by (8).

3. At convergence, compute the solution: ∀i ∈ D, ui = Vi(uinc, g).

The convergence rate of the iterative solver is strongly related to the choice of the
transmission operator S [10]. The so-called Dirichlet-to-Neumann (DtN) map for the
complement of each subdomain [40, 41] appears as being optimal. Unfortunately, this
operator is nonlocal and consequently costly to use in an iterative solver. An alternative
approach consists in using local approximations based on polynomial or rational approx-
imations of the total symbol of the surface DtN operator in the free-space, or a volume
representation through PMLs. We detail below four specific examples which are also
implemented in GetDDM for a generic transmission boundary Σ

• Evanescent Modes Damping Algorithm [9, 11]:

SIBC(χ)u = (−ık + χ)u,

where χ is a real-valued constant. This zeroth-order polynomial approximation is
a generalization of the well-known Després condition [14], which corresponds to
χ = 0. We will denote this family of impedance transmission conditions as IBC(χ)
in the sequel of the chapter.

• Optimized second-order transmission condition [27]:

SGIBC(a,b)u = au+ b∆Σu, (11)

where ∆Σ designates the Laplace-Beltrami operator on Σ, and a and b are two
complex-valued numbers computed by solving a min-max optimization problem
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involving the rate of convergence (spectral radius) of the iteration operator. At the
symbol level, this condition yields a second-order polynomial approximation of the
DtN symbol. In the following, this family of generalized impedance transmission
conditions is denoted by GIBC(a, b). A zeroth-order optimized condition can be
built similarly.

• Padé-localized square-root transmission condition [10]:

SGIBC(Np, α, ε)u = −ıkC0u− ık
Np∑
`=1

A`divΣ

(
1

k2
ε

∇Σ

)(
I +B`divΣ

(
1

k2
ε

∇Σ

))−1

u,

(12)
setting

kε = k + iε. (13)
The complex-valued coefficients C0, A` and B` are

C0 = eıα/2RNp

(
e−ıα − 1

)
, A` =

e−
ıα
2 a`

(1 + b`(e−ıα − 1))2
, B` =

e−ıαb`
1 + b`(e−ıα − 1)

.

(14)
The parameter α is a rotation angle in the complex plane (usually taken as π/4)
and RNp are the standard real-valued Padé approximation of order Np of

√
1 + z

RNp(z) = 1 +

Np∑
`=1

a`z

1 + b`z
,

with

a` =
2

2Np + 1
sin2

(
`π

2Np + 1

)
and b` = cos2

(
`π

2Np + 1

)
. (15)

This transmission condition is a complex-valued rational approximation [37] of the
nonlocal pseudodifferential operator

SGIBC(sq, ε)u = −ık
√

1 + divΣ

(
1

k2
ε

∇Σ

)
u.

Fixing ε = 0 leads to the principal symbol of the exact DtN operator for the
half-space. The introduction of the parameter ε regularizes this operator to model
glancing rays at the surface of a curved interface. An optimal choice of ε is ex-
plained below in section 2.2. In the sequel of the chapter, we denote this family
of generalized impedance transmission conditions as GIBC(Np, α, ε) and GIBC(sq,
ε), respectively.

• PML transmission condition [23, 47, 51, 52]: The operator SPML(σ) is constructed
by appending a layer ΩPML to the transmission interface, in which a PML transfor-
mation with absorption profile σ is applied. For example, in cartesian coordinates,
the singular profile

σ(xPML) =
1

k(xPML − δ)
can be used, where δ corresponds to the thickness of the PML layer and xPML is
the local coordinate inside the PML [8, 38].
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All these methods are referred to as optimized Schwarz domain decomposition meth-
ods. Note that GIBC(Np, α, ε) and PML(σ) have in common that they introduce addi-
tional surface/volume unknowns, whereas the other two transmission conditions do not.
Also, the first three transmission conditions can be formulated explicitly through sparse
surface equations (see e.g. the weak formulations (20)–(25) below), while a sparse for-
mulation of the PML transmission condition requires a volume representation (see e.g.
(26)–(27)), a surface representation being dense [50].

