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Introduction

What is Reinforcement Learning (RL)?

A sequential decision-making process where an agent observes an
environment, collects data and reacts appropriately.

Example: Train a Dog with Food Rewards

• Context: Markov-decision process (MDP)

• Single trajectory (= only 1 try)

• Discounted rewards (= early decisions are more important)

• Infinite horizon (= the number of decisions is infinite)
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The Exploration / Exploitation dilemma (E/E dilemma)

An agent has two objectives:

• Increase its knowledge of the environment

• Maximise its short-term rewards

⇒ Find a compromise to avoid suboptimal long-term behaviour

In this work, we assume that

• The reward function is known
(= agent knows if an action is good or bad)

• The transition function is unknown
(= agent does not know how actions modify the environment)
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Reasonable assumption:
Transition function is not unknown, but is instead uncertain:

⇒ We have some prior knowledge about it

⇒ This setting is called Bayesian Reinforcement Learning

What is Bayesian Reinforcement Learning (BRL)?

A Reinforcement Learning problem where we assume some prior
knowledge is available on start in the form of a MDP distribution.
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Intuitively...

A process that allows to simulate
decision-making problems similar
to the one we expect to face.

Example:
A robot has to find the exit of
an unknown maze.

→ Perform simulations on other mazes beforehand

→ Learn an algorithm based on those experiences

→ (e.g.: Wall follower)
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Problem statement

Let M = (X ,U, x0, fM(·), ρM(·), γ) be a given unknown MDP,
where

• X = {x (1), . . . , x (nX )} denotes its finite state space

• U = {u(1), . . . , u(nU)} denotes its finite action space

• x0
M denotes its initial state.

• x ′ ∼ fM(x , u) denotes the next state when performing action
u in state x

• rt = ρM(xt , ut , xt+1) ∈ [Rmin,Rmax] denotes an instantaneous
deterministic, bounded reward

• γ ∈ [0, 1] denotes its discount factor

Let ht = (x0
M , u0, r0, x1, · · · , xt−1, ut−1, rt−1, xt) denote the history

observed until time t.
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An E/E strategy is a stochastic policy π that, given the current
history ht returns an action ut :

ut ∼ π(ht)

The expected return of a given E/E strategy π on MDP M:

JπM = EM

[∑
t

γtrt

]

where

x0 = x0
M

xt+1 ∼ fM(xt , ut)

rt = ρM(xt , ut , xt+1)
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RL (no prior distribution)

We want to find a high-performance E/E strategy π∗M for a given
MDP M:

π∗M ∈ arg max
π

JπM

BRL (prior distribution p0
M(·))

A prior distribution defines a distribution over each uncertain
component of M (fM(·) in our case).

Given a prior distribution p0
M(·), the goal is to find a policy π∗,

called Bayes optimal:

π∗ = arg max
π

Jπp0
M(·)

where
Jπp0

M(·) = E
M∼p0

M(·)
JπM
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Offline Prior-based Policy-search (OPPS)

1. Define a rich set of E/E strategies:

→ Build a large set of N formulas
→ Build a formula-based strategy for each formula of this set

2. Search for the best E/E strategy in average, according to the
given MDP distribution:

→ Formalise this problem as an N-armed bandit problem
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1. Define a rich set of E/E strategies

Let FK be the discrete set of formulas of size at most K . A
formula of size K is obtained by combining K elements among:

• Variables:
Q̂t

1(x , u), Q̂t
2(x , u), Q̂t

3(x , u)

• Operators:
+, −, ×, /, | · |, 1

· ,
√
·, min(·, ·), max(·, ·)

Examples:

• Formula of size 2: F (x , u) = | Q̂t
1(x , u) |

• Formula of size 4: F (x , u) = Q̂t
3(x , u)− | Q̂t

1(x , u) |

To each formula F ∈ FK , we associate a formula-based strategy
πF , defined as follows:

πF (ht) ∈ arg max
u∈U

F (xt , u)

13



Problems:

• FK is too large
(|F5| ' 300, 000 formulas for 3 variables and 11 operators)

• Formulas of FK are redundant
(= different formulas can define the same policy)

Examples:
1. Qt

1(x , u) and Qt
1(x , u)− Qt

3(x , u) + Qt
3(x , u)

2. Qt
1(x , u) and

√
Qt

1(x , u)

Solution:
⇒ Reduce FK

14



Reduction process

→ Partition FK into equivalence classes, two formulas being
equivalent if and only if they lead to the same policy

→ Retrieve the formula of minimal length of each class into a
set F̄K

Example:
|F̄5| ' 3, 000 while |F5| ' 300, 000

Computing F̄K may be
expensive. We instead use an efficient
heuristic approach to compute
a good approximation of this set.
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2. Search for the best E/E strategy in average

A naive approach based on Monte-Carlo simulations (= evaluating
all strategies) is time-inefficient, even after the reduction of the set
of formulas.

Problem:
In order to discriminate between the formulas, we need to compute
an accurate estimation of Jπ

p0
M(·) for each formula, which requires a

large number of simulations.

