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Abstract

A multiscale model of the cardiovascular system is presented. Hemodynamics is described by a lumped parameter model,

while heart contraction is described at the cellular scale. An electrophysiological model and a mechanical model were

coupled and adjusted so that the pressure and volume of both ventricles are linked to the force and length of a half-

sarcomere. Particular attention was paid to the extreme values of the sarcomere length, which must keep physiological

values. This model is able to reproduce healthy behavior, preload variations experiments, and ventricular failure. It also

allows to compare the relevance of standard cardiac contractility indices. This study shows that the theoretical gold

standard for assessing cardiac contractility, namely the end-systolic elastance, is actually load-dependent and therefore

not a reliable index of cardiac contractility.

Keywords: Mathematical models - Physiological models - Multiscale models - Cardiovascular system - Sarcomere

contraction

1. Introduction

Mathematical models of biological systems have become

a powerful tool for cardiovascular sciences. These models

allow for a variety of studies that are generally difficult to

implement experimentally.

A complete model of the whole human cardiovascular sys-

tem (CVS) requires a mathematical description of two

components:

• The cardiac pump, composed of two atria and two

ventricles;

• The vascular network (veins, arteries, capillaries, ...).

The heart contraction is often described with ad hoc mod-

els, like the time-varying elastance model [1, 2, 3]. Such

macroscopic models are not based on the cardiac tissue
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properties and cannot reproduce behaviors that arise from

the microscopic scale. In this work, a cardiac cell contrac-

tion model is used and integrated at the organ level in

order to get a multiscale model of the human CVS [4, 5].

The purpose of this model is to link macroscopic proper-

ties to the microscopic behaviors they originate from, a

correlation impossible to establish with phenomenological

models.

2. Methods

There is always a balance to be found between a sophisti-

cated model and computational efficiency. When modeling

complex biological systems like the CVS, assumptions and

simplifications have to be made in order to get a reason-

able computational time. As far as our CVS model is con-

cerned, we wanted a short computational time in order to

study physiological behaviors at the whole CVS scale. In
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this section we describe our CVS model and the assump-

tions we had to make in order to get a computationally

efficient model.

2.1. The vascular network

Blood travels unidirectionally across the body through blood

vessels. Leaving the left atrium and ventricle, it flows su-

cessively through systemic arteries, capillaries, veins and

goes back to the right atrium and ventricle. It is then

sent through pulmonary arteries, capillaries and veins. It

eventually goes back to the left atrium and ventricle and

the cycle starts all over again, as depicted in Fig. 1. In

this work, we assimilate this complex system composed of

many different vessels to a 6-chamber model. Four cham-

bers are assimilated to elastic “balloons” that can be filled

with blood and the other two represent the cardiac pump.

The fluid mechanics equations that govern such a system

are described elsewhere [2, 5, 6] and only the cardiac pump

model will be described in detail in the next section.

Figure 1: Left: Representation of the cardiovascular system. Right:

Diagram of the 6-chamber hemodynamic model. Left ventricle (LV),

right ventricle (RV), pulmonary artery (PA), pulmonary vein (PU),

aorta (AO), vena cava (VC).

2.2. The cardiac pump

The cardiac pump is composed of two atria and two ven-

tricles. Here we only model the ventricles, as they hold the

major role in ejecting the blood through the systemic and

pulmonary circulations. Thus we described the cardiac

pump with only two chambers, the left and right ventri-

cles.

The major difference with the other four chambers of the

CVS model is that ventricles are able to actively con-

tract and generate pressure. Therefore a passive pressure-

volume relationship of the form P (t) = E · V (t) (where E

is the constant elastance of the chamber) is not suitable in

this case. A convenient solution would be to use a similar

equation, but with a time-dependent elastance. The time

dependence would then be fitted to experimental data in

order to get physiological results. This ad hoc approach

(called the time-varying elastance model) has been exten-

sively used to model cardiac contraction [1, 2, 3]. It has

the advantage of providing a very simple mathematical de-

scription of active contraction and can lead to consistent

results. However this model has some limitations. It is

based on the assumptions that the end-systolic pressure-

volume relationship (ESPVR) is linear and unique, even

though experiments have shown this curve to be more

parabolic than linear [7, 8] and load-dependent [9]. Fur-

themore, the ventricular pressure has been shown to be

dependent on the flow out of the ventricle [10, 11]. Subse-

quent modifications to this model have been proposed to

account for the non linear ESPVR and the flow-dependent

pressure [10, 11, 12]. However, these ad hoc modifications

can not overcome the main drawback of this model, namely

the absence of connection with the physiology of cardiac

contraction.