2.2 Convergence Analysis on a Model Problem

To study the impact of the various transmission conditions on the convergence of DDM,
we analyze the model problem depicted in Figure 1 which couples two subdomains: a
disk-shaped bounded subdomain Ω1 of radius R0 and an unbounded domain Ω0 = R2 \Ω1:

Ω0 := {x ∈ R2, |x| > R0}, Ω1 := {x ∈ R2, |x| < R0}, (16)

with ∂Ω0 = ∂Ω1 = Σ. We analyze the spectral properties of the iteration operator
A obtained from the domain decomposition algorithm coupling these two subdomains.
Understanding the coupling of a curved bounded and unbounded subdomains allows us
to clarify the main properties that one could not be analyzed by considering two bounded
(e.g. a square domain divided in two) or two unbounded (e.g. two half-planes) subdomains.
The considered model problem essentially contains the main features arising when solving
exterior scattering problems in homogeneous media. It is thus not directly applicable
to the PML-based transmission conditions, which introduce a fictitious heterogeneous
medium, even for a radial profile.

n1

Ω0

R0

Σ

Ω1

n0

Figure 1: Model problem with two subdomains and a circular interface.

For this problem, the iteration operator A can be expanded as A =
∑+∞

m=−∞Ameımθ.
We report in Figure 2 the modal spectral radius ρ(Am) with respect to the Fourier mode
m for the transmitting boundary conditions IBC(0), IBC(k/2), GIBC(a, b) and GIBC(sq,
0). We fix k = 6π, R0 = 1 and the maximal number of modes is set to mmax = [10kR0]
(where [10kR0] denotes the integer part of 10kR0). Clearly, IBC(0) leads to a spectral
radius equal to 1 for the evanescent modes, which is improved by IBC(k/2)—for which the
radius of convergence is always strictly less than one. Using GIBC(a, b) further improves
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Figure 2: Spectral radius of the modal iteration operator Am vs. the Fourier mode m.

over IBC(k/2), particularly for large spatial modes m. We recall here that the GIBC(a, b)
method is based on optimizing the coefficients a and b in relation (11) according to a
min-max problem posed in the Fourier space [10, 27]. For the square-root transmission
condition with ε = 0 (GIBC(sq,0)), we clearly observe an optimal convergence rate in the
evanescent part of the spectrum. We also see a significant improvement over the IBC(0),
IBC(χ) and GIBC(a, b) algorithms on the propagating modes. The damping parameter ε
can be optimized to further improve the spectrum of the iteration operator corresponding
to the modes in the transition zone. The optimization problem can be formulated as a
min-max problem: find εopt > 0 such that it minimizes the spectral radius ρ(Am) of the
iteration operator (associated with GIBC(sq,ε)) for the mode m ∈ Z where it is maximal.
Mathematically, this leads to solving the problem

ρsq,εopt = min
ε∈R+

(
max
m∈Z
|ρ(Am)|

)
, (17)

resulting in the estimate εopt = 0.4k1/3H2/3 [10] of the optimal value of the damping
parameter, where H is the mean curvature on Σ. We see in Figure 2 that the spectral
radius of the iteration operator is indeed locally minimized for εopt.

Fast convergence of the GMRES solver is known to be strongly linked to the existence
of eigenvalues clustering of the operator to solve, i.e. (I −A) in our case. We report in
Figure 3 (left) the spectrum of the iteration operator for IBC(0), IBC(k/2), GIBC(a, b)
and GIBC(sq,εopt) (again for kR0 = 6π and mmax = [10kR0]). For all transmission op-
erators, the spectrum lies in the right half-plane, which makes the GMRES converging.
Nevertheless, many eigenvalues spread out in the complex plane for IBC(0). A slightly
better clustering occurs for IBC(k/2) and GIBC(a, b), while there is an excellent clus-
tering of the eigenvalues for GIBC(sq, εopt). Most particularly, only a few eigenvalues
associated with the propagating modes do not cluster but are very close to (1, 0). In
addition, the eigenvalues linked to the evanescent modes seem to cluster at (1, 0). The
eigenvalues clustering for the evanescent modes can be shown in numerical experiments
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Figure 3: Left: Eigenvalues distribution in the complex plane for (I − A) and different
transmission operators. Right: Eigenvalues distribution in the complex plane for the
exact and Padé-localized square-root transmission operator of order 4.

to lead to a quasi-optimal GMRES convergence rate that is independent of the density
of discretization points per wavelength nλ [10].

