Offline Policy-search in
Bayesian Reinforcement Learning

Castronovo Michael

University of Liege, Belgium
Advisor: Damien Ernst

15th March 2017

Contents

Introduction

Problem Statement

Offline Prior-based Policy-search (OPPS)
Artificial Neural Networks for BRL (ANN-BRL)
Benchmarking for BRL

Conclusion

Introduction

What is Reinforcement Learning (RL)?

A sequential decision-making process where an agent observes an
environment, collects data and reacts appropriately.

siT

d

\&7
&~

LAl

Example: Train a Dog with Food Rewards :

Context: Markov-decision process (MDP)

Single trajectory (= only 1 try)

Discounted rewards (= early decisions are more important)

Infinite horizon (= the number of decisions is infinite)

The Exploration / Exploitation dilemma (E/E dilemma)
An agent has two objectives:

e Increase its knowledge of the environment

e Maximise its short-term rewards

= Find a compromise to avoid suboptimal long-term behaviour

In this work, we assume that

e The reward function is known
(= agent knows if an action is good or bad)
e The transition function is unknown
(= agent does not know how actions modify the environment)

Reasonable assumption:

Transition function is not unknown, but is instead uncertain:
= We have some prior knowledge about it
= This setting is called Bayesian Reinforcement Learning

What is Bayesian Reinforcement Learning (BRL)?

A Reinforcement Learning problem where we assume some prior
knowledge is available on start in the form of a MDP distribution.

Intuitively...

A process that allows to simulate
decision-making problems similar
to the one we expect to face.

Example: &
A robot has to find the exit of Txe.
e

an unknown maze.

— Perform simulations on other mazes beforehand
— Learn an algorithm based on those experiences
(e.g.: Wall follower)

Contents

Introduction

Problem Statement

Offline Prior-based Policy-search (OPPS)
Artificial Neural Networks for BRL (ANN-BRL)
Benchmarking for BRL

Conclusion

Problem statement

Let M = (X, U, xo, fm(-), pm(+),) be a given unknown MDP,
where

o X = {x(M ... x(m)} denotes its finite state space
o U={uM, ... ul)} denotes its finite action space

° x,(\)ﬂ denotes its initial state.

x" ~ fp(x, u) denotes the next state when performing action
u in state x

re = pm(Xe, U, Xe+1) € [Rmins Rmax] denotes an instantaneous
deterministic, bounded reward

v € [0, 1] denotes its discount factor

Let hy = (x%, to, o, X1, -+ + » Xe—1, Ut—1, Fe—1, Xt) denote the history
observed until time t.

An E/E strategy is a stochastic policy 7 that, given the current
history h; returns an action u;:

Uy ~ W(ht)

The expected return of a given E/E strategy = on MDP M:

= |01
t
where
Xp = x,(\)/,

Xt41 ™~ fM(Xt, Ut)

re = PM(Xt, Ut,Xt+1)

RL (no prior distribution)

We want to find a high-performance E/E strategy 7}, for a given
MDP M:
Ty € argmax Jy

BRL (prior distribution p,(-))
A prior distribution defines a distribution over each uncertain
component of M (fy(-) in our case).

Given a prior distribution p9\4(~), the goal is to find a policy 7*,
called Bayes optimal.

T = arg max 329\/1(_)
where

~TC . s

Jp(j)w() - MN%MC)JM

10

Contents

Introduction

Problem Statement

Offline Prior-based Policy-search (OPPS)
Artificial Neural Networks for BRL (ANN-BRL)
Benchmarking for BRL

Conclusion

11

Offline Prior-based Policy-search (OPPS)

1. Define a rich set of E/E strategies:

— Build a large set of N formulas
— Build a formula-based strategy for each formula of this set

2. Search for the best E/E strategy in average, according to the
given MDP distribution:

— Formalise this problem as an N-armed bandit problem

12

1. Define a rich set of E/E strategies

Let FX be the discrete set of formulas of size at most K. A
formula of size K is obtained by combining K elements among:

e Variables:
Qi(x,u), Q3(x,u), Q5(x, u)
e Operators:
+7 - X, /7 ‘ . |7 %7 \[7 min('? ')7 max(~,)
Examples:
e Formula of size 2: F(x,u) = | Qi(x,uv)]|
e Formula of size 4: F(x,u) = Q%(x,u) — | Qf(x, u) |
To each formula F € FK, we associate a formula-based strategy
7F, defined as follows:

wr(he) € argerr&ax F(xt, u)
u

13

Problems:
e FX is too large
(JF5| ~ 300,000 formulas for 3 variables and 11 operators)
e Formulas of FX are redundant