We choose a more physiological approach and described

cardiac contraction at the cellular scale instead [4, 5, 13].

This heart model is described in the following sections.
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2.2.1. Cell model

Cardiac cells are excitable and contractile. When an action

potential (AP) arises, the cell is able to contract through

the excitation-contraction process. We followed the ap-

proach of Puglisi et al. [14] to build a human cardiac

cell model: we connected an electrophysiological model of

a human ventriclar cell [15] to a mechanical contraction

model of a half-sarcomere [16, 17, 18]. Those two models

are described below.

Electrophysiology

An electrophysiological model of an excitable cell is able

to reproduce the AP across the cell membrane, i.e. the

time evolution of the membrane electric potential V . This

potential varies because massive quantities of ions cross

the membrane (leading to ionic currents) during an AP.

The equation governing the time evolution of V is given

by:

Cm
dV

dt
+
∑
j

Ij + Istim = 0

where Cm is the membrane capacitance, Ij is the electrical

current carying ion j and Istim is a stimulation current

that triggers the AP.

From the ionic currents we can also obtain the time evo-

lution of the intracellular concentrations for each type of

ions:

d[Ion]i
dt

=
Iin − Iout
zionVcF

(1)

where Iin (resp Iout) is the global electrical current carry-

ing the ions inside (resp. outside) the intracellular com-

partment of volume Vc, zion is the valence of the ion, and

F is the Faraday constant.

An appropriate description of the ionic currents is required

to obtain physiological results. More information can be

found in the original paper [15] regarding the mathemati-

cal expressions of all the ionic currents.

Mechanical contraction

Cardiac cells contain basic contractile units called sar-

comeres, schematized in Fig. 2. A sarcomere is mainly

composed of actin (thin) and myosin (thick) filaments. In

presence of calcium and ATP, a myosin head (also called

a crossbridge, noted CB) is able to attach to an actin

molecule and rotate its head, thus pulling the actin fil-

ament. The active force produced by a sarcomere is re-

lated to the force produced by the pulling (also called the

power stroke) of the myosin head. There is also a passive

contribution to the total produced force because of the

sarcomere elastic properties.

Figure 2: Left: Representation of the thin and thick filaments of a

sarcomere. Right: Mechanical model of a half sarcomere (adapted

from [16]).

We use the model of Negroni and Lascano [16, 17, 18] to

describe the contraction of a half-sarcomere, composed of

a half-thick and a half-thin filaments (see Fig. 2). Only a

brief summary of the model is given below, but a more de-

tailed explanation can be found in the orginal papers. This

model focuses on the behavior of an equivalent crossbridge

that representents all the crossbridges of the half-thick fil-

ament. It is assimilated to a linear spring of horizontal

elongation h that is always attached to the half-thin fila-

ment (otherwise the force would suddenly go to zero, which

is not physiological).

The active force is proportional to the spring elongation h

but also to the concentrations of attached myosin heads.

These concentrations can be determined from the intra-

cellular calcium kinetics depicted in Fig. 3. Calcium ki-

netics is described with a 5-state model (two states from
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the original paper [17] were merged into one [18]). A tro-

ponin system (TS) is composed of three adjacent troponin-

tropomyosin units and can fix three calcium ions in one

step (TSCa3). Then three crossbridges can attach to the

actin molecules in a weak pre-power stroke state (TSCa∼3 ),

followed by a state where they are able to develop a power

stroke (TSCa∗3). Finally the three calcium ions can de-

tach (TS∗) and the crossbridges eventually detach to end

the cycle. The active force is proportionnal to the con-

centrations of the three states with attached crossbridges

([TSCa∼3 ], [TSCa∗3], and [TS∗]).

Figure 3: Calcium kinetics. Adapted from [17].

There is a strong relationship between the force and length

of a cardiac cell. This leads to important properties at the

organ scale, especially the Frank-Starling mechanism (the

greater the ventricular filling, the greater the pressure).