As said before, the square-root operator (2.1) is a first-order nonlocal pseudodifferen-
tial operator. Therefore, it is impractical in a finite element setting since it would lead
to consider full complex-valued matrices at the transmission interfaces. Fortunately, a
localization process of this operator can be efficiently realized and based on partial dif-
ferential (local) operators to have a sparse matrix representation. In [3, 35, 37], this is
done by using a rotating branch-cut approximation of the square-root and next applying
complex Padé approximants of order Np, leading to the transmission operator (12). We
report in Figure 3 (right) the spectrum of the modal iteration operators GIBC(sq, εopt)
and GIBC(4, π/4, εopt). As already noticed, there is an almost perfect clustering of the
eigenvalues for GIBC(sq, εopt). As expected, the larger Np, the better the approximation
of the spectrum of the square-root. Moreover, Np allows to adjust the spectrum accuracy
for large modes m (evanescent modes which numerically correspond to mesh refinement
in a finite element context). Numerical simulations show that in practice relatively small
values of Np (Np = 2, 4, 8) give optimal convergence results.

2.3 Weak Formulations

For the finite element approximation, we consider some variational formulations. Two
kinds of PDEs are involved when using optimized Schwarz methods: firstly, a volume
system (in the present case, the scalar Helmholtz equation) given by Vi, and, secondly, a
surface system on the transmission interfaces, fixed by Tji. The variational formulations
are first provided for a general transmission operator S. To simplify the presentation,
we consider the situation where no contribution comes from ∂Σij through an integration
by parts. However, in some cases (e.g. when Σij

⋂
Γ∞ 6= ∅), a special attention must be
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directed towards the inclusion of these terms into the variational formulations.
Without loss of generality, we only detail the case of a particular subdomain Ωi,

for i ∈ D, without incident wave contribution (i.e. homogeneous Dirichlet boundary
condition). We consider the general setting where PML layers ΩPML

i = ∪j∈DiΩPML
ij are

potentially appended to the artificial interfaces Σij, and define Ω∗i := Ωi∪ΩPML
i . In what

follows, the space H1(Ω∗i ) := {ũi ∈ L2(Ω∗i ) such that ∇ũi ∈ (L2(Ω∗i ))
3} is the classical

Sobolev space and H1
0 (Ω∗i ) is the space of functions ũi ∈ H1(Ω∗i ) such that ũi|Γi = 0,

which slightly differs from its usual definition (the Dirichlet condition is here set only on
part of ∂Ω∗i ). Then,

• the volume PDE ũn+1
i = Vi(0, gn) has the following weak formulation

Find ũn+1
i in H1

0 (Ω∗i ) such that, for every ũ′i ∈ H1
0 (Ω∗i ):∫

Ωi

∇ũn+1
i · ∇ũ′i dΩi −

∫
Ωi

k2ũn+1
i ũ′i dΩi +

∫
Γ∞i

Bũn+1
i ũ′i dΓ∞i

+
∑
j∈Di

∫
Σij

Sũn+1
i ũ′i dΣij =

∑
j∈Di

∫
Σij

gnijũ
′
i dΣij,

(18)

• and the surface PDE gn+1
ji = Tji(g

n
ij, ũ

n+1
i ) has the following one:

Find gn+1
ji in H1(Σij) such that, for every g′ji ∈ H1(Σij):∫

Σij

gn+1
ji g′ji dΣij = −

∫
Σij

gnijg
′
ji dΣij + 2

∫
Σij

Sũn+1
i g′ji dΣij.

(19)

Depending on the choice of the transmission operator S, the quantities
∫

Σij
Sũn+1

i ũ′i dΣij

and
∫

Σij
Sũn+1

i g′ji dΣij write as follows:

• IBC(χ): ∫
Σij

Sũn+1
i ũ′i dΣij :=

∫
Σij

(−ık + χ)ũn+1
i ũ′i dΣij; (20)∫

Σij

Sũn+1
i g′ji dΣij :=

∫
Σij

(−ık + χ)ũn+1
i g′ji dΣij. (21)

• GIBC(a, b):∫
Σij

Sũn+1
i ũ′i dΣij :=

∫
Σij

aũn+1
i ũ′i dΣij −

∫
Σij

b∇ũn+1
i · ∇ũ′i dΣij; (22)∫

Σij

Sũn+1
i g′ji dΣij :=

∫
Σij

aũn+1
i g′ji dΣij −

∫
Σij

b∇ũn+1
i · ∇g′ji dΣij. (23)