(= different formulas can define the same policy)

Examples:
1. Qf(x,u) and Qf(x,u) — Qi(x, u) + Qi(x, u)
2. Qf(x,u) and /Qf(x, u)

Solution:
= Reduce FK

14

Reduction process

— Partition FX into equivalence classes, two formulas being
equivalent if and only if they lead to the same policy

— Retrieve the formula of minimal length of each class into a
set FK

E_xample:
|F®| ~ 3,000 while |F°| ~ 300,000

Q5 (z,u)
Qh(w,u)
* Q4(z,u) — Q(w,u) + Qi (2,4)

* Qf(w,u)

Computing FX may be

expensive. We instead use an efficient
heuristic approach to compute

a good approximation of this set.

15

2. Search for the best E/E strategy in average

A naive approach based on Monte-Carlo simulations (= evaluating
all strategies) is time-inefficient, even after the reduction of the set
of formulas.

Problem:
In order to discriminate between the formulas, we need to compute
an accurate estimation of Jgo 0 for each formula, which requires a

large number of simulations.

Solution:

Distribute the computational ressources efficiently.

= Formalise this problem as a multi-armed bandit problem and
use a well-studied algorithm to solve it.

16

What is a multi-armed bandit problem?

A reinforcement learning problem where the agent is facing bandit
machines and has to identify the one providing the highest reward
in average with a given number of tries.

17

Formalisation
Formalise this research as a N-armed bandit problem.
e To each formula F, € FK (n€ {1,..., N}), we associate an
arm

e Pulling the arm n consists in randomly drawing a MDP M
according to pQ(-), and perform a single simulation of policy
7 on M

e The reward associated to arm n is the observed discounted
return of wgn on M

= This defines a multi-armed bandit problem for which many
algorithms have been proposed (e.g.: UCB1, UCB-V, KL-UCB, ...)

18

Learning Exploration/Exploitation in Reinforcement Learning

M. Castronovo, F. Maes, R. Fonteneau & D. Ernst (EWRL 2012, 8 pages)

BAMCP versus OPPS: an Empirical Comparison

M. Castronovo, D. Ernst & R. Fonteneau (BENELEARN 2014, 8 pages)

19

Contents

Introduction

Problem Statement

Offline Prior-based Policy-search (OPPS)

Artificial Neural Networks for BRL (ANN-BRL)
Benchmarking for BRL

Conclusion

20

Artificial Neural Networks for BRL
(ANN-BRL)

We exploit an analogy between decision-making and classification
problems.

A reinforcement learning A multi-class classification
problem consists in finding problem consists in finding
a policy 7 which associates a rule C(+) which associates

an action u € U to aclassce{l,...,K} to
any history h. any vector v € R" (n € N).

= Formalise a BRL problem as a classification problem in order to
use any classification algorithms such as Artificial Neural Networks

1. Generate a training dataset:

— Perform simulations on MDPs drawn from p{ ,(-)
— For each encountered history, recommend an action
— Reprocess each history h into a vector of fixed size

= Extract a fixed set of features (= variables for OPPS)

2. Train ANNs:

= Use a boosting algorithm

22

1. Generate a training dataset

In order to generate a trajectory, we need a policy:
e A random policy?
Con: Lack of histories for late decisions
e An optimal policy? (fi(-) is known for M ~ p%(-))
Con: Lack of histories for early decisions
= Why not both?

Let 7() be an e-Optimal policy used for drawing trajectory i
(on a total of n trajectories).

Fore= - 7)(h) = u* with probability 1 — e
n

and is drawn randomly in U else.

23

To each history hél), cee h(7:'l)—1’ ce hé”), ce h(.r")_1 observed
during the simulations, we associate a label to each action:

e 1 if we recommend the action

o —1 else

Example:
U= {u(l)7 u(2)7 U(3)} : hél) o (_17 1’ _1)
= We recommend action u(?

We recommend actions which are optimal w.r.t. M
(fm(-) is known for M ~ pQ (-)).

