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Offline Policy-search in Bayesian Reinforcement Learning

by Michael CASTRONOVO

This thesis presents research contributions in the study field of
Bayesian Reinforcement Learning — a subfield of Reinforcement
Learning where, even though the dynamics of the system are un-
known, the existence of some prior knowledge is assumed in the form
of a distribution over Markov decision processes.

In this thesis, two algorithms are presented: OPPS (Offline Prior-
based Policy Search) and ANN-BRL (Artificial Neural Networks for
Bayesian Reinforcement Learning), whose philosophy consists to
analyse and exploit the knowledge available beforehand prior to
interacting with the system(s), and which differ by the nature of the
model they make use of. The former makes use of formula-based
agents introduced by Maes et al. in (Maes, Wehenkel, and Ernst, 2012),
while the latter relies on Artificial Neural Networks built via SAMME
(Stagewise Additive Modelling using a Multi-class Exponential loss
function) — an AdaBoost algorithm developed by Zhu et al. in (Zhu
et al., 2009).

Moreover, we also describe a comprehensive benchmark which
has been created to compare Bayesian Reinforcement Learning algo-
rithms. In real life applications, the choice of the best agent to fulfil a
given task depends not only on their performances, but also on the
computation times required to deploy them. This benchmark has been
designed to identify the best algorithms by taking both criteria into
account, and resulted in the development of an open-source library:
BBRL (Benchmarking tools for Bayesian Reinforcement Learning)1.

1https://github.com/mcastron/BBRL/wiki
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Recherche directe de politique hors-ligne en apprentissage par
renforcement Bayésien

par Michaël CASTRONOVO

Cette dissertation présente diverses contributions scientifiques
dans le domaine de l’apprentissage par renforcement Bayésien, dans
lequel les dynamiques du système sont inconnues et pour lequelles
nous disposons de connaissances a priori, existant sous la forme d’une
distribution sur un ensemble de processus décisionnels Markoviens.

Nous présentons tout d’abord deux algorithmes, OPPS (Offline
Prior-based Policy Search — recherche directe de politique hors-ligne)
et ANN-BRL (Artificial Neural Networks for Bayesian Reinforcement
Learning — réseaux de neurones artificiels pour l’apprentissage par
renforcement Bayésien), dont la philosophie repose sur l’analyse et
l’exploitation de ces connaissances a priori avant de commencer à
intéragir avec le(s) système(s). Ces méthodes diffèrent par la nature
de leur modèle. La première utilise des agents à base de formule
introduits par Maes et al. dans (Maes, Wehenkel, and Ernst, 2012),
tandis que la seconde repose sur l’utilisation de réseaux de neurones
artificiels construits grâce à SAMME (Stagewise Additive Modeling
using a Multi-class Exponential loss function — modélisation additive
par cycle basée sur une fonction de perte exponentielle multi-classe),
un algorithme d’adaboosting développé par Zhu et al. dans (Zhu
et al., 2009),

Nous décrivons également un protocole expérimental que nous
avons conçu afin de comparer les algorithmes d’apprentissage par
renforcement Bayésien entre eux. Dans le cadre d’applications réelles,
le choix du meilleur agent pour traiter une tâche spécifique dépend
non seulement des ses performances, mais également des temps de
calculs nécessaires pour le déployer. Ce protocole expérimental per-
met de déterminer quel est le meilleur algorithme pour résoudre une
tâche donnée en tenant compte de ces deux critères. Ce dernier a
été mis à la disposition de la communauté scientifique sous la forme
d’une bibliothèque logicielle libre : BBRL (Benchmarking tools for
Bayesian Reinforcement Learning — outils de comparaison pour
l’apprentissage par renforcement Bayésien)2.

2https://github.com/mcastron/BBRL/wiki
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Chapter 1

Introduction

Sequential decision-making is at the very heart of many applications
such as medicine, finance and robotics (Murphy, 2005; Nevmyvaka,
Feng, and Kearns, 2006; Kober et al., 2012). Essentially, a good au-
tomated system requires observing an environment, collecting data,
as well as reacting appropriately. In 1988, R. S. Sutton introduced
the very concept of Reinforcement Learning (RL) to tackle this prob-
lem (Sutton, 1988; Buşoniu et al., 2010): an agent observes a reward
signal as a result of interactions with an initially unknown environ-
ment. Before each decision is made, the agent is allowed to perform
a number of computations to determine the next action to take. Ac-
tions that yield the highest performance according to the current
knowledge of the environment and those that maximise the gathering
of valuable information may not be the same. This is the dilemma
known as Exploration/Exploitation (E/E). The lack of information
at the beginning is a major limiting factor. As new approaches were
developed, RL researchers started to train their algorithms with more
and more data obtained from the environment, and only evaluate
the performance of the agent obtained afterwards. By focusing more
on pure performance than learning efficiency, eventually the quality
of the policy obtained started to become more important than the
E/E dilemma. This no longer matches with the problem that RL was
originally designed for.

Bayesian Reinforcement Learning (BRL) is a subfield of RL spe-
cially adapted for this task. Assuming some prior knowledge is avail-
able at the beginning, researchers in BRL have been able to formalise
a new paradigm while keeping the E/E dilemma in mind. However,
another problem arises when confronting these algorithms: they were
intractable in practice (Duff, 2002). This was due to the greater di-
mensionality of the problem in its BRL form. In recent years, some
researchers in BRL finally succeeded in developing tractable approxi-
mations (Guez, Silver, and Dayan, 2012; Asmuth and Littman, 2011;
Castro and Precup, 2010). Unfortunately, most of them also decided
to use benchmarks which do not take into account the computation
time constraints, inherent to any real life application.

It is also necessary to use an appropriate benchmark when choos-
ing a method to address a specific problem. Our main contribution
consists of a framework allowing BRL algorithms to be compared to
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each other. We believe the quality of a policy in BRL has to be put
in perspective with both computation time and the real application.
Given a specific decision-making problem, we can identify two major
constraints:

1. Offline computation time: the time available prior to interacting
with the process;

2. Online computation time: the time available before each decision-
making process.

In practice, no algorithm is optimal in every aspect. It is up to us to
determine which one is the most suitable for addressing a specific
problem. To the extent of our knowledge, this aspect is often forgotten
within the BRL community. Our benchmarking tools have been pack-
aged under an open-source library: BBRL1. This library is available
on GitHub2 where all the material used in this thesis can be found.
A wiki has been opened to help other researchers to use and modify
BBRL according to their needs. BBRL presents a set of benchmarks
along with several well-known BRL algorithms. It compares each
algorithm on every benchmark and gives a general picture of their
performance in regard to computation time.

Additionally, two algorithms have been developed taking advan-
tage of the offline phase formalised with our benchmark: OPPS3 and
ANN-BRL4. OPPS is an extension of F. Maes’ work on multi-armed
bandit problems (Maes, Wehenkel, and Ernst, 2012) to MDPs, while
ANN-BRL formalises the BRL setting as a Supervised Learning prob-
lem, and train an Artificial Neural Network (ANN) acting as a BRL
agent.

The general Bayesian reinforcement learning setting is introduced
in Section 1.1, and a brief description of each contribution is provided
in Section 1.2.

1.1 Bayesian Reinforcement Learning

Let M = (X,U, f(·), ρM , ρM,0(·), γ) be a Markov Decision Process
(MDP), where X = {x(1), . . ., x(nX)} is its finite state space, U = {u(1),
. . ., u(nU )} is its finite action space, f : X × U × X is its transition
matrix, ρM is its reward function, ρM,0(·) is its initial state distribution,
and γ is the discount factor. In our setting, the transition matrix f is
the only unknown element of MDP M .

At each time-step t, an agent interacts with MDP M by perform-
ing an action ut ∈ U , and moves to state xt+1 with a probability

1BBRL stands for Benchmarking tools for Bayesian Reinforcement Learning.
2http://www.github.com/mcastron/BBRL/wiki/
3OPPS stands for Offline Prior-based Policy Search.
4ANN-BRL stands for Artifical Neural Network for Bayesian Reinforcement

Learning.

http://www.github.com/mcastron/BBRL/wiki/
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P (xt+1|xt, ut) = f(xt, ut, xt+1). In return, the environment sends back
a reward signal rt = ρM(xt, ut, xt+1). The action selected by the agent
depends on history ht = < x0, u0, r0, x1 >, . . . , < xt−1, ut−1, rt−1, xt >,
the set of all transitions observed at time-step t.

In Bayesian Reinforcement Learning, the E/E dilemma is for-
malised through a Bayes-adaptive MDP (BAMDP), which can be de-
fined on top of any MDPM . Formally, letM+ = (X+, U, f+(·), ρ+M , ρM,0(·), γ)
be the BAMDP corresponding to MDP M . The belief state space
X+ = X ×H , with H being the set of possible histories, is obtained
by considering the current history as part of the current state, and the
dynamics of the system are described as follows:

f+(< x, h >, u,< x′, h′ >) = 1 [h′ = hux′]

∫
f

f(x, u, x′) P (f |h) df, (1.1)

ρ+M(< x, h >, u) = ρM(x, u).(1.2)

A Bayes-optimal policy π∗M+ on M+ addresses the E/E dilemma
optimally on MDP M . In theory, since the dynamics are known, this
policy can be inferred from its optimal value function as:

Q∗(< xt, ht >, u) =
∑
s′

P (x′|x, h, u) [ ρ+M(< x, h >, u)

+ γ max
u′

Q∗(< x, hus′ >, u′) ], (1.3)

π∗M+(< xt, ht >, u) = max
u′

Q∗(< xt, ht >, u
′). (1.4)

However, in practice, computing π∗M+ is an intractable problem (Guez,
Silver, and Dayan, 2013). First, the BAMDP state space is infinite. It is,
therefore, not possible to fully explore it. Second, the optimal value
function cannot be computed without sampling transition probabili-
ties based on past observations. This process relies on the calculation
of P (f |ht) ∝ P (ht|f)P (f), which is intractable (Duff, 2002; Kaelbling,
Littman, and Cassandra, 1998; Kolter and Ng, 2009). Thus, the goal of
a Bayesian Reinforcement Learning algorithm is to approximate this
policy at best.

Most state-of-art BRL algorithms are able to improve the accuracy
of their approximation by increasing their computation time. It is
worth noting that any real-life application is subject to computation
time constraints. In these circumstances, identifying the most suitable
algorithm for a given problem depends on its efficiency in terms of
both performance and computation time.
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1.2 Main Contributions

The following chapters are slightly edited research publications. The
next sections of this introduction will give you a brief summary of
each one.

1.2.1 Chapter 2: Learning Exploration/Exploitation Strate-
gies for Single Trajectory Reinforcement Learn-
ing

In Chapter 2, we adapt an algorithm of F. Maes et al. (Maes, Wehenkel,
and Ernst, 2012), designed for addressing k-armed bandit problems,
to MDPs with discrete state/action spaces5. They proposed to define
an index-based agent whose decisions are determined by a formula
which associates a score to each arm with respect to the current data
available (e.g. the number of draws or the mean reward of each arm).
By building a large set of various formulas, they were able to discover
good formulas and build high-performance index-based agents.

In our algorithm, instead of evaluating arms, our formulas eval-
uate < state, action > pairs, and the agent plays the action which
obtained the highest score among the pairs related to the current state.
The features on which the formulas are based have also been adapted
so as to address the MDP case. This algorithm has been referred to as
OPPS in the studies that followed.

1.2.2 Chapter 3: Bayes Adaptive Reinforcement Learn-
ing versus On-line Prior-based Policy Search

In Chapter 3, OPPS is adapted to the Bayesian Reinforcement Learn-
ing setting and compared to BAMCP (Bayes-Adaptive Monte-Carlo
Planning), which is a state-of-the-art Bayesian Reinforcement Learn-
ing algorithm. While OPPS allocates most of its computational re-
sources prior to the first interaction, BAMCP performs its calculations
before making any decision with adjustable computation times. As a
consequence, the quality of the policy depends on the computation
time allowed for BAMCP to make its calculations. In order to provide
fair comparison between the two algorithms, a benchmark which
takes into account both the performances and the computation times
has been designed.

5 It is also noted that the work of Maes on E/E has not been limited to bandit
problems. It has been applied to tree search ones as well, see (Jung, Ernst, and Maes,
2013; Jung et al., 2014; Perrick et al., 2012).
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1.2.3 Chapter 4: Benchmarking for Bayesian Reinforce-
ment Learning

In Chapter 4, the benchmark introduced in Chapter 3 is improved
and a detailed comparison between most Bayesian Reinforcement
Learning algorithms is provided. Additionally, we present BBRL
(Benchmarking for Bayesian Reinforcement Learning), which is an
open-source library developed to help other researchers to make use
of our benchmark.

1.2.4 Chapter 5: Artificial Neural Networks for Bayesian
Reinforcement Learning

In Chapter 5, an innovative algorithm which combines the philoso-
phy of OPPS with Artificial Neural Networks is described. ANN-BRL
(Artificial Neural Networks for Bayesian Reinforcement Learning)
formalises the Bayesian Reinforcement Learning setting into a Su-
pervised Learning problem. The prior distribution is then used to
generate a suitable dataset from several trajectories drawn during the
offline phase. This dataset is eventually used to train ANNs (Artificial
Neural Networks) in order to represent the model used during the
online phase to make decisions.
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Chapter 2

Learning
Exploration/Exploitation
Strategies for Single Trajectory
Reinforcement Learning

We consider the problem of learning high-performance Explo-
ration/Exploitation (E/E) strategies for finite Markov Decision
Processes (MDPs) when the MDP to be controlled is supposed to
be drawn from a known probability distribution pM(·). The per-
formance criterion is the sum of discounted rewards collected by
the E/E strategy over an infinite length trajectory. We propose
an approach for solving this problem that works by considering a
rich set of candidate E/E strategies and by looking for the one that
gives the best average performances on MDPs drawn according
to pM(·). As candidate E/E strategies, we consider index-based
strategies parametrized by small formulas combining variables
that include the estimated reward function, the number of times
each transition has occurred and the optimal value functions V̂
and Q̂ of the estimated MDP (obtained through value iteration).
The search for the best formula is formalized as a multi-armed
bandit problem, each arm being associated with a formula. We
experimentally compare the performances of the approach with
R-MAX as well as with ε-GREEDY strategies and the results are
promising.

The work presented in this chapter has been published in the
Proceedings of the European Workshop on Reinforcement Learning (EWRL
2012) (Castronovo et al., 2012).



Chapter 2. Learning E/E Strategies for Single Trajectory RL 7

2.1 Introduction

Most Reinforcement Learning (RL) techniques focus on determining
high-performance policies maximizing the expected discounted sum
of rewards to come using several episodes. The quality of such a learn-
ing process is often evaluated through the performances of the final
policy regardless of rewards that have been gathered during learn-
ing. Some approaches have been proposed to take these rewards into
account by minimizing the undiscounted regret (Kearns and Singh,
2002; Brafman and Tennenholtz, 2002; Auer and Ortner, 2007; Jaksch,
Ortner, and Auer, 2010), but RL algorithms have troubles solving the
original RL problem of maximizing the expected discounted return over
a single trajectory. This problem is almost intractable in the general
case because the discounted nature of the regret makes early mistakes
- often due to hazardous exploration - almost impossible to recover
from. Roughly speaking, the agent needs to learn very fast in one
pass. One of the best solutions to face this Exploration/Exploitation
(E/E) dilemma is the R-MAX algorithm (Brafman and Tennenholtz,
2002) which combines model learning and dynamic programming
with the “optimism in the face of uncertainty” principle. However,
except in the case where the underlying Markov Decision Problem
(MDP) comes with a small number of states and a discount factor
very close to 1 (which corresponds to giving more chance to recover
from bad initial decisions), the performance of R-MAX is still very far
from the optimal (more details in Section 2.5).

In this paper, we assume some prior knowledge about the targeted
class of MDPs, expressed in the form of a probability distribution over
a set of MDPs. We propose a scheme for learning E/E strategies
that makes use of this probability distribution to sample training
MDPs. Note that this assumption is quite realistic, since before truly
interacting with the MDP, it is often possible to have some prior
knowledge concerning the number of states and actions of the MDP
and/or the way rewards and transitions are distributed.

To instantiate our learning approach, we consider a rich set of
candidate E/E strategies built around parametrized index-functions.
Given the current state, such index-functions rely on all transitions
observed so far to compute E/E scores associated to each possible
action. The corresponding E/E strategies work by selecting actions
that maximize these scores. Since most previous RL algorithms make
use of small formulas to solve the E/E dilemma, we focus on the class
of index-functions that can be described by a large set of such small
formulas. We construct our E/E formulas with variables including the
estimated reward function of the MDP (obtained from observations),
the number of times each transition has occurred and the estimated
optimal value functions V̂ and Q̂ (computed through off-line value
iteration) associated with the estimated MDP. We then formalize the
search for an optimal formula within that space as a multi-armed
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bandit problem, each formula being associated to an arm.
Since it assumes some prior knowledge given in the form of a prob-

ability distribution over possible underlying MDPs, our approach is
related to Bayesian RL (BRL) approaches (Poupart et al., 2006; Asmuth
et al., 2009) that address the E/E trade-off by (i) assuming a prior over
possible MDP models and (ii) maintaining - from observations - a
posterior probability distribution (i.e., “refining the prior”). In other
words, the prior is used to reduce the number of samples required
to construct a good estimate of the underlying MDP and the E/E
strategy itself is chosen a priori following Bayesian principles and
does not depend on the targeted class of MDPs. Our approach is
specific in the sense that the prior is not used for better estimating the
underlying MDP but rather for identifying the best E/E strategy for a
given class of targeted MDPs, among a large class of diverse strate-
gies. We therefore follow the work of (Maes, Wehenkel, and Ernst,
2012), which already proposed to learn E/E strategies in the context of
multi-armed bandit problems, which can be seen as state-less MDPs.

This paper is organized as follows. Section 2.2 formalizes the E/E
strategy learning problem. Section 2.3 describes the space of formula-
based E/E strategies that we consider in this paper. Section 2.4 details
our algorithm for efficiently learning formula-based E/E strategies.
Our approach is illustrated and empirically compared with R-MAX as
well as with ε-GREEDY strategies in Section 2.5. Finally, Section 2.6
concludes.

2.2 Background

Let M = (S,A, pM,f (·), ρM , pM,0(·), γ) be a MDP. S =
{
s(1), . . . , s(nS)

}
is its state space and A =

{
a(1), . . . , a(nA)

}
its action space. When

the MDP is in state st at time t and action at is selected, the MDP
moves to a next state st+1 drawn according to the probability distri-
bution pM,f (·|st, at). A deterministic instantaneous scalar reward rt =
ρM(st, at, st+1) is associated with the stochastic transition (st, at, st+1).

Ht = [s0, a0, r0, . . . , st, at, rt] is a vector that gathers the history over
the first t steps and we denote byH the set of all possible histories of
any length. An exploration / exploitation (E/E) strategy is a stochas-
tic algorithm π that, given the current state st, processes at time t the
vector Ht−1 to select an action at ∈ A: at ∼ π(Ht−1, st). Given the
probability distribution over initial states pM,0(·), the performance/re-
turn of a given E/E strategy π with respect to the MDP M can be
defined as: JπM = E

pM,0(·),pM,f (·)
[Rπ

M(s0)] whereRπ
M(s0) is the stochastic

discounted return of the E/E strategy π when starting from the state
s0. This return is defined as:

Rπ
M(s0) =

∞∑
t=0

γtrt ,
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where rt = ρM(st, π(Ht−1, st), st+1) and st+1 ∼ pM,f (.|st, π(Ht−1, st))
∀t ∈ N and where the discount factor γ belongs to [0, 1). Let pM(·) be
a probability distribution over MDPs, from which we assume that
the actual underlying MDP M is drawn. Our goal is to learn a high
performance finite E/E strategy π given the prior pM(·), i.e. an E/E
strategy that maximizes the following criterion:

Jπ = E
M ′∼pM(·)

[JπM ′ ] . (2.1)

2.3 Formula-based E/E Strategies

In this section, we describe the set of E/E strategies that are considered
in this paper.

2.3.1 Index-based E/E Strategies

Index-based E/E strategies are implicitly defined by maximizing
history-dependent state-action index functions. Formally, we call
a history-dependent state-action index function any mapping I :
H×S×A → R. Given such an index function I , a decision can be taken
at time t in the state st ∈ S by drawing an optimal action according to
I : π(Ht−1, st) ∈ arg max

a∈A
I(Ht−1, st, a)1. Such a procedure has already

been vastly used in the particular case where the index function is an
estimate of the action-value function, eventually randomized using
ε−greedy or Boltzmann exploration, as in Q-LEARNING (Watkins and
Dayan, 1992).