• GIBC(Np, α, ε):∫
Σij

Sũn+1
i ũ′i dΣij := −ıkC0

∫
Σij

ũn+1
i ũ′i dΣij + ık

Np∑
`=1

A`

∫
Σij

1

k2
ε

∇Σijϕ` ·∇Σij ũ
′
i dΣij,

(24)
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where, for every ` = 1, . . . , Np, the function ϕ` is obtained through the resolution
of

Find ϕ` in H1(Σij) such that, for every ϕ′` ∈ H1(Σij):

−
∫

Σij

ũn+1
i ϕ′` dΣij −B`

∫
Σij

1

k2
ε

∇Σijϕ` · ∇Σijϕ
′
` dΣij +

∫
Σij

ϕ` · ϕ′` dΣij = 0;

∫
Σij

Sũn+1
i g′ji dΣij := −ıkC0

∫
Σij

ũn+1
i g′ji dΣij − ık

Np∑
`=1

A`
B`

∫
Σij

(ũn+1
i − ϕ`)g′ji dΣij.

(25)

• PML(σ):

∫
Σij

Sũn+1
i ũ′i dΣij :=

∫
ΩPML
ij

D∇ũn+1
i · ∇ũ′i dΩPML

ij −
∫

ΩPML
ij

k2E ũn+1
i ũ′i dΩPML

ij ;

(26)∫
Σij

Sũn+1
i g′ji dΣij :=

∫
ΩPML
ij

D∇ũn+1
i · ∇g′ji dΩPML

ij −
∫

ΩPML
ij

k2E ũn+1
i g′ji dΩPML

ij ,

(27)

where D = diag( 1
γx
, γx, γx) and E = γx, with γx(xPML) = 1 + ı

ω
σx(xPML), that is,

we consider a 1D PML with an absorption function that grows only in the direction
normal to the interface. In (27) the domain of definition of the test functions g′ji
on Σij is extended to the neighboring PML layer ΩPML

ij , effectively resulting at the
discrete level in the integration of the functions associated with the nodes of the
interface in the layer of volume elements connected to the interface.

3 Vector Helmholtz Equation: Electromagnetic Waves
We now consider the case of an incident electromagnetic wave Einc illuminating a perfectly
conducting obstacle Ω− with boundary Γ, in a three dimensional medium. The scattered
electric field E is solution to the following exterior electromagnetic scattering problem:

curl curl E− k2E = 0, in Ω+,
γT (E) = −γT (E), on Γ,

lim
‖x‖→∞

‖x‖
(

x

‖x‖ × curl E + ıkE

)
= 0,

(28)

where k := 2π/λ is again the wavenumber and λ the wavelength, n is the outward unit
normal to Ω+ (thus, inward to the obstacle) and γT is the tangential component trace
operator

γT : v 7−→ n× (v × n).

The curl operator is defined by curl a := ∇×a, for a complex-valued vector field a ∈ C3,
and the notation a×b designates the cross product between two complex-valued vectors a
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and b. The last equation of system (28) is the so-called Silver-Müller radiation condition
at infinity, which provides the uniqueness of the solution to the scattering boundary-value
problem (28).

As in the acoustic case, solving (28) numerically with a volume discretization method
requires the truncation of the exterior propagation domain with a PML or with an ABC
on a fictitious boundary Γ∞ surrounding Ω−. For an ABC the problem to be solved is
then defined on the bounded domain Ω, with boundaries Γ and Γ∞:

curl curl E− k2E = 0, in Ω,
γT (E) = −γT (E), on Γ,

γt(curl E) + B(γT (E)) = 0, on Γ∞,
(29)

with γt the tangential trace operator:

γt : v 7−→ n× v.

As above, the unit normal n is outwardly directed to Ω and, to simplify, the solution
of the above problem is still designated by E. The operator B is an approximation of
the Magnetic-to-Electric (MtE) operator. The well-known Silver-Müller ABC at finite
distance is obtained with B = ık, similar to (3) for acoustics modulo the sign (due to the
trace operator definitions). The extension to more accurate ABCs or PMLs is standard.

