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Abstract:

In this paper, we review past (including very recent) research considerations in using rein-
forcement learning (RL) to solve electric power system decision and control problems. The
RL considerations are reviewed in terms of specific electric power system problems, type of
control and RL method used. We also provide observations about past considerations based on
a comprehensive review of available publications. The review reveals the RL is considered as
viable solutions to many decision and control problems across different time scales and electric
power system states. Furthermore, we analyse the perspectives of RL approaches in light of the
emergence of new-generation, communications, and instrumentation technologies currently in
use, or available for future use, in power systems. The perspectives are also analysed in terms
of recent breakthroughs in RL algorithms (Safe RL, Deep RL and path integral control for RL)
and other, not previously considered, problems for RL considerations (most notably restorative,
emergency controls together with so-called system integrity protection schemes, fusion with

existing robust controls, and combining preventive and emergency control).
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1. INTRODUCTION

Societal and economic costs of large electric power sys-
tems’ blackouts could be as high as 10 billion dollars
with 50 million people affected, as estimated for the US-
Canada Power System Outage of August 14, 2003 US-DoE
(2004). The blackouts are often caused by poor design and
coordination of controls needed to operate electric power
systems. Thus, in order to prevent (or at least decrease)
the probability of large blackouts, research, development
and implementation of improved controls are of paramount
importance.

Electric power system control techniques have always
evolved in order to fulfil the requirements of the elec-
tric power industry during its development. As usually
happens, the development of new control techniques in
power systems is often based on advances achieved in
applied mathematics, control theory, computer science,
operational research, telecommunications, and the avail-
ability of more powerful computational facilities.

Increasing complexity of todays’ large interconnected
power systems (including uncertainties brought about by
encouragement of the use of so-called renewable energy
sources) requires advanced control techniques to be ap-
plied to control power systems more efficiently.

Better communications’ infrastructure, stronger compu-
tational capabilities, and new control devices (such as
power electronics) open up the possibilities to implement
advanced control schemes which are able to process the

observations realized on the power system and to control
it appropriately. Embedding the learning methods into the
control schemes is an effective way to endow the controllers
with the capability to learn and update their decision-
making.

RL offers a panel of methods that allows controllers to
learn a goal-oriented control law from interactions with a
system or its simulation model Sutton and Barto (1998);
Busoniu et al. (2010). RL driven controllers (agents)
observe the system state, take actions, and observe the
effects of these actions. They process the accumulated
experience and progressively learn an appropriate control
law, i.e. an algorithm to associate suitable actions to the
observations in order to fulfil a pre-specified objective
Sutton and Barto (1998); Busoniu et al. (2010).

The potentials of RL to solve electric power system control
and decision problems was recognized by the research
community and a number of considerations were offered.
This paper surveys past and recent RL considerations to
solve power system control and decision problems and
suggest some future research direction.

To the best of our knowledge there is no document like
this and we hope it may serve as a reference document
for future considerations of RL in electric power system
decision and control problems.

The paper is organized as follows. Section 2 briefly intro-
duces electric power system control and decision problems.
In Section 3, a framework for RL considerations in electric



power systems is presented. Section 4 surveys past and
more-recent research publications together with major ob-
servations made by the authors. Section 5 proposes some
future research directions, while section 6 concludes.

2. ELECTRIC POWER SYSTEM DECISION AND
CONTROL: A SHORT OVERVIEW

Electric power systems face a multitude of control prob-
lems over different operating states and time scales. The
widely accepted classification of electric power system op-
erating states is the one introduced in DyLiacco (1974)
Fig. 1 illustrates five operating states as defined in DyLi-
acco (1974) and adapted in Padiyar (2008).

The states are defined in terms of the status of equality
(E) and inequality (I) constraints of the system (violated
(indicated with ” ™ in Fig. 1) or not violated). The equality
constraints express the generation-load demand balance,
while inequality constraints express physical limitations
of power system components (usually defined in terms
of current and voltage magnitudes, active, reactive and
apparent powers that a system component can withstand
without any damage).
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Fig. 1. Power system operating states Padiyar (2008)
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Fig. 2. Power system decision and control time scale
decomposition

Fig. 2 depicts power system decisions and controls ranging
from fractions of seconds to year(s). Time decomposition
shown in Fig. 2 corresponds to the normal and alert system
states.