2.3.2 Formula-based E/E Strategies

We consider in this paper index functions that are given in the form of
small, closed-form formulas. This leads to a very rich set of candidate
E/E strategies that have the advantage of being easily interpretable
by humans. Formally, a formula F ∈ F is:
• either a binary expression F = B(F ′, F ′′), where B belongs to a

set of binary operators B and F ′ and F ′′ are also formulas from F,
• or a unary expression F = U(F ′) where U belongs to a set of

unary operators U and F ′ ∈ F,
• or an atomic variable F = V , where V belongs to a set of vari-

ables V depending on the history Ht−1, the state st and the action
a,
• or a constant F = C, where C belongs to a set of constants C.
Since it is high dimensional data of variable length, the history

Ht−1 is non-trivial to use directly inside E/E index-functions. We
proceed as follows to transform the information contained in Ht−1

1Ties are broken randomly in our experiments.
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into a small set of relevant variables. We first compute an estimated
model of the MDP M̂ that differs from the original M due to the
fact that the transition probabilities and the reward function are not
known and need to be learned from the history Ht−1. Let P̂ (s, a, s′)
and ρ̂(s, a) be the transition probabilities and the reward function of
this estimated model. P̂ (s, a, s′) is learned by computing the empirical
frequency of jumping to state s′ when taking action a in state s and
ρ̂(s, a) is learned by computing the empirical mean reward associated
to all transitions originating from (s, a)2. Given the estimated MDP,
we run a value iteration algorithm to compute the estimated optimal
value functions V̂ (·) and Q̂(·, ·). Our set of variables is then defined
as: V =

{
ρ̂(st, a), N(st, a), Q̂(st, a), V̂ (st), t, γ

t
}

where N(s, a) is the
number of times a transition starting from (s, a) has been observed in
Ht−1.

We consider a set of operators and constants that provides a
good compromise between high expressiveness and low cardinal-
ity of F. The set of binary operators B includes the four elemen-
tary mathematical operations and the min and max operators: B =
{+,−,×,÷,min,max}. The set of unary operators U contains the
square root, the logarithm and the absolute value: U =

{√
·, ln(·), | · |

}
.

The set of constants is: C = {1, 2, 3, 5, 7}.
In the following, we denote by πF the E/E strategy induced by

formula F :

πF (Ht−1, st) ∈ argmax
a∈A

F

(
ρ̂(st, a), N(st, a), Q̂(st, a), V̂ (st), t, γ

t

)
We denote by |F | the description length of the formula F , i.e. the

total number of operators, constants and variables occurring in F . Let
K be a maximal formula length. We denote by FK the set of formulas
whose length is not greater than K. This defines our so-called set of
small formulas.

2.4 Finding a High-performance Formula-
based E/E Strategy for a given Class of
MDPs

We look for a formula F ∗ whose corresponding E/E strategy is specif-
ically efficient for the subclass of MDPs implicitly defined by the
probability distribution pM(·). We first describe a procedure for accel-
erating the search in the space FK by eliminating equivalent formulas
in Section 2.4.1. We then describe our optimization scheme for finding
a high-performance E/E strategy in Section 2.4.2.

2If a pair (s, a) has not been visited, we consider the following default values:
ρ̂(s, a) = 0, P̂ (s, a, s) = 1 and P̂ (s, a, s′) = 0,∀s′ 6= s.
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2.4.1 Reducing FK

Notice first that several formulas FK can lead to the same policy. All
formulas that rank all state-action pairs (s, a) ∈ S × A in the same
order define the same policy. We partition the set FK into equivalence
classes, two formulas being equivalent if and only if they lead to
the same policy. For each equivalence class, we then consider one
member of minimal length, and we gather all those minimal members
into a set F̄K .

Computing the set F̄K is not trivial: given a formula, equivalent for-
mulas can be obtained through commutativity, associativity, operator-
specific rules and through any increasing transformation. We thus
propose to approximately discriminate between formulas by compar-
ing how they rank (in terms of values returned by the formula) a set
of d random samples of the variables ρ̂(·, ·), N(·, ·), Q̂(·, ·), V̂ (·), t, γt.
More formally, the procedure is the following:
•we first build FK , the space of all formulas such that |F | ≤ K;
• for i = 1 . . . d, we uniformly draw (within their respective do-

mains) some random realizations of the variables ρ̂(·, ·), N(·, ·), Q̂(·, ·),
V̂ (·), t, γt that we concatenate into a vector Θi;
• we cluster all formulas from FK according to the following rule:

two formulas F and F ′ belong to the same cluster if and only if they
rank all the Θi points in the same order, i.e.: ∀i, j ∈ {1, . . . , d}, i 6=
j, F (Θi) ≥ F (Θj) ⇐⇒ F ′(Θi) ≥ F ′(Θj). Formulas leading to
invalid index functions (caused for instance by division by zero or
logarithm of negative values) are discarded;
• among each cluster, we select one formula of minimal length;
• we gather all the selected minimal length formulas into an ap-

proximated reduced set of formulas F̃K .
In the following, we denote by N the cardinality of the approxi-

mate set of formulas F̃K = {F1, . . . , FN}.

2.4.2 Finding a High-performance Formula

A naive approach for determining a high-performance formula F ∗ ∈
F̃K would be to perform Monte-Carlo simulations for all candidate
formulas in F̃K . Such an approach could reveal itself to be time-
inefficient in case of spaces F̃K of large cardinality.

We propose instead to formalize the problem of finding a high-
performance formula-based E/E strategy in F̃K as a N−armed bandit
problem. To each formula Fn ∈ F̃K (n ∈ {1, . . . , N}), we associate an
arm. Pulling the arm n consists first in randomly drawing a MDP
M according to pM(·) and an initial state s0 for this MDP according
to pM,0(·). Afterwards, an episode starting from this initial state is
generated with the E/E strategy πFn until a truncated time horizon
T . This leads to a reward associated to arm n whose value is the
discounted returnRπ

M(s0) observed during the episode. The purpose
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of multi-armed bandit algorithms is here to process the sequence of
such observed rewards to select in a smart way the next arm to be
played so that when the budget of pulls has been exhausted, one (or
several) high-quality formula(s) can be identified.

Multi-armed bandit problems have been vastly studied, and sev-
eral algorithms have been proposed, such as for instance all UCB-type
algorithms (Auer, Cesa-Bianchi, and Fischer, 2002; Audibert, Munos,
and Szepesvári, 2007). New approaches have also recently been pro-
posed for identifying automatically empirically efficient algorithms
for playing multi-armed bandit problems (Maes, Wehenkel, and Ernst,
2011).

2.5 Experimental Results
In this section, we empirically analyze our approach on a specific
class of random MDPs defined hereafter.

Random MDPs. MDPs generated by our prior pM(·) have nS = 20
states and nA = 5 actions. When drawing a MDP according to this
prior, the following procedure is called for generating pM,f (·) and
ρM(·, ·, ·). For every state-action pair (s, a) : (i) it randomly selects
10% of the states to form a set of successor states Succ(s, a) ⊂ S
(ii) it sets pM,f (s

′|s, a) = 0 for each s′ ∈ S \ Succ(s, a) (iii) for each
s′ ∈ Succ(s, a), it draws a number N(s′) at random in [0, 1] and sets
pM,f (s

′|s, a) = N(s′)∑
s′′∈Succ(s,a)N(s′′)

(iv) for each s′ ∈ Succ(s, a), it sets
ρM(s, a, s′) equal to a number chosen at random in [0, 1] with a 0.1
probability and to zero otherwise. The distribution pM,0(·) of initial
states is chosen uniform over S. The value of γ is equal to 0.995.

Learning protocol. In our experiments, we consider a maximal for-
mula length of K = 5 and use d = 1000 samples to discriminate
between formulas, which leads to a total number of candidate E/E
strategies N = 3834. For solving the multi-armed bandit problem
described in Section 2.4.2, we use an Upper Confidence Bound (UCB)
algorithm (Auer, Cesa-Bianchi, and Fischer, 2002). The total budget
allocated to the search of a high-performance policy is set to Tb = 106.
We use a truncated optimization horizon T = logγ ((1− γ)δ) for es-
timating the stochastic discounted return of an E/E strategy where
δ = 0.001 is the chosen precision (which is also used as stopping
condition in the off-line value iteration algorithm for computing Q̂
and V̂ ). At the end of the Tb plays, the five E/E strategies that have
the highest empirical return mean are returned.

Baselines. Our first baseline, the OPTIMAL strategy, consists in us-
ing for each test MDP, a corresponding optimal policy. The next
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Baselines Learned strategies
Name Jπ Formula Jπ

OPTIMAL 65.3 (N(s, a) × Q̂(s, a)) − N(s, a) 30.3
RANDOM 10.1 max(1, (N(s, a) × Q̂(s, a))) 22.6
GREEDY 20.0 Q̂(s, a) (= GREEDY) 20.0

ε-GREEDY(ε = 0) 20.0 min(γt, (Q̂(s, a) − V̂ (s))) 19.4
R-MAX (m = 1) 27.7 min(ρ̂(s, a), (Q̂(s, a) − V̂ (s))) 19.4

TABLE 2.1: Performance of the top-5 learned strategies
with respect to baseline strategies.

baselines, the RANDOM and GREEDY strategies perform pure explo-
ration and pure exploitation, respectively. The GREEDY strategy is
equivalent to an index-based E/E strategy with formula Q̂(s, a). The
last two baselines are classical E/E strategies whose parameters have
been tuned so as to give the best performances on MDPs drawn from
pM(·): ε-GREEDY and R-MAX. For ε-GREEDY, the best value we found
was ε = 0 in which case it behaves as the GREEDY strategy. This
confirms that hazardous exploration is particularly harmful in the
context of single trajectory RL with discounted return. Consistently
with this result, we observed that R-MAX works at its best when it
performs the least exploration (m = 1).

Results. Table 2.1 reports the mean empirical returns obtained by
the E/E strategies on a set of 2000 test MDPs drawn from pM(·). Note
that these MDPs are different from those used during learning and
tuning. As we can see, the best E/E strategy that has been learned
performs better than all baselines (except the OPTIMAL), including
the state-of-the-art approach R-MAX.

We may wonder to what extent the E/E strategies found by our
learning procedure would perform well on MDPs which are not
generated by pM(·). As a preliminary step to answer this question,
we have evaluated the mean return of our policies on sets of 2000
MDPs drawn from slightly different distributions as the one used for
learning: we changed the number of states nS to different values in
{10, 20, . . . , 50}. The results are reported in Figure 2.1. We observe
that, except in the case nS = 10, our best E/E strategy still performs
better than the R-MAX and the ε-GREEDY strategies tuned on the
original distribution pM(·) that generates MDPs with 20 states. We
also observe that for larger values of nS , the performances of R-MAX
become very close to those of GREEDY, whereas the performances
of our best E/E strategy remain clearly above. Investigating why
this formula performs well is left for future work, but we notice
that it is analog to the formula tk(rk − C) that was automatically
discovered as being well-performing in the context of multi-armed
bandit problems (Maes, Wehenkel, and Ernst, 2011).
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FIGURE 2.1: Performances of the learned and the base-
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differ by the size of the MDPs belonging to their sup-

port.

2.6 Conclusions
In this paper, we have proposed an approach for learning E/E strate-
gies for MDPs when the MDP to be controlled is supposed to be
drawn from a known probability distribution pM(·). The strategies
are learned from a set of training MDPs (drawn from pM(·)) whose
size depends on the computational budget allocated to the learning
phase. Our results show that the learned strategies perform very well
on test problems generated from the same distribution. In particular,
they outperform on these problems R-MAX and ε-GREEDY policies.
Interestingly, the strategies also generalize well to MDPs that do not
belong to the support of pM(·). This is demonstrated by the good
results obtained on MDPs having a larger number of states than those
belonging to pM(·)’s support.

These encouraging results suggest several future research direc-
tion. First, it would be interesting to better study the generalization
performances of our approach either theoretically or empirically. Sec-
ond, we believe that our approach could still be improved by con-
sidering richer sets of formulas w.r.t. the length of the formulas and
the number of variables extracted from the history. Finally, it would
be worth investigating ways to improve the optimization procedure
upon which our learning approach is based so as to be able to deal
with spaces of candidate E/E strategies that are so large that even
running once every strategy on a single training problem would be
impossible.
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Chapter 3

Bayes Adaptive Reinforcement
Learning versus On-line
Prior-based Policy Search

This paper addresses the problem of decision making in un-
known finite Markov Decision Processes (MDPs). The uncer-
tainty about the MDPs is modelled, using a prior distribution
over a set of candidate MDPs. The performance criterion is
the expected sum of discounted rewards collected over an infi-
nite length trajectory. Time constraints are defined as follows:
(i) an off-line phase with a given time budget, which can be
used to exploit the prior distribution and (ii) at each time step
of the on-line phase, decisions have to be computed within a
given time budget. In this setting, two decision-making strate-
gies are compared. Firstly, OPPS, which is a recently proposed
meta-learning scheme that mainly exploits the off-line phase to
perform the policy search, as well as BAMCP—that is a state-of-
the-art model-based Bayesian reinforcement learning algorithm,
which mainly exploits the on-line time budget. These approaches
are empirically compared in a real Bayesian setting, with their
performances computed over a large set of problems. As far as
this particular area of study is concerned, it is the first time that
this is done in the Reinforcement Learning literature. Several
settings are considered by varying the prior distribution and the
distribution from which test problems are drawn. The main find-
ing of these experiments is that there may be a significant benefit
of having an off-line prior-based optimization phase, in the case
of informative and accurate priors, especially when on-line time
constraints are tight.

The work presented in this chapter has been published in the
Proceedings of the Belgian-Dutch Conference on Machine Learning (BENE-
LEARN 2014). It also has been translated in french under the name
“Apprentissage par renforcement bayésien versus recherche directe de
politique hors-ligne en utilisant une distribution a priori: comparaison
empirique”, and published in the Proceedings des Journée Francophones
de Planification, Décision et Apprentissage (JFPDA 2014) (Castronovo,
Fonteneau, and Ernst, 2014).
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3.1 Introduction

Optimally interacting with an unknown Markov Decision Process
(MDP) remains a challenging Reinforcement Learning (RL) prob-
lem (Buşoniu et al., 2010). At the heart of this challenge lies the
so-called Exploration/Exploitation (E/E) dilemma: on one hand, the
agent needs to collect relevant data by exploring the environment, at
the cost of taking bad decisions in the short term, while exploiting its
current knowledge, facing the risk to take sub-optimal actions in the
long term.

In the last fifteen years, Bayesian RL (Dearden, Friedman, and
Andre, 1999; Strens, 2000) developed an interesting method to deal
with the fact that the actual MDP is unknown. It assumes a prior
distribution over a set of candidate MDPs from which the actual MDP
is likely to be drawn. When interacting with the actual MDP, a pos-
terior distribution is maintained, given the prior and the transitions
observed so far. Such a posterior is used at each time-step to compute
near-optimal Bayesian decisions, as a strategy to deal with the E/E
dilemma. Model-based Bayesian RL methods maintain a posterior
distribution over transition models (Ross and Pineau, 2008; Poupart,
2008; Asmuth et al., 2009; Hennig, Stern, and Graepel, 2009; Milani
Fard and Pineau, 2010; Ross et al., 2011). On the other hand, the
model-free Bayesian RL methods do not explicitly maintain a poste-
rior over transition models, but rather value functions from which a
decision can be extracted (see e.g. (Dearden, Friedman, and Russell,
1998; Engel, Mannor, and Meir, 2003; Engel, Mannor, and Meir, 2005;
Engel, Szabo, and Volkinshtein, 2005; Ghavamzadeh and Engel, 2006;
Ghavamzadeh and Engel, 2007).

Recently, Guez et al. (Guez, Silver, and Dayan, 2012) have in-
troduced the BAMCP algorithm (for Bayes-adaptive Monte Carlo
planning), a model-based Bayesian RL approach, which combines
the principle of the UCT—Upper Confidence Trees—with sparse sam-
pling methods, and obtained state-of-the-art performances. At the
same time, Castronovo et al. (Castronovo et al., 2012) proposed an
algorithm that exploits a prior distribution, in an off-line phase, by
solving a policy search problem in a wide space of candidate, index-
based E/E strategies, and by applying the obtained strategy on the
actual MDP afterwards. The purpose of this paper is to empirically
compare those two approaches in a “real Bayesian setting". In order
to achieve this, several MDP distributions are considered, which can
either be used as a prior distribution or as a test distribution, from
which test problems are drawn. Several possible configurations in
terms of prior/test distribution association are also considered, in
order to observe the effect of the “flatness" of the prior distributions or
their “accuracy" on the performances of the algorithms. Moreover, in
order to be objective, comparisons will take into account the minimal
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computation time required to run each of these algorithms. Our exper-
iments mainly show that exploiting a prior distribution in an off-line
phase makes sense in the context of informative and accurate priors,
especially for problems where on-line time constraints are tight.

The paper is organized in the following manner: Section 3.2 for-
malizes the problem addressed in this paper. Section 3.3 presents the
experimental protocol and the empirical results. Section 3.4 discusses
the obtained results, and finally Section 3.5 concludes the paper.

3.2 Problem Statement

The goal of this paper is to compare two Reinforcement Learning (RL)
strategies, in the presence of a prior distribution. First we describe
the RL setting in Section 3.2.1. Then the prior distribution assumption
is formalized in Section 3.2.2, and the basics of the BAMCP and
OPPS approaches are briefly described. Section 3.2.3 formalizes the
computational time constraints that these algorithms must satisfy,
and Section 3.2.4 explains the specificities of our empirical evaluation.

3.2.1 Reinforcement Learning

Let M = (X,U, f(·), ρM , ρM,0(·), γ) be a given unknown MDP, where
X = {x(1), . . ., x(nX)} denotes its finite state space and U = {u(1), . . .,
u(nU )} its finite action space. When the MDP is in state xt at time t
and action ut is selected, the agent moves instantaneously to a next
state xt+1 with a probability of P (xt+1|xt, ut) = f(xt, ut, xt+1). An
instantaneous deterministic, bounded reward rt = ρ(xt, ut, xt+1) ∈
[Rmin, Rmax] is observed simultaneously. In this paper, the reward
function ρ is assumed to be fully known, which is often true in prac-
tice.

Let Ht = (x0, u0, r0, x1, · · · , xt−1, ut−1, rt−1, xt) denote the history
observed until time t. An E/E strategy is a stochastic policy h that,
given the current state xt, returns an action ut ∼ h(Ht). Given a
probability distribution over initial states ρM,0(·), the expected return
of a given E/E strategy h with respect to the MDP M can be defined
as follows:

JhM = E
x0∼ρM,0(·)

[Rh
M(x0)],

whereRh
M(x0) is the stochastic discounted sum of rewards received

when applying the E/E strategy h, starting from an initial state x0,
defined as indicated below:

Rh
M(x0) =

+∞∑
t=0

γtrt,

where the discount factor γ belongs to [0, 1). Within this setting,
reinforcement learning amounts in finding a policy h∗ which leads to
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the maximization of JhM :

h∗ ∈ arg max
h

JhM .

3.2.2 Prior Distribution over a Set of Candidate Mod-
els

In the context where the actual MDP is initially unknown, the Bayesian
RL techniques propose to model the uncertainty about the actual
model, using a probability distribution. This amounts to assuming
that the actual MDP to be played is drawn from a distribution p0M(·).
In the so-called model-based Bayesian RL setting, this prior distribu-
tion is assumed to be known. In this paper, it is assumed that there is
access to a prior distribution p0M(·) over a set of MDPsM. It is further
assumed that:

• One can easily draw MDPs models from p0M(·);

• One can easily compute the posterior distribution from p0M(·)
given the observation of an history Ht and the prior distribution.

Using these assumptions, the goal is to determine an E/E strategy h
which leads to the maximization of the expected return over the set
of transition modelsM:

h∗ ∈ arg max
h

E
M∼p0M(·)

[
JhM
]
.

In this paper, two algorithms that can take advantage of such a
prior are compared; these are the BAMCP and OPPS algorithms.

The BAMCP Algorithm

The BAMCP (Bayes-adaptive Monte Carlo planning) algorithm is a
state-of-the-art performance Bayesian RL algorithm, originally pro-
posed in (Guez, Silver, and Dayan, 2012). The principle of this al-
gorithm is to adapt the UCT (Upper Confidence bounds applied to
Trees, see (Kocsis and Szepesvári, 2006) principle for planning in a
Bayes-adaptive MDP, also called the belief-augmented MDP, which
is a MDP obtained when considering augmented states made of the
concatenation of the actual state and the posterior. The BAMCP algo-
rithm is made computationally tractable by using a sparse sampling
strategy, which avoids sampling a model from the posterior distri-
bution at every node of the planification tree. In practice, given a
prior p0M(.) and a historyHt, the BAMCP algorithm computes a policy
hBAMCP
K based on the building of a planification tree with exactly K

nodes, from which a decision is outputted:

ut ∼ hBAMCP
K

(
Ht, p

0
M(.)

)
.
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Note that, as the number of node expansions K increases to infinity,
the decision computed by the BAMCP algorithm converges towards
Bayesian optimality.