Therefore it is worth noticing that some rate constants in

the calcium kinetics from Fig. 3 depend on the length L

of the half-sarcomere, leading to a length-dependent force.

The passive elastic properties of the half sarcomere are

modeled with a parallel elastic element shown in Fig. 2.

Eventually, a series elastic element is also added to the

half sarcomere in order to account for the elastic ends of

a muscle fiber, as shown in Fig. 2. Thus the total length

of the half sarcomere is noted Lm and we have:

Lm = L+ Ls

where Ls is the length of the series elastic element.

Whole cell model

We connect the electrophysiology and mechanics as al-

ready done by Puglisi et al. [14]. The intracellular calcium

concentration ([Ca2+]i) obtained from the electrophysio-

logical model is used as an input for the calcium kinetics.

We also make some small modifications regarding the elec-

trophysiological model [15] and the mechanical model [18].

These modifications are described below.

• We add a feedback pathway from mechanics onto

electrophysiology. To this end, an additional current

is added in equation (1) for [Ca2+]i. This current

is the troponin current and takes into account the

buffering of three calcium ions by the troponin sys-

tems defined previously. It is expressed as follows:

Itrop = 3 (
d[TSCa3]

dt
+

d[TSCa∼3 ]

dt
+

d[TSCa∗3]

dt
) (2)

We then have to reduce the total cytosolic calcium

buffer concentration (Bufc in the original paper) from

200 to 130 µM since the buffering due to troponin

in the cytoplasmic compartment is now taken into

account in equation (1).

• The sliding velocity of the equivalent crossbridge along

the thin filament has to be increased by a factor of

3.5. Otherwise, the produced force is not able to

increase fast enough compared to [Ca2+]i increase

during an AP. It should be stated that, unlike the

rate constants describing calcium kinetics, the pa-

rameter governing the sliding dynamics of the equiv-

alent crossbridge can not be unequivocally connected

to the underlying molecular mechanisms of filament

sliding. Several values have been proposed [4, 16, 17,

18] and, in our case, increase in sliding velocity can
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be seen as the price to pay in order to get physiolog-

ical values for the developed force and the resulting

ventricular pressure. Note that the adjusted value

remains close (in term of order of magnitude) to the

initial value from [18].

• The [Ca2+]i increase obtained with the ten Tusscher

and Panfilov model [15] is rather sharp and leads to

a slight increase of the elongation h (from the me-

chanical model) at the beginning of sarcomere con-

traction. This behavior does not impact significantly

the global hemodynamic results, but a smoother in-

crease of [Ca2+]i would ensure a more physiological

behavior of the equivalent crossbridge elongation h.

To this end, we follow the approach of Lascano et al.

[19] and adapt the equations governing calcium liber-

ation by the sarcoplasmic reticulum. In our previous

published paper [6], we were still using the original

electrophysiological model of ten Tusscher and Pan-

filov model.

• The parameters characterizing the passive force in

the mechanical model have to be adapted. A more

detailed explanation is provided at the end of section

2.2.3.

The complete set of equations and parameters used

in the cell model can be found in the Supplementary

Material [20].

2.2.2. Ventricular model

At the ventricular scale, the action potential propagation

across cardiac tissues leads to a global contraction of the

ventricle. Thus, there is a link between the force pro-

duced by the cardiac cells and the global pressure inside

ventricular cavities. Likewise, length variations of cardiac

cells are related to volume variations of ventricular cav-

ity. Connecting microscopic variables (force and length)

to macroscopic variables (pressure and volume) results in

a multiscale model of heart contraction. To achieve this,

we followed an approach similar of that of Shim et al. [4].

To connect the force Fm and total length Lm of the half-

sarcomere to the pressure and volume of the active cham-

ber, both ventricles are simply considered as spheres, as

shown in Fig. 4.

Figure 4: Spherical ventricle model. Left : Top view of the ventricle.

N sarcomeres are aligned along a circle of radius R (dotted black).

Right : Both ventricles are assimilated to thin spheres. The wall

stress σ is related to the force produced by the sarcomeres and allows

for the calculation of the pressure inside the ventricle.