Examples of fast controls, acting in fractions of seconds,
are protective relays, automatic voltage regulators on
generators, turbine governors, etc., while (sub)system level

controls, acting over several seconds, include for example
automatic generation control, secondary voltage control,
etc. (Sub)system level controls, acting over minutes, hours
or a day include scheduling problems such as economic
dispatch.

Market-based decisions also relate to scheduling, while
longer-term decisions include maintenance scheduling or
the use of hydro potentials. Other types of controls, such as
preventive and emergency controls (see Fig. 1), are usually
designed as discrete controls activated upon detection of
the system constraints’ violations.

In the next section we review past and more-recent con-
siderations of RL to solve different types of electric power
system control/decision problems.

3. A FRAMEWORK FOR RL CONSIDERATION IN
POWER SYSTEM DECISION AND CONTROL

The RL controller (agent) interacts with an environment
(system) by observing states and selecting actions. After
each moment of interaction, the agent receives a feedback
signal, reinforcement signal, or reward from the system
being delivered to the learning system in response to
the execution of control action Sutton and Barto, 1998;
Busoniu et al., 2010. The most commonly studied objective
is to maximize, for each time step, the expected sum of
future reinforcements or discounted return defined as the
sum of rewards over future time steps Sutton and Barto,
1998; Busoniu et al., 2010.

A likely framework for application of the RL in power sys-
tem decision and control is illustrated in Fig. 3. It defines
two modules: learning and execution. The learning mod-
ule is a typical RL implementation, while the execution
module is a simple greedy agent that uses the knowledge
gained in the learning module to make controls/decisions.
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Fig. 3. A likely framework for RL in power system decision
and control

The RL learning agent interacts with the system model
(interaction with a real system is a concern since explo-
ration in the search for an optimal policy in RL could
create unsafe and unreliable system situations). The pe-
riodical transfer of a learned strategy to a greedy agent
ensures improvement in time.

Note also that the scenarios used for the learning agent
are enriched by events observed in a real system (for their
replication) since it is not always possible to capture all



possible scenarios in a simulation model. In this way RL
decision/control benefits from both a simulation environ-
ment and a real system while direct interaction with the
system is avoided.

4. PAST AND RECENT CONSIDERATIONS OF RL
FOR ELECTRIC POWER SYSTEM DECISION AND
CONTROL

In this section we survey past and recent considerations
through a summary in tabular form and main observations
of the authors. A large number of publications on this
problem are available. However, we are only focusing on
the major ones (those published in journals).

Table 1. summarizes considerations in terms of power
system control/decision problem, type of of control and
RL method used.

Note that if the cells in columns of Table 1. are left blank
then they are assumed to be the same as first filled cell
above.

Instead of providing short descriptions of every considera-
tion listed in Table 1., we provide our observations based
on a comprehensive review of publications mentioned in

Table 1.
We offer the following observations:

e RL was considered in a variety of electric power sys-
tem control and decision problems (listed in Table 1).
This confirms the potential of RL methods and the
interest of power system researchers/engineers in us-
ing these methods to solve problems.

e RL was considered as control/decision across all over
system operating states shown in Fig. 1 and across
different time scales shown in Fig. 2 (note that normal
control in Table 1 means the controls are in a normal
system operating state but also refer to decisions like
scheduling and dispatch).

e All past and recent considerations are based on off-
line RL, i.e. good control policies are learned from a
system model. This is understandable for, at least,
two reasons: the first is the designers of power system
controls have been always concerned first and fore-
most with safety and reliability, and only techniques
that are fully understood and which are guaranteed
to work, are used, and the second is the exploration in
RL would be dangerous if direct interaction between
control and the system is in place.