3.1 Domain Decomposition and Transmission operators

The optimized Schwarz domain decomposition without overlap for the Maxwell problem
(29) can be set up in exactly the same way as for the scalar Helmholtz equation. The
domain Ω is decomposed as described in Section 2.1, and the same notations are used.
The iterative Jacobi algorithm for the computation of the electric fields (En+1

i )i∈D at
iteration n+ 1 involves, first, the solution of the Ndom following problems

curl curl En+1
i − k2 En+1

i = 0, in Ωi,
γTi (En+1

i ) = −γTi (Einc), on Γi,
γti(curl En+1

i ) + B(γTi (En+1
i )) = 0, on Γ∞i ,

γti(curl En+1
i ) + S(γTi (En+1

i )) = gnij, on Σij, ∀j ∈ Di,

(30)

and then forming the quantities gn+1
ji through

gn+1
ji = γti(curl En+1

i ) + S(γTi (En+1
i )) = −gnij + 2S(γTi (En+1

i )), on Σij, (31)

where, for i ∈ D, Ei = E|Ωi , S is a transmission operator through the interfaces Σij and
γti and γTi are the local tangential trace and tangential component trace operators:

γti : vi 7−→ ni × vi|∂Ωi and γTi : vi 7−→ ni × (vi|∂Ωi × ni),

with ni the outward-pointing unit normal to Ωi.
Following the same procedure as in section 2.1, we introduce the two families of

operators (Vi)i∈D and (Tji)i∈D,j∈Di as:
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1. En+1
i = Vi(Einc,gn)⇐⇒ En+1

i is solution of problem (30), where gn = (gnji)i∈D,j∈Di
collects all the unknowns at iteration n;

2. gn+1
ji = Tji(g

n
ij,E

n+1
i )⇐⇒ gn+1

ji is solution of problem (31).

By linearity, we decompose the field En+1
i as En+1

i = Fn+1
i + Ẽn+1

i , where

Fn+1
i = Vi(E

inc, 0) and Ẽn+1
i = Vi(0,g

n). (32)

The quantity Fn+1
i is independent of the iteration number n and can hence be written as

Fi := Fn
i , ∀n ∈ N,∀i ∈ D. The whole algorithm can then be recast into a linear system:

(I − A)g = b, (33)

that can be solved by a Krylov subspace solver.
As in the scalar case, for a vector gn, the quantity Agn is given by, for i ∈ D and

j ∈ Di, (Agn)ji = Tji

(
gnij, Ẽ

n+1
i

)
. The information about the incident wave is contained

in the right-hand side: bji = Tji (0,Fi). The domain decomposition algorithm for the
Maxwell system is then exactly the same as the one described in Algorithm 1 for the
scalar Helmholtz equation, by formally replacing vi, uinc, g and ui by Fi,E

inc,g and Ei,
respectively.

Similarly to the acoustic case, optimal convergence of the domain decomposition algo-
rithm would be achieved by using the (nonlocal) MtE operator as transmission condition.
Local approximations based on polynomial or rational approximations of the total sym-
bol of the surface free-space MtE have been proposed, as well as volume representations
through Perfectly Matched Layers. We detail four of those approximations below, for a
generic transmission boundary Σ:

• Zeroth-order transmission condition [14]:

SIBC(0)(γ
T (E)) = ıkγT (E). (34)

• Optimized second-order transmission condition [45]:

SGIBC(a,b)(γ
T (E)) = ık

(
I +

a

k2
∇ΣdivΣ

)−1
(
I − b

k2
curlΣcurlΣ

)
(γT (E)), (35)

where the curl operator is the dual operator of curl and where a and b are chosen so
that an optimal convergence rate is obtained for the (TE) and (TM) modes; see [45]
for the expression of a and b in the half-plane case. An optimized transmission
condition using a single second-order operator was proposed in [1]:

SGIBC(a)(γ
T (E)) = ıka

(
I − 1

k2
curlΣcurlΣ

)
(γT (E)). (36)

• Padé-localized square-root transmission condition [19, 21]:

SGIBC(Np, α, ε)(γ
T (E)) = ık

(
C0 +

Np∑
`=1

A`X (I +B`X)−1

)−1(
I − curlΣ

1

k2
ε

curlΣ
)

(γT (E)),

(37)
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with X := ∇Σ
1
k2ε
divΣ − curlΣ 1

k2ε
curlΣ, and where kε, C0, A` and B` are defined by

(13) and (14). This transmission condition corresponds to a rational approximation
of the nonlocal operator

SGIBC(sq, ε)(γ
T (E)) = ık (I +X)−1/2

(
I − curlΣ

1

k2
ε

curlΣ
)

(γT (E)),

which for ε = 0 is the principal symbol of the exact MtE operator for the half-
space. As in the scalar Helmholtz case, the parameter ε is introduced to regularize
this operator for grazing rays on curved interfaces, and the rational approximation
generalizes the polynomial approximations underlying (34), (36) and (35).