The OPPS Algorithm

The Off-line, Prior-based Policy Search (OPPS) algorithm was orig-
inally introduced in (Castronovo et al., 2012). The OPPS approach
works as follows: (i) a set of candidate E/E strategies S is built, and
(ii) a policy search scheme is run over the set of strategies. The strat-
egy space is obtained by considering index-based strategies, where
the index is generated using small formulas, combining the stan-
dard mathematical operators with standard RL features (i.e., value
functions). The search of an optimal E/E strategy is formalized as
a multi-armed bandit problem, with a number of arms being equal
to the number of candidate E/E strategies. Pulling an arm amounts
to draw a MDP from the prior, and to proceed with one single run
of the candidate E/E corresponding to that arm. Formally, the OPPS
algorithm computes — during the off-line phase — a policy hOPPSS
from which decisions are extracted on-line, given the prior p0M(.) and
the history Ht:

ut ∼ hOPPSS (Ht, p
0
M(.))

where

hOPPSS ∈ arg max
s∈S

E
M∼p0M(·)

[JsM ] .

In this paper, the set of variables from which formulas are built is
slightly different than the one used in (Castronovo et al., 2012). Such
a set is fully described in Appendix 3.5.1.

3.2.3 Time Constraints

Bayesian RL has acquired the reputation of being computationally
intensive, mainly because of the incorporation of the posterior up-
dates in the planification phase. In this paper, we propose to explicitly
formalize the computational time budget allocated at every phase
of the use of the algorithms. Thus, two types of time constraints are
considered:

• an “off-line" time period B−1, corresponding to a phase when
the prior distribution is available to the agent, but the actual
MDP is not yet available for interaction;

• a sequence of “on-line" time periods is considered B0, B1 . . .,
where, for all t ∈ N, Bt corresponds to the time period available
to compute a decision ut ∈ U given the prior p0M(.) and the
history Ht observed so far.
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3.2.4 Bayesian Empirical Evaluation

In this paper, we propose a real Bayesian empirical evaluation, in
the sense that we compare the algorithms on a large set of problems
drawn according to a test probability distribution. Such a distribution
can be similar (“accurate") or different (“inaccurate") from the prior.
Formally, for each experiment, a prior distribution is considered p0M(·),
which is given to the algorithms as an input, and a test distribution
pM(·), which is used to draw test problems, on which each algorithm
is evaluated. As far as this area of study is concerned, this is the first
time that the Bayesian RL algorithms are compared on average over a
large set of problems, rather than on standard benchmarks.

3.3 Experiments

Each experiment is characterized by the following:

• A prior distribution p0M(·),

• A test distribution pM(·),

• An off-line time budget B−1,

• On-line time budgets B0, B1, · · · for computing decisions ap-
plied on the actual MDP.

The goal of those experiments is to identify the influence of the
above mentioned elements on the performance of the algorithms, and,
consequently, to identify the domain of excellence of each algorithm.

Subsection 3.3.1 describes the experimental protocol used to com-
pare the algorithms described in Section 3.2.2. Subsection 3.3.2 defines
accurately the MDP distributions considered in the experiments pre-
sented in Subsection 3.3.3.

3.3.1 The Experimental Protocol

For each algorithm:

• a pool of 10, 000 MDPs is drawn from pM(.);

• one single run of the algorithm is simulated on each MDP of the
pool;

• its empirical expected average of discounted returns is com-
puted.

Trajectories are truncated after T steps, where T is defined as follows:

T =

⌈
ε×(1−γ)
Rmax

log γ

⌉
with ε = 0.001.
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The mean µ is measured and the standard deviation σ of the set of
observed returns. This data allows us to compute the 95% confidence
interval of Jh(p

0
M(·))

pM(·) :

J
h(p0M(·))
pM(·) ∈

[
µ− 2σ√

10, 000
;µ+

2σ√
10, 000

]
with probability at least 95%.

Since each MDP distribution described below can be used, either
as a prior distribution p0M(·) or as a test distribution pM(·), the process
is repeated for each possible combination.

3.3.2 MDP Distributions

The MDP distributions introduced in this paper are inspired from the
well-known five-state chain MDP (Strens, 2000). For all the MDP dis-
tributions considered in this paper, the set of candidate MDPs shares
the same state space X , action space U , reward function ρM , initial
state distribution ρM,0(·) and discount factor γ. In our experiments,
X = {1, 2, 3, 4, 5}, U = {1, 2, 3}, γ = 0.95, x0 = 1 with probability 1
and the reward function ρM is defined as follows:

∀(x, u) ∈ X × U, ρM(x, u, 1) = 2.0

∀(x, u) ∈ X × U, ρM(x, u, 5) = 10.0

∀(x, u) ∈ X × U, y ∈ {2, 3, 4}, ρM(x, u, y) = 0.0.

In this context, a MDP is entirely specified by its transition matrix.
Therefore, the probability distribution over sets of candidate transition
matrices is defined, using the Flat Dirichlet Multinomial (FDM) distri-
butions, which are widely used in the Bayesian RL, mostly because
their Bayes update is straightforward. One independent Dirichlet
distribution per state-action pair (x, u) is assumed, which leads to a
density dFDM :

dFDM(µ;θ) = Π
x,u
D(µx,u; θx,u)

where D(·; ·) are independent Dirichlet distributions. The parameter
θ gathers all the counters of observed transitions θtx,u until time t,
including θ0x,u which represents a priori observations.

The density of pM(·) is therefore defined as:

dpM(·)(µ,θ) = dFDM(µ;θ)

Consequently, a MDP distribution is parameterised by θ, and will
be denoted by pθ(·). In the following section, we introduce four MDP
distributions, the “Generalized Chain" distribution, the “Optimistic
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Generalized Chain" distribution, the “Pessimistic Generalized Chain"
distribution and the “Uniform" distribution.

Generalized Chain Distribution

This MDP distribution is a generalisation of the well-known Chain
MDP. For each action, two different outcomes are possible:

• The agent moves from state x to state x+ 1 (or remains in state
x when x = 5) or;

• The agent “slips" and goes back to the initial state.

The probabilities associated with those outcomes are drawn uni-
formly. Formally, the θGC parameter characterising the corresponding
pθ

GC
(·) distribution is defined as follows:

∀u ∈ U : θGC1,u = [1, 1, 0, 0, 0]

∀u ∈ U : θGC2,u = [1, 0, 1, 0, 0]

∀u ∈ U : θGC3,u = [1, 0, 0, 1, 0]

∀u ∈ U : θGC4,u = [1, 0, 0, 0, 1]

∀u ∈ U : θGC5,u = [1, 0, 0, 0, 1]

Optimistic Generalized Chain Distribution

This distribution is an alternative to the Generalized Chain MDPs,
where higher weights are put on transitions, allowing the agent to
move forward in the chain. Formally, the θOGC parameter characteris-
ing the corresponding pθ

OGC
(·) distribution is defined as follows:

∀u ∈ U : θOGC1,u = [1, 5, 0, 0, 0]

∀u ∈ U : θOGC2,u = [1, 0, 5, 0, 0]

∀u ∈ U : θOGC3,u = [1, 0, 0, 5, 0]

∀u ∈ U : θOGC4,u = [1, 0, 0, 0, 5]

∀u ∈ U : θOGC5,u = [1, 0, 0, 0, 5]

Pessimistic Generalized Chain Distribution

This distribution is an alternative to the Generalized Chain MDPs,
where higher weights are put on transitions, moving the agent to
the initial state. Formally, the θPGC parameter characterising the
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corresponding pθ
PGC

(·) distribution is defined as follows:

∀u ∈ U : θPGC1,u = [5, 1, 0, 0, 0]

∀u ∈ U : θPGC2,u = [5, 0, 1, 0, 0]

∀u ∈ U : θPGC3,u = [5, 0, 0, 1, 0]

∀u ∈ U : θPGC4,u = [5, 0, 0, 0, 1]

∀u ∈ U : θPGC5,u = [5, 0, 0, 0, 1]

Uniform Distribution

All transition probabilities are drawn uniformly. Formally, the θU

parameter characterising the corresponding pθ
U

(·) distribution is de-
fined as follows:

∀x ∈ X, u ∈ U : θUx,u = [1, 1, 1, 1, 1]

Finally, note that unlike the original chain MDP, in which action
1 is optimal in any given state, the optimal behaviour in any MDP
drawn according to one of these distributions is not defined a priori,
as it changes from one MDP to another.

3.3.3 The Results of the Experiments

Several experiments are presented, where different prior distribution
/ test distribution combinations are considered.

Concerning OPPS, four different strategy spaces are considered.
The set of variables, operators and constants has been fixed once and
for all. The four strategy spaces differ only by the maximal length
of the small formulas, which can be built from them. Those spaces
were named Fn, where n is the maximal length of the formulas of the
corresponding strategy space. The implementation of OPPS used in
these experiments differs from the one of (Castronovo et al., 2012)
by the chosen set of variables. These variables are described in the
Appendix 3.5.1.

Concerning BAMCP, the default parameters provided by Guez et
al. in (Guez, Silver, and Dayan, 2012) were used. Several instances of
BAMCP are built by varying the number of nodes, which are created
at each time-step. This parameter has been denoted by K.

Our experiments are organized in four different parts, one for
each possible test distribution, i.e. the distribution from which test
problems are drawn. In each part, we present a table of experimental
results, obtained when the prior and test distributions are identical,
comparing the algorithms, in term of performances and minimal
required off-line / on-line time budgets. In addition, a figure is joined,
comparing the performances of the approaches for different prior
distributions.
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“Generalized Chain" Test Distribution

Agent Offline time Online time Mean score
OPPS (F3) ∼ 6h ∼ 40ms 42.29± 0.45
OPPS (F4) ∼ 6h ∼ 42ms 41.89± 0.41
OPPS (F5) ∼ 6h ∼ 42ms 41.89± 0.41
BAMCP (K = 1) ∼ 1ms ∼ 7ms 31.71± 0.23
BAMCP (K = 10) ∼ 1ms ∼ 54ms 33.23± 0.26
BAMCP (K = 25) ∼ 1ms ∼ 136ms 33.26± 0.26
BAMCP (K = 50) ∼ 1ms ∼ 273ms 33.73± 0.26
BAMCP (K = 100) ∼ 1ms ∼ 549ms 33.99± 0.27
BAMCP (K = 250) ∼ 1ms ∼ 2s 34.02± 0.26
BAMCP (K = 500) ∼ 1ms ∼ 3s 34.27± 0.26

TABLE 3.1: Comparison with prior “Generalized
Chain" on “Generalized Chain"
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FIGURE 3.1: Comparison on “Generalized Chain" dis-
tribution

Table 3.1 shows that OPPS outperforms BAMCP in every single
case, even for higher on-line time budgets. The choice of the prior
has a significant impact on the performances of OPPS, as shown by
Figure 3.1. The “Generalized Chain" and “Optimistic Generalized
Chain" priors show similar performances for OPPS, while the “Uni-
form Generalized Chain" prior degrades them. On its side, BAMCP
is steady except for the “Pessimistic Generalized Chain" prior, which
has a positive effect on its performances, contrary to OPPS.
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“Optimistic Generalized Chain" Test Distribution

Agent Offline time Online time Mean score
OPPS (F3) ∼ 6h ∼ 44ms 110.48± 0.61
OPPS (F4) ∼ 6h ∼ 44ms 110.51± 0.61
OPPS (F5) ∼ 6h ∼ 45ms 110.48± 0.61
BAMCP (K = 1) ∼ 1ms ∼ 7ms 92.71± 0.58
BAMCP (K = 10) ∼ 1ms ∼ 56ms 93.97± 0.57
BAMCP (K = 25) ∼ 1ms ∼ 138ms 94.24± 0.58
BAMCP (K = 50) ∼ 1ms ∼ 284ms 94.31± 0.57
BAMCP (K = 100) ∼ 1ms ∼ 555ms 94.59± 0.57
BAMCP (K = 250) ∼ 1ms ∼ 2s 95.06± 0.57
BAMCP (K = 500) ∼ 1ms ∼ 3s 95.27± 0.58

TABLE 3.2: Comparison with prior “Optimistic Gener-
alized Chain" on “Optimistic Generalized Chain"
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FIGURE 3.2: Comparison on “Optimistic Generalized
Chain" distribution

Table 3.2 shows that OPPS clearly outperforms BAMCP, even
for pretty high time budgets. However, in Figure 3.2, we can see
that BAMCP becomes more competitive when using the “Pessimistic
Generalized Chain" prior distribution. In this case, BAMCP is near
OPPS performances.
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“Pessimistic Generalized Chain" Test Distribution

Agent Offline time Online time Mean score
OPPS (F3) ∼ 5h ∼ 37ms 35.89± 0.06
OPPS (F4) ∼ 5h ∼ 39ms 35.89± 0.06
OPPS (F5) ∼ 5h ∼ 38ms 35.83± 0.06
BAMCP (K = 1) ∼ 1ms ∼ 6ms 33.77± 0.07
BAMCP (K = 10) ∼ 1ms ∼ 54ms 33.97± 0.06
BAMCP (K = 25) ∼ 1ms ∼ 133ms 34.1± 0.06
BAMCP (K = 50) ∼ 1ms ∼ 265ms 34.21± 0.06
BAMCP (K = 100) ∼ 1ms ∼ 536ms 34.37± 0.06
BAMCP (K = 250) ∼ 1ms ∼ 2s 34.62± 0.06
BAMCP (K = 500) ∼ 1ms ∼ 3s 34.9± 0.06

TABLE 3.3: Comparison with prior “Pessimistic Gener-
alized Chain" on “Pessimistic Generalized Chain"
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FIGURE 3.3: Comparison on “Pessimistic Generalized
Chain" distribution

Table 3.3 shows that OPPS and BAMCP share similar perfor-
mances, even if BAMCP stays behind. Nevertheless, BAMCP requires
on-line time budgets that are eighty times higher than the one re-
quired by OPPS, in order to get a slightly lower score. As shown in
Figure 3.3, this difference remains in all cases except for the “Opti-
mistic Generalized Chain" case where BAMCP clearly outperforms
OPPS.
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“Uniform Generalized Chain" Test Distribution

Agent Offline time Online time Mean score
OPPS (F3) ∼ 8h ∼ 52ms 57.37± 0.38
OPPS (F4) ∼ 8h ∼ 53ms 57.37± 0.38
OPPS (F5), UGC) ∼ 8h ∼ 51ms 57.37± 0.38
BAMCP (K = 1) ∼ 1ms ∼ 6ms 47.92± 0.29
BAMCP (K = 10) ∼ 1ms ∼ 52ms 48.81± 0.3
BAMCP (K = 25) ∼ 1ms ∼ 132ms 48.95± 0.3
BAMCP (K = 50) ∼ 1ms ∼ 256ms 49.3± 0.3
BAMCP (K = 100) ∼ 1ms ∼ 521ms 49.39± 0.31
BAMCP (K = 250) ∼ 1ms ∼ 2s 50.08± 0.31
BAMCP (K = 500) ∼ 1ms ∼ 3s 50.06± 0.31

TABLE 3.4: Comparison with prior “Uniform" on “Uni-
form"
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FIGURE 3.4: Comparison on “Uniform Generalized
Chain" distribution

Both Table 3.4 and Figure 3.4 show a clear victory for OPPS for
any prior distribution, even with pretty high on-line time budgets.
We can also notice that OPPS is more efficient when using the correct
prior distribution.
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3.4 Discussion

As a general remark, it is observed that OPPS performs better than
BAMCP, even for high on-line time budgets, at the cost of several
hours of offline computation time. However, we can notice that
BAMCP was a decent challenger in the case of “Pessimistic General-
ized Chain" distribution.

Regarding the accuracy of the prior, it appears that using a prior
distribution, which differs from the test problem distribution impacts
the performances of OPPS in a negative manner, which is expected,
since OPPS performs policy search, using the prior. This impact is
strengthened in the case of a tight test distribution ( “Generalized
Chain", “Optimistic Generalized Chain" and “Pessimistic Generalized
Chain"). Thanks to the posterior update, the performance of BAMCP
seems less affected by a prior inaccuracy.

3.5 Conclusion

An extensive experimental comparison between two different Bayesian
approaches was presented, exploiting either off-line or on-line time
budgets, in order to interact efficiently with an unknown MDP. Our
experiments suggest that: (i) exploiting a prior distribution in an off-
line phase is never a bad idea, even for problems where on-line time
constraints are loose, whereas (ii) when on-line time budget are less
constrained, maintaining a posterior distribution definitely decreases
the impact of an inaccurate prior on the performances of the agent.
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Appendices

3.5.1 OPPS Settings

The OPPS implementation used in this paper differs from the one
introduced in (Castronovo et al., 2012) by the set of variables used
to build formulas. The set of variables considered in this paper is
composed of three variables. Those three variables correspond to
three Q-functions computed through value iteration, using three dif-
ferent models. Formally, given a set of transitions observed so-far,
h, Nh(x, u) the number of times a transition starting from the state-
action pair (x, u) occurs in h, and Nh(x, u, y) the number of times the
transition (x, u, y) occurs in h, three transition functions are defined
fmean, funiform, fself as follows:

1. fmean corresponds to the expectation of a Dirichlet posterior
distribution computed from the current history and the chosen
prior distribution. If θ0 denotes the counters of the observed
transitions of prior p0M(∆), fmean is defined as follows:

∀x, u, y : θhx,u(y) = θ0x,u(y) +Nh(x, u, y)

Formally, the mean transition model is defined as follows:

∀x, u, y : fmean(x, u, y) =
θhx,u(y)∑
y′ θ

h
x,u(y

′)

2. funiform corresponds to the expectation of a Dirichlet posterior
distribution computed from the current history and a uniform
Dirichlet prior distribution. Formally, the uniform transition
model is defined as follows:

∀x, u, y : funiform(x, u, y) =
1 +Nh(x, u, y)

|U |+Nh(x, u)

3. fself corresponds to the expectation of a Dirichlet posterior dis-
tribution computed from the current history and a counter ini-
tialization corresponding to a Dirac centred over a deterministic
MDP where each state can only be reached from itself (for all ac-
tions). Formally, the self transition model is defined as follows:

∀x, u : fself (x, u, x) =
1 +Nh(x, u, x)

1 +Nh(x, u)

∀x, u, y 6= x : fself (x, u, x) =
Nh(x, u, x)

1 +Nh(x, u)
.
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Chapter 4

Benchmarking for Bayesian
Reinforcement Learning

In the Bayesian Reinforcement Learning (BRL) setting, agents
try to maximise the collected rewards while interacting with
their environment while using some prior knowledge that is
accessed beforehand. Many BRL algorithms have already been
proposed, but even though a few toy examples exist in the lit-
erature, there are still no extensive or rigorous benchmarks to
compare them. The paper addresses this problem, and provides a
new BRL comparison methodology along with the corresponding
open source library. In this methodology, a comparison criterion
that measures the performance of algorithms on large sets of
Markov Decision Processes (MDPs) drawn from some probabil-
ity distributions is defined. In order to enable the comparison
of non-anytime algorithms, our methodology also includes a
detailed analysis of the computation time requirement of each
algorithm. Our library is released with all source code and doc-
umentation: it includes three test problems, each of which has
two different prior distributions, and seven state-of-the-art RL
algorithms. Finally, our library is illustrated by comparing all
the available algorithms and the results are discussed.

The work presented in this chapter has been published in the PLoS
ONE Journal (PLoS ONE 2016) (Castronovo et al., 2016).
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4.1 Introduction

Reinforcement Learning (RL) agents aim to maximise collected re-
wards by interacting over a certain period of time in initially unknown
environments. Actions that yield the highest performance according
to the current knowledge of the environment and those that maximise
the gathering of new knowledge on the environment may not be
the same. This is the dilemma known as Exploration/Exploitation
(E/E). In such a context, using prior knowledge of the environment
is extremely valuable, since it can help guide the decision-making
process in order to reduce the time spent on exploration. Model-based
Bayesian Reinforcement Learning (BRL) (Dearden, Friedman, and
Andre, 1999; Strens, 2000) specifically targets RL problems for which
such a prior knowledge is encoded in the form of a probability distri-
bution (the “prior”) over possible models of the environment. As the
agent interacts with the actual model, this probability distribution is
updated according to the Bayes rule into what is known as “posterior
distribution”. The BRL process may be divided into two learning
phases: the offline learning phase refers to the phase when the prior
knowledge is used to warm-up the agent for its future interactions
with the real model. The online learning phase, on the other hand,
refers to the actual interactions between the agent and the model. In
many applications, interacting with the actual environment may be
very costly (e.g. medical experiments). In such cases, the experiments
made during the online learning phase are likely to be much more
expensive than those performed during the offline learning phase.