e Prevailing RL methods used are Q-learning and some
of its variants, such as Q(\) and fitted Q iteration.
This prevalence is also explained by the need to
use fully understood methods (at least fully under-
stood by designers of power system controls and deci-
sions). Other considerations include R(A), temporal-
difference (TD) and policy search.

e Domain-specific knowledge, or the knowledge about
the particular problem under study, plays an impor-
tant role in making problem solving tractable. The
usual roles of domain knowledge are:

- Making the computations necessary for solving
the problem more time- or space-efficient,
- Guiding the solution process,

Table 1. Summary of RL considerations for
electric power system control/decision

Problem Type of RL Reference(s)
control method
Electricity Market  Q-learning Harp et al. (2000)
market decision Rahimiyan et al. (2010)
simulation Nanduri and Das (2007)
Lincoln et al. (2012)
Kim et al. (2016)
Krause et al. (2006)
Transient Emergency Q-learning Ernst et al. (2004)
angle Glavic (2005)
instability Glavic et al. (2005a)

Glavic et al. (2005b)
Li and Wu (1999)
(

Fitted Q Ernst et al. (2009)
iteration
Policy Mohagheghi et al. (2006)
search

Oscillatory Emergency Q-learning Ernst et al. (2004)

angle Wang et al. (2014)
instability Glavic et al. (2005a)
Ademoye and Feliachi (2012)
Karimi et al. (2009)
Voltage Normal Q-learning Xu et al. (2012)
control Vlachogiannis et al. (2004)
AGC Normal — Q(X) with Yu et al. (2011)
(Automatic) elig. traces
generation Q-learning Daneshfar and Bevrani (2010)
control) Ahamed et al. (2002)
R(N) Yu et al. (2012b)
Economic Normal Q-learning Jasmin et al. (2011)
dispatch Yu et al. (2016)
Wide-area Emergency TD Yousefian et al. (2016)
control Q-learning Yan et al. (2016)
Hadidi and Jeyasurya (2013)
Households  Normal Q-learning Wang et al. (2016)
control Yan et al. (2016)
Wind Normal Q-learning Wei et al. (2015)
generation Tang et al. (2015)
control Q) Yu et al. (2012a)
Demand Normal  Fitted Q Ruelens et al. (2016)
control iteration Vandael et al. (2015)
System  Restorative Q-learning Ye et al. (2011)
restoration

Congestion Emergency Q-learning Zarabbian et al. (2016)

management
Microgrids Normal Q-learning Khorramabady et al. (2015)
control Li et al. (2012)

Policy
search

Venayagamorthy et al. (2016)

- Increasing robustness (especially when unfore-
seen or previously un-experienced situations oc-
cur), and

- Allowing a learning agent to perform at a satis-
factory level even at the beginning of learning.



One machine infinite bus (OMIB) transformation
was used as the domain-specific knowledge for the
problem dimensionality reduction in most of the
RL considerations for transient and oscillatory angle
instability problems (see for example: Ernst et al.
(2004); Glavic (2005); Glavic et al. (2005a); Ernst
et al. (2009)). Work presented in Ruelens et al. (2016)
extended the fitted Q iteration algorithm in order
to take advantage of domain-specific knowledge (in
particular case a forecast of the exogenous data is
provided to design demand response control). Q(\)
with eligibility traces is used to take advantage of
domain-specific knowledge in Yu et al. (2011).

e Even with the use of domain-specific knowledge, the
dimensionality of the problem often becomes an issue
since, in many cases, the problem is revealed to be
partially observable Markov decision problems and
the use of history of inputs is needed to recover
Markov property.

e In general, there is a lack of efficient fusion of RL
models with control theory and practice for power
systems. The work presented in Glavic et al. (2005a)
suggested fusion of RL and the concept of control
Lyapunov functions (this approach is further elabo-
rated in Glavic et al. (2006)). Other works suggesting
fusion of RL with known control techniques include
Ernst et al. (2009); Wang et al. (2014) where RL was
considered together with model predictive control,
and Li and Wu (1999) where RL is combined with
fuzzy logic control.