Solution:
Distribute the computational ressources efficiently.
⇒ Formalise this problem as a multi-armed bandit problem and
use a well-studied algorithm to solve it.
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What is a multi-armed bandit problem?

A reinforcement learning problem where the agent is facing bandit
machines and has to identify the one providing the highest reward
in average with a given number of tries.
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Formalisation

Formalise this research as a N-armed bandit problem.

• To each formula Fn ∈ F̄K (n ∈ {1, . . . ,N}), we associate an
arm

• Pulling the arm n consists in randomly drawing a MDP M
according to p0

M(·), and perform a single simulation of policy
πF n on M

• The reward associated to arm n is the observed discounted
return of πF n on M

⇒ This defines a multi-armed bandit problem for which many
algorithms have been proposed (e.g.: UCB1, UCB-V, KL-UCB, . . . )
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Learning Exploration/Exploitation in Reinforcement Learning
M. Castronovo, F. Maes, R. Fonteneau & D. Ernst (EWRL 2012, 8 pages)

BAMCP versus OPPS: an Empirical Comparison
M. Castronovo, D. Ernst & R. Fonteneau (BENELEARN 2014, 8 pages)
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Artificial Neural Networks for BRL
(ANN-BRL)

We exploit an analogy between decision-making and classification
problems.

A reinforcement learning
problem consists in finding
a policy π which associates

an action u ∈ U to
any history h.

A multi-class classification
problem consists in finding
a rule C(·) which associates

a class c ∈ {1, . . . ,K} to
any vector v ∈ Rn (n ∈ N).

⇒ Formalise a BRL problem as a classification problem in order to
use any classification algorithms such as Artificial Neural Networks
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1. Generate a training dataset:

→ Perform simulations on MDPs drawn from p0
M(·)

→ For each encountered history, recommend an action
→ Reprocess each history h into a vector of fixed size

⇒ Extract a fixed set of features (= variables for OPPS)

2. Train ANNs:

⇒ Use a boosting algorithm
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1. Generate a training dataset

In order to generate a trajectory, we need a policy:

• A random policy?

Con: Lack of histories for late decisions

• An optimal policy? (fM(·) is known for M ∼ p0
M(·))

Con: Lack of histories for early decisions

⇒ Why not both?

Let π(i) be an ε-Optimal policy used for drawing trajectory i
(on a total of n trajectories).

For ε =
i

n
: π(i)(ht) = u∗ with probability 1− ε

and is drawn randomly in U else.
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To each history h
(1)
0 , . . . , h

(1)
T−1, . . . , h

(n)
0 , . . . , h

(n)
T−1 observed

during the simulations, we associate a label to each action:

• −1 if we recommend the action

• −1 else

Example:

U = {u(1), u(2), u(3)} : h
(1)
0 ↔ (−1, 1, −1)

⇒ We recommend action u(2)

We recommend actions which are optimal w.r.t. M
(fM(·) is known for M ∼ p0

M(·)).
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Reprocess of all histories in order to fed the ANNs with vectors of
fixed size.
⇒ Extract a fixed set of N features: φht = [φ

(1)
ht
, . . . , φ

(N)
ht

]

We considered two types of features:

• Q-Values:

φht = [Qht (xt , u
(1)), . . . , Qht (xt , u

(nU))]

• Transition counters:

φht = [Cht (< x (1), u(1), x (1) >), . . . ,

Cht (< x (nX ), u(nU), x (nX ) >)]
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2. Train ANNs

Adaboost algorithm:

1. Associate a weight to each sample of the training dataset

2. Train a weak classifier on the weighted training dataset

3. Increase the weights of the samples misclassified by the
combined weak classifiers trained previously

4. Repeat from Step 2

Problems

• Adaboost only addresses two-class classification problems
(reminder: we have one class for each action)
⇒ Use SAMME algorithm instead

• Backpropagation does not take the weights of the samples
into account
⇒ Use a re-sampling algorithm for the training dataset
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Approximate Bayes Optimal Policy Search using NNs
M. Castronovo, V. François-Lavet, R. Fonteneau, D. Ernst & A. Couëtoux (ICAART 2017, 13 pages)
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Benchmarking for BRL

Bayesian litterature

Compare the performance of each algorithm on well-chosen MDPs
with several prior distributions.

Our benchmark

Compare the performance of each algorithm on a distribution of
MDPs using a (possibly) different distribution as prior knowledge.

Prior distribution = Test distribution ⇒ Accurate case

Prior distribution 6= Test distribution ⇒ Inaccurate case

Additionally, computation times of each algorithm is part of our
comparison criteria.
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Motivations:

⇒ No selection bias
(= good on a single MDP 6= good on a distribution of MDPs)

⇒ Accurate case evaluates generalisation capabilities

⇒ Inaccurate case evaluates robustness capabilities

⇒ Real-life applications are subject to time constraints
(= computation times cannot be overlooked)
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The Experimental Protocol

An experiment consists in evaluating the performances of several
algorithms on a test distribution pM(·) when trained on a prior
distribution p0

M(·).