24

Reprocess of all histories in order to fed the ANNs with vectors of

fixed size.
= Extract a fixed set of N features: ¢p, = [qb&), ceey ¢§1’t\l)]

We considered two types of features:
e Q-Values:
¢ht = [th(xt7 u(l))7 ‘e th(Xt7 u(nU))]

e Transition counters:
by = [Chy (< xV, u® 5O 5y
Cp, (< x(1x) () 5 (nx) 5]

25

2. Train ANNs
Adaboost algorithm:

1. Associate a weight to each sample of the training dataset
2. Train a weak classifier on the weighted training dataset
3. Increase the weights of the samples misclassified by the
combined weak classifiers trained previously
4. Repeat from Step 2
Problems

e Adaboost only addresses two-class classification problems

(reminder: we have one class for each action)
= Use SAMME algorithm instead

e Backpropagation does not take the weights of the samples

into account
= Use a re-sampling algorithm for the training dataset

26

Approximate Bayes Optimal Policy Search using NNs

M. Castronovo, V. Francois-Lavet, R. Fonteneau, D. Ernst & A. Couétoux (ICAART 2017, 13 pages)

27

Contents

Introduction

Problem Statement

Offline Prior-based Policy-search (OPPS)
Artificial Neural Networks for BRL (ANN-BRL)
Benchmarking for BRL

Conclusion

28

Benchmarking for BRL

Bayesian litterature

Compare the performance of each algorithm on well-chosen MDPs
with several prior distributions.

Our benchmark
Compare the performance of each algorithm on a distribution of
MDPs using a (possibly) different distribution as prior knowledge.
Prior distribution = Test distribution = Accurate case
Prior distribution # Test distribution = Inaccurate case

Additionally, computation times of each algorithm is part of our
comparison criteria.

29

Motivations:

= No selection bias
(= good on a single MDP = good on a distribution of MDPs)

= Accurate case evaluates generalisation capabilities
= Inaccurate case evaluates robustness capabilities

= Real-life applications are subject to time constraints
(= computation times cannot be overlooked)

30

The Experimental Protocol

An experiment consists in evaluating the performances of several
algorithms on a test distribution paq(-) when trained on a prior

. . . 0
distribution p(-).

One algorithm — several agents (we test several configurations)

We draw N MDPs M) ... M(N) from the test distribution
pam(+) in advance, and we evaluate the agents as follows:

— Build policy 7 offline w.r.t. p%(-)

— For each sampled MDP M(), compute estimate J_Xr/,(,-) of I
: ~T ~TC
— Use these values to compute estimate () of)

31

Estimate Jj;:
Truncate each trajectory after T steps:

n = 0.001
log(n x (1 — 7))
T = [R / log ’yl

7r%;\T/IZE rt'Y

where 7 denotes the accuracy of our estimate.

32

Estimate 3:;/\4(-):

We compute p, = 3;}\4) and o, the empirical mean and
standard deviation of the results observed on the N MDPs drawn

from paq(+).

The statistical confidence interval at 95% for 3;}\4(.) is computed
as:

33

Time constraints

We want to classify algorithms based on their time performance.

More precisely, we want to identify the best algorithm(s) with
respect to:

1. Offline computation time constraint

2. Online computation time constraint

We filter the agents depending on the time constraints:

e Agents not satisfying the time constraints are discarded
e For each algorithm, we select the best agent in average

e We build the list of agents whose performances are not
statistically different than the best one observed (Z-test)

34

Experiments

GC - Generalised Chain GDL - Generalised
Double-loop

? ::‘ +10
)

+10

Grid

GC(ny =5,ny = 3); GDL(n, = 9, ny = 2); Grid(ny = 25,ny = 4)

35

Simple algorithms
e Random
o c-Greedy
e Soft-Max

State-of-the-art BRL algorithms
e BAMCP
e BFS3
e SBOSS
e BEB

Our algorithms
e OPPS-DS
e ANN-BRL

36

Results

Offline time bound (in m)

1e+03

1e+02

1e+01

1e+00

1e-01

1e-02

1e-03

1e-04

1e-05

1e-06

Figure: Best algorithms w.r.t offline/online periods (accurate case)

GC Experiment GDL Experiment Grid Experiment
T T T T T 1e+03 T T T
r o o a 1e+02 |- B
1e+02 [R
- i 8 1e+01 [B B
o B E 1e+00 - B
Bk & £ 1e+00 - 4 =
L s P 2| & T 1e0t [3
3 . 3 .
- g o te02f * B
2 te-02 [4 2
Tl e = + =
o N 2 2 te03 " o
2x 2 - £
L o x | ax e} L i
1004 |- - 1e-04
r 1e-05 - b
- 16-06 |- i 16-06 - A A
| S | TR S | I I I
1e-04 1e-02 1e+00 1e+02 1e-06 1e-04 1e-02 1e+00 1e-08 1e-06 1e-04 1e-02

Online time bound (in ms)

Online time bound (in ms)

Online time bound (in ms)

Random

B
ANN-BRL (Q)
ANN-BRL (C)