e RL was considered as a single agent (where RL con-
trols individual power system components) or a multi-
agent system for the problem solution. Power system
components considered include: dynamic brake Ernst
et al. (2004); Glavic (2005), thyristor controlled se-
ries capacitor Ernst et al. (2004, 2009), quadrature
booster Li and Wu (1999), synchronous generators
(all AGC related references), individual or aggregated
loads Vandael et al. (2015); Ruelens et al. (2016), etc.
If used as a multi-agent system, then additional state
variables must be introduced to ensure convergence
of these essentially distributed computation schemes,
and an adapted variant of standard RL methods is
often used (for example correlated equilibrium Q(\)
Yu et al. (2012a)).

In the remainder of this paper we provide some research
and development opportunities in terms of recent break-
throughs in RL together with the control and decision chal-
lenges in future electric power systems and perspectives in
restorative, emergency, robust, and distributed control.

5. PERSPECTIVES OF RL FOR ELECTRIC POWER
SYSTEM DECISION AND CONTROL

Although a number of power system control/decision prob-
lems were considered with application of RL methods, we
believe these methods could be extended to a variety of
other problems.

In this section we provide our view on the RL perspectives
for electric power systems decision and control considera-
tions. The perspectives are analysed in terms of new and
more efficient RL methods and future needs of developing

power systems where even more decision and control is
obviously needed due to structural changes and increased
uncertainties in the system operation.

5.1 Recent Breakthroughs in the RL Community

The breakthroughs relevant for electric power system de-
cision and control considerations are Safe RL (for allowing
on-line interaction with the system), Deep RL (for better
handling of data sets) and path integral control approach
to RL (for higher efficiency and fewer open parameters in
RL).

Safe RL  Designers of power system controls have always
been concerned first and foremost with safety and reliabil-
ity. In this respect new algorithmic solutions coming in
the RL field as safe RL are worthy of considerations for
revisiting some past applications of RL to power system
control problems, as well as exploring new problems of
electric power system decision and control.

Most important results in this field are those presented
in Thomas (2015). Relevant results we found in Thomas
(2015) are those related to the improvements of fitted Q it-
eration and least squares policy iterations algorithms. Pro-
posed algorithms balance the trade-off between predicted
performance and predicted lower bound when searching
for safe policies, i.e. policies that are guaranteed to im-
prove upon a user-specified baseline with a user-specified
confidence level (Thomas (2015)).

This could open the possibility of using RL methods in
on-line mode where an RL-driven agent interacts directly
with the system since safe RL searches for new and
improved policies, while ensuring that the probability of
a harmful policy is low (Thomas (2015)). At the same
time, the user specifies the meaning of harmful and how
low the probability should be in order to define the level
of acceptable risk (Thomas (2015)) through the domain-
specific knowledge. This is particularly important in cases
where the phenomena are difficult to model and reproduce
within a simulation environment. An excellent source on
safe RL is the work presented in Garcia and Fernandez
(2015).

We believe that the prevailing approach is going to be
a combined implementation of RL (off-line and on-line)
where it first learns using a system model then it further
improves its behaviour through interaction with the real
system (safe RL will still be needed for the on-line inter-
action).

Note that safe (on-line) RL may also be combined with
batch RL, a subfield of RL for which it is assumed that
the sole knowledge available about the problem is a set
of interactions with the real system embedded in batch
of trajectories. In such a setting, safety is related with
the generalization properties of the batch RL algorithm
used to process the batch of trajectories. Designing batch
RL algorithms with cautious generalization properties has
been addressed using synthesized trajectories in Fonteneau
et al. (2013b), and also operation research techniques in
Fonteneau et al. (2013a).

Deep RL  Recent years have shown huge progress in
RL algorithms for control and decision making problems



with large state spaces (typically, matrices of pixels). This
performance increase is mainly due to the import of deep
learning techniques that have recently become very mature
(see Bengio (2009); LeCun et al. (2015); Schmidhuber
(2015)).

