Synergistic observations of the giant planets with HST and JWST: Jupiter's auroral emissions

Denis GRODENT

Laboratory for Planetary and Atmospheric Physics STAR Institute Université de Liège Belgium

Denis GRODENT Jean-Claude GERARD Bertrand BONFOND Aikaterini RADIOTI Zhonghua YAO Benjamin PALMAERTS Maïté DUMONT

37 HST programs, giant planets aurora

- GTO-1269 (FOC) in 1991 CO
- .

U.Liège

• GO-14634 (STIS) Juno era 2016-2018

Geophysical Research Letters

First published image of Jupiter's FUV Ly- α aurora

FOC (DD time)

Dols et al., 1992 F. Paresce

Institute

U.Liège

SEPTEMBER 23, 1992

Volume 19 Number 18

AMERICAN GEOPHYSICAL UNION

STAR Institute

star.ulg.ac.be

More than 100 researchers

- Planetology
- Stellar Physics
- Extragalactic Astrophysics & Astro-particles
- Instrumentation

Instrumentation

Centre Spatial de Liège

HST - FOC

Development of the photon counting detector and space qualification of the FOC instrument

Instrumentation

Centre Spatial de Liège

JWST - MIRI

Contribution to the Input Optics and Calibration Unit (IOC), the Instrument Control Electronics (ICE) and various optics for MIRIM

Solar System Planets Jupiter's aurora

U.Liège

 JWST will be able to observe the outer planets without saturating in at least some modes. »

OK HST

OK JWST

U.Liège

Auroral process

applies to all magnetized bodies surrounded by plasma

Brown dwarf aurora (Hallinan et al., 2015)

vmede Aurorae • Hubble Space Telescope • STIS

Jupiter (North) FUV aurora HST STIS TTAG F25SRF2 MIRFUV GO-14634

H₂ / H / He /CH₄

U.Liège

Total emitted UV Power ~1 TW ~200km/pix 30sec

U.Liège

Saturn (South) FUV aurora HST STIS Accum 25MAMA MIRCUV GO-10083 540 sec ~500km/pix

0.1 TW

Clarke et al., 2005

Uranus (?) FUV aurora HST STIS Accum F25MAMA MIRCUV GO-12601

Institute

U.Liège

1000 sec ~1000km/pix 0.001 TW

Insti

U.Liège

Jupiter (North) FUV aurora HST STIS TTAG F25SRF2 MIRFUV GO-14634

151 HST orbits Coordinated with Juno

Magnetic Anomaly near the surface of Jupiter

Grodent et al., 2008

Multiple satellite footprints

Spectral auroral scan (unsupported mode) HST STIS FUV MAMA G140L slit 52x0.5 1425A

J. Gustin et al./Icarus 268 (2016) 215–241

U.Liège

U.Liège

Jupiter IR aurora ESO VLT CRIRES (AO, 8m) Spectral scan (similar to UV) pixel scale ~0.1" (0.2", STISx8) L-band 3-4 μ m

long-slit 10 sec for 15 min

Stallard et al., 2016

Jupiter IR aurora NASA IRTF NSFCam (3m) 120 sec Images Pixel scale ~0.15" (0.2" STISx8) narrow band 3.45 µm

Stallard et al., 2016

U.Liège

Subaru Telescope 0.2" resolution with AO. 10 x 2 sec exposures.

Unpublished material, courtesy Hadjime KITA, Haruna WATANABE (Tohoku Univ.)

8.2 m. National Astronomical Observatory of Japan, Mauna Kea

Spatial resolution appears to be limited by H₃+ lifetime (several minutes)

Inst

U.Liège

Juno - Jupiter flyby

(next PJ05 on March, 27)

JIRAM high-res images of the IR aurora

STAR Institute

U.Liège

Adriani et al., 2014

U.Liège STAR U.Liège Institute

With appropriate IR instrument, it is possible to achieve the same image quality as that offered by HST-STIS in the UV.

However, UV and IR do not show exactly the same features (ionospheric convection motion, Joule heating, atmospheric Temperature, ...).

⇒ Use JWST!

Possible to use JWST for Jupiter's aurora? Yes, NIRCam (NIRSpec) is perfectly suited

U.Liège

Possible configuration for observing Jupiter using the 640x640 sub-arrays on NIRCam

Institute

U.Liège

U.Liège

Thank You!