As already done by Shim et al. [4], we assume that N

half-sarcomeres of total rest length Lm0 are aligned along

a circle of radius R0:

Lm0 =
2πR0

N
. (3)

This radius was chosen so that the total half-sarcomere

length Lm during a healthy heartbeat varies between phys-

iologically relevant extremes, i.e. between 0.98 and 1.115

µm [21]. As explained earlier, length-dependent properties

at the cellular scale are connected to macroscopic proper-

ties of the heart. Thus it was essential to get the correct

interval of variation for Lm in our multiscale model. It

is worth noticing that the model of Shim et al. [4] did

not include the series elastic element from [18] and that

the length variations did not belong to the physiological

interval defined here.

The blood volume inside the ventricle is given by:

Vint =
4

3
πrin

3. (4)
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This volume varies in time during a heartbeat. Thus Lm

is given by:

Lm =
2πR

N
(5)

where R is calculated using:

Vint + Vwr =
4

3
πR3. (6)

In this relation, Vwr is the constant volume of the incom-

pressible wall included between rint (at the beginning of

ventricular filling) and R.

Now we have to connect the pressure P inside the ventric-

ular cavity to the force F produced by the half-sarcomeres.

We assume that many contractile units are distributed ho-

mogeneously in all directions on the ventricular wall [4],

so that the wall stress σ can be considered uniform. With

a constant wall stress σ, the equilibrium of the two hemi-

spheres of the ventricles gives the following expression of

the pressure inside the active chambers:

P = σ(
rout

2

rin2
− 1) (7)

where σ is given by:

σ =
F

A
(8)

with F the force and A the cross-sectional area.

The mechanical contraction model actually provides Fm,

the force normalized with respect to the muscle cross-

sectional area measured at a defined reference state, Ar:

Fm =
F

Ar
. (9)

Assuming that muscle units keep constant volume, we also

have:

Lr ·Ar = Lm ·A (10)

where Lr is the total sarcomere length at the reference

area Ar.

From equations (8) - (10) , we can obtain the pressure-

force relation of our multiscale model :

P = 7.5Fm
Lm

Lr
(
rout

2

rin2
− 1) + λ(Vin − V0)3. (11)

The 7.5 factor stands for the unit changes in equation (11)

(pressure is expressed in mmHg while the normalized force

is expressed in mN/mm2) and the last term is a passive

pressure that accounts globally for the elastic properties

of the tissue surrounding the ventricle (λ is related to the

stiffness and V0 is the unstressed volume [22]).

2.2.3. Heart model

As explained before, we only include the ventricles in our

heart model. To reduce the computationnal cost, both

ventricles are assumed to have the same electrophysiology

even if the mechanical behavior can be different. Thus the

troponin currents described in equation (2) are averaged

(and approximated) as follows:

Itrop =
1

2
3 (

d[TSCa3]

dt
+

d[TSCa∼3 ]

dt
+

d[TSCa∗3]

dt
)LV

+
1

2
3 (

d[TSCa3]

dt
+

d[TSCa∼3 ]

dt
+

d[TSCa∗3]

dt
)RV (12)

where the indices “LV” and “RV” refer respectively to the

left and right ventricle.

2.3. Parameter adjustment

The multiscale model presented above depends on many

parameters, which can be split into microscopic (or cel-

lular) parameters and macroscopic (or hemodynamic) pa-

rameters.

The cellular parameters can be obtained in the Supple-

mentary Material [20] or in the original papers in which

the electrophysiological model and the contractile model

were developed (M cell in [15], [17, 18]). As explained in

the previous section, some parameter values were adapted

(see Table A.1) and some equations were modified [19].
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The nine hemodynamic parameters (resistances and elas-

tances of passive chambers, wall thickness of the ventri-

cles) were optimized using the fminsearch algorithm from

MATLAB (The MathWorks, Natick, MA, USA) in order

to minimize the absolute relative error between a chosen

set of reference variables and their corresponding calcu-

lated values. This set of reference values included: the

stroke volume, the left and right ventricular pressures, the

minimal left and right ventricular volumes, the mean aor-

tic and pulmonary artery pressures, and the amplitude of

vena cava and pulmonary pressures. The values for these

reference data were chosed in order to correspond to stan-

dard healthy values [23, 24]. The valve resistances are not

easy to adjust precisely but their values do not influence

much the global hemodynamic results [25].