These techniques allow for the learning of rich features
from massive sets of data, in particular sets (or time-
series) of images. This automatic feature extraction ability
has successfully be incorporated to RL paradigms, allow-
ing classic RL techniques such as e-greedy Q-Learning
(Watkins and Dayan (1992)) attain state-of-the-art perfor-
mance when playing the game of Go (Silver et al. (2016))
or Atari video games (Mnih et al. (2015)). This has opened
the so-called Deep RL area.

Encouraged by these successes, the Deep RL field of
research is revisiting some of the main works achieved
in the past three decades using deep learning function
approximators (see Busoniu et al. (2010) for a global
view of the use of function approximators in RL). In
particular, the deep learning remastering of Double Q
Learning (see Hasselt et al. (2015) and Hasselt (2010)
for the original version without deep learning) or Memory
Replay Schaul et al. (2015) ideas shows that RL promises
that were originally proposed decades ago are definitely
worth revisiting in the light of Deep Learning architecture.

These recent Deep RL successes should naturally be seen
as invitations to revisit RL-based optimal control ap-
proaches that have been proposed to address power system
problems in the past, as well as the ones with prospective
applications in the future.

Deep RL could also be combined with safety-based con-
trols offering a safe deep RL for safety-critical applications,
such as the majority of power system control/decision
problems.

Path integral control approach to RL  This is an example
of the combination of classical techniques from optimal
control and dynamic programming with modern learning
techniques from statistical estimation theory.

Theodorou et al. (2010) suggest the use of the framework
of stochastic optimal control with path integrals to derive
a novel approach to RL with parameterized policies. In
principle, the policy improvement are achieved by its
transformation into an approximation problem of a path
integral with the exploration noise as the only open
algorithmic parameter. The algorithm can be realized
as either model-based, semi-model-based, or model free,
depending on how the learning problem is structured.
More precisely, Theodorou et al. (2010) introduced policy
improvement with the path integrals PI? method.

We believe that such a combination of classical technique
from optimal control and RL could offer efficient and
numerically robust RL methods to be used in power system
decision and control problems.

5.2 The future of electric power systems: even more
control and decision-making opportunities

In this section, we propose a prospective view of the main
trends that will follow electric power systems in the coming

years, or perhaps decades. We also provide a few research
directions involving reinforcement learning.

Main trends  The future of the electric power system may
be characterized by the following trends (Ekanayake et al.
(2012)):

e A progressive deployment of distributed electricity
generation capacities, associated with a growing de-
ployment of distributed storage capacities, and thus
inducing a deployment of electric microgrids,

e The rise of digitalization, inducing an increase of
available data, pushing the whole electric power sys-
tem into the “smart grid era”,

e The rise of a two-sided market-type economy, mainly
driven by the development of apps on mobile devices,

e The introduction of blockchains, distributed ledgers
and smart-contracts, and more generally, the possi-
bility to automate and distribute transactions,

e The progressive emergence of electric vehicles (EVs),
that may also be seen as mobile storage capacity.

At a first glance, the previous list of items may introduce
additional complexity in the traditional operation of elec-
trical power systems. The previously described trends will
definitely lead to the introduction of additional control
variables in the global energy landscape. However, many
interesting opportunities may also be brought about by
such control variables, and RL (particularly Safe and Deep
RL) could offer practical solutions to these problems.

Towards decentralized electricity generation, distributed
storage and electricity microgrids  The last decade has
seen the rapid emergence of renewable electricity produc-
tion capacities, in particular photovoltaic (PV) panels and
wind turbines. These renewable electricity generation tech-
niques have the characteristic to be strongly “decentraliz-
able”, i.e. to be installed at a rather small scale (typically
a few kW power), and close to electricity consumers.

In addition, there is growing evidence that electricity
storage technologies emerge as the key enablers of future
power system operation Ekanayake et al., 2012.

As a consequence of the last two above-mentioned points,
electrical microgrids may progressively become economi-
cally viable in the coming years, depending on the geo-
graphical situation, on the possibility to install PV pan-
els or small wind turbines, and on the load profile of
the (local) consumer(s). More than 160 microgrid project
are currently active world-wide (see http://www.resilient-
project.eu/). A growing research community is investi-
gating business cases related with electricity microgrids
Francois-Lavet et al. (2016a).