One algorithm → several agents (we test several configurations)

We draw N MDPs M(1), . . . ,M(N) from the test distribution
pM(·) in advance, and we evaluate the agents as follows:

→ Build policy π offline w.r.t. p0
M(·)

→ For each sampled MDP M(i), compute estimate J̄π
M(i) of Jπ

M(i)

→ Use these values to compute estimate J̄πpM(·) of JπpM(·)
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Estimate JπM :
Truncate each trajectory after T steps:

η = 0.001

T =

⌈
log(η × (1− γ))

Rmax
/ log γ

⌉
JπM ≈ J̄πM =

T∑
t

rtγ
t

where η denotes the accuracy of our estimate.
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Estimate JπpM(·):

We compute µπ = J̄πpM(·) and σπ, the empirical mean and
standard deviation of the results observed on the N MDPs drawn
from pM(·).

The statistical confidence interval at 95% for JπpM(·) is computed
as:

JπpM(·) ≈ J̄πpM(·) =
1

N

∑
1≤i≤N

J̄π
M(i)

JπpM(·) ∈
[
J̄πpM(·) −

2σπ√
N

; J̄πpM(·) +
2σπ√
N

]
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Time constraints

We want to classify algorithms based on their time performance.

More precisely, we want to identify the best algorithm(s) with
respect to:

1. Offline computation time constraint

2. Online computation time constraint

We filter the agents depending on the time constraints:

• Agents not satisfying the time constraints are discarded

• For each algorithm, we select the best agent in average

• We build the list of agents whose performances are not
statistically different than the best one observed (Z -test)
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Experiments

GC - Generalised Chain GDL - Generalised

Double-loop

Grid

GC(nx = 5, nU = 3); GDL(nx = 9, nU = 2); Grid(nx = 25, nU = 4)
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Simple algorithms

• Random

• ε-Greedy

• Soft-Max

State-of-the-art BRL algorithms

• BAMCP

• BFS3

• SBOSS

• BEB

Our algorithms

• OPPS-DS

• ANN-BRL
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Figure: Best algorithms w.r.t offline/online periods (accurate case)
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Agent Score on GC Score on GDL Score on Grid
Random 31.12± 0.90 2.79± 0.07 0.22± 0.06
e-Greedy 40.62± 1.55 3.05± 0.07 6.90± 0.31
Soft-Max 34.73± 1.74 2.79± 0.10 0.00± 0.00

BAMCP 35.56± 1.27 3.11 ± 0.07 6.43± 0.30
BFS3 39.84± 1.74 2.90± 0.07 3.46± 0.23
SBOSS 35.90± 1.89 2.81± 0.10 4.50± 0.33
BEB 41.72± 1.63 3.09± 0.07 6.76± 0.30

OPPS-DS 42.47 ± 1.91 3.10± 0.07 7.03 ± 0.30
ANN-BRL (Q) 42.01± 1.80 3.11 ± 0.08 6.15± 0.31
ANN-BRL (C) 35.95± 1.90 2.81± 0.09 4.09± 0.31

Table: Best algorithms w.r.t Performance (accurate case)
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Figure: Best algorithms w.r.t offline/online periods (inaccurate case)
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Agent Score on GC Score on GDL Score on Grid
Random 31.67± 1.05 2.76± 0.08 0.23± 0.06
e-Greedy 37.69± 1.75 2.88± 0.07 0.63± 0.09
Soft-Max 34.75± 1.64 2.76± 0.10 0.00± 0.00

BAMCP 33.87± 1.26 2.85± 0.07 0.51± 0.09
BFS3 36.87± 1.82 2.85± 0.07 0.42± 0.09
SBOSS 38.77± 1.89 2.86± 0.07 0.29± 0.07
BEB 38.34± 1.62 2.88± 0.07 0.29± 0.05

OPPS-DS 39.29 ± 1.71 2.99 ± 0.08 1.09± 0.17
ANN-BRL (Q) 38.76± 1.71 2.92± 0.07 4.29 ± 0.22
ANN-BRL (C) 36.30± 1.82 2.84± 0.08 0.91± 0.15

Table: Best algorithms w.r.t Performance (inaccurate case)
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BAMCP versus OPPS: an Empirical Comparison
M. Castronovo, D. Ernst & R. Fonteneau (BENELEARN 2014, 8 pages)

Benchmarking for Bayesian Reinforcement Learning
M. Castronovo, D. Ernst, A. Couëtoux & R. Fonteneau (PLoS One 2016, 25 pages)
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Conclusion

Summary

1. Algorithms:

• Offline Prior-based Policy-search (OPPS)
• Artificial Neural Networks for BRL (ANN-BRL)

2. New BRL benchmark

3. An open-source library

43



BBRL: Benchmarking tools for Bayesian Reinforcement Learning

https://github.com/mcastron/BBRL/
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Future work

• OPPS

→ Feature selection (PCA)
→ Continuous formula space

• ANN-BRL

→ Extension to high-dimensional problems
→ Replace ANNs by other ML algorithms

(e.g.: SVMs, decision trees)

• BRL Benchmark

→ Design new distributions to identify specific characteristics

• Flexible BRL algorithm

→ Design an algorithm to exploit both offline and online phases
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Thanks for your attention!
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