Note however that, with the set of cellular parameters

described above, the model always produces high end-

diastolic pressures and low end-systolic pressures compared

to physiological values. This difficulty originates from the

too simple geometrical description of the ventricles, which

are here considered as spheres. In a real heart, bundles of

cardiac fibers are actually wrapped around the ventricular

cavity so that the ventricle is also twisted in a very complex

way during contraction. Of course the spherical model of

the ventricles presented above cannot take into account

this aspect of contraction and an adaptation of the values

of some parameters was necessary to compensate for the

simplicity of the model.

From equation (7), it is easy to understand that systolic

pressure, which is related to the maximum active force gen-

erated in the sarcomeres, can be increased by increasing

the ventricular wall thickness. However, since the diastolic

pressure, which is related to the passive force in the my-

ocytes, also increases with the wall thickness, we had to

reduce the intensity of the sarcomere passive force by 70 %

in order to recover physiological diastolic pressures. Note

that Shim et al. [4] also modified the passive force expres-

sion in order to preserve the ventricular ejection fraction.

In summary, the price to pay for the spherical model of

the ventricles is a reduction factor to apply to the cellular

parameter measuring the passive force of the sarcomere.

The adjusted parameters are given in the appendix A.1.

Motivations for a better description of cardiac contraction

at the cellular scale with a reasonable computational cost

lead to the multiscale approach described in this section,

which needed some phenomenological adjustments. Thus,

this CVS model lies in the middle ground between pure

phenomenological models, like the time-varying elastance,

and more sophisticated 3D models for the ventricle [26,

27]. The former can not inherently account for cardiac

properties that originates at the cellular scale while the

latter proposes more realistic description of the ventricle

but makes studies at the whole CVS scale arduous, partly

because of the high computational cost.

3. Results

All simulations are performed in MATLAB (The Math-

Works, Natick, MA, USA) using the stiff ordinary differ-

ential equations solver ode15s.

3.1. Baseline

With the set of parameters described in the previous sec-

tion, we are able to obtain baseline results that correctly

reproduce healthy behaviors of the CVS. Some important

cellular variables are represented on the top panel of Fig.

5: the action potential, the intracellular calcium and the

normalized force produced by the cell. The sarcomere

length and ventricular volume for the left ventricle are also

drawn, and it is worth noticing that the sarcomere length

lies between physiological values [21]. The last panel shows

the correponding pressure-volume loops (PV-loops). We

also represented other hemodynamic variables in Fig. 6.

3.2. Heart failure

It has been shown that heart failure originates at the cellu-

lar scale [28, 29, 30]. Alterations in ionic currents and cal-

cium handling lead to a prolonged action potential, a lower
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Figure 5: Top panel: Action potential (bold), normalized force (nor-

mal), and intracellular calcium (dashed) time evolution during one

heartbeat in the left ventricle (heart rate = 75 bpm). Middle panel:

Sarcomere length (normal) and left ventricular volume (dash-dotted)

time evolution during the same heartbeat. Bottom panel: Pressure-

volume loop in the left (bold) and right (normal) ventricle during

the same heartbeat.
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Figure 6: Hemodynamic variables. The top two curves represent the

flow through the aortic valve (full line) and through the pulmonary

valve (dotted) during one heartbeat. Left ventricular pressure (bold),

aortic pressure (dashed), right ventricular pressure (normal) and pul-

monary pressure (dash-dotted) are also represented.

peak of intracellular calcium, and a lower force. Reduction

in current densities of the inward rectifier K+ current and

the transient outward K+ current, increased activity of

the Na+/Ca2+ exchanger and a reduced Ca2+ sequestra-

tion by the sarcoplasmic reticulum were implemented in

our model (GK1, Gto and GKs decreased by 20 %, kNaCa

increased by 20 % and Vup decreased by 10 % with respect

to their original values from [20]). Our multiscale model

is then able to connect these cellular altered properties to

the hemodynamics variables, as shown in Fig. 7.
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Figure 7: Ventricular failure (dashed) versus normal ventricle. From

top to bottom and left to right: action potential, intracellular cal-

cium, LV normalized force, LV and RV pressure-volume loops.
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Figure 8: Decrease in preload in the right ventricle.