• PML transmission condition [51, 52]: The operator SPML(σ) is constructed by ap-
pending a layer ΩPML to the transmission interface, into which a PML transfor-
mation with absorption profile σ is applied in the same way as for the acoustic
case.

3.2 Convergence Analysis on a Model Problem

In order to study the convergence rate and spectral properties of the DDM algorithm
we consider a similar setting as for the scalar case, but in three dimensions: the whole
domain Ω = R3 is separated in two curved subdomains Ω1 and Ω2 by a spherical boundary
of radius R0

Ω0 := {x ∈ R3, |x| > R0}, Ω1 := {x ∈ R3, |x| < R0}, (38)

with ∂Ω0 = ∂Ω1 := Σ. Again, in this homogeneous medium setting we only consider
the transmission operators that lead to a sparse surface representation. Using the same
strategy as in Section 2.2, we fix R0 = 1 and k = 6π, and consider a maximal number
of modes mmax = [10kR]. We report on Figure 4 the modal spectral radius ρ(Am) for
the transmission conditions IBC(0), GIBC(a), GIBC(a, b) and GIBC(sq, ε). For GIBC(a)
and GIBC(a, b), the optimal parameters a and b are numerically computed by solving the
min-max problem

min
(a,b)∈C2

max
m≥1

ρ(Am) (39)

with the Matlab function fminsearch. Analytical solutions of (39) for the half-space
case are provided in [1] for GIBC(a) and in [45] for GIBC(a, b). Contrary to the scalar
Helmholtz case and to the half-space case [16], where IBC(0) leads to a convergence
factor that is exactly 1 for the evanescent modes, in this model problem IBC(0) leads to
ρ(Am) < 1 in the whole spectrum, although ρ(Am) is very close to 1 for the evanescent
modes, which results in a globally slowly converging DDM. For GIBC(a), we see that
ρ(Am) < 1, for all m, which is improved further for GIBC(a, b). GIBC(sq, 0) leads to a
better convergence rate still, which can furthermore be optimized in the transition zone
by using GIBC(sq, ε) (with the value parameter ε = 0.4k1/3R−2/3). Finally, a numerical
study using the exact series solution shows that GIBC(a) can lead to a spectral radius
larger than one if the parameter a is chosen as in the half-plane case, which highlights
the need for careful geometry-dependent optimization of the parameters.
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Figure 4: Spectral radius of the modal iteration operator Am vs. the Fourier mode m.
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Figure 5: Left: Residual history of GMRES vs. #iter for the various transmission
conditions. Right: Eigenvalues distribution of the operator (I − A) for the different
transmission conditions.

The history of the GMRES residual with respect to the number of iterations #iter is
displayed on Figure 5 (left) for the various transmission conditions. As we can observe,
there is a hierarchy in the convergence curves that is directly connected to the increasing
order of the GIBCs, the best convergence being obtained for GIBC(sq, ε). Note that
when using GIBC(a, b) with the optimal parameters for the half-plane, the number of
iterations is about the same as for GIBC(a). Also, numerical tests show that using the
Jacobi method instead of GMRES can lead to a convergence failure for IBC(0), GIBC(a)
and GIBC(a, b). The eigenvalues distribution of the operator (I − A) is displayed on
Figure 5 (right). As in the scalar Helmholtz case, the improvement in the clustering
of the eigenvalues around (1, 0) is again observed when improving the approximation
of the MtE. Finally, it is shown in [21] that the localization of GIBC(sq, ε) using Padé
approximants behaves very similarly to the scalar Helmholtz case.
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3.3 Weak Formulations

Without loss of generality, only the case of a particular subdomain Ωi, for i ∈ D, with
no incident wave (homogeneous Dirichlet boundary condition) is detailed. We consider
the same general setting as in the scalar Helmholtz case, i.e., where the PML layers
ΩPML
i = ∪j∈DiΩPML

ij are potentially appended to the artificial interfaces Σij, and define
Ω∗i := Ωi ∪ ΩPML

i . The space of complex-valued curl-conforming vector fields on Ω∗i
is denoted by H(curl,Ω∗i ) := {W ∈ (L2(Ω∗i ))

3 such that curl(W) ∈ (L2(Ω∗i ))
3}. The

functional space H0(curl,Ω∗i ) is the space of functions Wi in H(curl,Ω∗i ) such that
γTi (Wi) = 0 on Γi = 0 (the boundary condition is only imposed on a part ∂Ω∗i ).