Very recent works have already proposed the application
of machine learning techniques such as imitative learning
Aittahar et al. (2015) and Deep RL techniques Frangois-
Lavet et al. (2016b) for planning under uncertainty within
electricity microgrids. It appears that favourable control
architecture of microgrids resemble the hierarchical con-
trol of traditional power systems. This suggests previ-
ous achievements (including RL) could be appropriately
adopted and re-used. Also, a RL hierarchical model pro-
posed in Dalal et al. (2016), where the goal is set to be
electrical grid reliability maximization with consideration



of more than a single stakeholder in system operation, is
worth of further exploration in this context.

Several research investigations remain to be carried out,
in particular those related to the interaction between
microgrids and the grid, and also among microgrids. Here
we also see opportunities for RL considerations.

The smart grid era: towards more and more data-driven
solutions  Even if “smart grid” is a term that remains
fuzzy in its definition, one main feature that characterizes
the smart grid era is the availability and the exploitation of
more and more data, mainly acquired from new generation
smart meters and other sensors.

Opportunities offered by data analytics are manifold, es-
pecially in the context of the rise of renewable (and in-
termittent) sources of electricity. Perhaps one of the most
promising research direction opened in this field is Ac-
tive Network Management (ANM), and the possibility to
adapt the load based on certain production scenarios. For
instance, an ANM benchmark based on the formalization
of the ANM problem as a Markov decision process was
developed in Gemine et al. (2014). This ANM benchmark
offers an opportunity to put recent Deep RL techniques to
the service of electric power systems.

Two-sided markets and sharing economy  Two-sided
markets were probably first formalized in the context of
the popularization of payment cards Rochet and Tirole
(2003). On the one side, customers were interested in
getting a payment card offering a wide range of places
where it could be used, and on the other side, sellers were
interested in offering payment facilities to payment cards
offering a large pool of customers.

The notion of two-sided market economy may become
central in electric power systems in the coming years,
mainly because of the distributed nature of renewable
energy production capacities. Electricity consumers have
progressively become electricity prosumers. In the future,
it may not be impossible that energy producers and
consumers exchange energy using ad hoc platforms. These
exchange platforms should probably emerge rapidly as
soon as electric vehicles increase their market share.

Electric vehicles and storage: challenges and opportunities

Electric Vehicles (EVs) have recently revealed huge
improvements in terms of autonomy and pricing. EVs’
load may represent a consequent additional consumption
of electricity. Uncertainties in charging patterns further
complicates operation and control of the system. At the
same time EVs offer an great opportunity to manage
the fluctuations of the production of electricity using
renewable energy Kydd et al. (2016).

New opportunities are opening for EVs (and in general
to other storage capable devices) in fast system frequency
regulation. Many electric power utilities across the USA
already use, or are in the stage of implementation, so-
called performance based frequency regulation (needed in
case of any imbalance between electricity generation and
demand). EVs could also be “controlled” to select their
charging stations and their time of charge to avoid electri-
cal overvoltages (Olivier et al. (2016)) or congestions and

favor the integration of renewable energy into distribution
network (Dubois et al. (2017)).

The aim is to encourage power system devices able to
provide fast response to participate in the regulation and
financial incentives are put in place for their performances
(faster frequency stabilization then uses traditional ap-
proaches based on big but slow generation units) Glavic
and Alvarado (2016). If participating in these fast reg-
ulation schemes, EVs (if aggregated in enough number
to provide this service) could be controlled as a dynamic
brake using RL as demonstrated in Glavic (2005) and the
same holds true for any other storage device mentioned
earlier.

Blockchain and distributed ledgers  The emergence of
electricity prosumers will also push for an evolution of
the “traditional transaction structure” currently linking
all agents producing, transporting, distributing and con-
suming electricity.

Recently, several projects have emerged around the notion
of electricity prosumers sharing their electricity while man-
aging transactions using blockchain and smart contract
technologies. This is, for instance, the case of the Brooklyn
Microgrid project ! .