3.3. Load variations

Variations in preload or afterload during the cardiac cycle

may happen for numerous reasons: a change in the venous

return, a change in the arterial pressure, a pathological

condition, etc. The inflation of a Fogarty balloon inserted

in the vena cava is a current way of reducing preload ex-

perimentally. To mimic the inflation of this balloon, we

increase the tricuspid valve resistance (Rtc from Fig. 1)

tenfold, thus allowing less blood to enter the right ven-

tricle. The consequences on the pressure-volume loops on

both ventricles are presented in Fig. 8. It is worth em-

phasizing that the upper left corners of the PV-loops are

not exactly located on a straight line [5], as often postu-

lated when time-varying elastance models of contraction

are used.

3.4. Inotropy variations

Changes in calcium handling at the cellular scale lead to

changes in contraction at the organ scale. These changes

are called inotropic variations. Inotropy is modulated by

many cellular mechanisms, including calcium release and

calcium uptake by the sarcoplasmic reticulum [31]. An in-

crease (resp. decrease) in inotropy is modeled in our model

with an increase (resp. decrease) in the rate of release (Vrel

from [20]) and uptake (Vup from [20]) of calcium ions by

the SR. Seven intracellular calcium curves are shown in

Fig. 9. We have considered first the baseline situation

described in Section 3.1 and we have then increased (resp.

decreased) Vup and Vrel by 5, 10, and 15 %. The corre-

sponding left ventricular PV-loops are also shown in Fig.

9.
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Figure 9: Left panel: intracellular calcium for seven different in-

otropic states: baseline (bold), inotropy increase (full line), inotropy

decrease (dotted line). Right panel: corresponding left ventricular

PV-loops.

3.5. Cardiac contractility indices

Assessing the left ventricular contractile (or inotropic) state

of a patient is an ongoing preoccupation for clinicians. A

good index of cardiac contractility should vary only with

the inotropic state of the heart and be perfectly load-

independent. Many cardiac indices have been proposed

to assess ventricular contractile state [32, 33, 34] and here

we compare some of these with our model.

The end-systolic pressure-volume relationship (ESPVR, see

Fig. 10) is often considered as the best tool for assess-

ing cardiac contractility because the slope of this curve,

named the end-systolic elastance (Ees), is assumed to be

load-independent. However, the ESPVR has been shown

to be load-dependent and non linear [5, 7, 8, 9]. We also

showed the non linearity of the ESPVR in Fig. 8 and its

load-dependence will be observed below.

Another contractility index with a relatively weak afterload-

dependence is the peak first derivative of left ventricular

pressure, (dP/dt)max [32]. In clinic, it is however easier to

assess the arterial pressure than the ventricular pressure,
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Figure 10: End-diastolic and end-systolic pressure-volume relation-

ships. The slope of the ESPVR gives Ees. Adapted from [31].

so the arterial (dP/dt)max was also proposed as a cardiac

contracility index [34].

In case of catheterization of the patient, the time Td from

onset of contraction to left ventricular (dP/dt)max was pro-

posed as a reliable contractility index [33].

To compare the different indices of contractility with our

model, these were calculated for the seven states of in-

otropy described in the previous section (including the

baseline case). In order to evaluate the possible load-

dependency of the indices, we have induced six load vari-

ations by changing some hemodynamic parameters: Rsys

increased and decreased by 20 %, all the hemodynamic

resistances increased and decreased by 10 %, all the elas-

tances of the passive chambers increased and decreased by

10 %. For each load variation, (dPLV/dt)max, (dPAO/dt)max

and Td were calculated on a single PV-loop after the sys-

tem had reached a stabilized behavior. The results are

shown in Fig. 11. The first two indices are increasing

functions of inotropy while Td is a decreasing funtion of in-

otropy. With such load variations simulations, (dPLV/dt)max

standard deviation with respect to the baseline case is

less than 1 %, while for (dPAO/dt)max it ranges from 5

to 10 % and for Td it ranges from 1 to 5 %. In the

case of (dPLV/dt)max, the standard error is very small,

which allows us to conclude that it can actually be con-

sidered as a reliable index of contractility, truly indepen-

dent of the load and increasing with inotropy. The quan-

tities (dPAO/dt)max and Td have larger standard devia-

tion, which indicates that those indices are slightly load-

dependent.