• The volume PDE Ẽn+1
i = Vi(0,gn) has the following weak formulation:

Find Ẽn+1
i ∈ H0(curl,Ωi) such that, for every Ẽ′i ∈ H0(curl,Ωi):∫

Ωi

curl Ẽn+1
i · curl Ẽ′i dΩi −

∫
Ωi

k2Ẽn+1
i · Ẽ′i dΩi −

∫
Γ∞i

B(γTi (Ẽn+1
i )) · Ẽ′i dΓ∞i

−
∑
j∈Di

∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij = −

∑
j∈Di

∫
Σij

gnij · Ẽ′i dΣij.

(40)

• The surface PDE gn+1
ji = Tji(g

n
ij, Ẽ

n+1
i ) has the following one:

Find gn+1
ji in H(curl,Σij) such that, for every g′ji ∈ H(curl,Σij):∫

Σij

gn+1
ji · g′ji dΣij = −

∫
Σij

gnij · g′ji dΣij + 2

∫
Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij.

On the transmission boundaries, we have:

• IBC(0): ∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij :=

∫
Σij

ık(γTi (Ẽn+1
i )) · Ẽ′i dΣij; (41)∫

Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij :=

∫
Σij

ık(γTi (Ẽn+1
i )) · g′ji dΣij. (42)

• GIBC(a, b): ∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij :=

∫
Σij

ıkr · Ẽ′i dΣij, (43)

where the function r ∈ H(curl,Σij) is obtained through the solution of

Find r in H(curl,Σij) and ρ in H1(Σij) such that ∀r′ ∈ H(curl,Σij)
and ∀ρ′ ∈ H1(Σij):

−
∫

Σij

a

k2
∇Σijρ · r′ dΣij −

∫
Σij

r · r′ dΣij +

∫
Σij

γTi (Ẽn+1
i ) · r′ dΣij

−
∫

Σij

b

k2
curlΣij(γ

T
i (Ẽn+1

i )) curlΣijr
′ dΣij = 0,∫

Σij

ρρ′ dΣij +

∫
Σij

r · ∇Σijρ
′ dΣij = 0;

(44)
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∫
Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij :=

∫
Σij

ıkr · g′ji dΣij. (45)

• GIBC(Np, α, ε): ∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij :=

∫
Σij

ıkr · Ẽ′i dΣij, (46)

where the function r ∈ H(curl,Σij) is obtained through the solution of

Find r in H(curl,Σij), and for ` = 1, . . . , Np, ϕ` in H(curl,Σij) and ρ` in H1(Σij)
such that ∀r′ ∈ H(curl,Σij),∀ϕ′` ∈ H(curl,Σij) and ∀ρ′` ∈ H1(Σij):∫

Σij

C0r · r′ dΣij −
∫

Σij

γTi (Ẽn+1
i ) · r′ dΣij +

∫
Σij

1

k2
ε

curlΣij(γ
T
i (Ẽn+1

i )) curlΣijr
′ dΣij

+

Np∑
`=1

A`

[∫
Σij

∇Σijρ` · r′ dΣij −
∫

Σij

1

k2
ε

curlΣijϕ` curlΣijr
′ dΣij

]
= 0,∫

Σij

ϕ` ·ϕ′` dΣij +B`

[∫
Σij

∇Σijρ` ·ϕ′` dΣij −
∫

Σij

1

k2
ε

curlΣijϕ` curlΣijϕ
′
` dΣij

]
−
∫

Σij

r ·ϕ′` dΣij = 0, ` = 1, . . . , Np,∫
Σij

ρ`ρ
′
` dΣij +

∫
Σij

1

k2
ε

ϕ` · ∇Σijρ
′
` dΣij = 0, ` = 1, . . . , Np;

(47)∫
Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij :=

∫
Σij

ıkr · g′ji dΣij. (48)

• PML(σ):∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij :=

∫
ΩPML
ij

D−1 curl Ẽn+1
i · curl Ẽ′i dΩPML

ij

−
∫

ΩPML
ij

D k2Ẽn+1
i · Ẽ′i dΩPML

ij ;

(49)

∫
Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij :=

∫
ΩPML
ij

D−1 curl Ẽn+1
i · curl g′ji dΩPML

ij

−
∫

ΩPML
ij

D k2Ẽn+1
i · g′ji dΩPML

ij ,

(50)

where the tensor D is defined as for the acoustic case and the test functions g′ji are
again extended to the volume of the PML layers.