PoeOmMONX

37

Agent

Score on GC

Score on GDL

Score on Grid

Random 31124090 | 2.79+0.07 0.22+0.06
e-Greedy 40.62+ 155 | 3.05+0.07 6.90 +0.31
Soft-Max 3473+£1.74 | 2.7940.10 0.00 + 0.00
BAMCP 3556+1.27 | 3.11+0.07 | 643+0.30
BFS3 39.84+1.74 | 290+0.07 3.46+0.23
SBOSS 35.00+1.80 | 2.81+0.10 450 +0.33
BEB 4172+1.63 | 3.09+0.07 6.76 + 0.30
OPPS-DS 42471191 | 310+007 | 7.03+0.30
ANN-BRL (Q) | 42.01+1.80 | 3.1140.08 | 6.15+0.31
ANN-BRL (C) | 35.95+1.90 | 2.810.09 4.09+0.31

Table: Best algorithms w.r.t Performance (accurate case)

38

Offline time bound (in m)

GC Experiment

GDL Experiment

Grid Experiment

1e+03 [T T 1e+03 T T T T
1e+02 |- °| 4 10402 - o P —
2 1e+02 [B
1e+01 |- 4 16401 - 4 olgl
1e+00 | 4 E fes00 [o] s 14 € 5
3 £ 1e+00 [E
1e-01 - & & T 1e01 - B T o<
ol H e] ® H
1e-02 - 4 9 1e02f °
+ g g te-02 4
16-03 - 1 2 teost 1 @ + .
£ u E
L O 1e04 | ° 1 O o
16-04 -3 & 16-04 o o ® 1e-04 |- i
1e-05 - 4 1e-05 - 4
> ca
1e-06 - E 16-06 - B 16-06 - € =1
! [38 S sl L | i | ! L | |
1e-04 1e-02 1e+00 1e+02 1e-06 1e-04 1e-02 1e+00 1e-08 1e-06 1e-04 1e-02

Online time bound (in ms)

Online time bound (in ms)

Online time bound (in ms)

Random

B
ANN-BRL (Q)
ANN-BRL (C)

PoeOmMONX

Figure: Best algorithms w.r.t offline/online periods (inaccurate case)

39

Agent Score on GC | Score on GDL | Score on Grid
Random 31.67 £ 1.05 2.76 £ 0.08 0.23+0.06
e-Greedy 37.69+1.75 2.88 £0.07 0.63+0.09
Soft-Max 34.75 + 1.64 2.76 £0.10 0.00 £+ 0.00
BAMCP 33.87 £1.26 2.85+0.07 0.51+0.09
BFS3 36.87 +1.82 2.85+0.07 0.42+0.09
SBOSS 38.77 £1.89 2.86 £0.07 0.29 +0.07
BEB 38.34 £1.62 2.88 £ 0.07 0.29+0.05
OPPS-DS 39.29+1.71 | 2.99-+0.08 1.09 +£0.17
ANN-BRL (Q) | 38.76 £1.71 | 2.92+0.07 4.29 +0.22
ANN-BRL (C) | 36.30 £1.82 2.84+0.08 0.91+0.15

Table: Best algorithms w.r.t Performance (inaccurate case)

40

BAMCP versus OPPS: an Empirical Comparison

M. Castronovo, D. Ernst & R. Fonteneau (BENELEARN 2014, 8 pages)

Benchmarking for Bayesian Reinforcement Learning

M. Castronovo, D. Ernst, A. Couétoux & R. Fonteneau (PLoS One 2016, 25 pages)

41

Contents

Introduction

Problem Statement

Offline Prior-based Policy-search (OPPS)
Artificial Neural Networks for BRL (ANN-BRL)
Benchmarking for BRL

Conclusion

42

Conclusion

Summary

1. Algorithms:

e Offline Prior-based Policy-search (OPPS)
e Artificial Neural Networks for BRL (ANN-BRL)

2. New BRL benchmark

3. An open-source library

43

BBRL: Benchmarking tools for Bayesian Reinforcement Learning

owan 1 w2 =
oce | Gumesa 1w — o o e ore oot Drmes [TV —— | epie o
sen Home

castin e page o 2 g

on spaces. We decided fo Geveop these.

Problem Statement

The goal of the

and what has happened during the previous interactions.

asfolows:
EREOMEmS « The sate
BBRL
B

curent state and the action it chose toperform.

https://github.com/mcastron/BBRL /

a4

Future work

e OPPS

— Feature selection (PCA)
— Continuous formula space

e ANN-BRL

— Extension to high-dimensional problems
— Replace ANNs by other ML algorithms
(e.g.: SVMs, decision trees)

e BRL Benchmark

— Design new distributions to identify specific characteristics

e Flexible BRL algorithm
— Design an algorithm to exploit both offline and online phases

45

Thanks for your attention!

46