A distributed ledger (also called shared ledger) is a con-
sensus of replicated, shared, and synchronized digital data
geographically spread across multiple sites? . Certainly, it
offers a transparent, secure and distributed way to manage
transactions between prosumers. Besides, smart contracts
combine protocols with user interfaces to formalize and
secure relationships over computer networks Szabo, 1997.
In practice, smart contracts offer to facilitate and autom-
atize transactions, as soon as requirements are observed
and satisfied.

Distributed ledgers combined with smart contracts may
offer the opportunity to easily implement energy man-
agement systems incorporating adaptive, data-driven con-
trollers where RL might be revealed to be an effective
approach.

Dynamics of the deployment of renewable energy produc-
tion capacities Long-term planning of renewable energy
production capacities is the starting point in efficient en-
ergy harnessing from these sources. It is natural to formu-
late this problem as a sequential decision making problem,
and RL is an obvious choice to solve this problem. The
problem consideration as a dynamic one over a time span
of several years opens up the possibility to compute the
dynamics (when and the amount) of the renewable energy
production capacities deployment, thus maximizing the
energy harnessing from renewable sources over the time
span.

The notion of Energy Return on Energy Investment
(ERoEI) as characteristics of technologies, can be used to
this purposes (Fonteneau and Ernst (2017)). ERoEI is the
ratio of the amount of usable energy acquired from a par-
ticular energy resource to the amount of energy expended
to obtain that energy resource.

1
2

see http://brooklynmicrogrid.com/
see also www.blockchaintechnologies.com/



All of the above, together with the development of ad-
vanced communications and measurement infrastructure,
turns modern power systems into cyber-physical systems.
Complexity of these systems makes design of the system
controllers difficult and RL is expected to take a greater
role in designing (learning) appropriate control laws.

Moreover, some distributed generation which is exploiting
renewable energy sources inherently brings uncertainties
into the system operation and control. Recent work pre-
sented in Gao et al. (2016), and the references therein,
suggests a solution in the form of an adaptive and optimal
output-feedback problem for continuous-time uncertain
systems with nonlinear dynamic uncertainties with guar-
anteed robustness to these uncertainties.

5.8 Perspectives for RL in restorative, emergency, robust
and distributed control

In our view, the problems that would permit easy appli-
cations of RL methods are those where the parameters
of existing controllers have to be determined (and usually
averaged) off-line over a set of pre-defined (based on engi-
neering judgement) scenarios. This is usually the case with
emergency controls.

One example is emergency undervoltage load shedding for
voltage instability introduced in Otomega et al. (2007).
The same holds true for so-called system integrity protec-
tion schemes (SIPS) Madani et al. (2010) since they are
designed off-line with the purpose to serve as an emergency
control.

Restorative control was considered in the past for trans-
mission systems Ye et al., 2011. With the emergence of
renewable energy generation the same needs exist for dis-
tribution systems and microgrids. Implementation details
might vary, but the principle is the same as for the trans-
mission system and RL methods could offer a solution for
this problem. The same holds true for emergency controls
and SIPS.

We believe the efficient fusion of RL and control theory
and practice could offer solutions where existing controllers
provide baseline stability guarantees, while RL improves
performances (an example: robust controls are designed for
worst-case conditions but most of the time operate in non-
worst-case situations, so their synergy could potentially
lead to an efficient RL based controls).

If designed as a multi-agent system, then several control
agents using RL are connected to a single electric power
system. These agents are able to learn in parallel and adapt
their performances progressively, leading to a coordinated
distributed control. We also envision the great potentials
of RL in this direction. In this respect we also emphasize
a specifics of power systems, i.e. a sort of communication
infrastructure already exists since all substations are con-
nected by electrical lines and any action of one agent is
sensible by other ones (at least the ones in close electrical
distance) which facilitates the design of multi-agent sys-
tems.