4 Numerical Implementation
The domain decomposition methods analyzed above are all readily available for testing
using finite element methods in the open source GetDDM software environment [33, 48],
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a. circle_concentric b. circle_pie c. cylinder_concentric d. sphere_concentric

e. waveguide2d f. waveguide3d g. cobra h. marmousi

Figure 6: Sample models available online at http://onelab.info/wiki/GetDDM. a., b.,
c., d.: acoustic or electromagnetic (c. and d. only) scattering by cylindrical or spherical
obstacles, with concentric or radial subdomains [10, 21]. e., f.: guided acoustic or elec-
tromagnetic waves in rectangular waveguides [51]. g.: guided acoustic or electromagnetic
waves in the COBRA benchmark defined by the JINA98 workgroup [52]. h.: acoustic
waves in the underground Marmousi model [47].

available online on the web site of the ONELAB projet [29, 30]: http://onelab.info/
wiki/GetDDM. GetDDM is based on the open source finite element solver GetDP (http:
//getdp.info) [17, 18, 28] and the open source mesh generator Gmsh (http://gmsh.
info) [31, 32]. Various 2D and 3D test-cases are provided online (see Figure 6) for both
acoustic and electromagnetic wave problems, as well as detailed instructions on how to
build the software for parallel computer architectures. Pre-compiled, serial versions of the
software for Windows, MacOS and Linux are also available for development and testing.

While GetDDM is written in C++, all the problem-specific data (geometry descrip-
tion, finite element formulation with appropriate transmission condition, domain decom-
position algorithm) are directly written in input ASCII text files, using the code’s built-in
language. This general implementation allows to solve a wide variety of problems with
the same software, without recompilation, and hides all the complexities of the finite
element implementation from the end-user (in particular the MPI-based parallelization).
Moreover, the software is designed to work both on small- and medium-scale problems
(on a workstation, a laptop, a tablet or even a mobile phone) and on large-scale problems
on high-performance computing clusters, without changing the input files.

One of the main features of the environment is the closeness between the input data
files and the symbolic mathematical expressions of the problems. In particular, the weak
formulations presented in Sections 2.3 and 3.3 are directly transcribed symbolically in
the input files. For example, the relevant terms of the finite element formulation for the
Maxwell problem using IBC(0) as transmission condition are directly written as follows
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in the input file:

Galerkin { [ Dof{Curl E~{i}}, {Curl E~{i}} ];
In Omega~{i}; Integration I; Jacobian V; }

Galerkin { [ -k[]^2 * Dof{E~{i}}, {E~{i}} ];
In Omega~{i}; Integration I; Jacobian V; }

Galerkin { [ -I[] * k[] * N[] /\ (Dof{E~{i}} /\ N[]), {E~{i}} ];
In GammaInf~{i}; Integration I; Jacobian S; }

Galerkin { [ g~{i}[], {E~{i}} ];
In Sigma~{i}; Integration I; Jacobian S; }

Galerkin { [ -I[] * k[] * N[] /\ (Dof{E~{i}} /\ N[]), {E~{i}} ];
In Sigma~{i}; Integration I; Jacobian S; }

where Dof{E~{i}} corresponds to the discrete unknown in the ith subdomain Omega~{i}
and [.,.] denotes the inner product. Other transmission conditions are implemented
in a similar way, as is the update relation. The parallel implementation of the iterative
algorithm uses the built-in function IterativeLinearSolver, which takes as argument
the operations that implement the matrix-vector product required by Krylov subspace
solvers, and is based on PETSc [5] and MUMPS [2] for the parallel (MPI-based) imple-
mentation of the linear algebra routines.

For illustration purposes, Figure 7 presents some other cases that have been solved
using GetDDM. Published references are provided, which contain further information
about the specific test cases, mathematical models and numerical results.
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