In this paper, we investigate how the way BRL algorithms use the
offline learning phase may impact online performances. To properly
compare Bayesian algorithms, the first comprehensive BRL bench-
marking protocol is designed, following the foundations of (Cas-
tronovo, Fonteneau, and Ernst, 2014). “Comprehensive BRL bench-
mark” refers to a tool which assesses the performance of BRL al-
gorithms over a large set of problems that are actually drawn ac-
cording to a prior distribution. In previous papers addressing BRL,
authors usually validate their algorithm by testing it on a few test
problems, defined by a small set of predefined MDPs. For instance,
BAMCP (Guez, Silver, and Dayan, 2012), SBOSS (Castro and Precup,
2010), and BFS3 (Asmuth and Littman, 2011) are all validated on a
fixed number of MDPs. In their validation process, the authors se-
lect a few BRL tasks, for which they choose one arbitrary transition
function, which defines the corresponding MDP. Then, they define
one prior distribution compliant with the transition function. This
type of benchmarking is problematic in the sense that the authors
actually know the hidden transition function of each test case. It also
creates an implicit incentive to over-fit their approach to a few specific
transition functions, which should be completely unknown before
interacting with the model. In this paper, we compare BRL algorithms
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in several different tasks. In each task, the real transition function
is defined using a random distribution, instead of being arbitrarily
fixed. Each algorithm is thus tested on an infinitely large number of
MDPs, for each test case. To perform our experiments, we developed
the BBRL library, whose objective is to also provide other researchers
with our benchmarking tool.

This paper is organised as follows: Section 5.3 presents the prob-
lem statement. Section 4.3 formally defines the experimental protocol
designed for this paper. Section 4.4 briefly presents the library. Sec-
tion 4.5 shows a detailed application of our protocol, comparing
several well-know BRL algorithms on three different benchmarks.
Section 5.6 concludes the study.

4.2 Problem Statement

This section is dedicated to the formalisation of the different tools and
concepts discussed in this paper.

4.2.1 Reinforcement Learning

Let M = (X,U, f(·), ρM , pM,0(·), γ) be a given unknown MDP, where
X = {x(1), . . . , x(nX)} denotes its finite state space and U = {u(1), . . .,
u(nU )} refers to its finite action space. When the MDP is in state xt at
time t and action ut is selected, the agent moves instantaneously to a
next state xt+1 with a probability of P (xt+1|xt, ut) = f(xt, ut, xt+1). An
instantaneous deterministic, bounded reward rt = ρM(xt, ut, xt+1) ∈
[Rmin, Rmax] is observed.

Let ht = (x0, u0, r0, x1, · · · , xt−1, ut−1, rt−1, xt) ∈ H denote the his-
tory observed until time t. An E/E strategy is a stochastic policy π
which, given the current state xt, returns an action ut ∼ π(ht). Given a
probability distribution over initial states pM,0(·), the expected return
of a given E/E strategy π with respect to the MDP M can be defined
as follows:

JπM = E
x0∼pM,0(·)

[Rπ
M(x0)],

whereRπ
M(x0) is the stochastic sum of discounted rewards received

when applying the policy π, starting from an initial state x0:

Rπ
M(x0) =

+∞∑
t=0

γt rt.

RL aims to learn the behaviour that maximises JπM , i.e. learning a
policy π∗ defined as follows:

π∗ ∈ arg max
π

JπM .
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4.2.2 Prior Knowledge

In this paper, the actual MDP is assumed to be initially unknown.
Model-based Bayesian Reinforcement Learning (BRL) proposes to the
model the uncertainty, using a probability distribution p0M(·) over a
set of candidate MDPsM. Such a probability distribution is called a
prior distribution and can be used to encode specific prior knowledge
available before interaction. Given a prior distribution p0M(·), the
expected return of a given E/E strategy π is defined as:

Jπp0M(·) = E
M∼p0M(·)

[JπM ] ,

In the BRL framework, the goal is to maximise Jπ
p0M(·), by finding π∗,

which is called “Bayesian optimal policy” and defined as follows:

π∗ ∈ arg max
π

Jπp0M(·).

4.2.3 Computation Time Characterisation

Most BRL algorithms rely on some properties which, given sufficient
computation time, ensure that their agents will converge to an optimal
behaviour. However, it is not clear to know beforehand whether
an algorithm will satisfy fixed computation time constraints while
providing good performances.

The parameterisation of the algorithms makes the selection even
more complex. Most BRL algorithms depend on parameters (number
of transitions simulated at each iteration, etc.) which, in some way,
can affect the computation time. In addition, for one given algorithm
and fixed parameters, the computation time often varies from one
simulation to another. These features make it nearly impossible to
compare BRL algorithms under strict computation time constraints.
In this paper, to address this problem, algorithms are run with multi-
ple choices of parameters, and we analyse their time performance a
posteriori.

Furthermore, a distinction between the offline and online com-
putation time is made. Offline computation time corresponds to the
moment when the agent is able to exploit its prior knowledge, but
cannot interact with the MDP yet. One can see it as the time given to
take the first decision. In most algorithms concerned in this paper, this
phase is generally used to initialise some data structure. On the other
hand, online computation time corresponds to the time consumed by
an algorithm for taking each decision.

There are many ways to characterise algorithms based on their
computation time. One can compare them based on the average time
needed per step or on the offline computation time alone. To remain
flexible, for each run of each algorithm, we store its computation times
(Bi)−1≤i, with i indexing the time step, and B−1 the offline learning
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time. Then a feature function φ((Bi)−1≤i) is extracted from this data.
This function is used as a metric to characterise and discriminate
algorithms based on their time requirements.

In our protocol, which is detailed in the next section, two types
of characterisation are used. For a set of experiments, algorithms
are classified based on their offline computation time only, i.e. we
use φ((Bi)−1≤i) = B−1. Afterwards, the constraint is defined as
φ((Bi)−1≤i) ≤ K, K > 0 in case it is required to only compare the
algorithms that have an offline computation time lower than K.

For another set of experiments, algorithms are separated according
to their empirical average online computation time. In this case,
φ((Bi)−1≤i) = 1

n

∑
0≤i<nBi. Algorithms can then be classified based

on whether or not they respect the constraint φ((Bi)−1≤i) ≤ K, K > 0.
This formalisation could be used for any other computation time

characterisation. For example, one could want to analyse algorithms
based on the longest computation time of a trajectory, and define
φ((Bi)−1≤i) = max−1≤iBi.

4.3 A New Bayesian Reinforcement Learning
Benchmark Protocol

4.3.1 A Comparison Criterion for BRL

In this paper, a real Bayesian evaluation is proposed, in the sense
that the different algorithms are compared on a large set of problems
drawn according to a test probability distribution. This is in contrast
with the Bayesian literature (Guez, Silver, and Dayan, 2012; Castro
and Precup, 2010; Asmuth and Littman, 2011), where authors pick a
fixed number of MDPs on which they evaluate their algorithm.

Our criterion to compare algorithms is to measure their average
rewards against a given random distribution of MDPs, using another
distribution of MDPs as a prior knowledge. In our experimental
protocol, an experiment is defined by a prior distribution p0M(·) and
a test distribution pM(·). Both are random distributions over the set
of possible MDPs, not stochastic transition functions. To illustrate
the difference, let us take an example. Let (x, u, x′) be a transition.
Given a transition function f : X × U × X → [0; 1], f(x, u, x′) is the
probability of observing x′ if we chose u in x. In this paper, this
function f is assumed to be the only unknown part of the MDP
that the agent faces. Given a certain test case, f corresponds to a
unique MDP M ∈M. A Bayesian learning problem is then defined
by a probability distribution over a set M of possible MDPs. We
call it a test distribution, and denote it pM(·). Prior knowledge can
then be encoded as another distribution overM, and denoted p0M(·).
We call “accurate” a prior which is identical to the test distribution
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(p0M(·) = pM(·)), and we call “inaccurate” a prior which is different
(p0M(·) 6= pM(·)).

In previous Bayesian literature, authors select a fixed number of
MDPs M1, ...,Mn, train and test their algorithm on them. Doing so
does not guarantee any generalisation capabilities. To solve this prob-
lem, a protocol that allows rigorous comparison of BRL algorithms
is designed. Training and test data are separated, and can even be
generated from different distributions (in what we call the inaccurate
case).

More precisely, our protocol can be described as follows: Each
algorithm is first trained on the prior distribution. Then, their perfor-
mances are evaluated by estimating the expectation of the discounted
sum of rewards, when they are facing MDPs drawn from the test
distribution. Let Jπ(p

0
M)

pM be this value:

J
π(p0M)
pM = E

M∼pM

[
J
π(p0M)

M

]
,

where π(p0M) is the algorithm π trained offline on p0M. In our Bayesian
RL setting, we want to find the algorithm π∗ which maximises Jπ(p

0
M)

pM

for the 〈p0M, pM〉 experiment:

π∗ ∈ arg max
π

J
π(p0M)
pM .

In addition to the performance criterion, we also measure the
empirical computation time. In practice, all problems are subject to
time constraints. Hence, it is important to take this parameter into
account when comparing different algorithms.

4.3.2 The Experimental Protocol

In practice, we can only sample a finite number of trajectories, and
must rely on estimators to compare algorithms. In this section our
experimental protocol is described, which is based on our comparison
criterion for BRL and provides a detailed computation time analysis.

An experiment is defined by (i) a prior distribution p0M and (ii) a
test distribution pM. Given these, an agent is evaluated π as follows:

1. Train π offline on p0M.

2. Sample N MDPs from the test distribution pM.

3. For each sampled MDP M , compute estimate J̄π(p
0
M)

M of Jπ(p
0
M)

M .

4. Use these values to compute an estimate J̄
π(p0M)
pM .

To estimate Jπ(p
0
M)

M , the expected return of agent π trained offline
on p0M, one trajectory is sampled on the MDP M , and the cumulated
return is computed J̄

π(p0M)

Mi
= Rπ(p0M)

M (x0).
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To estimate this return, each trajectory is truncated after T steps.
Therefore, given an MDP M and its initial state x0, we observe
R̄π(p0M)

M (x0), an approximation ofRπ(p0M)

M (x0):

R̄π(p0M)

M (x0) =
T∑
t=0

γtrt.

If Rmax denotes the maximal instantaneous reward an agent can
receive when interacting with an MDP drawn from pM, then choosing
T as guarantees the approximation error is bounded by ε > 0:

T =

⌊
log(ε× (1−γ)

Rmax
)

log γ

⌋
.

ε = 0.01 is set for all experiments, as a compromise between measure-
ment accuracy and computation time.

Finally, to estimate our comparison criterion J
π(p0M)
pM , the empirical

average of the algorithm performance is computed over N different
MDPs, sampled from pM :

J̄
π(p0M)
pM =

1

N

∑
0≤i<N

J̄
π(p0M)

Mi
=

1

N

∑
0≤i<N

R̄π(p0M)

Mi
(x0) (4.1)

For each agent π, we retrieve µπ = J̄πM and σπ, the empirical mean
and standard deviation of the results observed respectively. This gives
us the following statistical confidence interval at 95% for JπM :

JπM ∈
[
J̄πM −

2σπ√
N

; J̄πM +
2σπ√
N

]
.

The values reported in the following figures and tables are estimations
of the interval within which JπM is, with probability 0.95.

As introduced in Section 4.2.3, in our methodology, a function φ of
computation times is used to classify algorithms based on their time
performance. The choice of φ depends on the type of time constraints
that are the most important to the user. In this paper, we reflect this
by showing three different ways to choose φ. These three choices
lead to three different ways to look at the results and compare algo-
rithms. The first one is to classify algorithms based on their offline
computation time, the second one is to classify them based on the
algorithms average online computation time. The third is a combina-
tion of the first two choices of φ, that we denote φoff ((Bi)−1≤i) = B−1
and φon((Bi)−1≤i) = 1

n

∑
0≤i<nBi. The objective is that for each pair of

constraints φoff ((Bi)−1≤i) < K1 and φon((Bi)−1≤i) < K2, K1, K2 > 0,
we want to identify the best algorithms that respect these constraints.
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In order to achieve this: (i) All agents that do not satisfy the con-
straints are discarded; (ii) for each algorithm, the agent leading to the
best performance in average is selected; (iii) we build the list of agents
whose performances are not significantly different1.

The results will help us to identify, for each experiment, the most
suitable algorithm(s) depending on the constraints the agents must
satisfy. This protocol is an extension of the one presented in (Cas-
tronovo, Fonteneau, and Ernst, 2014).

4.4 BBRL Library

BBRL2 is a C++ open-source library for Bayesian Reinforcement Learn-
ing (discrete state/action spaces). This library provides high-level
features, while remaining as flexible and documented as possible to
address the needs of any researcher of this field. To this end, we devel-
oped a complete command-line interface, along with a comprehensive
website:

https://github.com/mcastron/BBRL

BBRL focuses on the core operations required to apply the compar-
ison benchmark presented in this paper. To do a complete experiment
with the BBRL library, follow these five steps:

1. We create a test and a prior distribution. Those distributions are
represented by Flat Dirichlet Multinomial distributions (FDM),
parameterised by a state space X , an action space U , a vector
of parameters θ, and reward function ρ. For more information
about the FDM distributions, check Section 4.5.2.

./BBRL-DDS --mdp_distrib_generation \
--name <name> \
--short_name <short name> \
--n_states <nX> --n_actions <nU> \
--ini_state <x0> \
--transition_weights \

<θ(1)> · · · <θ(nXnUnX)> \
--reward_type "RT_CONSTANT" \
--reward_means \

<ρ(x(1), u(1), x(1))> \
· · ·
<ρ(x(nX), u(nU ), x(nX))> \

--output <output file>

1A paired sampled Z-test with a confidence level of 95% has been used to deter-
mine when two agents are statistically equivalent (more details in Appendix 4.6.3).

2BBRL stands for Benchmaring tools for Bayesian Reinforcement Learning.

https://github.com/mcastron/BBRL
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A distribution file is created.

2. We create an experiment. An experiment is defined by a set of
N MDPs, drawn from a test distribution defined in a distribution
file, a discount factor γ and a horizon limit T .

./BBRL-DDS --new_experiment \
--name <name> \
--mdp_distribution \

"DirMultiDistribution" \
--mdp_distribution_file \

<distribution file> \
--n_mdps <N> \
--n_simulations_per_mdp 1 \
--discount_factor <γ> \
--horizon_limit <T> \
--compress_output \
--output <output file>

An experiment file is created and can be used to conduct the
same experiment for several agents.

3. We create an agent. An agent is defined by an algorithm alg,
a set of parameters ψ, and a prior distribution defined in a
distribution file, on which the created agent will be trained.

./BBRL-DDS --offline_learning \
--agent <alg> [<parameters ψ>] \
--mdp_distribution \

"DirMultiDistribution" \
--mdp_distribution_file \

<distribution file> \
--output <output file>

An agent file is created. The file also stores the computation
time observed during the offline training phase.

4. We run the experiment. We need to provide an experiment file,
an algorithm alg and an agent file.

./BBRL-DDS --run_experiment \
--experiment \

--experiment_file \
<experiment file> \

--agent <alg> \
--agent_file <agent file> \

--n_threads 1 \
--compress_output \
--safe_simulations \
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--refresh_frequency 60 \
--backup_frequency 900 \
--output <output file>

A result file is created. This file contains a set of all transitions
encountered during each trajectory. Additionally, the compu-
tation times we observed are also stored in this file. It is often
impossible to measure precisely the computation time of a sin-
gle decision. This is why only the computation time of each
trajectory is reported in this file.

5. Our results are exported. After each experiment has been per-
formed, a set of K result files is obtained. We need to provide all
agent files and result files to export the data.

./BBRL-export --agent <alg(1)> \
--agent_file <agent file #1> \

--experiment \
--experiment_file \

<result file #1> \
...
--agent <alg(K)> \

--agent_file <agent file #K> \
--experiment \

--experiment_file \
<result file #K>

BBRL will sort the data automatically and produce several files
for each experiment.

• A graph comparing offline computation cost w.r.t. perfor-
mance;

• A graph comparing online computation cost w.r.t. perfor-
mance;

• A graph where the X-axis represents the offline time bound,
while the Y-axis represents the online time bound. A point
of the space corresponds to set of bounds. An algorithm is
associated to a point of the space if its best agent, satisfying
the constraints, is among the best ones when compared to
the others;

• A table reporting the results of each agent.

BBRL will also produce a report file in LATEX gathering the 3
graphs and the table for each experiment.

More than 2.000 commands have to be entered in order to repro-
duce the results of this paper. We decided to provide several Lua
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script in order to simplify the process. By completing some configura-
tion files, the user can define the agents, the possible values of their
parameters and the experiments to conduct.

local agents =
{

-- e-Greedy
{

name = "EGreedyAgent",
params =
{

{
opt = "--epsilon",
values =
{

0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0

}
}

},
olOptions = { "--compress_output" },
memory = { ol = "1000M", re = "1000M" },
duration = { ol = "01:00:00", re = "01:00:00" }

},
...

}

FIGURE 4.1: Example of a configuration file for the
agents.

local experiments =
{

{
prior = "GC", priorFile = "GC-distrib.dat",
exp = "GC", testFile = "GC-distrib.dat",
N = 500, gamma = 0.95, T = 250

},
...

}

FIGURE 4.2: Example of a configuration file for the
experiments.

Those configuration files are then used by a script included within
the library, called make_scripts.sh, whose purpose is to generate
four other scripts:
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• 0-init.sh
Create the experiment files, and create the formulas sets required
by OPPS agents.

• 1-ol.sh
Create the agents and train them on the prior distribution(s).

• 2-re.sh
Run all the experiments.

• 3-export.sh
Generate the LATEX reports.

Due to the high computation power required, we made those
scripts compatible with workload managers such as SLURM. In this
case, each cluster should provide the same amount of CPU power
in order to get consistent time measurements. To sum up, when the
configuration files are completed correctly, one can start the whole
process by executing the four scripts, and retrieve the results in nice
LATEX reports.

It is worth noting that there is no computation budget given to the
agents. This is due to the diversity of the algorithms implemented.
No algorithm is “anytime” natively, in the sense that we cannot stop
the computation at any time and receive an answer from the agent in-
stantly. Strictly speaking, it is possible to develop an anytime version
of some of the algorithms considered in BBRL. However, we made the
choice to stay as close as possible to the original algorithms proposed
in their respective papers for reasons of fairness. In consequence,
although computation time is a central parameter in our problem
statement, it is never explicitly given to the agents. We instead let
each agent run as long as necessary and analyse the time elapsed
afterwards.

Another point which needs to be discussed is the impact of the
implementation of an algorithm on the comparison results. For each
algorithm, many implementations are possible, some being better
than others. Even though we did our best to provide the best possible
implementations, BBRL does not compare algorithms but rather the
implementations of each algorithms. Note that this issue mainly
concerns small problems, since the complexity of the algorithms is
preserved.

4.5 Illustration

This section presents an illustration of the protocol presented in Sec-
tion 4.3. We first describe the algorithms considered for the compari-
son in Section 4.5.1, followed by a description of the benchmarks in
Section 4.5.2. Section 4.5.3 shows and analyses the results obtained.
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4.5.1 Compared Algorithms

In this section, we present the list of the algorithms considered in
this study. The pseudo-code of each algorithm can be found in Ap-
pendix 4.6.1. For each algorithm, a list of “reasonable” values is
provided to test each of their parameters. When an algorithm has
more than one parameter, all possible parameter combinations are
tested.

Random

At each time-step t, the action ut is drawn uniformly from U .

ε-Greedy

The ε-Greedy agent maintains an approximation of the current MDP
and computes, at each time-step, its associated Q-function. The se-
lected action is either selected randomly (with a probability of ε
(1 ≥ ε ≥ 0), or greedily (with a probability of 1 − ε) with respect
to the approximated model.

Tested values:

• ε ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

Soft-max

The Soft-max agent maintains an approximation of the current MDP
and computes, at each time-step, its associated Q-function. The se-
lected action is selected randomly, where the probability to draw an
action u is proportional to Q(xt, u). The temperature parameter τ
allows to control the impact of the Q-function on these probabilities
(τ → 0+: greedy selection; τ → +∞: random selection).