5.4 Perspectives for RL in electric power system dynamic
security assessment and control

Preventive controls in a normal system operating state (see
Fig. 1) are computed using so-called security assessment
where controls are computed by applying most-probable
disturbances (also known as credible disturbances (con-
tingencies)) and simulating a system response to these
disturbances. The disturbances usually considered include
short circuits followed by the outages of most-impacted
generation and lines. These controls are applied in normal
mode and might be revealed to be costly since disturbance
actually (and often) does not happen.

There are some possibilities to combine preventive and
corrective controls (corrective controls take place when
a disturbance happens). This was recognized some time
ago in Wehenkel et al. (2006); Ruiz-Vega et al. (2003).
An automatic learning was suggested as a possible ap-
proach in Wehenkel et al. (2006) while Ruiz-Vega et al.
(2003) suggest a combination of open-loop and closed-loop
techniques for transient stability control. We believe it is
worth revisiting this idea and considering preventive and
emergency controls as a single problem, or to use RL to
deal with preventive and open-loop controls. The problem
boils down to computing the trade-off of incurring costs in
prevention with expected costs in emergency control We-
henkel et al. (2006); Ruiz-Vega et al. (2003). The optimal
combination of these controls is essentially a sequential
decision problem in uncertain environments to which RL
methods could provide an efficient solution.

6. CONCLUSION

Based on the extensive review of past considerations of RL
methods for electric power system control and decision, the
search for new opportunities and our experience working
in both RL and power systems fields, we draw the following
conclusions:

e RL was already considered as an effective approach to
solve many electric power system control and decision
problems confirming the potential of RL methods and
interest of the power system research community in
considering these methods.

e RL methods could be extended to other power system
problems, most notably restorative and emergency
control to be used not only by transmission but also
distribution system and microgrid operators, as well
as unit commitment (see Dalal and Mannor (2015)
and references therein). Emerging devices such as
storage, electric vehicles and power electronics devices
should also be considered in this context.

e Recent breakthroughs in RL offer solutions that han-
dle data sets more efficiently and open up possibilities
for using RL in on-line mode. Most relevant break-
throughs for electric power system control and deci-
sion are Safe RL, Deep RL and path integral control
for RL. Past considerations are worth revisiting in the
context of these new RL methods together with their
use for other potentially interesting power system
problems.

e There is a need for better fusion of control theory
and practice with RL while designing power system



controllers. We mention the robust control and fusion
with stability oriented controls as good examples in
this context, and path integral control for RL opens
up new possibilities in this context.

e Embedding domain-specific knowledge makes many
RL for power system control/decision tractable. This
requires closer cooperation between those interested
in RL methods and power engineers in solving many
practical problems. This will certainly contribute to a
wider considerations of RL methods for power system
problems. We suggest this as the right way to go
with practical implementations of the research results
in this field. In particular, let us mention Bayesian
RL approaches (see Ghavamzadeh et al. (2015) for
an extensive literature review), which offer two in-
teresting features: by assuming a prior distribution
on potential (unknown) environments, Bayesian RL
(i) allows to formalize Bayesian-optimal exploration /
exploitation strategies, and (ii) offers the opportunity
to incorporate prior knowledge into the prior distri-
bution. However, most Bayesian RL algorithms suffer
computational complexity (Castronovo et al. (2016)).

e Potential considerations of RL are indeed not limited
to those recommended by the authors (recommen-
dations of this paper are just reflections of the au-
thors working in both fields of RL and electric power
systems). In principle, any sequential decision prob-
lem, regardless of the entity to use it (transmission
or distribution system operator, microgrid operator,
retailer, load aggregator, or distribution generation
owners), is worthy of RL consideration for its solution.

Modern power systems, with a high proliferation of dis-
tributed generation, new load types, increased use of power
electrics devices, new measurement technologies and up-
grade of communications infrastructure are cyber-physical
systems. It is reasonable to expect increased use of RL (and
other machine learning techniques) since the complexity of
cyber-physical systems makes control and decision difficult
without the learning techniques.

In general, we strongly encourage further consideration
of RL for the solution of electric power system decision
and control problems, either through revisiting already
considered ones, in light of the use of new RL methods,
or as an extension to new problems.
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