The end-systolic elastance cannot be calculated with a sin-

gle PV-loop provided that a linear regression between at

least two end-diastolic points is required to calculate Ees.

Once the system had reach a stabilized behavior, a Fog-

arty protocol (described earlier) was induced in order to

get more than one PV-loop. The ESPVR was calculated

over four end-diastolic points after twenty PV-loops, as

shown in Fig. 12. The calculated Ees is then represented

as a function of inotropy. It is an increasing function of

inotropy and the standard deviation ranges between 1 %

(low inotropy) and 94 % (high inotropy). For this rea-

son, the end-systolic elastance cannot be considered as a

reliable index of contractility.

4. Discussion

We have developed a multiscale model of the human CVS

based on the ten Tusscher and Panfilov model of electro-

physiology [15], the Negroni and Lascano model of sar-

comere contraction [18], and a lumped parameter model

of hemodynamics.

The ventricular model is quite simple compared to other

works [26, 27], but this approach offers a low computa-

tional cost. The aim of our work is to connect two scales

of cardiac contraction and study the correlation of micro-

scopic and macroscopic variables inside a complete CVS

model. This implies the computation of many heart beats

in a row, which is the reason we choose a simple spherical

ventricular model. Our approach in building this ventricu-

lar model was similar to Shim et al. [4] but with four major

differences: we carefully chose the volume Vwr from Fig.

4 so that the sarcomere length ranges between extreme

physiological values. The pressure-force relationship de-

rived in equation (7) was also different from the one used

by Shim et al. [4]. We also used the last version from the

mechanical model of Negroni and Lascano [18]. A similar
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11



multiscale model was also built by Pironet et al. [5] with

the first model of Negroni and Lascano [16] but not with

a complete cellular description: a calcium driver was used

as an input for the mechanical model.

Our results correlate well with general trends. Our multi-

scale model can account for a healthy behavior as shown

in Fig. 5 and 6. More importantly, it is also able to re-

produce pathological behaviors that originate at the cel-

lular scale, like heart failure, and the consequences on the

whole CVS. It is also able to reproduce basic hemody-

namic experiments like preload variations. A theoretical

study of the load-dependence of four cardiac contractility

indices was also performed. We show that all these quan-

tities are monotonic functions of inotropy. However only

(dPLV/dt)max can be considered as a true index of con-

tractility since it is actually load-independent. The load-

dependency of Td, and to a lesser extent, of (dPAO/dt)max

remains rather small and these two measures are thus rea-

sonably good indices of cardiac contractility. On the con-

trary, the load-dependency of the end-systolic elastance

is large (see also [5]) and even if Ees increases with in-

otropy, it cannot be considered as an absolute index of

contractility. Moreover due to this load-dependency (also

observed in experiments [9]), the use of traditional time-

varying elastance models to describe myocardial contrac-

tion becomes of course quite questionable.
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Appendix A. Adjusted parameters

Table A.1: Adjusted parameters

Parameter Value

Ke (In passive force) 3.15 104 mNmm−2µm−5

Le (In passive force) 3.00 mNmm−2µm−1

α (In series elastic element) 0.15 mNmm−2

Bp (In sliding velocity) 1.75 ms−1

Bw (In sliding velocity) 1.225 ms−1

SBV (Stressed Blood Volume) 1.16 103 ml

Rsys (Systemic resistance) 1.36 103 mmHg ms ml−1

Rpul (Pulmonary resistance) 70.1 mmHg ms ml−1

Rmt (Mitral valve resistance) 22.1 mmHg ms ml−1

Rtc (Tricuspid valve resistance) 11.6 mmHg ms ml−1

Rav (Aortic valve resistance) 48.0 mmHg ms ml−1

Rpv (Pulmonary valve resistance) 3.51 mmHg ms ml−1

Eao (Aorta elastance) 0.615 mmHg ml−1

Evc (Vena cava elastance) 0.0125 mmHg ml−1

Epa (Pulmonary artery elastance) 0.331 mmHg ml−1

Epv (Pulmonary vein elastance) 0.0411 mmHg ml−1

Vlvw (Left ventricular wall volume) 203 ml

Vrvw (Right ventricular wall volume) 31.3 ml
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