Tested values:

• τ ∈ {0.05, 0.10, 0.20, 0.33, 0.50, 1.0, 2.0, 3.0, 5.0, 25.0}.

OPPS

Given a prior distribution p0M(.) and an E/E strategy space S (ei-
ther discrete or continuous), the Offline, Prior-based Policy Search
algorithm (OPPS) identifies a strategy π∗ ∈ S which maximises the
expected discounted sum of returns over MDPs drawn from the prior.

The OPPS for Discrete Strategy spaces algorithm (OPPS-DS) (Cas-
tronovo et al., 2012; Castronovo, Fonteneau, and Ernst, 2014) for-
malises the strategy selection problem as a k-armed bandit problem,
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where k = |S|. Pulling an arm amounts to draw an MDP from p0M(.),
and play the E/E strategy associated to this arm on it for one single
trajectory. The discounted sum of returns observed is the return of
this arm. This multi-armed bandit problem has been solved by using
the UCB1 algorithm (Auer, Cesa-Bianchi, and Fischer, 2002; Audibert,
Munos, and Szepesvári, 2007). The time budget is defined by a vari-
able β, corresponding to the total number of draws performed by the
UCB1.

The E/E strategies considered by Castronovo et. al are index-
based strategies, where the index is generated by evaluating a small
formula. A formula is a mathematical expression, combining specific
features (Q-functions of different models) by using standard mathe-
matical operators (addition, subtraction, logarithm, etc.). The discrete
E/E strategy space is the set of all formulas which can be built by
combining at most n features/operators (such a set is denoted by Fn).

OPPS-DS does not come with any guarantee. However, the UCB1
bandit algorithm used to identify the best E/E strategy within the set
of strategies provides statistical guarantees that the best E/E strate-
gies are identified with high probability after a certain budget of
experiments. However, it is not clear that the best strategy of the
E/E strategy space considered yields any high-performance strategy
regardless the problem.

Tested values:

• S ∈ {F2,F3,F4,F5,F6}3,

• β ∈ {50, 500, 1250, 2500, 5000, 10000, 100000, 1000000}.

BAMCP

Bayes-adaptive Monte Carlo Planning (BAMCP) (Guez, Silver, and
Dayan, 2012) is an evolution of the Upper Confidence Tree (UCT)
algorithm (Kocsis and Szepesvári, 2006), where each transition is
sampled according to the history of observed transitions. The princi-
ple of this algorithm is to adapt the UCT principle for planning in a
Bayes-adaptive MDP, also called the belief-augmented MDP, which is
an MDP obtained when considering augmented states made of the
concatenation of the actual state and the posterior. The BAMCP algo-
rithm is made computationally tractable by using a sparse sampling
strategy, which avoids sampling a model from the posterior distribu-
tion at every node of the planification tree. Note that the BAMCP also
comes with theoretical guarantees of convergence towards Bayesian
optimality.

3The number of arms k is always equal to the number of strategies in the given
set. For your information: |F2| = 12, |F3| = 43, |F4| = 226, |F5| = 1210, |F6| = 7407
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In practice, the BAMCP relies on two parameters: (i) Parameter K
which defines the number of nodes created at each time-step, and (ii)
Parameter depth which defines the depth of the tree from the root.

Tested values:

• K ∈ {1, 500, 1250, 2500, 5000, 10000, 25000},

• depth ∈ {15, 25, 50}.

BFS3

The Bayesian Forward Search Sparse Sampling (BFS3) (Asmuth and
Littman, 2011) is a Bayesian RL algorithm whose principle is to
apply the principle of the FSSS (Forward Search Sparse Sampling,
see (Kearns and Singh, 2002) algorithm to belief-augmented MDPs. It
first samples one model from the posterior, which is then used to sam-
ple transitions. The algorithm then relies on lower and upper bounds
on the value of each augmented state to prune the search space. The
authors also show that BFS3 converges towards Bayes-optimality as
the number of samples increases.

In practice, the parameters of BFS3 are used to control how much
computational power is allowed. The parameter K defines the num-
ber of nodes to develop at each time-step, C defines the branching
factor of the tree and depth controls its maximal depth.

Tested values:

• K ∈ {1, 500, 1250, 2500, 5000, 10000},

• C ∈ {2, 5, 10, 15},

• depth ∈ {15, 25, 50}.

SBOSS

The Smarter Best of Sampled Set (SBOSS) (Castro and Precup, 2010)
is a Bayesian RL algorithm which relies on the assumption that the
model is sampled from a Dirichlet distribution. From this assumption,
it derives uncertainty bounds on the value of state action pairs. It
then uses those bounds to decide how many models to sample from
the posterior, and how often the posterior should be updated in order
to reduce the computational cost of Bayesian updates. The sampling
technique is then used to build a merged MDP, as in (Asmuth et al.,
2009), and to derive the corresponding optimal action with respect to
that MDP. In practice, the number of sampled models is determined
dynamically with a parameter ε. The re-sampling frequency depends
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on a parameter δ.

Tested values:

• ε ∈ {1.0, 1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5, 1e− 6},

• δ ∈ {9, 7, 5, 3, 1, 1e− 1, 1e− 2, 1e− 3n1e− 4, 1e− 5, 1e− 6}.

BEB

The Bayesian Exploration Bonus (BEB) (Kolter and Ng, 2009) is a
Bayesian RL algorithm which builds, at each time-step t, the expected
MDP given the current posterior. Before solving this MDP, it com-
putes a new reward function ρ

(t)
BEB(x, u, y) = ρM(x, u, y) + β

c
(t)
<x,u,y>

,

where c(t)<x,u,y> denotes the number of times transition < x, u, y > has
been observed at time-step t. This algorithm solves the mean MDP
of the current posterior, in which we replaced ρM(·, ·, ·) by ρ(t)BEB(·, ·, ·),
and applies its optimal policy on the current MDP for one step. The
bonus β is a parameter controlling the E/E balance. BEB comes with
theoretical guarantees of convergence towards Bayesian optimality.

Tested values:

• β ∈ {0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 8, 16}.

Computation times variance

Each algorithm has one or more parameters that can affect the number
of sampled transitions from a given state, or the length of each simula-
tion. This, in turn, impacts the computation time requirement at each
step. Hence, for some algorithms, no choice of parameters can bring
the computation time below or over certain values. In other words,
each algorithm has its own range of computation time. Note that,
for some methods, the computation time is influenced concurrently
by several parameters. We present a qualitative description of how
computation time varies as a function of parameters in Table 4.1.

4If a random decision is chosen, the model is not solved.
5K defines the number of nodes to develop at each step, and depth defines the

maximal depth of the tree.
6K defines the number of nodes to develop at each step, C the branching factor

of the tree and depth its maximal depth.
7The number of models sampled is inversely proportional to ε, while the fre-

quency at which the models are sampled is inversely proportional to δ. When
an MDP has been sufficiently explored, the number of models to sample and the
frequency of the sampling will decrease.
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Offline phase duration Online phase duration
Random Almost instantaneous. Almost instantaneous.
ε-Greedy4 Almost instantaneous. Varies in inverse proportion to ε.

Can vary a lot from one step to
another.

OPPS-DS Varies proportionally to
β.

Varies proportionally to the num-
ber of features implied in the se-
lected E/E strategy.

BAMCP5 Almost instantaneous. Varies proportionally to K and
depth.

BFS36 Almost instantaneous. Varies proportionally to K, C
and depth.

SBOSS7 Almost instantaneous. Varies in inverse proportion to ε
and δ.
Can vary a lot from one step to
another, with a general decreas-
ing tendency.

BEB Almost instantaneous. Constant.

TABLE 4.1: Influence of the algorithm and their param-
eters on the offline and online phases duration.

4.5.2 Benchmarks

In our setting, the transition matrix is the only element which dif-
fers between two MDPs drawn from the same distribution. For each
< state, action > pair < x, u >, we define a Dirichlet distribution,
which represents the uncertainty about the transitions occurring from
< x, u >. A Dirichlet distribution is parameterised by a set of concen-
tration parameters α(1)

<x,u>, · · · , α
(nX)
<x,u>.

We gathered all concentration parameters in a single vector θ.
Consequently, our MDP distributions are parameterised by ρM (the
reward function) and several Dirichlet distributions, parameterised
by θ. Such a distribution is denoted by pρM ,θ(·). In the Bayesian Rein-
forcement Learning community, these distributions are referred to as
Flat Dirichlet Multinomial distributions (FDMs).

We chose to study two different cases:

• Accurate case: the test distribution is fully known (p0M(.) =
pM(.)),

• Inaccurate case: the test distribution is unknown (p0M(.) 6=
pM(.)).

In the inaccurate case, we have no assumption on the transition
matrix. We represented this lack of knowledge by a uniform FDM
distribution, where each transition has been observed one single time
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(θ = [1, · · · , 1]).

Sections 4.5.2, 4.5.2 and 4.5.2 describes the three distributions
considered for this study.

Generalised Chain Distribution

The Generalised Chain (GC) distribution (pρGC ,θ
GC

(·)) is inspired from
the five-state chain problem (5 states, 3 actions) Dearden, Friedman,
and Russell, 1998. The agent starts at State 1, and has to go through
State 2, 3 and 4 in order to reach the last state (State 5), where the
best rewards are. The agent has at its disposal 3 actions. An action
can either let the agent move from State x(n) to State x(n+1) or force it
to go back to State x(1). The transition matrix is drawn from a FDM
parameterised by θGC , and the reward function is denoted by ρGC .
More details can be found in Appendix 4.6.2.

FIGURE 4.3: Illustration of the GC distribution.

Generalised Double-Loop Distribution

The Generalised Double-Loop (GDL) distribution (pρGDL,θ
GDL

(·)) is
inspired from the double-loop problem (9 states, 2 actions) (Dearden,
Friedman, and Russell, 1998). Two loops of 5 states are crossing at
State 1, where the agent starts. One loop is a trap: if the agent enters
it, it has no choice to exit but crossing over all the states composing it.
Exiting this loop provides a small reward. The other loop is yielding a
good reward. However, each action of this loop can either let the agent
move to the next state of the loop or force it to return to State 1 with no
reward. The transition matrix is drawn from an FDM parameterised
by θGDL, and the reward function is denoted by ρGDL. More details
can be found in Appendix 4.6.2.
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FIGURE 4.4: Illustration of the GDL distribution.

Grid Distribution

The Grid distribution (pρGrid,θ
Grid

(·)) is inspired from the Dearden’s
maze problem (25 states, 4 actions) (Dearden, Friedman, and Russell,
1998). The agent is placed at a corner of a 5x5 grid (the S cell), and has
to reach the opposite corner (the G cell). When it succeeds, it returns
to its initial state and receives a reward. The agent can perform 4
different actions, corresponding to the 4 directions (up, down, left,
right). However, depending on the cell on which the agent is, each
action has a certain probability to fail, and can prevent the agent to
move in the selected direction. The transition matrix is drawn from
an FDM parameterised by θGrid, and the reward function is denoted
by ρGrid. More details can be found in Appendix 4.6.2.

FIGURE 4.5: Illustration of the Grid distribution.
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4.5.3 Discussion of the Results

Accurate case
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FIGURE 4.6: Offline computation cost Vs. Performance
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FIGURE 4.7: Online computation cost Vs. Performance
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FIGURE 4.8: Best algorithms w.r.t offline/online time
periods
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GC Experiment
Agent Score
Random 31.12± 0.9
e-Greedy (ε = 0) 40.62± 1.55
Soft-Max (τ = 0.1) 34.73± 1.74
OPPS-DS (Q2(x, u)/Q0(x, u)) 42.47 ± 1.91
BAMCP (K = 2500, depth = 15) 35.56± 1.27
BFS3 (K = 500, C = 15, depth = 15) 39.84± 1.74
SBOSS (ε = 0.001, δ = 7) 35.9± 1.89
BEB (β = 2.5) 41.72± 1.63

GDL Experiment
Agent Score
Random 2.79± 0.07
e-Greedy (ε = 0.1) 3.05± 0.07
Soft-Max (τ = 0.1) 2.79± 0.1
OPPS-DS (max(Q0(x, u), |Q2(x, u)|)) 3.1± 0.07
BAMCP (K = 10000, depth = 15) 3.11 ± 0.07
BFS3 (K = 1, C = 15, depth = 25) 2.9± 0.07
SBOSS (ε = 1, δ = 1) 2.81± 0.1
BEB (β = 0.5) 3.09± 0.07

Grid Experiment
Agent Score
Random 0.22± 0.06
e-Greedy (ε = 0) 6.9± 0.31
Soft-Max (τ = 0.05) 0± 0
OPPS-DS (Q0(x, u) +Q2(x, u)) 7.03 ± 0.3
BAMCP (K = 25000, depth = 15) 6.43± 0.3
BFS3 (K = 500, C = 15, depth = 50) 3.46± 0.23
SBOSS (ε = 0.1, δ = 7) 4.5± 0.33
BEB (β = 0.5) 6.76± 0.3

FIGURE 4.9: Best algorithms w.r.t Performance
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As it can be seen in Figure 4.6, OPPS is the only algorithm whose
offline time cost varies. In the three different settings, OPPS can be
launched after a few seconds, but behaves very poorly. However, its
performances increased very quickly when given at least one minute
of computation time. Algorithms that do not use offline computation
time have a wide range of different scores. This variance represents
the different possible configurations for these algorithms, which only
lead to different online computation time.

On Figure 4.7, BAMCP, BFS3 and SBOSS have variable online time
costs. BAMCP behaved poorly on the first experiment, but obtained
the best score on the second one and was pretty efficient on the last
one. BFS3 was good only on the second experiment. SBOSS was never
able to get a good score in any cases. Note that OPPS online time cost
varies slightly depending on the formula’s complexity.

If we take a look at the top-right point in Figure 4.8, which defines
the less restrictive bounds, we notice that OPPS-DS and BEB were
always the best algorithms in every experiment. ε-Greedy was a good
candidate in the two first experiments. BAMCP was also a very good
choice except for the first experiment. On the contrary, BFS3 and
SBOSS were only good choices in the first experiment.

If we look closely, we can notice that OPPS-DS was always one of
the best algorithm since we have met its minimal offline computation
time requirements.

Moreover, when we place our offline-time bound right under
OPPS-DS minimal offline time cost, we can see how the top is affected
from left to right:

GC: (Random), (SBOSS), (BEB, ε-Greedy), (BEB, BFS3,
ε-Greedy),

GDL: (Random), (Random, SBOSS), (ε-Greedy), (BEB,
ε-Greedy), (BAMCP, BEB, ε-Greedy),

Grid: (Random), (SBOSS), (ε-Greedy), (BEB, ε-Greedy).

We can clearly see that SBOSS was the first algorithm to appear on the
top, with a very small online computation cost, followed by ε-Greedy
and BEB. Beyond a certain online time bound, BFS3 emerged in the
first experiment while BAMCP emerged in the second experiment.
Neither of them was able to compete with BEB or ε-Greedy in the last
experiment.

Soft-max was never able to reach the top regardless the configura-
tion.

Figure 4.9 reports the best score observed for each algorithm, disas-
sociated from any time measure. Note that the variance is very similar
for all algorithms in GDL and Grid experiments. On the contrary, the
variance oscillates between 1.0 and 2.0. However, OPPS seems to be
the less stable algorithm in the three cases.
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Inaccurate case
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FIGURE 4.10: Offline computation cost Vs. Perfor-
mance
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FIGURE 4.12: Best algorithms w.r.t offline/online time
periods
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GC Experiment
Agent Score
Random 31.67± 1.05
e-Greedy (ε = 0) 37.69± 1.75
Soft-Max (τ = 0.33) 34.75± 1.64
OPPS-DS (Q0(x, u)) 39.29 ± 1.71
BAMCP (K = 1250, depth = 25) 33.87± 1.26
BFS3 (K = 1250, C = 15, depth = 25) 36.87± 1.82
SBOSS (ε = 1e-06, δ = 0.0001) 38.77± 1.89
BEB (β = 16) 38.34± 1.62

GDL Experiment
Agent Score
Random 2.76± 0.08
e-Greedy (ε = 0.3) 2.88± 0.07
Soft-Max (τ = 0.05) 2.76± 0.1
OPPS-DS (max(Q0(x, u), Q1(x, u)) 2.99 ± 0.08
BAMCP (K= 10000, depth = 50) 2.85± 0.07
BFS3 (K = 1250, C = 15, depth = 50) 2.85± 0.07
SBOSS (ε = 0.1, δ = 0.001) 2.86± 0.07
BEB (β = 2.5) 2.88± 0.07

Grid Experiment
Agent Score
Random 0.23± 0.06
e-Greedy (ε = 0.2) 0.63± 0.09
Soft-Max (τ = 0.05) 0± 0
OPPS-DS (Q1(x, u) +Q2(x, u))) 1.09 ± 0.17
BAMCP (K = 25000, depth = 25) 0.51± 0.09
BFS3 (K = 1, C = 15, depth = 50) 0.42± 0.09
SBOSS (ε = 0.001, δ = 0.1) 0.29± 0.07
BEB (β = 0.25) 0.29± 0.05

FIGURE 4.13: Best algorithms w.r.t Performance
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As seen in the accurate case, Figure 4.10 also shows impressive
performances for OPPS-DS, which has beaten all other algorithms in
every experiment. We can also notice that, as observed in the accurate
case, in the Grid experiment, the OPPS-DS agents scores are very close.
However, only a few were able to significantly surpass the others,
contrary to the accurate case where most OPPS-DS agents were very
good candidates.

Surprisingly, SBOSS was a very good alternative to BAMCP and
BFS3 in the two first experiments as shown in Figure 4.11. It was able
to surpass both algorithms on the first one while being very close
to BAMCP performances in the second. Relative performances of
BAMCP and BFS3 remained the same in the inaccurate case, even if
the BAMCP advantage is less visible in the second experiment. BEB
was no longer able to compete with OPPS-DS and was even beaten by
BAMCP and BFS3 in the last experiment. ε-Greedy was still a decent
choice except in the first experiment. As observed in the accurate case,
Soft-max was very bad in every case.

In Figure 4.12, if we take a look at the top-right point, we can see
OPPS-DS is the best choice in the second and third experiment. BEB,
SBOSS and ε-Greedy share the first place with OPPS-DS in the first
one.

If we place our offline-time bound right under OPPS-DS minimal
offline time cost, we can see how the top is affected from left to right:

GC: (Random), (Random, SBOSS), (SBOSS), (BEB, SBOSS,
ε-Greedy), (BEB, BFS3, SBOSS, ε-Greedy),

GDL: (Random), (Random, SBOSS), (BAMCP, Random,
SBOSS), (BEB, SBOSS, ε-Greedy), (BEB, BFS3, SBOSS,
ε-Greedy), (BAMCP, BEB, BFS3, SBOSS, ε-Greedy),

Grid: (Random), (Random, SBOSS), (BAMCP, BEB, BFS3,
Random, SBOSS), (ε-Greedy).

SBOSS is again the first algorithm to appear in the rankings. ε-
Greedy is the only one which could reach the top in every case, even
when facing BAMCP and BFS3 fed with high online computation
cost. BEB no longer appears to be undeniably better than the others.
Besides, the two first experiments show that most algorithms obtained
similar results, except for BAMCP which does not appear on the top
in the first experiment. In the last experiment, ε-Greedy succeeded to
beat all other algorithms.

Figure 4.13 does not bring us more information than those we
observed in the accurate case.

Summary

In the accurate case, OPPS-DS was always among the best algorithms,
at the cost of some offline computation time. When the offline time
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budget was too constrained for OPPS-DS, different algorithms were
suitable depending on the online time budget:

• Low online time budget: SBOSS was the fastest algorithm to
make better decisions than a random policy.

• Medium online time budget8: BEB reached performances sim-
ilar to OPPS-DS on each experiment.

• High online time budget9: In the first experiment, BFS3 man-
aged to catch up BEB and OPPS-DS when given sufficient time.
In the second experiment, it was BAMCP which has achieved
this result. Neither BFS3 nor BAMCP was able to compete with
BEB and OPPS-DS in the last experiment.

The results obtained in the inaccurate case were very interesting.
BEB was not as good as it seemed to be in the accurate case, while
SBOSS improved significantly compared to the others. For its part,
OPPS-DS obtained the best overall results in the inaccurate case by
outperforming all the other algorithms in two out of three experiments
while remaining among the best ones in the last experiment.

4.6 Conclusion

We have proposed a new extensive BRL comparison methodology
which takes into account both performance and time requirements
for each algorithm. In particular, our benchmarking protocol shows
that no single algorithm dominates all other algorithms on all scenar-
ios. The protocol we introduced can compare any time algorithm to
non-anytime algorithms while measuring the impact of inaccurate
offline training. By comparing algorithms on large sets of problems,
we avoid over fitting to a single problem. Our methodology is associ-
ated with an open-source library, BBRL, and we hope that it will help
other researchers to design algorithms whose performances are put
into perspective with computation times, that may be critical in many
applications. This library is specifically designed to handle new al-
gorithms easily, and is provided with a complete and comprehensive
documentation website.

8± 100 times more than the low online time budget
9± 100 times more than the medium online time budget
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Appendices

4.6.1 Pseudo-code of the Algorithms

Algorithm 1 ε-Greedy

1: procedure OFFLINE-LEARNING(p0M(.))
2: M̂ ← “Build an initial model based on p0M(.)”
3: end procedure
4:
5: function SEARCH(x, h)
6: {Draw a random value in [0; 1]}
7: r ← U(0, 1)
8:
9: if r < ε then {Random case}

10: return “An action selected randomly”
11:
12: else {Greedy case}
13: π∗

M̂
←VALUE-ITERATION(M̂ )

14: return π∗
M̂

(x)
15: end if
16: end function
17:
18: procedure ONLINE-LEARNING(x, u, y, r)
19: “Update model M̂ w.r.t. transition < x, u, y, r >”
20: end procedure
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Algorithm 2 Soft-max

1: procedure OFFLINE-LEARNING(p0M(.))
2: M̂ ← “Build an initial model based on p0M(.)”
3: end procedure
4:
5: function SEARCH(x, h)
6: {Draw a random value in [0; 1]}
7: r ← U(0, 1)
8:
9: {Select an action randomly, with a probability proportional to
Q∗
M̂

(x, u)}
10: Q∗

M̂
← “Compute the optimal Q-function of M̂”

11: for 1 ≤ i ≤ |U | do

12: if r <
∑

j≤i
exp(Q∗

M̂
(x,u(j))/τ)∑

u′ exp(Q∗M̂ (x,u′)/τ)
then

13: return u(i)

14: end if
15: end for
16: end function
17:
18: procedure ONLINE-LEARNING(x, u, y, r)
19: “Update model M̂ w.r.t. transition < x, u, y, r >”
20: end procedure
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Algorithm 3 OPPS-DS

1: procedure OFFLINE-LEARNING(p0M(.))
2: {Initialise the k arms of UCB1}
3: for 1 ≤ i ≤ k do
4: M ∼ p0M(.)
5: Rπi

M ← “Simulate strategy πi on MDP M over a single
trajectory”

6: µ(i)← Rπi
M

7: θ(i)← 1
8: end for
9:

10: {Run UCB1 with a budget of β}
11: for k + 1 ≤ b ≤ β do
12: a← arg maxa′µ(a′) +

√
2 log(b)
θ(a′)

13: M ∼ p0M(.)
14: Rπa

M ← “Simulate strategy πa on MDP M over a single
trajectory”

15: µ(a)← θ(a)µ(a)+RπaM
θ(a)+1

16: θ(a)← θ(a) + 1
17: end for
18:
19: {Select the E/E strategy associated to the most drawn arm}
20: a∗ ← arg maxa′θ(a

′)
21: πOPPS ← πa∗
22: end procedure
23:
24: function SEARCH(x, h)
25: return u ∼ πOPPS(x, h)
26: end function
27:
28: procedure ONLINE-LEARNING(x, u, y, r)
29: “Update strategy πOPPS w.r.t. transition < x, u, y, r >”
30: end procedure



Chapter 4. Benchmarking for Bayesian Reinforcement Learning 63

Algorithm 4 BAMCP (1/2)

1: function SEARCH(x, h)
2: {Develop a MCTS and compute Q(., .)}
3: for 1 ≤ k ≤ K do
4: M ∼ phM
5: SIMULATE(〈x, h〉,M, 0)
6: end for
7:
8: {Return the best action w.r.t. Q(., .)}
9: return arg maxuQ(〈x, h〉, u)

10: end function
11:
12: function SIMULATE(〈x, h〉,M, d)
13: if N(〈x, h〉) = 0 then {New node reached}
14: “Initialise N(〈x, h〉, u), Q(〈x, h〉, u)”
15: u ∼ π0(〈x, h〉)
16: “Sample x′, r from model M”
17:
18: {Estimate the score of this node by using the rollout policy}
19: R← r + γ ROLLOUT(〈x′, hux′〉, P, d)
20:
21: “Update N(〈x, h〉), N(〈x, h〉, u), Q(〈x, h〉, u)”
22: return R
23: end if
24:
25: {Select the next branch to explore}
26: u← arg maxu′Q(〈x, h〉, u) + c

√
( log(N(〈x,h〉))
N(〈x,h〉,u′) )

27: “Sample x′, r from model M”
28:
29: {Follow the branch and evaluate it}
30: R← r + γ SIMULATE(〈x′, hux′〉,M, d+ 1)
31:
32: “Update N(〈x, h〉), N(〈x, h〉, u), Q(〈x, h〉, u)”
33: return R
34: end function
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Algorithm 5 BAMCP (2/2)

1: procedure ROLLOUT(〈x, h〉,M, d)
2: {Truncate the trajectory if precision ε has been reached}
3: if γdRmax < ε then
4: return 0
5: end if
6:
7: {Use the rollout policy to choose the action to perform}
8: u ∼ π0(x, h)
9:

10: {Simulate a single transition from M and continue the rollout
process}

11: y ∼ PM
12: r ← ρM(x, u, y)
13: return r + γ ROLLOUT(〈y, huy〉,M, d+ 1)
14: end procedure
15:
16: procedure ONLINE-LEARNING(x, u, y, r)
17: “Update the posterior w.r.t. transition < x, u, y, r >”
18: end procedure
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Algorithm 6 BFS3

1: function SEARCH(x, h)
2: {Update the current Q-function}
3: Mmean ← “Compute the mean MDP of ptM(.).”
4: for all u ∈ U do
5: for 1 ≤ i ≤ C do
6: {Draw y and r from the mean MDP of the posterior}
7: y ∼ PMmean

8: r ← ρM(x, u, y)
9:

10: {Update the Q-value in (x, u) by using FSSS}
11: Q(x, u)← Q(x, u) + 1

C

[
r + γ FSSS(y, d, t)

]
12: end for
13: end for
14:
15: {Return the action u with the maximal Q-value in x}
16: return arg maxuQ(x, u)
17: end function

Algorithm 7 FSSS (1/2)

1: function FSSS(x, d, t)
2: {Develop a MCTS and compute bounds on V (x)}
3: for 1 ≤ i ≤ t do
4: ROLLOUT(s, d, 0)
5: end for
6:
7: {Make an optimistic estimation of V (x)}
8: V̂ (x)← maxu Ud(x, u)
9: return V̂ (x)

10: end function
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Algorithm 8 FSSS (2/2)

1: procedure ROLLOUT(x, d, l)
2: if d = l then {Stop when reaching the maximal depth}
3: return
4: end if
5:
6: if ¬V isitedd(x) then {New node reached}
7: {Initialise this node}
8: for all u ∈ U do
9: “Initialise Nd(x, u, x

′),Rd(x, u)”
10: for 1 ≤ i ≤ C do
11: “Sample x′, r from M”
12: “Update Nd(x, u, x

′),Rd(x, u)”
13:
14: if ¬V isitedd(x′) then
15: Ud+1(x

′), Ld+1(x
′) = Vmax, Vmin

16: end if
17: end for
18: end for
19:
20: {Back-propagate this node’s information}
21: BELLMAN-BACKUP(x, d)
22:
23: V isitedd(x)←true
24: end if
25:
26: {Select an action and simulate a transition optimistically}
27: u← arg maxuUd(x, u)
28: x′ ← arg maxx′

(
Ud+1(x

′)− Ld+1(x
′)
)
Nd(x, u, x

′)
29:
30: {Continue the rollout process and back-propagate the result}
31: ROLLOUT(x′, d, l + 1)
32: BELLMAN-BACKUP(x, d)
33: return
34: end procedure
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Algorithm 9 SBOSS (1/2)

1: function SEARCH(x, h)
2: {Compute the transition matrix of the mean MDP of the poste-

rior}
3: Mmean ← “Compute the mean MDP of ptM(.).”
4: Pt ← PMmean

5:
6: {Update the policy to follow if necessary}
7: ∀(x, u) : ∆(x, u) =

∑
y∈X

|Pt(x,u,y)−PlastUpdate(x,u,y)|
σ(x,u,y)

8: if t = 1 or ∃(x′, u′) : ∆(x′, u′) > δ then
9: {Sample some transition vectors for each state-action pair}

10: S ← {}
11: for all (x, u) ∈ X × U do
12: {Compute the number of transition vectors to sample

for (x, u)}
13: Kt(x, u)← maxy

⌈
σ2(x,u,y)

ε

⌉
14:
15: {Sample Kt(x, u) transition vectors from < x, u >, sam-

pled from the posterior}
16: for 1 ≤ k ≤ Kt(x, u) do
17: S ← S ∪ “A transition vector from < x, u >, sam-

pled from the posterior”
18: end for
19: end for
20:
21: M# ← “Build a new MDP by merging all transitions from

S”
22: π∗

M# ←VALUE-ITERATION(M#)
23: πSBOSS ←FIT-ACTION-SPACE(π∗

M#)
24: PlastUpdate ← Pt
25: end if
26:
27: {Return the optimal action in x w.r.t. πSBOSS}
28: return u ∼ πSBOSS(x)
29: end function
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Algorithm 10 SBOSS (2/2)

1: function FIT-ACTION-SPACE(π∗
M#)

2: for all x ∈ X do
3: π(x)← π∗

M#(x) mod |U |
4: end for
5:
6: return π
7: end function
8:
9: procedure ONLINE-LEARNING(x, u, y, r)

10: “Update the posterior w.r.t. transition < x, u, y, r >”
11: end procedure

Algorithm 11 BEB
1: procedure SEARCH(x, h)
2: M ← “Compute the mean MDP of ptM(.).”
3:
4: {Add a bonus reward to all transitions}
5: for < x, u, y >∈ X × U × X do
6: ρM(x, u, y)← ρM(x, u, y) + β

c
(t)
<x,u,y>

7: end for
8:
9: {Compute the optimal policy of the modified MDP}

10: π∗M ←VALUE-ITERATION(M )
11:
12: {Return the optimal action in x w.r.t. π∗M }
13: return u ∼ π∗M(x)
14: end procedure
15:
16: procedure ONLINE-LEARNING(x, u, y, r)
17: “Update the posterior w.r.t. transition < x, u, y, r >”
18: end procedure
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4.6.2 MDP Distributions in Detail

In this section, we describe the MDPs drawn from the considered
distributions in more detail. In addition, we also provide a formal
description of the corresponding θ (parameterising the FDM used to
draw the transition matrix) and ρM (the reward function).

Generalised Chain Distribution

On those MDPs, we can identify two possibly optimal behaviours:

• The agent tries to move along the chain, reaches the last state,
and collect as many rewards as possible before returning to State
1;

• The agent gives up to reach State 5 and tries to return to State 1
as often as possible.

Formal description X = {1, 2, 3, 4, 5}, U = {1, 2, 3}

∀u ∈ U :

θGC1,u = [1, 1, 0, 0, 0]

θGC2,u = [1, 0, 1, 0, 0]

θGC3,u = [1, 0, 0, 1, 0]

θGC4,u = [1, 0, 0, 0, 1]

θGC5,u = [1, 1, 0, 0, 1]

∀x, u ∈ X × U :

ρGC(x, u, 1) = 2.0

ρGC(x, u, 5) = 10.0

ρGC(x, u, y) = 0.0, ∀y ∈ X \ {1, 5}

Generalised Double-Loop Distribution

Similarly to the GC distribution, we can also identify two possibly
optimal behaviours:

• The agent enters the “good” loop and tries to stay in it until the
end;

• The agent gives up and chooses to enter the “bad” loop as
frequently as possible.

Formal description X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, U = {1, 2}
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∀u ∈ U :

θGDL1,u = [0, 1, 0, 0, 0, 1, 0, 0, 0]

θGDL2,u = [0, 0, 1, 0, 0, 0, 0, 0, 0]

θGDL3,u = [0, 0, 0, 1, 0, 0, 0, 0, 0]

θGDL4,u = [0, 0, 0, 0, 1, 0, 0, 0, 0]

θGDL5,u = [1, 0, 0, 0, 0, 0, 0, 0, 0]

θGDL6,u = [1, 0, 0, 0, 0, 0, 1, 0, 0]

θGDL7,u = [1, 0, 0, 0, 0, 0, 0, 1, 0]

θGDL8,u = [1, 0, 0, 0, 0, 0, 0, 0, 1]

θGDL9,u = [1, 0, 0, 0, 0, 0, 0, 0, 0]

∀u ∈ U :

ρGDL(5, u, 1) = 1.0

ρGDL(9, u, 1) = 2.0

ρGDL(x, u, y) = 0.0, ∀x ∈ X, ∀y ∈ X : y 6= 1

Grid Distribution

MDPs drawn from the Grid distribution are 2-dimensional grids.
Since the agents considered do not manage multi-dimensional state
spaces, the following bijection was defined:

{1, 2, 3, 4, 5}×{1, 2, 3, 4, 5} → X = {1, 2, · · · , 25} : n(i, j) = 5(i−1)+j

where i and j are the row and column indexes of the cell on which
the agent is.

When the agent reaches the G cell (in (5, 5)), it is directly moved to
(1, 1), and will perceive its reward of 10. In consequence, State (5, 5) is
not reachable.

To move inside the Grid, the agent can perform four actions: U =
{↑, ↓,←,→}. Those actions only move the agent to one adjacent cell.
However, each action has a certain probability to fail (depending on
the cell on which the agent is). In case of failure, the agent does not
move at all. Besides, if the agent tries to move out of the grid, it will
not move either. Discovering a reliable (and short) path to reach the
G cell will determine the success of the agent.

Formal description X = {1, 2, · · · , 25}, U = {↑, ↓, ←, →}

∀(i, j) ∈ {1, 2, 3, 4, 5} × {1, 2, 3, 4, 5}
∀(k, l) ∈ {1, 2, 3, 4, 5} × {1, 2, 3, 4, 5} :
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θGridn(i,j),u (n(i, j)) = 1, ∀u ∈ U
θGridn(i,j),↑ (n(i− 1, j)) = 1, (i− 1) ≥ 1

θGridn(i,j),↓ (n(i+ 1, j)) = 1, (i+ 1) ≤ 5, (i, j) 6= (4, 5)

θGridn(i,j),← (n(i, j − 1)) = 1, (j − 1) ≥ 1

θGridn(i,j),→ (n(i, j + 1)) = 1, (j + 1) ≤ 5, (i, j) 6= (5, 4)

θGridn(4,5),↓ (n(1, 1)) = 1

θGridn(5,4),→(n(1, 1)) = 1

θGridn(i,j),u (n(k, l)) = 0, else

ρGrid((4, 5), ↓, (1, 1)) = 10.0

ρGrid((5, 4),→,(1, 1)) = 10.0

ρGrid((i, j), u, (k, l)) = 0.0, ∀u ∈ U

4.6.3 Paired Sampled Z-test

Let πA and πB be the two agents we want to compare. We played the
two agents on the same N MDPs, denoted by M1, · · · ,MN . Let RπA

Mi

and RπB
Mi

be the scores we observed for the two agents on Mi.

Step 1 - Hypothesis

We compute the mean and the standard deviation of the differences
between the two sample sets, denoted by x̄d and s̄d, respectively.

x̄d =
1

N

N∑
i=1

RπA
Mi
−RπB

Mi

s̄d =
1

N

N∑
i=1

(x̄d − (RπA
Mi
−RπB

Mi
))2

If N ≥ 30, s̄d is a good estimation of σd, the standard deviation of the
differences between the two populations (s̄d ≈ σd). In order words,
σd is the standard deviation we should observe when testing the two
algorithms on a number of MDPs tending towards infinity. This was
always the case in our experiments.

We now set Hypothesis H0 and Hypothesis Hα:

H0 : µd = 0

Hα : µd > 0

Our goal is to determine if µd, the mean of the differences between
the two populations, is equal or greater than 0. More expressly, we
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want to know if the differences between the two agents’ performances
is significant (Hα is correct) or not (H0 correct). Only one of those
hypotheses can be true.

Step 2 - Test statistic

The test statistic consists to compute a certain value Z:

Z =
x̄d

σd

/√
N

This value will help us to determine if we should accept (or reject)
hypothesis Hα.

Step 3 - Rejection region

Assuming we want our decision to be correct with a probability of
failure of α, we will have to compare Z with Zα, a value of a Gaussian
curve. If Z > Zα, it means we are in the rejection region (R.R.) with
a probability equal to 1 − α. For a confidence of 95%, Zα should be
equal to 1.645.

Being in the R.R. means we have to reject Hypothesis H0 (and ac-
cept Hypothesis Hα). In the order case, we have to accept Hypothesis
H0 (and reject Hypothesis Hα).

Step 4 - Decision

At this point, we have either accepted Hypothesis H0 or Hypothesis
Hα.

• Accepting Hypothesis H0 (Z < Zα): The two algorithms πA
and πB are not significantly different.

• Accepting Hypothesis Hα (Z ≥ Zα): The two algorithms πA
and πB are significantly different. Therefore, the algorithm with
the greatest mean is definitely better with 95% confidence.
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Chapter 5

Approximate Bayes Optimal
Policy Search using
Neural Networks

Bayesian Reinforcement Learning (BRL) agents aim to max-
imise the expected collected rewards obtained when interacting
with an unknown Markov Decision Process (MDP) while us-
ing some prior knowledge. State-of-the-art BRL agents rely on
frequent updates of the belief on the MDP, as new observations
of the environment are made. This offers theoretical guarantees
to converge to an optimum, but is computationally intractable,
even on small-scale problems. In this paper, we present a method
that circumvents this issue by training a parametric policy able
to recommend an action directly from raw observations. Artifi-
cial Neural Networks (ANNs) are used to represent this policy,
and are trained on the trajectories sampled from the prior. The
trained model is then used online, and is able to act on the real
MDP at a very low computational cost. Our new algorithm
shows strong empirical performance, on a wide range of test
problems, and is robust to inaccuracies of the prior distribution.

The work presented in this chapter has been published in the Pro-
ceedings of the International Conference on Agents and Artificial Intelligence
(ICAART 2017) (Castronovo et al., 2017).
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5.1 Introduction

Bayes-Adaptive Markov Decision Processes (BAMDP) (Silver, 1963;
Martin, 1967) form a natural framework to deal with sequential
decision-making problems when some of the information is hidden.
In these problems, an agent navigates in an initially unknown envi-
ronment and receives a numerical reward according to its actions.
However, actions that yield the highest instant reward and actions
that maximise the gathering of knowledge about the environment are
often different. The BAMDP framework leads to a rigorous definition
of an optimal solution to this learning problem, which is based on
finding a policy that reaches an optimal balance between exploration
and exploitation.

In this research, the case where prior knowledge is available about
the environment is studied. More specifically, this knowledge is repre-
sented as a random distribution over possible environments, and can
be updated as the agent makes new observations. In practice, this hap-
pens for example when training a drone to fly in a safe environment
before sending it on the operation field (Zhang et al., 2015). This is
called offline training and can be beneficial to the online performance
in the real environment, even if prior knowledge is inaccurate (Cas-
tronovo, Fonteneau, and Ernst, 2014).

State-of-the-art Bayesian algorithms generally do not use offline
training. Instead, they rely on Bayes updates and sampling techniques
during the interaction, which may be too computationally expensive,
even on very small MDPs (Castronovo et al., 2016). In order to reduce
significantly this cost, we propose a new practical algorithm to solve
BAMDPs: Artificial Neural Networks for Bayesian Reinforcement
Learning (ANN-BRL). Our algorithm aims at finding an optimal
policy, i.e. a mapping from observations to actions, which maximises
the rewards in a certain environment. This policy is trained to act
optimally on some MDPs sampled from the prior distribution, and
then it is used in the test environment. By design, our approach does
not use any Bayes update, and is thus computationally inexpensive
during online interactions. Our policy is modelled as an ensemble
of ANNs, combined by using SAMME (Zhu et al., 2009), a boosting
algorithm.

Artificial Neural Networks offer many advantages for the needed
purpose. First, they are able to learn complex functions and are, thus,
capable of encoding almost any policy. Second, ANNs can be trained
very efficiently, using the backpropagation method, even on a large
dataset. Lastly, ANNs’ forward pass is fast, which makes them ideal to
perform predictions during the online phase, when the computation
time constraints are tight.

In our experiments, we used a benchmark recently introduced in
(Castronovo et al., 2016). It compares all the major state-of-the-art BRL
algorithms on a wide array of test problems, and provides a detailed



Chapter 5. Approximate Bayes Optimal Policy Search using
Neural Networks 75

computation time analysis. Since most state-of-the-art agents found
in the literature are not any time algorithms, this last feature is very
useful to compare solvers that have different time constraints.

This paper is organised as follows: Section 5.2 gives an overview
of the state-of-the-art in Bayesian Reinforcement Learning. Section 5.3
presents the problem statement. Section 5.4 describes the algorithm.
Section 5.5 shows a comparison between our algorithm and state-of-
the-art algorithms of the domain. Section 5.6 offers a conclusion and
discusses future work.

5.2 State-of-the-art

Bayesian Reinforcement Learning (BRL) algorithms rely on Bayesian
updates of the prior knowledge on the environment as new observa-
tions are made.

Model-based approaches maintain explicitly a posterior distri-
bution, given the prior and the transitions observed so far. Bayes-
adaptive Monte Carlo Planning (BAMCP) (Guez, Silver, and Dayan,
2012) and Bayesian Forward Search Sparse Sampling (BFS3) (Asmuth
and Littman, 2011) rely on the exploration of the belief state space
with a belief-lookahead (BL) approach. In this case, the posterior
is used to explore efficiently the look-ahead tree and estimate the
Q-values of the current belief-state. The accuracy is depending on the
number of nodes those algorithms are able to visit, which is limited by
an on-line computation time budget. Despite theoretical guarantees
to reach Bayesian optimality offered by BL approaches1, they may not
be applicable when the time budget that can be allocated for on-line
decision making is short (Castronovo et al., 2016). Another method,
Smarter Best of Sampled Set (SBOSS) (Castro and Precup, 2010), sam-
ples several MDPs from the posterior distribution, builds a merged
MDP, and computes its Q-function. The number of MDPs to sample
and the frequency at which a merged MDP has to be built is deter-
mined by uncertainty bounds on the Q-values. As a consequence,
the online computation time of SBOSS may vary at each time-step.
However, the number of samples and the frequency are depending
on two parameters, which are used to fix the online computation
time on average. More computation time improves the accuracy of
the computed Q-values. However, on the downside, this approach
remains computationally expensive (Castronovo et al., 2016).

On the other hand, model-free approaches only maintain a list
of the transitions observed, and compute value functions. In this
case, the prior distribution is used to initialise this list (e.g.: a uniform
distribution consisting to assume each transition has been observed
once). Bayesian Exploration Bonus (BEB) (Kolter and Ng, 2009) builds
the expected MDP given the current history at each time-step. The

1e.g. BAMCP (Guez, Silver, and Dayan, 2012).
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reward function of this MDP is slightly modified to give an explo-
ration bonus to transitions which have been observed less frequently.
The optimal Q-function of this MDP is then used to determine which
action to perform. BEB is a simple, but efficient algorithm that re-
mains computationally inexpensive for accurate prior distributions.
Nevertheless, BEB’s performance drops significantly for inaccurate
prior distributions (Castronovo et al., 2016).

Another approach was proposed a few years ago with Offline
Prior-based Policy Search (OPPS) (Castronovo et al., 2012; Castronovo,
Fonteneau, and Ernst, 2014). During an offline phase, OPPS builds
a discrete set of E/E strategies, and identifies which strategy of the
set is the most efficient on average, to address any MDP drawn from
the prior distribution. Instead of evaluating the performance of each
strategy with the same accuracy, OPPS uses a multi-armed bandit
strategy to discard gradually the worst strategies. This idea allows
OPPS to consider a strategy space large enough to contain good
candidates for many problems. Besides, the E/E strategies considered
are computationally inexpensive for on-line decision making, but the
approach lacks theoretical guarantees (Castronovo et al., 2016).

A more detailed description of each algorithm is available in the
Appendix 5.6.1.

5.3 Preliminaries

5.3.1 Bayes Adaptive Markov Decision Process

We, hereafter, describe the formulation of optimal decision-making
in a BAMDP. Let M = (X,U, f(·), ρM , γ) be a given unknown MDP,
where

• X = {x(1), . . . , x(nX)} denotes its finite state space

• U = {u(1), . . . , u(nU )} denotes its finite action space

• rt = ρM(xt, ut, xt+1) ∈ [Rmin, Rmax] denotes an instantaneous
deterministic, bounded reward

• γ > 0 its discount factor

When the MDP is in state xt at time t and action ut is selected, the
agent moves instantaneously to a next state xt+1 with a probability
P (xt+1|xt, ut) = f(xt, ut, xt+1). In the BAMDP setting, the dynamics
are unknown, and we assume that f is drawn according to a known
distribution P (f). Such a probability distribution is called a prior
distribution; it represents what the MDP is believed to be before in-
teracting with it. Let ht = (x0, u0, r0, x1, · · · , xt−1, ut−1, rt−1, xt) denote
the history observed until time t. Given the current history ht, a pol-
icy π returns an action ut = π(ht). Given an MDP M and a policy
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π, we define the cost JπM = EπM [
∑

t γ
trt] as the expected cumulated

discounted reward on M , when applying policy π. Given a prior dis-
tribution p0M(·), the goal is to find a policy π∗, called Bayes optimal that
maximises the expected cost with respect to the prior distribution:

π∗ = arg max
π

E
M∼p0M(·)

JπM (5.1)

It is important to note that although this policy is good on average,
with respect to the prior, it does not necessarily perform efficiently
on each MDP sampled from the prior. Conversely, given a fixed and
fully known MDP M , a policy that is optimal on M is likely to be very
different from π∗.

5.3.2 Solving BAMDP

Though solving a BAMDP exactly is theoretically well defined, it is
intractable in practice (Guez, Silver, and Dayan, 2013) for two reasons.
First, sampling possible transition probabilities, based on past obser-
vations, relies on the computation of P (f |ht) ∝ P (ht|f)P (f), which
is intractable for most probabilistic models (Duff, 2002; Kaelbling,
Littman, and Cassandra, 1998; Kolter and Ng, 2009). Second, the
BAMDP state space is actually made of all possible histories and is
infinite. Therefore, all known tractable algorithms rely on some form
of approximation. They can be divided in two main classes: online
methods, and offline methods. The former group (Fonteneau, Buso-
niu, and Munos, 2013; Asmuth and Littman, 2011; Walsh, Goschin,
and Littman, 2010; Kolter and Ng, 2009) relies on sparse sampling
of possible models based on the current observations, to reduce the
number of transition probabilities computations. The latter group
(Wang et al., 2012) uses the prior knowledge to train an agent able to
act on all possible sequences of observations. Our approach belongs
to this group, and is described in Section 5.4.

5.4 Algorithm Description

A Bayes optimal policy π∗, as defined by Eq. 5.1, maps histories to
Bayes actions. Although π∗ is unknown, an approximation may be
computed. Let πθ be a parametric policy whose model parameters are
θ. The model is fed up with the current history ht, and computes an
output vector, associating a confidence score to each action in return.
The agent simply selects the action with the highest score.

Our model is composed of several ANNs, where the model param-
eters, denoted by θ, are the weights of all the networks. All ANNs are
fed up with the same inputs, and build several output vectors which
are merged by using a weighted linear combination.
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The training of this model requires a training dataset, whose gen-
eration is described in Section 5.4.1. It consists in performing sim-
ulations on MDPs drawn from the prior distribution to generate a
training set. To each history observed during these simulations, we
recommend an optimal action. Each < history, recommended action
> pair is a sample of the training dataset.

A history is a series of transitions whose size is unbounded, but
ANNs can only be fed up with input vectors of a fixed size. To address
this issue, histories are processed into fixed-size input vectors prior to
training our model. This procedure is described in Section 5.4.2.

More specifically, the ANNs are built iteratively by using SAMME
— an Adaboosting algorithm. It consists in modifying the training
dataset in order to increase the weights of the samples misclassified by
the ANNs built previously. Section 5.4.3 details the SAMME algorithm
and the necessary changes to fit the BRL setting.

Moreover, we also add pseudo-code descriptions in both offline
and online phases (Algorithm 12 and Algorithm 13 respectively) along
with UML diagrams (Figure 5.1 and Figure 5.2 respectively).
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5.4.1 Generation of the Training Dataset

During the offline phase, we use the prior knowledge to generate
samples which will compose the training dataset. For a given series of
observations ht, we consider the optimal action w.r.t. the MDP from
which ht has been generated. In other words, we give a label of 1 to
actions that are optimal when the transition function f(.) is known,
and −1 to the others.

Our dataset is, thus, filled with suboptimal recommendations,
from the Bayes optimal perspective. However, our samples are gen-
erated from multiple MDPs which are themselves sampled from the

Algorithm 12 ANN-BRL - Offline phase

Input: Time horizon T , prior distribution p0M(.)
Output: A classifier C(.)

{Generate transitions}
for i = 1 to n do

M (i) ∼ p0M(.)
H(i) ← “Simulate 1 trajectory of length T on M (i)”

end for

{Compute input/output vectors for each transition}
for i = 1 to n do

hT ← H(i)

for j = 1 to T do {Compute the input vector of sample (i, j)}
hj ←

(
h
(1)
T , . . . , h

(j)
T

)
ϕi,j ← Reprocess hj

{Compute the output vector of sample (i, j)}
Q∗i,j ← Q-Iteration(M (i), T )
for k = 1 to nU do

if k maximises Q∗i,j(x, u(·)) then
output

(k)
i,j = 1

else
output

(k)
i,j = −1

end if
end for

DataSet(i,j) ← {ϕi,j, outputi,j}
end for

end for

{Train a model and compute a policy}
C(.)← Run SAMME on DataSet
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Algorithm 13 ANN-BRL - Online phase

Input: Prior distribution p0M(.), current history ht =
(x0, u0, r0, x1, · · · , xt−1, ut−1, rt−1, xt), classifier C(.)
Output: ut, the action to perform at time-step t

{Compute the input vector}
ϕt ← Reprocess ht
input← ϕt

{Compute the output vector}
output← C(input)

{Choose action ut w.r.t. the output vector}
k ← k maximising output(·)

ut ← u(k)

prior distribution. As a consequence, a history h can appear multi-
ple times in our dataset but with different output vectors, because it
has been generated from different MDPs for which the labels were
different. The average output vector for a history h approximates the
probability of each action u to be the optimal response to h when fM(.)
is known, where M ∼ p0M(·). To a certain extent, it is similar to what
is done by other BRL algorithms, such as BAMCP (Guez, Silver, and
Dayan, 2012) when it explores a specific part of the belief-states space
using Tree-Search techniques.

During the data generation phase, it is necessary to choose which
parts of the state space to explore. Generating samples by following
what is believed to be an optimal policy is likely to provide examples
in rewarding areas of the state space, but only for the current MDP.
Since it is not possible to know in advance which MDPs our agent
will encounter during the online phase, we choose to induce some
random exploration in the data generation process. More precisely,
we define an ε-Optimal agent, which makes optimal decisions2 w.r.t.
to the MDP with a probability 1− ε, and random decisions otherwise.
By varying the value of 0 < ε < 1 from one simulation to another, we
are able to cover the belief-states space more efficiently than using a
random agent.

5.4.2 Reprocess of a History

The raw input fed to our model is ht, an ordered series of observations
up to time t. In order to simplify the problem and reduce training time,
a data preprocessing step is applied to reduce ht to a fixed number
of features ϕht = [ ϕ

(1)
ht
, . . . , ϕ

(N)
ht

], N ∈ N. There are two types of

2By optimal we mean the agent knows the transition matrix of the MDP, and
solve it in advance.
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features that are considered in this paper: Q-values and transition
counters.

Q-values are obtained by building an approximation of the current
MDP from ht and computing its Q-function, thanks to the well-known
Q-Iteration algorithm (Sutton and Barto, 1998). Each Q-value defines
a different feature:

ϕht = [ Qht(x
(1), u(1)), . . . , Qht(x

(nX), u(nU )) ]

A transition counter represents the number of occurrences of spe-
cific transition in ht. Let Cht(< x, u, x′ >) be the transition counter of
transition < x, u, x′ >. The number of occurrences of all transitions
defines the following features:

ϕht = [ Cht(< x(1), u(1), x(1) >), . . . ,

Cht(< x(nX), u(nU ), x(nX) >) ] (5.2)

At this stage, we computed a set of features which do not take into
account the order of appearance of each transition. We consider that
this order is not necessary as long as the current state xt is known. In
this paper, two different cases have been studied:

1. Q-values: We consider the set of all Q-values defined above.
However, in order to take xt into account, those which are not
related to xt are discarded.

ϕht = [ Qht(xt, u
(1)), . . . , Qht(xt, u

(nU )) ]

2. Transition counters: We consider the set of all transition coun-
ters defined above to which we add xt as an extra feature.

ϕht = [ Cht(< x(1), u(1), x(1) >), . . . ,

Cht(< x(nX), u(nU ), x(nX) >), xt ] (5.3)

5.4.3 Model Definition and Training

The policy is now built from the training dataset by supervised learn-
ing on the multi-class classification problem where the classes c are
the actions, and the vectors v are the histories. SAMME has been
chosen to address this problem. It is a boosting algorithm which
directly extends Adaboost from the two-class classifcation problem to
the multi-class case. As a reminder, a full description of SAMME is
provided in Appendix 5.6.2.

SAMME builds iteratively a set of weak classifiers in order to
build a strong one. In this paper, the weak classifiers are neural
networks in the form of multilayer perceptrons (MLPs). SAMME
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Algorithm 14 Resampling algorithm
Input: The original training dataset DataSet (size = N ), a set of
weights w1, . . . , wN
Output: A new training dataset DataSet′ (size = p)

{Normalise wk such that 0 ≤ w̄k ≤ 1 and
∑

k w̄k = 1}
for i = 1 to N do

w̄k ← wk∑
k′ wk′

end for

{Resample DataSet}
for i = 1 to p do

DataSet′(i)← “Draw a sample s from DataSet”
{P (s = DataSet(k)) is equal to w̄k, ∀k)}

end for

algorithm aims to allow the training of a weak classifier to focus
on the samples misclassified by the previous weak classifiers. This
results in associating weights to the samples which reflect how bad
the previous weak classifiers are for this sample.

MLPs are trained by backpropagation3, which does not support
weighted samples. Schwenk et al. presented different resampling
approaches to address this issue with neural networks in (Schwenk
and Bengio, 2000). The approach we have chosen samples from
the dataset by interpreting the (normalised) weights as probabilities.
Algorithm 14 describes it formally.

One of the specificities of the BRL formalisation lies in the defi-
nition of the classification error δ of a specific sample. This value is
critical for SAMME in the evaluation of the performances of an MLP
and the tuning of the sample weights. Our MLPs do not recommend
specific actions, but rather give a confidence score to each one. As
a consequence, different actions can receive the same level of confi-
dence by our MLP(s), in which case the agent will break the tie by
selecting one of those actions randomly. Therefore, we define the
classification error δ as the probability for an agent following a weak
classifier C ′(.) (= an MLP) to select the class c associated to a sample v
(< v, c > being an < history, recommended action > pair):

3In order to avoid overfitting, the dataset is divided into two sets: a learning set
(LS) and a validation set (VS). The training is terminated once it begins to be less
efficient on VS. The samples are distributed 2/3 for LS and 1/3 for VS.
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u∗ = u(c), p̂ = C ′(v)

Û = {u ∈ U | u = arg max
u

p̂u}

δ =
|Û \ {u∗}|
|Û |

5.5 Experiments

5.5.1 Experimental Protocol

In order to empirically evaluate our algorithm, it is necessary to
measure its expected return on a test distribution pM, after an offline
training on a prior distribution p0M. Given a policy π, we denote this
expected return J

π(p0M)
pM = E

M∼pM(·)

[
J
π(p0M)

M

]
. In practice, we can only

approximate this value. The steps to evaluate an agent π are defined
as follows:

1. Train π offline on p0M

2. Sample N MDPs from the test distribution pM4

3. For each sampled MDP M , compute estimate of Jπ(p
0
M)

M

4. Use these values to compute an empirical estimate of Jπ(p
0
M)

pM

To estimate J
π(p0M)

M , the expected return of agent π trained offline
on p0M, we sample one trajectory on the MDP M , and compute the
truncated cumulated return up to time T . The constant T is chosen so
that the approximation error is bounded by ε = 0.01.

Finally, to estimate our comparison criterion J
π(p0M)
pM , we compute

the empirical average of the algorithm performance over N differ-
ent MDPs, sampled from pM. For all our experiments, we report
the measured values along with the corresponding 0.95 confidence
interval.

The results will allow us to identify, for each experiment, the most
suitable algorithm(s) depending on the constraints the agents must
satisfy. Note that this protocol has been first presented in more details
in (Castronovo et al., 2016).

4In practice, we can only sample a finite number of trajectories, and must rely
on estimators to compare algorithms.
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5.5.2 Algorithms Comparison

In our experiment, the following algorithms have been tested, from
the most elementary to the state-of-the-art BRL algorithms: Random,
ε-Greedy, Soft-max, OPPS-DS (Castronovo et al., 2012; Castronovo,
Fonteneau, and Ernst, 2014), BAMCP (Guez, Silver, and Dayan, 2012),
BFS3 (Asmuth and Littman, 2011), SBOSS (Castro and Precup, 2010),
and BEB (Kolter and Ng, 2009). For detailed information on an algo-
rithm and its parameters, please refer to the Appendix 5.6.1.

Most of the above algorithms are not any-time methods, i.e. they
cannot be interrupted at an arbitrary time and yield a sensible result.
Given an arbitrary time constraint, some algorithms may just be
unable to yield anything. And out of those that do yield a result,
some might use longer time than others. To give a fair representation
of the results, we simply report, for each algorithm and each test
problem, the recorded score (along with confidence interval), and
the computation time needed. We can then say, for a given time
constraint, what the best algorithms to solve any problem from the
benchmark are.

5.5.3 Benchmarks

In our setting, the transition matrix is the only element which differs
between two MDPs drawn from the same distribution. Generating a
random MDP is, therefore, equivalent to generating a random transi-
tion matrix. In the BRL community, a common distribution used to
generate such matrices is the Flat Dirichlet Multinomial distribution
(FDM). It is chosen for the ease of its Bayesian updates. A FDM is
defined by a parameter vector that we call θ.

We study two different cases: when the prior knowledge is accu-
rate, and when it is not. In the former, the prior distribution over
MDPs, called pθ0M(.), is exactly equal to the test distribution that is
used during online training, pθM(.). In the latter, the inaccuracy of the
prior means that pθ0M(.) 6= pθM(.).

Sections 5.5.3, 5.5.3 and 5.5.3 describes the three distributions
considered for this study.

Generalised Chain Distribution

The Generalised Chain (GC) distribution is inspired from the 5-states
chain problem (5 states, 3 actions) (Dearden, Friedman, and Russell,
1998). The agent starts at state 1, and has to go through state 2, 3 and
4 in order to reach the last state, state 5, where the best rewards are.
This cycle is illustrated in Figure 5.3(a).
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(a) The GC distribution. (b) The GDL distribution.

(c) The Grid distribution.

FIGURE 5.3: Studied distributions for benchmarking.

Generalised Double-Loop Distribution

The Generalised Double-Loop (GDL) distribution is inspired from the
double-loop problem (9 states, 2 actions) (Dearden, Friedman, and
Russell, 1998). Two loops of 5 states are crossing at state 1 (where the
agent starts) and one loop yields more rewards than the other. This
problem is represented in Figure 5.3(b).

Grid Distribution

The Grid distribution is inspired from the Dearden’s maze problem
(25 states, 4 actions) (Dearden, Friedman, and Russell, 1998). The
agent is placed at a corner of a 5x5 grid (the S cell), and has to reach
the goal corner (the G cell). The agent can perform 4 different actions,
corresponding to the 4 directions (up, down, left, right), but the actual
transition probabilities are conditioned by the underlying transition
matrix. This benchmark is illustrated in Figure 5.3(c).
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5.5.4 Results
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FIGURE 5.4: Best algorithms w.r.t offline/online peri-
ods (accurate case)

Agent Score on GC Score on GDL Score on Grid
Random 31.12± 0.90 2.79± 0.07 0.22± 0.06
e-Greedy 40.62± 1.55 3.05± 0.07 6.90± 0.31
Soft-Max 34.73± 1.74 2.79± 0.10 0.00± 0.00
OPPS-DS 42.47± 1.91 3.10± 0.07 7.03± 0.30
BAMCP 35.56± 1.27 3.11± 0.07 6.43± 0.30
BFS3 39.84± 1.74 2.90± 0.07 3.46± 0.23
SBOSS 35.90± 1.89 2.81± 0.10 4.50± 0.33
BEB 41.72± 1.63 3.09± 0.07 6.76± 0.30
ANN-BRL (Q) 42.01± 1.80 3.11± 0.08 6.15± 0.31
ANN-BRL (C) 35.95± 1.90 2.81± 0.09 4.09± 0.31

TABLE 5.1: Best algorithms w.r.t Performance (accurate
case)
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FIGURE 5.5: Best algorithms w.r.t offline/online time
(inaccurate case)

Agent Score on GC Score on GDL Score on Grid
Random 31.67± 1.05 2.76± 0.08 0.23± 0.06
e-Greedy 37.69± 1.75 2.88± 0.07 0.63± 0.09
Soft-Max 34.75± 1.64 2.76± 0.10 0.00± 0.00
OPPS-DS 39.29± 1.71 2.99± 0.08 1.09± 0.17
BAMCP 33.87± 1.26 2.85± 0.07 0.51± 0.09
BFS3 36.87± 1.82 2.85± 0.07 0.42± 0.09
SBOSS 38.77± 1.89 2.86± 0.07 0.29± 0.07
BEB 38.34± 1.62 2.88± 0.07 0.29± 0.05
ANN-BRL (Q) 38.76± 1.71 2.92± 0.07 4.29± 0.22
ANN-BRL (C) 36.30± 1.82 2.84± 0.08 0.91± 0.15

TABLE 5.2: Best algorithms w.r.t Performance (inaccu-
rate case)
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For each experiment, we tested each algorithm with several val-
ues for their parameter(s). The values considered in this paper are
detailed in Appendix 5.6.1. Three pieces of information have been
measured for each test: (i) an empirical score, obtained by testing
the agent on 500 MDPs drawn from the test distribution5; (ii) a mean
online computation time, corresponding to the mean time taken by
the agent for performing an action; (iii) an offline computation time,
corresponding to the time consumed by the agent while training on
the prior distribution6.

Each of the plots in Fig. 5.4 and Fig. 5.5 present a 2-D graph, where
the X-axis represents a mean online computation time constraint,
while the Y-axis represents an offline computation time constraint.
For each point of the graph: (i) all agents that do not satisfy the
constraints are discarded; (ii) for each algorithm, the agent leading
to the best performance in average is selected; (iii) the list of agents
whose performances are not significantly different is built. For this
purpose, a paired sampled Z-test (with a confidence level of 95%) has
been used to discard the agents which are significantly worst than the
best one. Since several algorithms can be associated to a single point,
several boxes have been drawn to gather the points which share the
same set of algorithms.

Accurate Case

In Table 5.1, it is noted that ANN-BRL (Q)7 gets extremely good scores
on the two first benchmarks. When taking into account time con-
straints, ANN-BRL (Q) requires a slightly higher offline time bound
to be on par with OPPS, and can even surpass it on the last benchmark
as shown in Fig. 5.4.

ANN-BRL (C)8 is significantly less efficient than ANN-BRL (Q) on
the first and last benchmarks. The difference is less noticeable in the
second one.

Inaccurate Case

Similar results have been observed for the inaccurate case and can
be shown in Fig. 5.5 and Table 5.2 except for the last benchmark :
ANN-BRL (Q) obtained a very high score, 4 times larger than the
one measured for OPPS-DS. It is even more noteworthy that such a
difference is observed on the most difficult benchmark. In terms of
time constraints, ANN-BRL (Q) is still very close to OPPS-DS except
for the last benchmark, where ANN-BRL (Q) is significantly better
than the others above certain offline/online time periods.

5The same MDPs are used for comparing the agents. This choice has been made
to reduce drastically the variance of the mean score.

6Notice that some agents do not require an offline training phase.
7Refers to ANN-BRL using Q-values as its features.
8Refers to ANN-BRL using transition counters as its features.
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Another difference is that even though ANN-BRL (C) is still out-
performed by ANN-BRL (Q), Fig. 5.5 reveals some cases where ANN-
BRL (C) outperforms (or is on par with) all other algorithms consid-
ered. This occurs because ANN-BRL (C) is faster than ANN-BRL
(Q) during the online phase, which allows it to comply with smaller
online time bounds.

5.6 Conclusion and Future work

We developed ANN-BRL, an offline policy-search algorithm for ad-
dressing BAMDPs. As shown by our experiments, ANN-BRL ob-
tained state-of-the-art performance on all benchmarks considered
in this paper. In particular, on the most challenging benchmark9, a
score 4 times higher than the one measured for the second best algo-
rithm has been observed. Moreover, ANN-BRL is able to make online
decisions faster than most BRL algorithms.

Our idea is to define a parametric policy as an ANN, and train it
using backpropagation algorithm. This requires a training set made
of observations-action pairs and in order to generate this dataset,
several simulations have been performed on MDPs drawn from prior
distribution. In theory, we should label each example with a Bayes
optimal action. However, those are too expensive to compute for the
whole dataset. Instead, we chose to use optimal actions under full
observability hypothesis. Due to the modularity of our approach, a
better labelling technique could easily be integrated in ANN-BRL,
and may bring stronger empirical results.

Moreover, two types of features have been considered for repre-
senting the current history: Q-values and transition counters. The
use of Q-values allows to reach state-of-the-art performance on most
benchmarks and outperfom all other algorithms on the most diffi-
cult one. On the contrary, computing a good policy from transition
counters only is a difficult task to achieve, even for Artificial Neural
Networks. Nevertheless, we found that the difference between this
approach and state-of-the-art algorithms was much less noticeable
when prior distribution differs from test distribution, which means
that at least in some cases, it is possible to compute efficient policies
without relying on online computationally expensive tools such as
Q-values.

An important future contribution would be to provide theoretical
error bounds in simple problems classes, and to evaluate the perfor-
mance of ANN-BRL on larger domains that other BRL algorithms
might not be able to address.

9Grid benchmark with a uniform prior.
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Appendices

5.6.1 BRL Algorithms

Each algorithm considered in our experiments is detailed precisely.
For each algorithm, a list of “reasonable” values is provided to test
each of their parameters. When an algorithm has more than one
parameter, all possible parameter combinations are tested.

Random

At each time-step t, the action ut is drawn uniformly from U .

ε-Greedy

The ε-Greedy agent maintains an approximation of the current MDP
and computes, at each time-step, its associated Q-function. The se-
lected action is either selected randomly (with a probability of ε
(1 ≥ ε ≥ 0), or greedily (with a probability of 1 − ε) with respect
to the approximated model.

Tested values:

ε ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

Soft-max

The Soft-max agent maintains an approximation of the current MDP
and computes, at each time-step, its associated Q-function. The se-
lected action is selected randomly, where the probability to draw an
action u is proportional to Q(xt, u). The temperature parameter τ
allows to control the impact of the Q-function on these probabilities
(τ → 0+: greedy selection; τ → +∞: random selection).

Tested values:

τ ∈ {0.05, 0.10, 0.20, 0.33, 0.50, 1.0, 2.0, 3.0, 5.0, 25.0}.

OPPS

Given a prior distribution p0M(.) and an E/E strategy space S, the
Offline, Prior-based Policy Search algorithm (OPPS) identify a strat-
egy π∗ ∈ S which maximises the expected discounted sum of returns
over MDPs drawn from the prior. The OPPS for Discrete Strategy
spaces algorithm (OPPS-DS) (Castronovo et al., 2012; Castronovo,
Fonteneau, and Ernst, 2014) formalises the strategy selection problem
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for a discrete strategy space of index-based strategies. The E/E strat-
egy spaces tested are the ones introduced in (Castronovo et al., 2016)
and are denoted by F2,F3,F4,F5,F6. β is a parameter used during the
strategy selection.

Tested values:

S ∈ {F2,F3,F4,F5,F6}10,

β ∈ {50, 500, 1250, 2500, 5000, 104, 105, 106}.

BAMCP

Bayes-adaptive Monte Carlo Planning (BAMCP) (Guez, Silver, and
Dayan, 2012) is an evolution of the Upper Confidence Tree algorithm
(UCT) (Kocsis and Szepesvári, 2006), where each transition is sam-
pled according to the history of observed transitions. The principle
of this algorithm is to adapt the UCT principle for planning in a
Bayes-adaptive MDP, also called the belief-augmented MDP, which is
an MDP obtained when considering augmented states made of the
concatenation of the actual state and the posterior. BAMCP relies on
two parameters: (i) K, which defines the number of nodes created at
each time-step, and (ii) depth defines the depth of the tree.

Tested values:

K ∈ {1, 500, 1250, 2500, 5000, 10000, 25000},

depth ∈ {15, 25, 50}.

BFS3

The Bayesian Forward Search Sparse Sampling (BFS3) (Asmuth and
Littman, 2011) is a BRL algorithm whose principle is to apply the
principle of the FSSS (Forward Search Sparse Sampling, see (Kearns
and Singh, 2002) algorithm to belief-augmented MDPs. It first sam-
ples one model from the posterior, which is then used to sample
transitions. The algorithm then relies on lower and upper bounds
on the value of each augmented state to prune the search space. K
defines the number of nodes to develop at each time-step, C defines
the branching factor of the tree, and finally depth controls its maximal
depth.

Tested values:
10The number of arms k is always equal to the number of strategies in the given

set. For your information: |F2| = 12, |F3| = 43, |F4| = 226, |F5| = 1210, |F6| = 7407
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K ∈ {1, 500, 1250, 2500, 5000, 10000},

C ∈ {2, 5, 10, 15}, depth ∈ {15, 25, 50}.

SBOSS

The Smarter Best of Sampled Set (SBOSS) (Castro and Precup, 2010)
is a BRL algorithm which relies on the assumption that the model is
sampled from a Dirichlet distribution. Based on this assumption, it
derives uncertainty bounds on the value of state action pairs. Follow-
ing this step, it uses those bounds to decide the number of models
to sample from the posterior, and the frequency with which the pos-
terior should be updated in order to reduce the computational cost
of Bayesian updates. The sampling technique is then used to build
a merged MDP, as in (Asmuth et al., 2009), and to derive the corre-
sponding optimal action with respect to that MDP. The number of
sampled models is determined dynamically with a parameter ε, while
the re-sampling frequency depends on a parameter δ.

Tested values:

ε ∈ {1.0, 1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5, 1e− 6},

δ ∈ {9, 7, 5, 3, 1, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 1e−6}.

BEB

The Bayesian Exploration Bonus (BEB) (Kolter and Ng, 2009) is a BRL
algorithm that builds, at each time-step t, the expected MDP given
the current posterior. Before solving this MDP, it computes a new
reward function ρ

(t)
BEB(x, u, y) = ρM(x, u, y) + β

c
(t)
<x,u,y>

, where c(t)<x,u,y>
denotes the number of times transition < x, u, y > has been observed
at time-step t. This algorithm solves the mean MDP of the current
posterior, in which we replaced ρM(·, ·, ·) by ρ(t)BEB(·, ·, ·), and applies
its optimal policy on the current MDP for one step. The bonus β is a
parameter controlling the E/E balance.

Tested values:

β ∈ {0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 8, 16}.

ANN-BRL

The Artificial Neural Network for Bayesian Reinforcement Learn-
ing algorithm (ANN-BRL) is fully described in Section 5.4. It sam-
ples n MDPs from prior distribution, and generates 1 trajectory for
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each MDP drawn. The transitions are then used to build training
data (one SL sample per transition), and several ANNs are trained
on this dataset by SAMME and backpropagation11. The training is
parametrised by nh, the number of neurons on the hidden layer of
the ANN12, p, the number of samples resampled from the original
training set at each epoch, ε, the learning rate used during the training,
r, the maximal number of epoch steps during which the error on VS
can increase before stopping the backpropagation training, and M ,
the maximal number of ANNs built by SAMME. When interacting
with an MDP, the BRL agent uses the ANN trained during the offline
phase to determine which action to perform.

Fixed parameters:

n = 750, p = 5T 13, ε = 1e−3, r = 1000.

Tested values:

nh ∈ {10, 30, 50}, M ∈ {1, 50, 100},

ϕ = {[ Q-values not related to xt ],

[Transition counters, current state ]}.

112/3 for the learning set (LS) and 1/3 for the validation set (VS).
12In this paper, we only consider 3-layers ANNs in order to build weak classifiers

for SAMME.
13The number of samples in LS is equal to n× T = 500T . We resample 1% of LS

at each epoch, which equals to 5T .
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5.6.2 SAMME Algorithm

A multi-class classification problem consists to find a rule C(.) which
associates a class c ∈ {1, . . . , K} to any vector v ∈ Rn, n ∈ N. To
achieve this task, we are given a set of training samples < v(1), c(1) >
, . . . , < v(N), c(N) >, from which a classification rule has to be inferred.

SAMME is a boosting algorithm whose goal is to build iteratively
a set of weak classifiers C ′(1)(.), . . . , C ′(M) : Rn → RK , and combine
them linearly in order to build a strong classifier C(.). In our case, the
weak classifiers are Multilayer Perceptrons (MLPs).

C(h) =
1

M

M∑
m=1

α(m) C ′(m)(h),

where α(1) . . . α(M) are chosen to minimise the classification error.

Given a set of training samples< v(1), c(1) >, . . . , < v(N), c(N) >, we
associate a weight wi to each sample. Let err(C ′(.)) be the weighted
classification error of a classifier C ′(.) :

err(C ′(.)) =
1∑N
i=1wi

N∑
i=1

wi δ
C′
i ,

where δC′i is the classification error of C ′(.) for < v(i), c(i) >.

At each iteration m, a weak classifier is trained to minimise the
weighted classification error.

C ′(m)(.) = arg min
C′′(.)

err(C ′′(.))

err(m) = err(C ′(.))

If this classifier behaves better than a random classifier (err(m) <
(nU − 1)/nU ), we compute its coefficient α(m), update the weights of
the samples, and build another classifier. Otherwise, we quit.

α(m) = log

(
1− err(m)

err(m)

)
+ log (nU − 1)

wi = wi exp (α(m) δC
′

i )

In other words, each new classifier will focus on training samples
misclassified by the previous classifiers. Algorithm 15 presents the
pseudo-code description for SAMME.



Chapter 5. Approximate Bayes Optimal Policy Search using
Neural Networks 97

Algorithm 15 SAMME
Input: A training dataset DataSet
Output: A classifier C(.)

{Initialise the weight of each sample}
N ← |DataSet|
w

(1)
i ← 1

N
,∀i ∈ {1, . . . , N}

{Train weak classifiers}
m← 1
repeat

{Train a weak classifier}
C ′(m) ← “Train a classifier on DataSet w.r.t. w(m)”

{Compute its weighted error and its coefficient}
err(m) ← 1∑

i w
(m)
i

∑
iw

(m)
i δC

′
i

α(m) ← log
(

1−err(m)

err(m)

)
+ log (nU − 1)

{Adjust the weights for the next iteration}
w

(m+1)
i ← w

(m)
i exp (α(m) δC

′
i ), ∀i

“Normalise the weights w(m+1)”

m← m+ 1
until err(m) ≥ nU−1

nU
{Stop if C ′(m) is random}

C(.)← { < C ′(1), α(1) >, . . . , < C ′(m), α(m) > }
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Chapter 6

Conclusion

This dissertation investigates the Exploration/Exploitation dilemma
in Reinforcement Learning for which some prior knowledge is as-
sumed to be known in advance. This chapter presents the main
contributions as well as potential research directions.

6.1 Contributions

In Chapter 2, OPPS, which is an algorithm inspired by the work of
F. Maes et al. is presented on multi-armed bandit problems (Maes,
Wehenkel, and Ernst, 2012). By assuming the existence of some prior
knowledge on an MDP, OPPS builds an efficient Exploration/Ex-
ploitation policy. The meta-learning scheme on which OPPS is based
consists to build a large set of agents and identify the best one based
on the information provided by the prior knowledge. With OPPS,
we chose to build formula-based agents1. By combining in different
ways a set of features chosen in advance, OPPS is able to generate a
large set of formulas and, as such, a large set of agents. Identifying
the best agent of this set was made tractable thanks to two major
optimisations: (i) reducing the number of agents to consider by dis-
carding duplicate or similar agents via a heuristic and (ii) optimising
the distribution of the computational resources in the identification of
the best agent by formalising this problem as a multi-armed bandit
problem.

In Chapter 3, OPPS has been adapted to the Bayesian Reinforce-
ment Learning (BRL) setting which integrates the very concept of
prior knowledge. While OPPS handles any type of MDP distribu-
tion, BRL algorithms only consider prior knowledge encoded in the
form of a Flat-Dirichlet Multinomial distribution. The performance of
OPPS in BRL has been evaluated by comparing it with BAMCP— a
state-of-the-art BRL algorithm. Contrary to OPPS, BAMCP performs
most of its calculations prior to each decision. A look-ahead tree is
explored until a time limit fixed in advance has been reached. The
more computation time is provided to BAMCP, the better this explo-
ration is. The differences between both algorithms highlighted the

1A formula-based agent relies on a small formula to evaluate the quality of each
action and make its decisions.
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necessity for computation times to be part of the comparison crite-
ria. The existing benchmarks were not satisfying due to two main
reasons: (i) the computation time was not taken into account; only
the performance was, and (ii) the experiments were performed on
a few MDPs rather than MDP distributions. For these reasons, our
own benchmark has been designed. The results showed that the best
algorithm was greatly dependant on the time constraints of the task
to address.

In Chapter 4, the work presented in Chapter 3 has been extended
and elaborated on. Our benchmark has been improved by adding
more experiments and plotting new graphs providing another point
of view on the results. Additionally, a comparison of most BRL algo-
rithms of the field has been presented. The material used to perform
those experiments have been compiled into a single open-source li-
brary, BBRL2, to allow other researchers of the field to conduct their
own experiments on this benchmark. It has also been found that OPPS
was a good candidate on problems where (i) online computation time
is limited and (ii) the prior distribution is not accurate.

In Chapter 5, ANN-BRL, which an algorithm based on artificial
neural networks (ANNs), has been presented. This work can be
described in three steps: (i) the original BRL problem has been for-
malised as a classification problem, (ii) a sampling algorithm has been
defined to generate a relevant training dataset from the prior distribu-
tion, and (iii) ANNs have been combined with a boosting algorithm
to build a BRL policy. As it was the case with OPPS, the policies built
by ANN-BRL are time-efficient in regard to the updates (w.r.t. to the
response of the system) and the decision-making process, contrary to
those built by most BRL algorithms. The results obtained also suggest
that ANN-BRL handles inaccuracies on the prior knowledge more
efficiently than OPPS.

6.2 Future Work

6.2.1 Offline Prior-based Policy-search

OPPS defines a general approach which consists of three simple steps:
(i) defining a rich set of formulas, (ii) building a rich set of BRL agents
by building a BRL agent for each formula and (iii) search for the best
BRL agent within this set. In order to avoid an explosion of the num-
ber of BRL agents to evaluate, we had to limit the number of features
on which the formulas are based on. Instead of an arbitrary choice, an
algorithm similar to PCA could be developed in order to build a com-
pact and informative set of features. Another interesting extension to
OPPS would be to replace the multi-armed bandit formalisation by

2https://github.com/mcastron/BBRL/wiki

https://github.com/mcastron/BBRL/wiki
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its continuous equivalent, allowing the usage of new types of agents
(e.g. formula-based agents with parametric formula).

6.2.2 Artificial Neural Networks for Bayesian Reinforce-
ment Learning

ANN-BRL showed that neural networks are able to infer a good policy
from the data directly sent by the system with no additional process-
ing in some cases, relying only on the number of times each transition
has been observed. These results may encourage further experiments
on high dimensional systems for which the usage of computation-
ally expensive tools like Q-values is limited or impossible. Besides,
ANN-BRL relies on a classification formalisation which could also be
exploited by other machine learning algorithms such as decision trees
or SVMs.

6.2.3 Bayesian Reinforcement Learning Benchmark

Our benchmark links the performances of an algorithm with its com-
putation time on three MDP distributions. However, it gives no clue
behind the success or the failure of an algorithm on a given distri-
bution. An interesting extension would be to use the distributions
for which Bayes-optimal policies are known. Comparing the com-
puted policies with the expected ones would certainly bring a new
perspective on the results.

6.2.4 Flexible Bayesian Reinforcement Learning Algo-
rithm

To the extent of our knowledge, there is no BRL algorithm which
completely consumes the time available during both offline and on-
line phases. If OPPS and ANN-BRL can handle various offline time
constraints, there is no control in the resulting online computation
time, while most BRL algorithms have little to no calculations prior
to interacting with the system. As shown by the present work, there
is valuable knowledge to retrieve during both phases. An algorithm
which provides some control on both offline and online computation
times would not only be more flexible, but could also surpass existing
algorithms.
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